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Abstract— We investigate the role of reflection and glide
symmetry in periodic lossless waveguides on the dispersion
diagram and on the existence of various orders of exceptional
points of degeneracy (EPDs). We use an equivalent circuit
network to model each unit-cell of the guiding structure.
Assuming that a coupled-mode waveguide supports N modes in
each direction, we derive the following conclusions. When N is
even, we show that a periodic guiding structure with reflection
symmetry may exhibit EPDs of maximum order N. To obtain a
degenerate band edge (DBE) with only two coupled guiding
structures, reflection symmetry must be broken. For odd N, N+1
is the maximum EPD order that may be obtained, and an EPD
of order N is not allowed. We present an example of three
coupled microstrip transmission lines and show that breaking
the reflection symmetry by introducing glide symmetry enables
the occurrence of a stationary inflection point (SIP), also called
frozen mode, which is an EPD of order three.

Index Terms—Periodic structures, degeneracy, glide
symmetry.

I. INTRODUCTION

Exceptional points of degeneracy (EPDs) are points in an
electromagnetic system parameters space where two or more
eigenmodes coalesce into a single eigenmode. The dispersion
relation of eigenmodes in a waveguide that exhibits an EPD
with order m, where m is the number of coalescing

eigenmodes, has the behavior of (w-w,)«(k-k,)" at the
vicinity of an EPD (w,,k,) [1]-[2]. Here @ and k are the

angular frequency and the wavenumber, respectively, and the
EPD is denoted by the subscript e. Such dispersion behavior
is accompanied by a severe reduction in the group velocity of
waves propagating in those structures resulting in a giant
increase in the loaded quality factor and the local density of
states which is beneficial for various applications such as
pulse generators and compressors, high-Q resonators, sensors
and lasers.

The simplest second order EPD is found in uniform
waveguides at the modal cutoff frequency [3]. Second order
EPDs in the form of band edges also occur in lossless periodic
waveguides; they are also realized in uniform coupled
transmission lines (CTLs) by introducing parity-time (PT-)
symmetry [4]-[5] which implies using a balanced and
symmetrical distribution of gain and loss [6]. Different orders
of EPD, especially the degenerate band edge (DBE) which is
an EPD of order four, have been engineered in various types
of periodic guided structures in [7]-[11]. Waveguides

supporting a stationary inflection point (SIP), which is an EPD
of order 3, are shown in [12]-[13]. In [11], some of the authors
have shown the relation between gain and loss balance
condition for the existence of EPD in two coupled guiding
structures. Also, in [11] the DBE was experimentally
demonstrated in two coupled microstrip lines. Compared to
the work presented in [11], here we consider guiding
structures that are lossless and gainless, and we focus only on
the role of symmetry in coupled waveguides to exhibit EPDs,
in particular a DBE or an SIP.

The existence of symmetry in periodic waveguides plays
an important role in the kind of modes that are allowed and
the maximum order of EPD that can be obtained. In this paper,
we study the relation between reflection and glide symmetry
in coupled waveguides and the orders of EPDs that can be
obtained in such electromagnetic systems.

A periodic waveguide is said to possess a higher symmetry
if it consists of more than a simple translation or reflection
symmetry [14]. A periodic waveguide is said to possess a
glide symmetry if it remains invariant under the glide
operation G, consisting of a translation by half of the
geometrical period d, followed by a reflection in the so-called
glide plane [15]-[16]. The experimental verification of an SIP
in a three-way microstrip waveguide with glide symmetry was
presented in [17].

In this paper, we focus on the role that the symmetry in
periodic coupled waveguides have in establishing an EPD. We
show that reflection symmetry in guiding structures enforces
a maximum limit to the order of the EPD that is obtainable.
Additionally, we present an example showing that breaking
reflection symmetry by introducing higher symmetry, e.g.,
glide symmetry, enables the existence of EPD of special order
that cannot be obtained in electromagnetic structures that have
reflection symmetry. The EPD we consider in this paper are
shown for guiding structures that are lossless and gainless;
hence they are the regular band edge (an EPD of order 2), the
DBE and the SIP.

II. SYSTEM MODELING

Figures 1(a) and 1(b) show two arbitrary periodic
structures with reflection (mirror) symmetry and glide
symmetry, respectively. The type of symmetry is determined
by the operator under which the fields are invariant.

PHROFEdrRsPRgRted Redacss? prld BUTRRHS PG BIRBRs IR TIRATRIRD drot ceafRg st and e iiHe tiom 'ERG XrierkvE&siigions JprlE
Xplore under the license granted by the "Agreement Granting EurAAP Rights Related to Publication of Scholarly Work."



’

’
unit-cell [~V
2N-port ,
Network |/ 1 ,

e Vl

______ - -

I,

madid

Ly

oy

()

Fig. 1. (a) An arbitrary shape periodic structure with reflection (mirror)
symmetry. The blue color represents either metal or dielectric. The structure
may be 2D or 3D. (b) Waveguide with glide symmetry. (¢) A multimodal
circuit network model for a 2N-port unit cell of either (a) or (b).

The reflection (mirror) symmetry operator R; and glide
symmetry operator G; apply to the fields and are defined as
follows

R 1 (x,2) = (—x, 2),

G; :(x,2) > (—x,z+d /2). O

When the reflection symmetry operator applies to
electromagnetic fields, it results in mirroring the fields around
the plane of symmetry (red dashed line in Fig. 1(a)). On the
other hand, applying the glide symmetry operator to fields in
periodic waveguides results in a translation of the fields by
half a period and then mirroring them around the plane of
symmetry.

Waves in the periodic guiding structure shown in Figs.
1(a) and (b) are represented by ports at the start and the end of
each unit cell. An equivalent 2N -port network is shown in
Fig. 1(c), where N isthe number of modes at each side of the
network, i.e., N isthe number of the coupled waveguides in
the guided electromagnetic structure. For example, the
waveguides in Fig. 2 and Fig. 3 have N =4 and N =3,
respectively, and they are also called 4-way and 3-way
coupled waveguides.

We consider two cases, in the first case N is even and in
the second one N is odd. Let us consider first the case where
N is even, represented by the periodically coupled
waveguides based on four microstrip lines above a grounded
dielectric substrate whose unit cell is shown in Fig. 2.

For convenience, we define a state vector
T
T ) .
‘I’:[‘I’UT, Y, } that describes the electromagnetic fields

at any coordinate z, where the subscript U and L are
designated for the upper and lower state vectors, respectively,

¥, and ¥, and the superscript 7 denotes the transpose
operation. They represent the state vectors associated to

voltages and currents in the upper and lower half spaces,
respectively, referring to Fig. 2. They are defined as

(2)
T
¥, =[¥ 1Ts W—zrs lI'—N/z ]Ts
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Fig. 2. Example of four periodically coupled microstrip transmission lines
above a grounded dielectric substrate, with reflection (mirror) symmetry.

where N here is the total number of modes used to model
fields. Each ¥, in (2), with n =+1, 2, +3,... is a vector of

the transmission line voltage and current, as also discussed in
[11]. Note that the negative sign for state vector indices
represents modes in the lower half space, i.e. x <0, while the
positive one represents modes in the upper half space. Based
on the equivalent circuit network shown in Fig. 1(c), the
relation between the input state vector ¥(z) and the output
state vector W(z+d) of a given unit-cell is defined by the
transfer matrix T(z), such as ¥(z+d)=T(z)¥(z), which

is written in block matrix form as

|:‘IIU (Z+d)} _ llw (2) ZUL (Z)HTU (2)} 3)

¥, (zd) | |T, () T ()| %)

Applying operators (1) to any electromagnetic state
Y(z), we get

R; :¥(z) > R¥(2),

. 4)
G; :¥(2) > T,,(2)R¥(2),

where R isthe 2N x2N mirror symmetry matrix

01
B=£0, ®)

I isthe NxN identity matrix, and T,/,(z) is the 2N x2N

transmission matrix of half period calculated at position z,
ie, Y(z+d/2)=T,,(z)¥(z). We recall that the state

vector W(z) is made of 2N components, since each ¥, has

dimension 2.

Waveguides with symmetries as in Fig. 1 are better
understood by using an even and odd mode representation.
Hence, we define a new state vector
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T ]’
X:[(‘I’U+‘I‘L) , (‘I‘U—‘I’L)} =t¥, where

t=2t"=R+I' ,and I' is

R
-8 3 ©

By applying this basis transformation to (3), we obtain
X(z+d)=tTt 'X(z) =T, X(z) where the transfer matrix
T, is given by

=X

) 0 lLL (2) _lLU (Z)] ' Q)
+0.5(RTR-T)(1+RI)

_ [lUU )+ L (2) 0

For guiding structures with reflection symmetry, we
know that luu (z)zlLL (z) and l‘UL (z):l‘w (z). This

implies that R and T commute, ie., RT=TR,
consequently MTM —T =0 which means that T, in (7) is
a block diagonal matrix. Therefore, we do not have coupling
between even and odd modes and the maximum order of EPD
that can be obtained is N . Referring to the case in Fig. 2 with
four microstrip lines over a grounded dielectric substrate
satisfying reflection symmetry, the highest order of EPD that
can be obtained is four. In order to have a DBE when only
two coupled microstrips are used, reflection (mirror)
symmetry must be broken, and this has been shown in [11].
When coupled waveguides with an odd number of modes
N (in each direction) are considered, referring to Fig. 3 we

T
write the state vectoras ¥ = [‘I’UT, v, ¥ LT} , where the

subscript 0 refers to the mode guided by the central microstrip
in Fig. 3. We assume that the central microstrip supports only
a single mode in each direction characterized by ¥, which
is a two-dimensional column vector. Following the same
formulation mentioned above one can prove that the transfer
matrix T, for odd number of modes N reads as

T, +T,,() T, (+T, () 0
Ty=|  T,0 T, () 0
0 0

1,-1,6

+0.51'+ R)(T-RTR)R. ®)

From this equation we conclude that for guiding
structures with reflection symmetry, where RTR-T =0,
the maximum order of EPD that may be obtained is N +1
and that an EPD of order N cannot be obtained due to
reciprocity. The waveguide in Fig. 3(a) is an example of this
case which has reflection (mirror) symmetry so that it may

only exhibit 2" and 4" order EPDs but can never exhibit 3™
order EPD.
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Fig. 3. Two examples of three periodically coupled microstrip transmission
lines. (a) Structure with reflection symmetry that can never exhibit a SIP (a
34 order EPD). (b) Structure with higher symmetry (glide symmetry)
exhibiting a SIP.

For glide symmetric waveguides, it is obvious that
T #RTR for the cases of even and odd N because R and
T do not commute in this case, and they only commute if
and only if the waveguide has reflection symmetry. This
implies that when N is either even or odd, we have coupling
between even and odd waveguide modes which is a necessary
but not sufficient condition to achieve full degeneracy
(degeneracy of order 2N ).

We consider now a numerical example of three coupled
microstrip transmission lines as shown in Fig. 3(b) which was
presented in [17]. For simplicity we assume that the structure
is lossless. The microstrip waveguide in Fig. 3(b) is glide
symmetric and does not prohibit the coupling between all the
waveguide modes and therefore it may also exhibit a 3™ order
EPD. Indeed, Fig. 4 shows the dispersion relation for
propagating modes (i.e., with wavenumbers with vanishing
imaginary part) in the waveguide in Fig. 3(b) after
engineering it to exhibit an SIP (a 3™ order EPD) at frequency
/=2 GHz. The used parameters are (in mm) w=3, s=0.5,

h=29.3, and d =76.8.The microstrips are above a
grounded dielectric substrate with relative dielectric constant
of 6.15 and height of 1.52 mm.

This proves that introducing higher symmetries in a
waveguide allows the existence of new EPDs that cannot be
obtained under simpler waveguides that satisfy mirror
symmetry.

III. CONCLUSION

Symmetry plays an important role in the existence of
higher order EPDs. Reflection symmetry prohibits the
existence of degenerate band edge (DBE) in two coupled
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periodic waveguides. Reflection symmetry must be broken
for two coupled waveguides to support a DBE.

Reflection symmetry also prohibits the existence of
stationary inflection point (SIP) in three coupled periodic
waveguides. Glide symmetry enables the possibility for the
SIP to exist in three coupled waveguides.
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Fig. 4. Wavenumber dispersion diagram for a mode in the waveguide with
glide symmetry in Fig. 3(b), showing the existence of a SIP, which is a third
order EPD, at /=2 GHz. Here, we plot only the two modes with purely real
wavenumber. Each mode exhibits an SIP (or frozen mode). This plot does not
show the coalescence of three modes at each SIP because the other two
coalescing modes have complex wavenumber, hence not shown here.
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