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Abstract— We investigate the role of reflection and glide 

symmetry in periodic lossless waveguides on the dispersion 
diagram and on the existence of various orders of exceptional 
points of degeneracy (EPDs). We use an equivalent circuit 
network to model each unit-cell of the guiding structure. 
Assuming that a coupled-mode waveguide supports N modes in 
each direction, we derive the following conclusions. When N is 
even, we show that a periodic guiding structure with reflection 
symmetry may exhibit EPDs of maximum order N. To obtain a 
degenerate band edge (DBE) with only two coupled guiding 
structures, reflection symmetry must be broken. For odd N, N+1 
is the maximum EPD order that may be obtained, and an EPD 
of order N is not allowed. We present an example of three 
coupled microstrip transmission lines and show that breaking 
the reflection symmetry by introducing glide symmetry enables 
the occurrence of a stationary inflection point (SIP), also called 
frozen mode, which is an EPD of order three.      

Index Terms—Periodic structures, degeneracy, glide 

symmetry. 

I.  INTRODUCTION  

Exceptional points of degeneracy (EPDs) are points in an 

electromagnetic system parameters space where two or more 

eigenmodes coalesce into a single eigenmode. The dispersion 

relation of eigenmodes in a waveguide that exhibits an EPD 

with order m , where m  is the number of coalescing 

eigenmodes, has the behavior of (( ) )mk kee     at the 

vicinity of an EPD ( , )e ek  [1]-[2]. Here   and k  are the 

angular frequency and the wavenumber, respectively, and the 

EPD is denoted by the subscript e. Such dispersion behavior 
is accompanied by a severe reduction in the group velocity of 

waves propagating in those structures resulting in a giant 

increase in the loaded quality factor and the local density of 

states which is beneficial for various applications such as 

pulse generators and compressors, high-Q resonators, sensors 

and lasers. 

The simplest second order EPD is found in uniform 

waveguides at the modal cutoff frequency [3]. Second order 

EPDs in the form of band edges also occur in lossless periodic 

waveguides; they are also realized in uniform coupled 

transmission lines (CTLs) by introducing parity-time (PT-) 
symmetry [4]-[5] which implies using a balanced and 

symmetrical distribution of gain and loss [6]. Different orders 

of EPD, especially the degenerate band edge (DBE) which is 

an EPD of order four, have been engineered in various types 

of periodic guided structures in [7]-[11]. Waveguides 

supporting a stationary inflection point (SIP), which is an EPD 

of order 3, are shown in [12]-[13]. In [11], some of the authors 

have shown the relation between gain and loss balance 

condition for the existence of EPD in two coupled guiding 

structures. Also, in [11] the DBE was experimentally 

demonstrated in two coupled microstrip lines. Compared to 
the work presented in [11], here we consider guiding 

structures that are lossless and gainless, and we focus only on 

the role of symmetry in coupled waveguides to exhibit EPDs, 

in particular a DBE or an SIP.   

The existence of symmetry in periodic waveguides plays 

an important role in the kind of modes that are allowed and 

the maximum order of EPD that can be obtained. In this paper, 

we study the relation between reflection and glide symmetry 

in coupled waveguides and the orders of EPDs that can be 

obtained in such electromagnetic systems. 

A periodic waveguide is said to possess a higher symmetry 
if it consists of more than a simple translation or reflection 

symmetry [14]. A periodic waveguide is said to possess a 

glide symmetry if it remains invariant under the glide 

operation G , consisting of a translation by half of the 

geometrical period d, followed by a reflection in the so-called 

glide plane [15]-[16]. The experimental verification of an SIP 

in a three-way microstrip waveguide with glide symmetry was 

presented in [17]. 

In this paper, we focus on the role that the symmetry in 

periodic coupled waveguides have in establishing an EPD. We 

show that reflection symmetry in guiding structures enforces 

a maximum limit to the order of the EPD that is obtainable. 

Additionally, we present an example showing that breaking 

reflection symmetry by introducing higher symmetry, e.g., 
glide symmetry, enables the existence of EPD of special order 

that cannot be obtained in electromagnetic structures that have 

reflection symmetry.  The EPD we consider in this paper are 

shown for guiding structures that are lossless and gainless; 

hence they are the regular band edge (an EPD of order 2), the 

DBE and the SIP.   

II. SYSTEM MODELING 

Figures 1(a) and 1(b) show two arbitrary periodic 
structures with reflection (mirror) symmetry and glide 
symmetry, respectively. The type of symmetry is determined 
by the operator under which the fields are invariant.  

This paper's copyright is held by the author(s). It is published in these proceedings and included in any archive such as IEEE 
Xplore under the license granted by the "Agreement Granting EurAAP Rights Related to Publication of Scholarly Work."

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 12,2023 at 05:11:15 UTC from IEEE Xplore.  Restrictions apply. 



 
The reflection (mirror) symmetry operator   and glide 
symmetry operator x̂G  apply to the fields and are defined as 

follows 


ˆ

ˆ

: ( , ) ( , ),

: ( , ) ( , / 2).

x

x

R x z x z

G x z x z d








  

When the reflection symmetry operator applies to 

electromagnetic fields, it results in mirroring the fields around 

the plane of symmetry (red dashed line in Fig. 1(a)). On the 

other hand, applying the glide symmetry operator to fields in 

periodic waveguides results in a translation of the fields by 

half a period and then mirroring them around the plane of 

symmetry. 

Waves in the periodic guiding structure shown in Figs. 
1(a) and (b) are represented by ports at the start and the end of 

each unit cell. An equivalent 2N -port network is shown in 

Fig. 1(c), where N  is the number of modes at each side of the 

network, i.e., N  is the number of the coupled waveguides in 

the guided electromagnetic structure. For example, the 

waveguides in Fig. 2 and Fig. 3 have N =4 and N =3, 

respectively, and they are also called 4-way and 3-way 

coupled waveguides. 

We consider two cases, in the first case N is even and in 

the second one N  is odd. Let us consider first the case where 

N  is even, represented by the periodically coupled 

waveguides based on four microstrip lines above a grounded 

dielectric substrate whose unit cell is shown in Fig. 2.  
 

For convenience, we define a state vector 

,

T
TT

U L
    

Ψ Ψ Ψ  that describes the electromagnetic fields 

at any coordinate z, where the subscript U  and L are 

designated for the upper and lower state vectors, respectively,

UΨ  and 
LΨ , and the superscript T denotes the transpose 

operation. They represent the state vectors associated to 

voltages and currents in the upper and lower half spaces, 

respectively, referring to Fig. 2. They are defined as 



2
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where N here is the total number of modes used to model 

fields. Each nΨ  in (2), with n  = 1, 2, 3,… is a vector of 

the transmission line voltage and current, as also discussed in 

[11]. Note that the negative sign for state vector indices 

represents modes in the lower half space, i.e. x  < 0, while the 

positive one represents modes in the upper half space. Based 

on the equivalent circuit network shown in Fig. 1(c), the 

relation between the input state vector ( )zΨ  and the output 

state vector ( )z dΨ  of a given unit-cell is defined by the 

transfer matrix ( )zT , such as   ( ) ( )( )z d zz  TΨ Ψ , which 

is written in block matrix form as 


( ) ( )( ) ( )

( ) ( )( ) ( )

UU UL

L

U U

U LL LL

z zz d z

z d zz z
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Applying operators (1) to any electromagnetic state 

( )zΨ , we get 


ˆ

ˆ 1/2
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where  R  is the 2 2N N mirror symmetry matrix  

 ,
 

  
  

0 Ι
R

Ι 0
 

Ι  is the N N  identity matrix, and 1/2 ( )zT is the 2 2N N

transmission matrix of half period calculated at position z, 

i.e., 1/2( / 2) ( )( )z d zz Ψ T Ψ . We recall that the state 

vector ( )zΨ is made of 2N components, since each nΨ  has 

dimension 2. 

Waveguides with symmetries as in Fig. 1 are better 

understood by using an even and odd mode representation. 

Hence, we define a new state vector   

 

Fig. 1.  (a) An arbitrary shape periodic structure with reflection (mirror) 

symmetry. The blue color represents either metal or dielectric. The structure 

may be 2D or 3D. (b) Waveguide with glide symmetry. (c) A multimodal 

circuit network model for a 2N-port unit cell of either (a) or (b). 

 

 
 

Fig. 2.  Example of four periodically coupled microstrip transmission lines 

above a grounded dielectric substrate, with reflection (mirror) symmetry. 
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   ,
T

T T

U L U L  
 

X Ψ Ψ Ψ Ψ tΨ where

1
2

 t t R + I' and I'   is  

 .
 
 
  

I 0
I' =

0 -I
 

By applying this basis transformation to (3), we obtain 
1

( ) ( ) ( )Xz d z z
  X t t X XT T  where the transfer matrix 

XT  is given by 



 

( ) ( )

( ) ( )

0.5 .
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X
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z z

z z

 
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T T 0
T

0 T T

T - T (I +R RI')R
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For guiding structures with reflection symmetry, we 

know that ( ) ( )
UU LL

z zT T  and ( ) ( )
UL LU

z zT T . This 

implies that R  and T  commute, i.e., RT = TR  
consequently M TM T = 0 which means that XT in (7) is 

a block diagonal matrix. Therefore, we do not have coupling 

between even and odd modes and the maximum order of EPD 

that can be obtained is N . Referring to the case in Fig. 2 with 

four microstrip lines over a grounded dielectric substrate 

satisfying reflection symmetry, the highest order of EPD that 

can be obtained is four. In order to have a DBE when only 
two coupled microstrips are used, reflection (mirror) 

symmetry must be broken, and this has been shown in  
When coupled waveguides with an odd number of modes 

N  (in each direction) are considered, referring to Fig. 3 we 

write the state vector as 0, ,
T

T T T
U L

   Ψ Ψ Ψ Ψ where the 

subscript 0 refers to the mode guided by the central microstrip 

in Fig. 3. We assume that the central microstrip supports only 

a single mode in each direction characterized by 0Ψ which 

is a two-dimensional column vector. Following the same 
formulation mentioned above one can prove that the transfer 

matrix  XT  for odd number of modes N  reads as 

 

0 0

0 00

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0.5 ' .                                (8)
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I + T R TR)



From this equation we conclude that for guiding 

structures with reflection symmetry, where ,RTR T = 0

the maximum order of EPD that may be obtained is N +1 

and that an EPD of order N  cannot be obtained due to 

reciprocity. The waveguide in Fig. 3(a) is an example of this 

case which has reflection (mirror) symmetry so that it may 

only exhibit 2nd and 4th order EPDs but can never exhibit 3rd 

order EPD. 

 

 
 

For glide symmetric waveguides, it is obvious that 

T RTR for the cases of even and odd N  because R  and 

T  do not commute in this case, and they only commute if 

and only if the waveguide has reflection symmetry. This 

implies that when N is either even or odd, we have coupling 

between even and odd waveguide modes which is a necessary 

but not sufficient condition to achieve full degeneracy 

(degeneracy of order 2N ). 

We consider now a numerical example of three coupled 

microstrip transmission lines as shown in Fig. 3(b) which was 

presented in [17].  For simplicity we assume that the structure 

is lossless. The microstrip waveguide in Fig. 3(b) is glide 

symmetric and does not prohibit the coupling between all the 

waveguide modes and therefore it may also exhibit a 3rd order 

EPD. Indeed, Fig. 4 shows the dispersion relation for 

propagating modes (i.e., with wavenumbers with vanishing 
imaginary part) in the waveguide in Fig. 3(b) after 

engineering it to exhibit an SIP (a 3rd order EPD) at frequency 

f = 2 GHz. The used parameters are (in mm) 3,w   0.5,s 
 3,29.h   and .876d  The microstrips are above a 

grounded dielectric substrate with relative dielectric constant 

of 6.15 and height of 1.52 mm. 

This proves that introducing higher symmetries in a 

waveguide allows the existence of new EPDs that cannot be 

obtained under simpler waveguides that satisfy mirror 

symmetry.  

III. CONCLUSION 

Symmetry plays an important role in the existence of 

higher order EPDs. Reflection symmetry prohibits the 

existence of degenerate band edge (DBE) in two coupled 

 
Fig. 3.  Two examples of three periodically coupled microstrip transmission 

lines. (a) Structure with reflection symmetry that can never exhibit a SIP (a 

3rd order EPD). (b) Structure with higher symmetry (glide symmetry) 

exhibiting a SIP. 
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periodic waveguides. Reflection symmetry must be broken 

for two coupled waveguides to support a DBE. 

Reflection symmetry also prohibits the existence of 

stationary inflection point (SIP) in three coupled periodic 

waveguides. Glide symmetry enables the possibility for the 

SIP to exist in three coupled waveguides.  
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Fig. 4.  Wavenumber dispersion diagram for a mode in the waveguide with 

glide symmetry in Fig. 3(b), showing the existence of a SIP, which is a third 

order EPD, at f=2 GHz.  Here, we plot only the two modes with purely real 

wavenumber. Each mode exhibits an SIP (or frozen mode). This plot does not 

show the coalescence of three modes at each SIP because the other two 

coalescing modes have complex wavenumber, hence not shown here.  
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