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Abstract—We show various examples of fully-planar two-
way and three-way microstrip coupled waveguides that exhibit
second, third, fourth and sixth order exceptional points of
degeneracy (EPD). EPDs are shown in reciprocal waveguides
that do not have gain or loss. The occurrence of EPDs is
observed using three methods: (i) the mathematical description
of modes and the similarity of the system matrix to a Jordan
block; (ii) the dispersion diagram with prescribed flatness; (iii)
the coalescence of eigenvectors that is observed analytically or
experimentally . We have defined a coalescence parameter that
is used in conjunction with experimental results to measure the
separation of the coalescing eigenvectors (polarization states). The
presented structures can serve various applications like leaky-
wave antennas, distributed amplifiers, oscillators, delay lines,
pulse generators, and sensors.

Index Terms—Frozen modes, Coupled transmission line, De-
generacy, Band edge, Stationary inflection point, Exceptional
point.

I. INTRODUCTION

Exceptional points of degeneracy (EPDs) are special points
in a system’s parameter space where two or more eigenmodes
coalesce in both their eigenvalues and eigenvectors into a
single eigenmode. Here we focus on EPDs in waveguides,
hence eigenvalues represent modal wavenumbers and eigen-
vectors represent polarization states. In particular we focus
on guiding structures without loss and gain. In the literature,
parity-time (PT) symmetric systems have been also studied
where the presence of loss and gain along the waveguide is
required [1], [2]. Some EPDs have been obtained by using
magnetic materials to break reciprocity [3]-[8]. Here we stress
that EPDs are obtained in a variety of systems without PT
symmetry and without the need to break reciprocity. EPD
conditions can be reached in the absence of loss and gain in the
waveguide [9]-[11]. The dispersion relation around an EPD
at (we, k) has the behavior of (w — w) o (k — k)™ where
m is the degeneracy order, that also represents the number
of coalescing eigenmodes. Here, w and k are the angular
frequency and the wavenumber (or block wavenumber in case
the waveguide is periodic), and the EPD is denoted by the
subscript e.
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There has been a lot of interest in concepts related to EPDs
in recent years. EPDs occur in systems where the evolution of
a system vector, in space (waveguides) or time (resonators), is
described by a non-Hermitian matrix, using periodicity [12] or
by having losses and gain in the system [13]. Propagation in
periodic systems is described by using the concept of system
matrix, transforming the state vector from cell to cell.

In this article, we focus on EPDs occurring in multimode
waveguides without loss and gain, namely we focus on the
regular band edge (RBE) [10] and the degenerate band edge
(DBE) that occurs in two-way wavguides, and on the sta-
tionary inflection point (SIP) at microwave frequencies, that
occur in three-way waveguides. The fourth-order EPDs is
called DBE and it occurs in uniform [10] or periodic guiding
structures [9], described by two coupled transmission lines
(TLs). The SIP is a third-order EPD that occurs in three-way
waveguides [11]. Finally, we also discuss the sixth-order EPDs
in a triple ladder (or three-way) microwave waveguide realized
using three coupled microstrips on a grounded dielectric
substrate. Some applications are discussed at the end of the

paper.
II. EXAMPLES AND DISCUSSION

We demonstrate here some examples of the realization
of EPDs conditions in microstrip coupled TLs without the
presence of gain and loss. The general term of EPD describes
a degeneracy represented by the coalescence of eigenvectors.
Depending on the kind of systems is considered, the various
EPDs in lossless and gainless waveguides are called: RBE,
that is an EPD of order 2, the SIP, that is an EPD of order
3, the DBE that is an EPD of order 4, and the 6DBE that is
an EPD of order 6. We provide examples for each of these
degeneracy conditions.

In all cases, propagation in a multi-way waveguide is
described in matrix formalism by

d¥(z)
dz

where W(z) is a state vector and M is the system matrix [10],
[9]. The state vector elements are voltages and currents of the
coupled equivalent TLs, or alternatively, they are forward and
backward wave amplitudes.

In periodic waveguides, the system matrix is z-dependent
and propagation is described by using a transfer matrix for-
malism

U(z+d)=T,¥(z), )
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Fig. 1. Four different coupled microstrip waveguide geometries and relative
wavenumber dispersion diagrams showing different EPDs: RBE, DBE, SIP
and 6DBE. (a) Sub-wavelength unit cell implementation of two uniform TLs
supporting forward and backward waves, by loading one line with distributed
series capacitors to exhibit second (RBE) and fourth (DBE) order EPDs [10].
(b) Two periodic coupled microstrips that exhibit a DBE at kd = = [9].
(c) Three-way periodic microstrip waveguide that exhibits an SIP (a frozen
mode regime), i.e., an EPD of order 3 [11]. The dispersion diagram shows
the existence of an SIP at frequency f = 2 GHz, where three branches of the
dispersion diagram, (one real and two complex) coalesce. (d) Periodic three-
way waveguide, made of three coupled microstrip lines that exhibits a sixth
order DBE. The dispersion diagram shows the existence of 6DBE around 3
GHz. The coalescence parameter Dy (w) is a figure of merit that describes
the coalescence of eigenvectors; it can be calculated based on numerical or
measurement results.

where d is the period and T, is the transfer matrix of a unit
cell of length d. When we look at eigenmodes, the system
vector takes the form of ¥(z+d) = AW(z) and the formalism
reduces to the eigenvalue problem

T, ¥ =T, 3)

where the eigenvalues \, = e /%4, with n = 1,2,..., N,
are obtained by solving the dispersion characteristic equation
D(k,w) = det|T, — A1]=0, with 1 being the N x N
identity matrix and N is the size of transfer matrix T,,.
Due to reciprocity, the determinant of T, is always equal to
unity [14] which implies that the eigenvalues solutions of the

characteristic equation must appear in reciprocal pairs, i.e., the
six k-solutions must come in positive-negative pairs.

From (3) also the eigenvectors can be obtained, and this is
useful to test their coalescence. Indeed, during the past years,
we have found it very convenient to introduce a coalescence
parameter, that is a figure of merit to observe the degree of
coalescence of the system’s eigenvectors. As an example, the
coalescence parameters Dy (w) for the 6DBE is defined as

6

>

p=1, n=1(p#n)

(@, Wp)|
1[5

“
where 0,,, represents the angle between two eigenvectors
¥, ¥, and it is defined via the inner product (¥,,, ¥,), ||
represents the absolute value and || || represents the norm of
a complex vector. The exact occurrence of an EPD implies
that Dy (w) = 0, however numerical tolerances, fabrication
tolerances and losses prevent a simulated or experimentally
tested system to be exactly at an ideal EPD. However, it is
still important that m eigenvectors are close to each other for
an EPD of order m, hence we need to observe a minimum in
Dy (we) if we want to retain some properties related to the
EPD.

The coalescence parameter can be estimated by calculating
the eigenvectors based on measurements or simulations. In-
deed, the eigenvectors are calculated using a MATLAB routine
based on the system or transfer matrix obtained from a multi
port simulation of a unit cell or by a multiport measurement
of the scattering parameters. Some examples are provided in
this paper.

We theoretically and experimentally demonstrated in [10]
that a second order EPD and a fourth order (DBE, at £ = 0)
are supported in uniform coupled TLs when there is proper
coupling between forward and backward propagating modes.
We provided a possible microstrip implementation of a uni-
form coupled TLs exhibiting such EPDs using periodic series
capacitors with very sub-wavelength unit-cell length, shown
in Fig. 1(a). We show in Fig. 1(a) the dispersion relation
calculated based on scattering (S)-parameters obtained from
measurement and from full-wave simulations where a RBE
is obtained around 0.86 GHz while a DBE is obtained at
k = 0 (1/m) around 1.85 GHz. In [9], two periodic microstrip
coupled TLs were proposed to exhibit a fourth order EPD
(DBE) at kd = w as shown in Fig. 1(b). The DBE has
been also demonstrated experimentally in a circular metallic
waveguide with periodic inclusions (geometry not shown here)
for possible applications in electron beam devices [15].

In [11], the frozen mode was shown in a reciprocal three-
way waveguide supporting three modes in each direction.
The three-way waveguide comprises two uniform TLs that
are periodically coupled through a third serpentine-shaped TL
as shown in Fig. 1(c). We illustrated the occurrence of the
SIP by observing the dispersion diagram based on full-wave
simulations and measurements as shown in Fig. 1(c). An EPD
of order six (6DBE) has been obtained in a three-way periodic

1
Dy = 5 sin (6p) |, cosbpp =
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CTL shown in Fig. 1(d).

Applications of the DBE and the RBE have been proposed,
to realize low noise, robust, and low threshold oscillators [16],
[17]. The concept has been also used at optical frequencies
where low threshold, single-frequency of oscillation, lasers
have been proposed using the DBE [18] and the 6DBE [11]
concepts. Note that any amount of losses or gain disrupts the
occurrence of these kinds of EPDs in lossless and gainless
structures. Therefore, oscillators based on the RBE, DBE and
6DBE retain the properties associated to these degeneracies
only when small gain per unit length is introduced. Despite
the gain per unit length shall not be high, oscillators based
on these concepts may exhibit other important properties like
robust single frequency of oscillation, low phase noise and
stability of the oscillation frequency to variation of loads
[16], [17]. The concept of DBE oscillator has been proposed
also in the area of electron-beam devices [19]. The SIP has
been proposed to realize electron beam-based amplifiers with
high gain-bandwidth product [20], delay lines [21], and one
wave lasers [22]. Finally, EPDs in waveguides can be used
to conceive leaky wave antennas that are very sensitive to
tuning or environment perturbations for sensing applications
[13]. Since the discovery of such EPDs is recent, we foresee
that other possible applications will be proposed in the near
future.

III. CONCLUSION

We have shown various examples of fully-planar microstrip
geometries that exhibit different orders of EPDs without gain
and loss in the system. The occurrence of the EPDs is
demonstrated using (i) analytical formulations; (ii) full-wave
simulations, and (iii) scattering parameters measurements. The
presented structures can be useful in various applications like
leaky-wave antennas, oscillators, distributed amplifiers, delay
lines, pulse generators, and sensors. In summary, to realize
EPDs of order 2 and 4 in waveguides, we need at least two
coupled modes (e.g., a two-way waveguide), whereas to realize
EPDs of order 3 and 6, we need at least three coupled modes
(e.g., a three-way waveguide). These orders of EPDs have
been demonstrated theoretically and experimentally in planar
coupled waveguides implemented using microstrip technology.
Computational tools have been developed in Refs. [9], [10],
and [13] to design and characterize such EPDs.

REFERENCES

[11 A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat,
V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation
of PT-Symmetry Breaking in Complex Optical Potentials,” Physical
Review Letters, vol. 103, no. 9, p. 093902, Aug. 2009. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.103.093902

[2] J. Schnabel, H. Cartarius, J. Main, G. Wunner, and W. D. Heiss, “P7T -
symmetric waveguide system with evidence of a third-order exceptional
point,” Phys. Rev. A, vol. 95, p. 053868, May 2017.

[3] A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,”
Physical Review E, vol. 63, no. 6, p. 066609, 2001.

[4] A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in mag-
netic photonic crystals,” Physical Review B, vol. 67, no. 16, p. 165210,
2003.

(5]

(6]

(7]

(8]

91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

G. Mumcu, K. Sertel, J. L. Volakis, I. Vitebskiy, and A. Figotin,
“Rf propagation in finite thickness unidirectional magnetic photonic
crystals,” IEEE Transactions on Antennas and Propagation, vol. 53,
no. 12, pp. 40264034, Dec. 2005.

M. B. Stephanson, K. Sertel, and J. L. Volakis, “Frozen modes in coupled
microstrip lines printed on ferromagnetic substrates,” IEEE Microwave
and Wireless Components Letters, vol. 18, no. 5, pp. 305-307, May
2008.

G. Mumcu, K. Sertel, and J. L. Volakis, “Lumped circuit models for
degenerate band edge and magnetic photonic crystals,” IEEE Microwave
and Wireless Components Letters, vol. 20, no. 1, pp. 4-6, 2010.

N. Apaydin, L. Zhang, K. Sertel, and J. L. Volakis, “Experimental
Validation of Frozen Modes Guided on Printed Coupled Transmis-
sion Lines,” IEEE Transactions on Microwave Theory and Techniques,
vol. 60, no. 6, pp. 1513-1519, Jun. 2012.

A. F Abdelshafy, M. A. K. Othman, D. Oshmarin, A. T. Almutawa,
and F. Capolino, “Exceptional points of degeneracy in periodic coupled
waveguides and the interplay of gain and radiation loss: Theoretical
and experimental demonstration,” IEEE Transactions on Antennas and
Propagation, vol. 67, no. 11, pp. 6909-6923, 2019.

T. Mealy and F. Capolino, “General conditions to realize exceptional
points of degeneracy in two uniform coupled transmission lines,” IEEE
Transactions on Microwave Theory and Techniques, vol. 68, no. 8, pp.
3342-3354, 2020.

M. Y. Nada, T. Mealy, and F. Capolino, “Frozen mode in three-way
periodic microstrip coupled waveguide,” IEEE Microwave and Wireless
Components Letters, vol. 31, no. 3, pp. 229-232, 2021.

A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance
in periodic stacks of anisotropic layers,” Physical Review E, vol. 72,
no. 3, p. 036619, 2005.

M. A. K. Othman and F. Capolino, “Theory of Exceptional Points of
Degeneracy in Uniform Coupled Waveguides and Balance of Gain and
Loss,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 10,
pp- 5289-5302, Oct. 2017.

V. Easwaran, V. Gupta, and M. Munjal, “Relationship between the
impedance matrix and the transfer matrix with specific reference to
symmetrical, reciprocal and conservative systems,” Journal of Sound
and Vibration, vol. 161, no. 3, pp. 515-525, 1993.

M. A. K. Othman, X. Pan, G. Atmatzakis, C. G. Christodoulou, and
F. Capolino, “Experimental demonstration of degenerate band edge in
metallic periodically loaded circular waveguide,” IEEE Transactions on
Microwave Theory and Techniques, vol. 65, no. 11, pp. 40374045, Nov.
2017.

D. Oshmarin, F. Yazdi, M. A. K. Othman, J. Sloan, M. Radfar, M. M.
Green, and F. Capolino, “New oscillator concept based on band edge
degeneracy in lumped double-ladder circuits,” IET Circuits, Devices &
Systems, vol. 13, no. 7, pp. 950-957, Oct. 2019.

A. F. Abdelshafy, D. Oshmarin, M. A. K. Othman, M. M. Green,
and F. Capolino, “Distributed degenerate band edge oscillator,” IEEE
Transactions on Antennas and Propagation, vol. 69, no. 3, pp. 1821-
1824, Mar. 2021.

M. Veysi, M. A. K. Othman, A. Figotin, and F. Capolino,
“Degenerate band edge laser,” Physical Review B, vol. 97,
no. 19, p. 195107, May  2018. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevB.97.195107

M. A. K. Othman, M. Veysi, A. Figotin, and F. Capolino, “Low Starting
Electron Beam Current in Degenerate Band Edge Oscillators,” IEEE
Transactions on Plasma Science, vol. 44, no. 6, pp. 918-929, Jun. 2016.
F. Yazdi, M. A. Othman, M. Veysi, A. Figotin, and F. Capolino, “A new
amplification regime for traveling wave tubes with third-order modal
degeneracy,” IEEE Transactions on Plasma Science, vol. 46, no. 1, pp.
43-56, 2017.

B. Paul, N. K. Nahar, and K. Sertel, “Harnessing the frozen-mode
in coupled silicon ridge waveguides for true time delay applications,”
in 2019 International Conference on Electromagnetics in Advanced
Applications (ICEAA), Granada, Spain, 2019, pp. 0552-0552.

H. Ramezani, S. Kalish, I. Vitebskiy, and T. Kottos, “Unidirectional
lasing emerging from frozen light in nonreciprocal cavities,” Physical
Review Letters, vol. 112, no. 4, p. 043904, 2014.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 12,2023 at 05:28:55 UTC from IEEE Xplore. Restrictions apply.



