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Abstract—We demonstrate that a periodic transmission line
consisting of uniform lossless segments together with discrete gain
and radiation-loss elements supports exceptional points of
degeneracy (EPDs). We provide analytical expressions for the
conditions that guarantee the coalescence of eigenvalues and
eigenvectors. We show the dispersion diagram and discuss the
tunability of the EPD frequency. Additionally, a special case is
shown where the eigenvectors coalesce for all frequencies when a
specific relationship between transmission line characteristic
impedance, and gain/loss elements holds; in other words, in this
situation, exceptional points merge to a line of frequency. The class
of EPDs proposed in this work is very promising in many of
applications that incorporate radiation losses.

I. INTRODUCTION

Exceptional points of degeneracy (EPDs) are points in
parameter space that describe a strong degeneracy in an
electromagnetic system. At the EPD, two or more eigenstates of
the system coalesce into a single degenerate eigenstate. Due to
this fact, ‘D’ is used to stress the importance of the degeneracy
of eigenvectors and not only of eigenvalues [1]. The number of
degenerated eigenstates is referred to the order of the exceptional
point. In proximity of an EPD, eigenvalues associated to the
coalescing eigenvectors change with respect to frequency as

(w-o,)c(A-A4,)",inwhich A,,®, and m are the degenerate

eigenvalue, EPD angular frequency, and order of EPD
respectively.

Exceptional points have been found in systems satisfying
parity-time symmetry [2], in lossless waveguides [3], and also in
time-varying systems [4, 5]. The EPD phenomenon has been
proved to have a wide range of applications, including high
quality factor (Q) and low threshold lasers [6], single-mode
operating lasers [7], etc. Moreover, the deviation of the
perturbed eigenvalues from the degenerate eigenvalue is large
when a small perturbation to a system parameter is applied; this
level of sensitivity brings another class of applications in sensors
[8]. There are a few kinds of structures that exhibit EPD:
Periodic lossless waveguides [9], structures with balanced gain
and loss [10], and uniform transmission lines (TLs) with proper
dispersion [11]. In this work, we will consider a periodic
structure with uniform TLs together with elements of gain and
loss.
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II.

We consider the simple TL periodically loaded with shunt gain
and loss elements shown in Fig. 1. An analogous formulation
can be easily obtained for the case when gain and loss are series
elements.

TRANSMISSION LINE FORMULATION AND EPD

TL,

|

g

Fig. 1. Unit cell of a periodic transmission line (TL) made of three segments
and loaded with shunt lossy ( Y, ) and gain (g) elements.

We divide the unit cell into five distinct parts (for simplicity,
lines are assumed to have similar characteristic impedance, but
with possibly different electrical lengths). Using the transfer
matrix of a shunt element and lossless TL, we form a relation
between voltage-current between two sides of the unit cell as
¥, =MY¥, ., in which the state vector is defined as

¥, =[V, 1, . with t indicating the transpose action.
Furthermore the unit cell transfer matrix M is the result of the
multiplication of five transfer matrices:

M=M;;;My, MTI,2 Mg My, . &)
Note that here we use forward transfer matrices, commonly
used in various disciplines, which are just the inverse of
backward ABCD transfer matrices. We look for solutions

satisfying the Floquet’s condition ¥, ; = e_jkd‘l’n , where d is

the TL period, and we implicitly assume the e’ time

convention. This leads to an eigenvalue problem in the form of
[M—e_jkd I1¥, =0, where 1 is the identity matrix of order
two. Eigenvalues A = ek

the characteristic polynomial

are found by finding the roots of
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A% +[-2¢0s(0) + 0, +65) + g¥. Z,* sin(6, ) sin(6, +6;)

—jZoY. (1+ g/ Y.)sin(0, + 6, +65)]A+1=0. @)

where 6, is the electrical length of i TL segment at the
frequency of the interest (i.e., the EPD frequency f,), and Z,

is the TL characteristic impedance, assumed to be the same for
all TL segments. To have two identical roots in a 2™ order

polynomial of the form A +ai+b=0, a® —4b must be zero.
Forcing this condition on the coefficients of the characteristic
polynomial results in

6, +6, + 05 = prr, where pis an integer number,

g=—4/(Z,’Y, sin (6, +6,)) .

3)
“
If these two conditions are met, the two roots will be equal with
e M = (1P Fig. 2 depicts an with
6, =45°0,=90° 6; =45°at f=3 GHz and Y. =20 mS. Ifa

specific EPD frequency is demanded by design, the electrical
lengths should be selected at that f, . Coalescence of the

eigenvalues is only a necessary condition for EPDs, therefore
we need to show that also the eigenvectors of the system
coalesce. The two eigenvectors are found analytically as

12
|:jZO(Yr —gij\/Yrg(YrgZoz +4)j/(Yr +g-JjY,87) 1} :
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Fig. 2. Dispersion diagram of complex wavenumber versus frequency.
Wavenumber degeneracies are observed at 3 GHz, 6 GHz, etc. where both
wavenumbers vanish. The two wavenumbers are denoted by different
colors.
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It is clear that if conditions (3) and (4) are met, the two
eigenvectors coalesce to a single eigenvector at the EPD
frequency. Upon analyzing the characteristic polynomial, it can
be proved that besides the two previously mentioned
conditions, when the two extra conditions Y.Z, =2 , and

26, =205 = 0, for an arbitrary frequency are met, then the two

eigenvalues (and also the eigenvectors) will be identical at
every frequency.

III.

We have proved theoretically and showed numerically that
the periodic TL in Fig. 1 exhibits EPDs. The discrete lossy
admittance considered in this paper represents the input
admittance of an antenna, which from the TL point of view acts
as a loss. We have shown that EPDs occur at frequencies where
the two TL wavenumbers vanish, leading to possible
applications of broadside radiation in arrays of antennas with
elements connected as in the TL in Fig. 1. Such a phenomenon
can be used in traveling wave antennas and also in array
antennas with all elements oscillating and synchronized.

CONCLUSION
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