Spora: An Interactive Environment for Exploring Code using
Query-by-Example

Aaditya Naik
asnaik@cis.upenn.edu
University of Pennsylvania

Jonothan Mendelson
jonom@cis.upenn.edu
University of Pennsylvania

Nathaniel Sands
njsands@usc.edu
University of Southern California

USA USA
Yuepeng Wang Mayur Naik Mukund Raghothaman
yuepeng@sfu.ca mhnaik@cis.upenn.edu raghotha@usc.edu
Simon Fraser University University of Pennsylvania University of Southern California
Canada USA

ABSTRACT

There has been widespread adoption of IDEs and powerful tools
for program analysis. However, programmers still find it difficult to
conveniently analyze their code for custom patterns. Such systems
either provide inflexible interfaces or require knowledge of complex
query languages and compiler internals. In this paper, we present
SPORQ, a tool that allows developers to mine their codebases for
a range of patterns, including bugs, code smells, and violations of
coding standards. SPorQ offers an interactive environment in which
the user highlights program elements, and the system responds
by identifying other parts of the codebase with similar patterns.
The programmer can then provide feedback which enables the
system to rapidly infer the programmer’s intent. Internally, our
system is driven by high-fidelity relational program representations
and algorithms to synthesize database queries from examples. Our
experiments and user studies with a VS Code extension indicate
that Sporg reduces the effort needed by programmers to write
custom analyses and discover bugs in large codebases.

ACM Reference Format:

Aaditya Naik, Jonothan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur
Naik, and Mukund Raghothaman. 2021. SPorRQ: An Interactive Environment
for Exploring Code using Query-by-Example. In The 34th Annual ACM
Symposium on User Interface Software and Technology (UIST ’21), October
10-14, 2021, Virtual Event, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3472749.3474737

1 INTRODUCTION

Programmers often need to explore patterns within their code.
These may include patterns that typically raise alarms with compil-
ers, static analyzers, and bug finders. However, they may include
more specific patterns as well which may be beyond the scope of
these tools. For example, to conform with the C++ Core Guidelines
[52], the programmer may want to check that the ‘auto’ keyword

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST °21, October 10-14, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8635-7/21/10...$15.00
https://doi.org/10.1145/3472749.3474737

has been used to avoid redundant repetition of type names, ex-
cept in certain contexts, such as while declaring public class mem-
bers. Java programmers may want to explore locations in the code
where a thread is spawned. This would correspond to searching
for indirect calls to the ‘run()’ method defined in all subclasses of
‘java.lang.Thread’. Programmers may also wish to refactor their
code. For example, consider a scenario where an API that is heavily
used in a codebase received a major update, and as a result, each
use of that API must be changed to comply with the latest version.
As aresult, the programmers maintaining the codebase would want
to find all outdated uses of that particular APL

When programmers want to answer such questions about their
code, they have access to a range of sophisticated developer tools.
Still, they are often forced to compromise between ease of use and
flexibility of application. IDEs provide convenient preset interfaces,
but are typically limited to locating the declarations and uses of
program elements. These presets tend to prove insufficient for
tasks requiring a deeper understanding of the programs. Linters
and program analyzers allow programmers to access deep facts
about their programs. However, these tools are targeted towards
general developers and support only common analyses out of the
box. In a survey conducted by Microsoft [15], the main obstacle
to using static analyzers cited by respondents was the mismatch
between their needs and the default settings of the static analyzer.
The survey also mentions that 21% of developers who stopped using
static analyzers did so because they could not find one that fit their
needs. If developers wish to perform analyses that are more specific
to their needs, they would need to either customize existing tools
or build their own. However, in an earlier study [25], 17 out of
20 participants criticize existing tools for not accommodating the
customizations that they want. Additionally, extending such tools
for specific use cases requires specialized knowledge, such as of
compiler internals. Recent tools like Semmle [45] provide users with
a powerful query model which allows users to potentially write
their own analyses, but such tools require knowledge of complex
query languages and expose unusual user interfaces.

In this paper, we introduce SPORQ, an interactive environment
that makes it easier for programmers to perform custom analyses
such as the ones described above. The user begins by highlighting
a snippet with some property of interest (Figure 1-1). The desired
property can range from specific classes of bugs (such as casting
instances of a supertype to variables of its subtype) to code smells

https://doi.org/10.1145/3472749.3474737
https://doi.org/10.1145/3472749.3474737
https://doi.org/10.1145/3472749.3474737

UIST 21, October 10-14, 2021, Virtual Event, USA

Pick the annotation you want to add:

Naik et al.

zopfli > src » zopfli > € squeeze.c “

The user begins by highlighting a code

1
1
1
1
1
1 487 ZopfliCleanlLZ775tore(&currel R . i o
' agg ZopflilnitLz77Store(in, &cu Statement fprintf(stderr, “Iteration %d: %d bit\n", i, (int) cost);
1 - ' .
1489 Lz770ptimalRun(s, in, insta Variable cost
: 498 length_array Expression (Conversion) (int) cost
1 491 ¤tstors, o, wwaags,
: 492 cost = ZopfliCalculateBlockSize{¤tstore, @, currentstore.size, 2);
1 493 if (s-»options-»verbose_more || (s-»options->verbose & cost < bestcost)) {
: 494 | fprintf{stderr, "Iteration %d: %d bit\n", i, (int) cost);
1 495 }
' 496 if (cost < bestcost) {
CheckMate
Predictions:

Show: Showing 5/498 predictions

1 Expression CopyStats Type _Complex double
2 Expression (Array Access) stats2->dists[i] Type float

3 Expression laststats Type _float128

Annotations:

Srov iy

Type ..{(")1.)
Type size_t

1
1

1

1

1

1

1

1

'

: Expr/Stmt Type Type
1

'

1

'

1

: Type SymbolStats
'

.
.
s ot poove evcs IR
.
.
.

Expr/Stmt A Type » Type

snippet with a property of interest,

such as the unsafe type cast expression
"(int) cost". The goal of SPORQ is

to interactively learn a logic query that
discovers other examples of this code
pattern throughout the codebase.

SPORAQ produces a list of examples for
the user to triage and label. Explanatory
columns, such as the source and
destination types of the cast expression,
can be used to disambiguate user
intent. An expert user can also interpret
the results by inspecting the logic query
that SPORQ has learnt.

Label
HHa
oo
oo

SPORAQ greatly alleviates user burden
and speeds up the interactive process
through novel modes of user feedback:

bel
- faoe generalized negative examples (*) and

revert any past feedback.

1 Expression (Conversion) (int) cost Type double Type int Yes n uniqueness constraints (ff) The
2 Expression stats2->litlens * Type __type Type const size t* * No n : interface also encourages the user to
3 Expression (Address) ¤tstore * Type double * ANY * No n : explorex by prOViding the ﬂeX|b|I|ty to
1
1
'

Figure 1: Annotated screenshot of the user interface of SPorQ.

(such as checking floating-point numbers for equality) and even
more general instances of programming patterns (such as pairs of
mutually recursive functions). The system responds by inferring the
user intent and identifying other snippets with similar properties
(Figure 1-2). By labelling the returned examples as being desirable or
undesirable, the user provides feedback which enables the system to
refine its hypothesis (Figure 1-3). Over several rounds of feedback,
the system converges to an understanding of the user intent and
accurately identifies other instances of the same pattern in the
codebase.

Notably, the programmer needs no specialized knowledge be-
yond a general understanding of types, expressions, and statements,
since the primary mode of interaction involves the user highlight-
ing, triaging, and labelling examples, as depicted in Figure 1. Still,
the user is free to examine the learned query, which is expressed
in Datalog [1], a logic programming language which has found a
variety of applications in program analysis [51], knowledge dis-
covery [27], and database query engines [14]. This can provide
expert users with explanations of predictions made by the system
and facilitate trustworthy interaction. This stands in stark contrast
to interfaces that employ machine learning models such as deep
neural networks that are impractical for humans to interpret.

The flexible interface exposed by SPORQ encourages program-
mers to explore: by freely labelling snippets returned by the system
or by withdrawing previous feedback, users can provide specula-
tive labels or even change their minds, and are therefore under no
pressure to provide accurate feedback. They are also free to add
explanatory columns, which can clarify why a particular snippet

of code is interesting, thereby helping the system to disambiguate
their intent.

Internally, the system represents the program as a relational
database. We build on recent work on Semmle’s CodeQL, which
analyzes code in a range of languages including C/C++, Python,
Java, and JavaScript, and extracts tables that collectively describe
diverse aspects of the program, including its syntax tree, expression
types, call graphs and data-flow relations [45]. These relational
representations enable the use of powerful query formalisms such
as Datalog to extract facts and draw conclusions about the program,
and have emerged as a popular approach to creating program anal-
ysis tools [11, 38, 56]. SPORQ analyzes these tables and synthesizes
a Datalog query which is consistent with the labels provided by the
user.

The central challenge is to scale the synthesis procedure to the
large databases produced by Semmle. On moderate-to-large sized
C programs comprising 10k-129k lines of code, these databases
range in size from 80k to 928k tuples over a relational schema
comprising 68 tables. GenSynth [35], a state-of-the-art synthesizer
based on evolutionary search, takes ~ 200 seconds on a database
comprising 1k tuples in a single table. We extend GenSynth with
three important optimizations: parallelizing the search algorithm by
taking into account available resources on the host machine, reusing
the results of intermediate computations across the evaluation of
different candidate queries, and pruning irrelevant portions of the
database using insights from our application domain. Together,
these optimizations enable to scale GenSynth to realistic codebases
in SPORQ’s interactive setting with real-time expectations.

Sporq: An Interactive Environment for Exploring Code using Query-by-Example

An important aspect of SPORQ’s usability concerns its sample
efficiency, i.e., the number of labels needed to identify the desired
query. To accelerate this process, in addition to the traditional
binary labels provided to examples, we introduce two new feedback
mechanisms which allow the user to efficiently prune large parts
of the search space. The first is a mode which we call generalized
negative feedback, by which the user can label an entire set of rows
as being undesirable. Furthermore, we allow the user to identify
specific columns as primary keys, thus allowing the system to
reject candidate queries that violate the implied database integrity
constraints. Taken together, generalized negative feedback and
uniqueness constraints significantly improve the sample efficiency
of the learning algorithm, allowing us to discover the target query
with an average of less than 6 labels on real programs.

We have implemented a prototype of SPorQ as a VS Code ex-
tension for C/C++. We evaluate our prototype on a suite of 17
diverse code patterns applied to 5 programs, including well-known
open-source projects such as the GNU core utilities, MySQL C++
Connector, and the Fish shell. In all these cases, SPorQ identifies
the correct pattern in fewer than 7 rounds of feedback, with each
round of synthesis requiring less than 50 seconds on average. In
addition, we conducted a small user study involving 5 participants
and 2 code patterns from our suite. The study indicates that our
system is effective at helping users learn patterns in real codebases
and is easier to use than two state-of-the-art tools, Semmle [45]
and Semgrep [17].

Contributions. To summarize, we make the following contri-
butions in this paper:

(1) We present a new method for programmers to find patterns
in their code by interactively highlighting examples and
providing feedback on automatically generated suggestions.

(2) We introduce new feedback modes, including generalized
negative examples and uniqueness constraints, which signif-
icantly improve the sample efficiency of query-by-example
techniques.

(3) Using a prototype VS Code extension, we demonstrate the
superior usability of our technique through a small user
study in which participants find bugs in large programs.

(4) Finally, we conduct an experimental evaluation which shows
that SPorQ can infer sophisticated checkers on real programs
with small amounts of labelled data and quick turnaround
times.

The rest of the paper is organized as follows. Section 2 provides
an illustrative overview of SPORQ’s user interface. Section 3 re-
views relational program representations and the Datalog query
language that underlie SPORQ. Section 4 describes the design and
implementation of the SPorQ system. Section 6 presents findings of
a user study and Section 5 empirically evaluates SPORQ. Section 8
discusses threats to validity of our studies and limitations of SPoro.
Section 7 discusses related work and finally Section 9 concludes.

2 ILLUSTRATIVE OVERVIEW

In this section, we present an overview of SPorQ from the perspec-
tive of the user who wishes to identify some meaningful pattern in
their codebase. For each scenario covered in the discussion in Sec-
tion 1, the user interaction model is the same. As a running example,

UIST 21, October 10-14, 2021, Virtual Event, USA

we consider an unsafe cast checker for C programs, which finds snip-
pets of code that cast a value of floating-point type (such as float
or double) to an integer type (such as int or long). Such casts
are potentially unsafe because they can cause a loss in precision,
produce unexpected results, or even have security implications [16].

Any tool for exploring variations of a code snippet must provide a
mechanism for the user to annotate the relevant program elements.
In the case of the unsafe cast checker, these elements include at least
the cast expression, and possibly also the source and destination
types as additional cues to clarify why a particular instance of a
cast is unsafe. The mechanisms provided by existing environments
to identify such elements are either limited in expressiveness or
cumbersome to use, as we will now explain.

Semgrep [17] allows users to write patterns at the famil-
iar level of their source code. An example of such a pattern
is “(int $A) = (int) (float $B)”. Here, $A and $B are meta-
variables which the Semgrep engine can match against any in-
stance of a program variable. However, this pattern is overly spe-
cific, is limited to casts in copy assignment statements such as
“x = (int) y”and, moreover, is restricted to cases where the types
of the variables x and y are int and float respectively. Notably, it
does not extend even to slight variations of this pattern, such as
“x = (int) (y + 2.0)"

On the other hand, Semmle [45] requires patterns over the pro-
gram’s abstract syntax tree (AST) to be expressed in a domain-
specific language CodeQL [6]. The desired pattern of unsafe casts
can be expressed in CodeQL as follows:

where c.getUnspecifiedType() instanceof IntegralType
and c.getUnspecifiedType() instanceof FloatingPointType
select ¢

In order to construct this query, the user needs to understand
CodeQL’s extensive and unfamiliar library functions as well as its
particular syntax. The intended use case of CodeQL is for security
researchers to write broadly applicable checkers, which program-
mers then apply to their code. It is challenging for non-expert users
to write CodeQL queries, and GitHub even awards a bounty for
specifying new security vulnerabilities in CodeQL [28].

Sporq provides the best of both worlds—the familiarity of the
textual source code representation and the flexibility of the rela-
tional AST representation. The interaction between the user and
SpoRrQ may be broadly divided into three phases, which we will
now describe.

Part 1: Identifying the seed snippet. The user begins by discov-
ering a snippet with the desired property, for example, the double
to int conversion occurring in the expression “(int) cost” on
line 494 of the file squeeze. c (Figure 2-1). As we show in Figure 2,
the user conveys their intent to search for unsafe casts by selecting
this snippet in the IDE. In case of ambiguity, SPORQ presents a list
of all program elements anchored to the selected location in the
program (Figure 2-2), allowing the user to pick the element most
relevant to the downcast (Figure 2-3). The user then proceeds to
similarly select the source and destination types, by hovering over
the cost and int sub-parts of the expression, and identifying the
relevant program elements from a list of suggestions provided by
SPORQ. At this point, the user has effectively defined the space of

UIST 21, October 10-14, 2021, Virtual Event, USA

C sgueeze.c X

Pick the annotation you want to add:

Naik et al.

B

zopfli > src > zopfli > € squeeze.c |

487 ZopTliCleanLZ77Store(&currel

488 ZopflilnitLZ77Store(in, &cu Statement fprintf(stderr, "Iteration %d: %d bit\n", i, (int) cost);
489 LZ770ptimalRun(s, in, insta Variable cost

490 length_array Expression (Conversion) (int) cost

491 ¤tstore, u, wwaar,

492 cost = ZopfliCalculateBlockSize(¤tstore, @, currentstore.size, 2);
493 if (s->options->verbose_more || (s->options->verbose & cost < bestcost)) {
494 fprintfi(stderr, "Iteration %d: %d bit\n", i, (int) cost);

495 }

496 if (cost < bestcost) { \m

Figure 2: Identifying the seed snippet within SPorg.

all possible examples of unsafe casts, which can be depicted in tab-
ular form with three columns, corresponding to the location in the
program, and the source and target types respectively. We show
three such examples in Figure 3.

Part 2: Disambiguating user intent. At this point, the user has
identified the first positive example, as indicated by the label “Yes”
(Figure 3-1). By clicking on the button named “Add Annotation”
(Figure 3-2), they may proceed to label more examples as positive
or negative. At any point, the user can click on the button named
“Analyze Annotations” (Figure 3-3) to ask SPORQ to extrapolate and
find other snippets in the codebase which are similar to the positive
examples and dissimilar from the negative examples.

At this point, SPORrQ typically produces a large number of pre-
dictions (such as the 498 predictions made in Figure 4-1). This is
because of SPORQ’s inability to understand the user’s intent from a
single positive example. The user may now proceed to additionally
label any number of the displayed examples as positive by clicking
the check button, or negative by clicking the cross button (Figure 4-
2), and instruct SPORQ to re-analyze the annotations. In each round
of analysis, SPORQ learns a logic query that is consistent with all the
examples labelled so far. In successive rounds, the learned query
converges to the desired pattern of unsafe casts. We show the final
query in Figure 5a.

Observe that SporQ is designed to allow users to describe
the desired pattern without ever inspecting the underlying query—
throughout the interaction, it suffices to provide binary feedback
on examples. However, a key advantage of learning a programmatic
query lies in its explainability. SPORQ therefore allows the user to
inspect the current query by clicking on the button named “Show
Latest Query” (Figure 4-3). While we intend this feature to be pri-
marily used by expert users, it may even aid non-expert users to
gauge whether SPorQ is making progress towards identifying the
desired pattern.

Part 3: Generalizing user feedback. SPorQ can only be prac-
tically useful if it is able to learn the user’s intent from a small
number of labelled examples. Sample efficiency is therefore one of
our central considerations in the design of the system and in our
evaluation in Sections 5 and 6.

Consider the situation of the user providing a negative label for
a prediction, (e, double, int). This feedback only states that the
expression e does not constitute an unsafe cast from type double to
type int. The synthesizer is free to make other suggestions with the

same expression, such as (e, float, int), as long as the learned pat-
tern is consistent with the provided labels. The system is even free to
make other spurious predictions, such as (¤tstore, double,
double), where the highlighted expression, &urrentstore, does
not even correspond to a type cast. As a result, if the user only
labels individual examples as positive or negative, the search space
might not be sufficiently constrained, and the system might require
a prohibitively large number of examples to learn the target query.

We therefore introduce two new modes of feedback—generalized
negative examples and uniqueness constraints—that dramatically
reduce the user’s annotation burden. We now describe each of these.

While triaging a prediction such as (¤tstore,
double, double), the user may conclude that the expres-
sion ¤tstore does not correspond to an unsafe cast,
regardless of the values of the other two columns. They are
therefore in a position to not just disallow this prediction, but also
any other prediction of the form (¤tstore, ANY, ANY). By
clicking on the asterisk in the corresponding columns (Figure 3-4),
the user can conveniently provide negative feedback on this entire
set of potential predictions, thereby pre-emptively eliminating a
large number of candidate queries. We call feedback of this form a
generalized negative example.

Conversely, SPorQ also allows the user to generalize feedback for
positive examples by specifying uniqueness constraints. Consider
a specific expression e. Left unconstrained, the pattern learned
by our system may simultaneously produce multiple predictions
involving e, such as (e, double, int) and (e, float, int). At least
one of these predictions has to be incorrect, since any given cast
expression has unique source and target types. We allow the user to
describe such properties—which correspond to key constraints in
relational databases—by clicking on the icon of the key in the left-
most column (Figure 3-5). This constrains SPORQ to never produce
multiple predictions with the same value of the first column. In
other words, the predicted snippets are uniquely determined by
the value of the first column. Uniqueness constraints dramatically
generalize the information obtained from positive examples, such as
from the snippet in the first row, since the unlabeled examples with
(source, destination) types other than (double, int) are implicitly
labeled negative.

Finally, SPorQ allows the user to withdraw any feedback at
any point during the interaction process (Figure 3-6). This fea-
ture relieves users from the pressure of having to provide accu-
rate feedback upfront. It also encourages them to explore freely

Sporq: An Interactive Environment for Exploring Code using Query-by-Example

Annotations: EK

Expr/Stmt P o Type
1 Expression (Conversion) (int) cost Type double
2 Expression stats2->litlens * Type _type
3 Expression (Address) ¤tstore * Type double

v o wroe ovoaions
~» ~

UIST 21, October 10-14, 2021, Virtual Event, USA

Type

Lal bel/D

Typeint Yes n
* Type const size t * % No n
* ANY No n

B

Figure 3: Labelled examples within SPORQ.

CheckMate
Predictions:
Show:

Expr/Stmt Type

Showing 5/498 predictions

1 Expression CopyStats

Type float

3 Expression laststats

Type _Complex double

Type _float128

Srow Lo oy

Type Label
Type ..(*)(..)
Type size_t

Type SymbolStats

-1
 BER

Figure 4: Examples predicted by SPorg.

and revisit past decisions based on knowledge gained during
exploration, such as by discarding the label they provided to an
example, adding explanatory columns, or by removing uniqueness
constraints.

3 RELATIONAL PROGRAM
REPRESENTATIONS

The choice of program representation is crucial to the design of any
compiler, program analyzer, or IDE. SPORQ employs a relational
representation which represents a program P as a set of tabular rela-
tions I. Two key procedures interest us: (a) compiling the program
to a database that conforms to a schema for the program’s language
(e.g. C or Python), and (b) querying the database using a declara-
tive logic programming language akin to SQL.These procedures
correspond to the tasks of data ingestion and query evaluation
respectively. We denote them by the functions compileProgram
and evaluateQuery respectively, and describe each of them in order
below.

Codebases as Databases: The compileProgram Function. In de-
signing SPoRQ, we build on Semmle’s industrial-strength CodeQL
which defines schemas for common programming languages in-
cluding C/C++, C#, Go, Java, Javascript, and Python. SPorg also
leverages Semmle’s custom compilers which parse codebases writ-
ten in these languages and generate databases that conform to their
corresponding schemas.

As an example, we depict the portions of Semmle’s schema for
the C language which are relevant to our unsafe cast checker in
Figure 5b. For instance, the Expr relation contains a row (tuple)
for each expression that occurs in the parse tree of the C program.

The row includes the following columns: id, an integer value that
uniquely identifies the expression, which is underlined to indicate
that it is a key of the relation; kind, an integer value which indi-
cates the kind of expression; and location, an integer value which
indicates the expression’s location in the codebase.

The relations are populated from a given C program using
Semmle’s C compiler. Figure 5¢ shows relevant parts of these re-
lations generated from a small code snippet (we defer explaining
the meaning of the Alarm relation and the labeled edges between
rows to later in this section). The database generated for a full-
fledged program can comprise hundreds of thousands of tuples.
For instance, the GNU coreutils project comprising 90K lines of C
source code results in a database comprising 367,628 tuples.

Querying Code in Datalog: The evaluateQuery Function. Rep-
resenting codebases as databases enables the use of logical for-
malisms to query them, write custom bug checkers, and even
specify entire program analyses. SPOrRQ employs the logic pro-
gramming language Datalog [1] which has emerged as a popular
query language in the program analysis literature due to its concise
and declarative nature, rich expressivity, and efficient off-the-shelf
solvers [4, 44, 56].

A Datalog query Q comprises a set of rules that specify how to
compute a set of output relations from a set of input relations. As
an example, Figure 5a shows a Datalog query specifying the unsafe
cast checker. It comprises a single rule, seven input relations (Expr,
Conv_Kind, etc.), and a single output relation Alarm. A rule is a
Horn clause of the form:

Rh(fh) — Rl(fl), ...,Rn(x’n).

UIST 21, October 10-14, 2021, Virtual Event, USA Naik et al.
Alarm(location, src_type, dst_type) : - Expr(int id : @expr, int kind : int ref, int location : @location_expr ref);
Expr(expr2, _, location), Conv_Kind(int expr_id : @cast ref, int kind : int ref);
Conv_Kind(expr2,), Expr_Conv(int converted : @expr ref, int conversion : @expr ref);
Expr_Conv(expr1, expr2), Expr_Type(int id : @expr ref, int typeid : @type ref,
Expr_Type(exprl, src_type, _), int value_category : int ref);
Expr_Type(expr2, dst_type,), Float_Type(int id : @type ref);
Float_Type(src_type), Integral_Type(int id : @type ref);
Integral_Type(dst_type). ... // 192 more relations
(a) Unsafe cast checker in Datalog. (b) Relational schema of C programs (partial).
Alarm Expr Conv_Kind
void fOO() { location | src_type | dst_type expr kind location expr kind
- : [expr2]
. foo:7 double char expr2 foo:7 expr2
75 Echar x = (char) (2/0.5);5— exprl
Integral_Type
Expr_Type Expr_Conv

type

char

Float_Type
type
double

Is the cast at location foo:7
from 'double’ to 'char' a bug?

‘I Yes |’ No

from to

- expr1 expr2

expr type_id | val_cat

expr2 char

expri double

(c) Relational representation of the inputs (program facts) and outputs (example labels) of the unsafe cast checker.

Figure 5: Illustration of how programs, examples, and queries are represented in SPORQ.

where the X;’s are vectors of variables of appropriate arity. The rule
is read from right-to-left as a universally quantified implication:
for all variable valuations %, if each of tuples Ry(x1), ..., Rp(x7,) are
derivable, then so is Ry (x3,).

The evaluation of a query begins with the tuples in the input re-
lations, and repeatedly applies the rules in arbitrary order to derive
new tuples, until no further tuples can be derived. In the case of our
unsafe cast checker, which is non-recursive, a single application of
the single rule suffices. SPORQ uses the Souffle solver [44] which
incorporates sophisticated optimizations to efficiently evaluate Dat-
alog queries. For instance, evaluating the unsafe cast checker on
the GNU coreutils project takes only 0.029 seconds.

4 DESIGN AND IMPLEMENTATION OF THE
SPORQ SYSTEM

In this section, we describe the main technical contributions in
developing SPorQ, whose architecture we describe in Figure 6. We
formally present the interaction loop in Algorithm 1. We start with
a statement of the Datalog query synthesis problem in Section 4.1,
describe our optimizations to the GenSynth evolutionary program
synthesizer in Section 4.2, and conclude with a description of our
prototype implementation in Section 4.3.

4.1 The Datalog Query Synthesis Problem

The computational core of SPORQ involves the synthesis of Datalog
queries from examples provided by the user. As the user provides

positive and negative labels to individual snippets, we add or remove
the corresponding tuples from the Alarm relation. For example, con-
sider the snippet shown at the far left of Figure 5c. If the user labels
the type cast on line 7 of foo() as positive (i.e., a bug), then the
corresponding tuple (foo:7, double, char) is added to the Alarm
relation. Then, clicking the button named “Analyze Annotations”
in the user interface (Figure 1) triggers a call to a Datalog query
synthesizer, which we denote by the synthesizeQuery function and
explain below.

Programming-by-example (PBE) systems have traditionally ex-
pected the user intent to be described using a set of concrete positive
and negative examples. In our setting, a concrete example is a tuple
t, and may be labelled as either positive or negative, indicating
whether it is desirable or undesirable respectively. Since our exam-
ples are provided by the user in response to a previous synthesis
attempt, we synonymously refer to these example tuples as feed-
back. We may formalize synthesis from concrete examples as the
following computational problem:

Problem 1 (Synthesis from concrete examples). Given the set of
input relations I, the set of concrete positive examples O} and concrete
negative examples O, find a query Q which: (a) produces all positive
examples, i.e, OF C evaluateQuery(I, Q), and (b) which does not
produce any negative examples, i.e., O; N evaluateQuery(I, Q) = 0.

The problem of synthesizing logic queries from relational input-
output data forms the subject of a sub-field of Al called Inductive

Sporq: An Interactive Environment for Exploring Code using Query-by-Example

Logic Programming (ILP). We refer the reader to Cropper et al. [18]
for a comprehensive survey.

As described in Section 2, one of the central challenges in build-
ing a system such as SPORQ is to infer the user’s intent from small
amounts of labelled data. To achieve this, we would like to en-
able the user to provide as much information about the target
concept as is conveniently possible. We therefore introduce the
concept of a generalized negative example, which is a tuple t*
where some of the columns have been replaced with a special
don’t-care term, “«”. We say that a concrete tuple ¢ matches a gen-
eralized tuple t* if the two tuples agree on all columns i where
t} # *. We denote this by the notation ¢ ~ t*, formally defined as
V column indices i, t;‘ £x = tj = t;‘.

Consider the tuple t = (foo:7, double, char), and the gener-
alized tuple obtained by replacing its second and third columns
with #: t* = (foo:7, *, *). Since the two tuples agree on the first
column, we write t ~ t*. Consider another tuple ¢’ = (foo:10,
double, char). Since t’ and t* do not agree on the first column,
t' + t*. If the user indicates that they are uninterested in line 7 of
the file foo. c, then by enforcing the generalized negative example
t*, they eliminate not just ¢, but other matching tuples, such as
t" = (foo:7, char, double).

The positive and negative examples (concrete or generalized)
respectively provide lower and upper bounds on the output of the
synthesized query Q. Users can sometimes provide additional in-
formation about the structure of their intended query. For example,
they know that the first component—indicating the location of the
cast—is the central component of the output, and that the remain-
ing two columns simply indicate the source and destination types,
both of which are uniquely determined by the first column. By
building on the closely related concept of integrity constraints in
relational databases, we introduce the idea of uniqueness constraints
for query-by-example systems.

Formally, let K C S be a set of user-specified columns, where S
is the schema of the output relation. We say that a query Q satisfies
the uniqueness constraints imposed by K with respect to the input
relations I if each pair of output tuples, t,t” € evaluateQuery(l, Q)
disagree on some element of K: 3 some column i € K such that
ti # 1.

By adding generalized negative examples and uniqueness con-
straints to the previous problem statement, we obtain the gen-
eralized QBE problem that we solve in SporQ. We refer to
any procedure which solves this problem with the function
synthesizeQuery(I, O}, O;,, K).

Problem 2 (Synthesis from generalized examples). Given the set of
input relations I, the set of concrete positive examples O} , generalized
negative examples O;;, and key constraints K, find a query Q which:
a produces all positive examples, i.e., O;r C evaluateQuery(I, Q),
b none of whose output tuples match any generalized negative exam-
ple, i.e., Vt € evaluateQuery(I, Q), Vt* € O, t + t*, and ¢ which
satisfies the uniqueness constraints imposed by K with respect to I.

4.2 Synthesizing Queries Using Evolutionary
Search

SPoRrQ relies on GenSynth to solve Problem 2 [35]. At its core,
GenSynth uses a genetic algorithm that maintains a population

UIST 21, October 10-14, 2021, Virtual Event, USA

Algorithm 1 SporQ(P, t). Given a program P and seed example ¢,
runs the main interaction loop.

(1) Let I = compileProgram(P). Compile the program using
CodeQL and initialize the input relations.
(2) Initialize the synthesis constraints, with positive feedback,
O'g := {t}, negative feedback, O}, := 0, and key constraints,
K = S, where the schema S is the set of all columns in the
output.
(3) Repeat until the user stops responding:
(@) Let Q = synthesizeQuery(I, 0}, 0;,,K). Find a query
which is consistent with the user’s feedback.
(b) Let O = evaluateQuery(I, Q). Evaluate the synthesized
query to obtain the list of predictions.
(c) Assert that O is consistent with the synthesis constraints
(0f,0;,K).
(d) Highlight the predictions in O for triaging by the user.
(e) Collect the new feedback provided by the user,
(A*,A™, Ak), and update: Og’ = O0tUAT, 0, =07 UA",
and K = K’.

of Datalog programs, and operates by repeatedly mutating the
programs of this population with small changes. After each batch of
mutations, the programs which best fit the synthesis constraints are
preserved for further mutation. We visualize this process in Figure 7.
We represent the best performing programs of each generation
with white circles, which survive to the next generation, while
the remaining programs, shaded in gray, are discarded. As a result,
the fitness of the best program in the population monotonically
increases over time, until it perfectly matches the user’s constraints.
By running multiple populations in parallel, GenSynth significantly
reduces the time needed for a population to discover a solution.
The synthesis algorithm used by GenSynth may be summarized as
follows:

(1) Run b = 64 populations in parallel. Within each population:
(a) Initialize the population P by sampling n = 8 seed
queries from a distribution D.
(b) While maxgpep score(Q) < 1:
(i) Construct the subsequent generation P’ by mu-
tating each query s ~ Unif(1,7) times:

P’ = {mutaTE(Q) | Q € P,i € {1,2,...,s}}.

(i) Update P to be the n queries in P’ with highest
scores:
P := top-n (score(Q’)). (1)
Q'eP’
(c) Kill the remaining populations and return the query
Q = argmaxg <p(score(Q)).

GenSynth defines the scoring function score(Q) as the F; score
of the query output evaluateQuery(I, Q) with respect to the posi-
tive and negative examples (O, O;). To add support for general-
ized examples and key constraints, we modify the computation of
the scoring function to compute the F; score with respect to the
generalized examples, (O;’ , 0y, K). We have also made extensive
improvements to the tool to enable it to scale to the massive datasets
produced by Semmle. We will now describe these modifications.

UIST 21, October 10-14, 2021, Virtual Event, USA

Examples

Naik et al.

Query Synthesizer

Synthesized
Query, Q

r

s
VS Code IDE
Query Evaluator

N Relational Database of
Program Facts

Predictions

> CodeQL Compiler

Figure 6: System architecture of SPORrQ.

Population
A

Generation 0

Generation 1

Time

Generation 2

;
!

Generation 3

Qi — Q; Query Q; obtained by applying
a single mutation to Query @;.

9] Query subject to further mutation within current
generation before its fitness is evaluated.

8] Query with fitness above threshold is selected for
proliferation in next generation.

) Query with fitness below threshold is removed from
consideration in next generation.

© Query Q+ fits the data. GenSynth terminates all
populations and reduces @ to final query Q.

Figure 7: Illustration of a single population of queries evolving over time in GenSynth.

Scheduling multiple populations over physical worker
threads. One important challenge with using GenSynth as the
query synthesizer involves adapting it to run on commodity hard-
ware used by programmers. Therefore, instead of running all b = 64
populations in parallel, which would involve a large number of pro-
cessor threads, we instead schedule these logical populations across
a set of k = 4 physical threads. We spawn these k worker threads,
each of which is responsible for b/k populations. The threads in turn
cycle through their assigned populations, running one generation
of each before switching to the next. This allows us to achieve the
benefits of a large number of populations—which greatly reduces
the time to reach a solution—while still running on most developer
machines, which typically only have 2 or 4 physical cores.

Population-wide batching of query evaluation. Computing
the score of the queries in Equation 1 requires evaluating the queries
Q’ € P’ with calls to evaluateQuery(I, Q”). GenSynth uses Souf-
fle, a state-of-the-art Datalog solver for query evaluation. In large
datasets such as those extracted by Semmle, a significant fraction
of the time is spent by the Datalog solver in loading the relations I
from disk. Our second optimization therefore involves batching all

of the queries of a generation into a single call to Souflle, thereby
amortizing the time needed to load the relations.

The idea is to uniquely rename the output relation produced by
each candidate query Q” € P’ so the output produced by each query
can be recognized. For example, say that P’ = {Q1, Q2} consists of
two queries as follows:

Q1: Alarm(xg, x1,x2) :— Expr(xo, x2,x1), \Float_Type(xz), and
Q2+ Alarm(xo, x1, x2) :— Expr(xp, x2, x1), Expr_Conv(xs, x¢),
Integral_Type(xz).

Instead of separately invoking evaluateQuery(I,Q;) and
evaluateQuery(I, Q2), we rename the output relations of the two
queries as follows:

Q; ¢ Alarmi(xp, x1, x2) :— Expr(xg, x2, x1), Float_Type(xz), and
Qy : Alarm2(xo, x1,x2) = Expr(xo, x2, x1), Expr_Conv(xs, xo),
Integral_Type(x2),
and evaluate both of them with a single call to Souffle, as
evaluateQuery(, {Q7, Q;}). Sharing computation across multiple

queries in this manner greatly reduces the amount of time spent
within Souffle.

Sporq: An Interactive Environment for Exploring Code using Query-by-Example

Pruning the input database for scalable synthesis. Despite
the previous optimizations, scaling the synthesis procedure remains
an challenge. Our solution in SPoORQ is to perform aggressive prun-
ing of the input relations I. We perform this pruning at three levels:
First, at the level of the source code, we restrict our attention to files,
functions, and code units which are of interest to the programmer,
and exclude libraries and other source units which are unlikely to
contain bugs. Second, at the level of the schema, we only consider
those relations which are likely to be relevant to the problem. Fi-
nally, we assume that the target concept can be explained with a
short query, and that all input tuples which are necessary to ex-
plain the positive examples are within § = 2 edges from the positive
tuples in Figure 5c. Together, these three pruning methods—source-
level pruning, schema-level pruning, and f-pruning—are necessary
to enable our system to return results in a real-time manner. On
the other hand, the architecture of SPorgQ is agnostic of the under-
lying synthesizer, and we can therefore naturally leverage research
advances in efficiently solving Problem 2.

4.3 Implementing the IDE Extension

We chose to implement SPORQ in TypeScript as an extension to the
Visual Studio Code IDE. The interface sits side-by-side with the
code editor, allowing users to easily compare their code with the
results returned by SPorQ without switching windows. Clicking on
any of the links in the predictions or annotations pane immediately
brings up the relevant section of code in the editor.

Internally, SPORQ represents programs as relational databases, so
the interface was designed to be similar to that of a visual database
management system. The results are presented in tabular format in
which columns can be added or removed. The user adds a unique-
ness constraint by clicking on a key icon, which is identical to the
icon denoting a primary key value within MySQL Workbench. The
all-caps ‘ANY’ label which marks generalized negative examples
is taken directly from standard SQL syntax, and the asterisk but-
ton is analogous to the wildcard character used in SQL ‘SELECT’
statements. One advantage of embedding Sporq within VS Code
is that the IDE’s own code suggestions can be used as prompts to
craft new queries. For example, suppose a light bulb icon appears
next to a line of code with a suggested refactoring action. The pro-
grammer may wish to explore whether similar lines of code exist
elsewhere. SPORQ can use this particular example to construct a
matching query. In contrast to an IDE’s own suggestions, which
may be limited to the file that is currently open, SPORQ can return
results across the entire codebase.

Upon activation in a new project, we compile the codebase using
CodeQL to construct the relational representation, and use a set
of extractor queries to obtain comma-separated files that describe
the input relations. We also use these extractor queries to obtain
mappings from numeric identifiers used within CodeQL (such as to
reference expressions, functions, and other program elements) to ex-
plicit locations in the source code for highlighting and to present to
the user. Because the schema used by CodeQL is language-specific,
adding support for a new language inside SPORQ involves writing
a new set of extractor queries. Our current prototype supports C
and C++, but providing support for other languages is conceptually
straightforward.

UIST 21, October 10-14, 2021, Virtual Event, USA

After providing the initial example and after each subsequent
batch of feedback, the user clicks on the button titled “Analyze
Annotations”. At this point, SPORQ maps concrete source locations
to the underlying numeric identifiers, and invokes GenSynth on
the current set of examples. Once synthesis is complete, the learned
query is applied to the program to obtain the new set of predictions,
which are in turn translated back to concrete source locations and
presented to the user for triaging.

5 EXPERIMENTAL EVALUATION

To evaluate SPORQ, we conduct experiments that aim to answer the
following research questions:

RQ1 Is Sporg able to learn diverse code patterns on large real-
world codebases?

RQ2 How quickly does SPorQ synthesize the query between suc-
cessive rounds of interaction?

RQ3 How much user feedback does SPORQ need to learn the de-
sired code pattern?

5.1 Benchmarks

Patterns. To obtain realistic code exploration tasks for our evalua-
tion, we collect existing code patterns from two sources: (1) static
analysis frameworks like Semmle and Semgrep, and (2) warning
rules from compilers like GCC. Overall, we collect 13 patterns from
static analysis frameworks and 4 patterns from compiler warn-
ings. These code patterns can match a diverse set of code snippets,
ranging from potential bugs (e.g., comparing two strings using
the equality operator), security vulnerabilities (e.g., use of danger-
ous functions like localtime), to coding styles (e.g., comparing
boolean expressions against literals true and false). The charac-
teristics of all 17 patterns are summarized in Table 1. In order to
characterize the complexity of the patterns, we manually write a
ground-truth Datalog query for each pattern and collect statistics
about the ground-truth query. Specifically, the “# Preds” column in
Table 1 shows the number of predicates in the body of the Datalog
query. “#4 Cols” shows the total number of columns in the body,
which is equal to the sum of the arities of all predicates in the
body. The next column “# Vars” presents the number of variable
occurrences in the body, and the last column “# Negs” shows the
number of negated predicates.

Codebases. To find codebases that contain snippets matching the
collected patterns, we write CodeQL queries for all of the 17 patterns
and use the Semmle framework to search over Github repositories.
We choose a set of 5 representative codebases as described in Ta-
ble 2. The size of collected codebases ranges from 10k to 129k lines
of source code, and the number of tuples in their corresponding
databases ranges from 80k to 928k.

Experimental setup. To evaluate SPORQ on a diverse set of pat-
terns and real-world codebases, we make a list of 17 benchmarks,
where each benchmark is a codebase-pattern pair (C;, P;) for
i€{1,...,17} such that

(1) each pattern P; is unique

(2) codebase C; contains code snippets that match pattern P;
For each pair of codebase C; and pattern P;, one of the authors ran
SPoRrQ on codebase C; with uniqueness constraints and generalized

UIST 21, October 10-14, 2021, Virtual Event, USA

Table 1: Description and statistics of code patterns in our evaluation.

Naik et al.

Pattern Description #Preds #Cols #Vars # Negs
bool-compare Boolean expression compared with integer expression. 5 9 5 1
cast-to-signed Cast of int-types from unsigned to signed. 6 12 7 0
complex-conds Overly complicated boolean conditions. 2 5 4 0
const-conds Use of a boolean or integer literal as a condition. 3 6 4 0
const-void-funcs Const member functions with void return type. 3 3 1 0
dangerous-funcs Use of unsafe localtime function (CWE-676). 3 6 4 0
eq-bool-consts Unnecessary comparison of boolean variable with boolean literal. 2 5 3 0
float-conversion Cast from double-type to float-type. 6 12 7 0
long-inline-funcs Inline-qualified functions with more than 10 SLOC. 2 3 2 0
mutual-recursion Mutually recursive functions. 5 10 4 1
pointer-arith Use of pointer arithmetic. 3 9 7 0
sign-compare Comparison of signed types with unsigned types. 8 16 9 1
string-compare Improper comparison of C-strings. 7 14 8 2
unsafe-casts Unsafe cast from float-type to int-type. 6 21 15 0
unsigned-ge-zero Greater-than or equal comparison of unsigned variable with zero. 3 6 4 0
unused-locals Local variables that are never used after declaration. 3 4 2 1
use-goto Use of goto statement. 2 4 3 0

Table 2: Description and statistics of codebases in our evaluation.

Codebase Description Language SLOC # Tuples
coreutils File, shell, and text manipulation utilities of GNU operating systems C 90k 367,628
fish-shell Smart and user-friendly command line shell for macOS and Linux C++ 51k 558,094

mysql-conn C/C++ database connector for MySQL servers C++ 129k 927,871

snap Stanford network analysis platform C++ 84k 191,500
zopfli Google library to perform good but slow deflate or zlib compression C 10k 79,713

negative examples as necessary, aiming to find all code snippets
that match pattern P;.

All of our experiments are performed on a Macbook Pro laptop
with a 8-core 2.3GHz CPU and 16 GB of physical memory. We set the
maximum rounds of interaction between the user and SPorQ as 20
and stopped exploring the codebase when this bound was exceeded.
We also set a timeout as 5 minutes for the underlying synthesizer.
If the synthesis time goes beyond the limit in a particular run, we
immediately concluded failure.

5.2 Main Results

Table 3 summarizes the evaluation results of all 17 benchmarks.
Recall from Section 4.2 that we perform three levels of pruning on
the input database. The column “# Tuples” in Table 3 describes the
number of tuples in the pruned database. The next four columns
present the results of interacting with SPorQ. Specifically, “# Pos”
and “# Neg” show the number of positive and negative examples.
“# Rounds” describes the rounds of interaction between the user
and SporQ. “Avg Time” is the average synthesis time between two
successive rounds of interaction. Since the synthesizer of SPORQ
performs evolutionary search that exhibits randomness in the pro-
cess of generating mutations, we execute each benchmark for three
times. The numbers reported in Table 3 are the average over three
runs.

As shown in Table 3, SPORQ is able to solve all of the 17 bench-
marks with users providing feedback as needed. Given that all five

codebases are collected from Github repositories with 10k — 129k
lines of source code, and the 17 code patterns cover a variety of
applications from compilers and static analysis frameworks, we
believe that SPORQ is able to learn diverse code patterns on realistic
codebases (RQ1).

Furthermore, we observe that the average synthesis time is less
than 10 seconds for 14 out of the 17 benchmarks, 10 — 20 seconds
for 2 benchmarks, and more than 20 seconds for only 1 benchmark
(46.8 seconds). All of the queries in the experiments are synthesized
in less than one minute. These results demonstrate that SPOrRQ
can quickly synthesize the query between successive rounds of
interaction (RQ2).

In addition, the evaluation results show that SPOrQ only a needs
small amount of user feedback to learn the desired code pattern
(RQ3). Specifically, SPorQ learns the pattern in less than 5 rounds
of interaction for 12 out of 17 benchmarks and 5 - 7 rounds of
interaction for the remaining 5 benchmarks. Besides, the number
of examples needed from the user is reasonably small. We provide
less than 5 (positive plus negative) examples for 11 benchmarks
and 5 — 7 examples for the remaining 6 benchmarks.

5.3 Impact of Uniqueness Constraints and
Generalized Examples

To evaluate the impact of uniqueness constraints and generalized
examples on the amount of needed feedback, we perform another
set of experiments on the same benchmarks. However, in the new

Sporq: An Interactive Environment for Exploring Code using Query-by-Example

UIST 21, October 10-14, 2021, Virtual Event, USA

Table 3: Main evaluation results of SPORrQ.

Codebase Pattern # Tuples #Pos #Neg #Rounds Avg Time (s)
bool-compare 6,837 1.7 4.0 4.0 53

coreutils mutual-recursion 4,503 1.0 0.0 1.0 6.4
use-of-goto 14 1.7 1.0 2.0 2.1
dangerous-funcs 14,711 1.0 1.0 2.0 2.1
cast—to—signed 1,253 1.0 43 53 17.1

fish-shell ~ const-void-funcs 534 1.0 2.0 3.0 2.1
const-conds 66 1.0 3.3 43 2.2

mysql-conn sign-compare 4,229 13 4.7 5.7 46.8
string-equality 2,361 1.3 4.3 5.3 5.5
long-inline-funcs 23 1.3 0.7 1.7 1.2
unsigned-ge-zero 644 1.3 23 3.3 2.7

snap eq-bool-consts 58 1.3 1.7 2.7 1.9
unused-locals 384 1.0 1.0 2.0 2.3
complex-conds 95 2.0 2.0 3.0 1.7
float-conversion 435 1.3 43 6.3 5.1

zopfli unsafe-casts 1,278 2.0 4.0 5.0 10.1
pointer-arith 432 1.0 0.0 1.1 3.5

experiments, we do not use uniqueness constraints or generalized
examples. Instead, we only provide concrete positive and negative
examples as the feedback to SPorQ.

The comparison results are summarized in Table 4. As shown in
the table, there are 6 benchmarks where uniqueness constraints and
generalized examples do not affect the user interaction. The reason
is because those benchmarks only return one column as output, so
uniqueness constraints and generalized examples are not applica-
ble. For the remaining 11 benchmarks, uniqueness constraints and
generalized examples have significant impact on learning desired
code patterns using SPorQ. In particular, for 7 out of 11 benchmarks,
SPORQ is able to learn the code pattern purely from concrete ex-
amples within 20 rounds of interaction. It requires more than 20
concrete examples to learn the desired pattern on 2 benchmarks.
The underlying synthesizer in SPORQ times out on a laptop after 5
minutes on the remaining 2 benchmarks after obtaining more than
10 concrete examples.

For the benchmarks where SPORQ can learn the pattern with
or without uniqueness constraints and generalized examples, Fig-
ure 8 shows the impact in more detail. The x-axis denotes different
benchmarks by abbreviated names, e.g. UGZ for unsigned-ge-zero,
EBC for eq-bool-consts, etc. The y-axis represents rounds of inter-
action in Figure 8(a) and total number of examples in Figure 8(b).
SporQ-Concrete denotes the new experiment where we only pro-
vide concrete positive and negative examples as feedback.

As shown in Figure 8, SPOrRQ only needs an average of 2.8 rounds
of interaction with 3.0 examples to learn the desired pattern using
uniqueness constraints and generalized examples, while it needs
4.1 rounds of interaction with 5.0 examples if the feedback only
consists of concrete examples. Combined with the results from
Table 4, we conclude that uniqueness constraints and generalized
examples help to reduce the amount of user feedback for learning
many desired code patterns.

6 USER STUDY

We perform a small-scale user study to evaluate SPORQ on the
following research questions:

RQ4 How effective is SPORQ in helping users find code snippets
of interest in realistic settings?

RQ5 How does SPORQ compare to baseline tools Semgrep and
Semmle in terms of ease of use?

6.1 Tasks

To design realistic code exploration tasks for the user study, we
refer to the patterns and codebases described in Section 5.1. Due
to limited resources, we select one representative pattern to create
the user study task from each of the two sources, respectively.

Task 1: Unsafe cast checker. This task is adapted from Semmle ®.
It corresponds to our running example that finds casts from floating
point types to integral types. There are three unsafe casts in the
provided codebase.

Task 2: Bool integer comparison. This task is adapted from the
GCC warning option -Wbool-compare. It identifies comparison
operations between boolean expressions and integral expressions
because such comparisons are more likely to be bugs despite being
technically allowed by the language standard. There are nine such
comparisons in the provided codebase.

We choose these tasks for two reasons. First, the code patterns in
these tasks cover a set of concepts (e.g., expressions, types) that are
commonly supported by all three tools. Second, these two problems
are accessible to participants because they are familiar with the
underlying concepts.

!https://github.com/github/codeql/blob/main/cpp/ql/examples/snippets/castexpr.ql

https://github.com/github/codeql/blob/main/cpp/ql/examples/snippets/castexpr.ql

UIST 21, October 10-14, 2021, Virtual Event, USA

Naik et al.

Table 4: Comparison between concrete and generalized examples.

‘ No Impact ‘ Both < 20 Rounds ‘ Concrete > 20 Rounds ‘ Concrete Timeout

Benchmarks ‘ 6 ‘ 7 2 ‘ 2
! experience. Similarly, 2 participants have experience with Semgrep
12 {d B sroro g (average score: 1.5) but the rest have no experience. This choice of
[0 Sporo-Concrete o participants allowed us to gain some insight into the ease of use
10 - M n of SPorQ compared to people with and without experience with
Semmle and Semgrep.
8- N
e
2ol 63 | 6.3 Methodology
* 4 % To answer RQ4 and RQ5, we ask each participant to conduct Task 1
a4, Z 2 and Task 2 using three different tools: SporQ, Semmle, and Semgrep.
27 27,07 3 17 To ensure that experiments are conducted in the same setting for
22 ca 2 Z ZIe all participants, we provide a virtual machine with all of the tools
77 7 1 Y 77 1 27 . - . .
A ﬂ m a 7 m 7 installed and ask participants to perform experiments on the virtual
0 T T T T T T machine.
UGZ EBC MR UG FC PA

(a) Rounds of Interaction
|

feo SPORQ 1L7 n

0o SporQ-Concrete

-
S

—_
=N 3] o
T T T

| |

Examples

'S
T

23 23 2.7 2.7
2k 7
% 2 1
o L2 7 2!
MR

(b) Number of Examples

R i
ARWNNNNNNNY 7
w
NN
AT

NNNNINNAN

I I I
UG FC PA

Figure 8: Impact of uniqueness constraints and generalized
examples.

6.2 Participants

We choose 5 graduate students majoring in computer science as par-
ticipants in the user study. We excluded one additional participant
because of failure to follow our experimental instructions. The pre-
study survey shows that the average familiarity of C/C++ among
all participants is 4.2 on a 0-5 scale, with 0 being not familiar at all
and 5 being an expert. Using the same scale, the familiarity score for
Visual Code IDE is 3.4, and familiarity with program analysis tech-
niques is 4.0. Note that all of the participants had some experience
with program analysis. Since program analysis is hard, and since
all three tools are targeted to programmers who wish to perform
some form of analysis, it was necessary to choose participants who
had some experience in the field. Of the 5 participants, 3 report
having some experience with the CodeQL query language and the
average familiarity score is 3.0, while the rest report not having any

To instruct participants how to use the three tools, we provide
each participant with a tutorial and a demo video of SporQ, where
the underlying codebase is different from those used in Task 1 and
Task 2. We also provide the documentation of the CodeQL query
language used by Semmle and the instructions of Semgrep provided
online. Participants are required to read the documents before they
use each tool. They can also refer to online resources (e.g., Google
or StackOverflow) if needed during the user study. We do not put a
hard time limit for each task in the user study and do not specify
the order in which participants use different tools. Each participant
decides which tool to use first at their own discretion.

At the end of the user study, participants are asked to finish a
post-study survey that investigates the interaction experience of
each tool, as well as usefulness of different features supported by
SporQ. They also provided comments and feedback for improving
SPOROQ.

6.4 Results

Table 5 summarizes the main results of our user study. The “#
Users” column in Table 5 refers to the number of users who suc-
cessfully completed the task using the corresponding tool. The “#
Interactions” column mentions the average number of interactions
between the user and SPorQ, while the “Avg Time” column reports
the average time taken by the users in minutes to complete the task
using the corresponding tool. As shown in Table 5, all 5 participants
manage to solve Task 1, and 3 participants solve Task 2 using SPORQ.
Overall, participants spend an average of 22.75 minutes on Task
1 with 8.2 rounds of interaction with SPorQ. For Task 2, it takes
participants 13.81 minutes on average with 6 rounds of interac-
tions. Therefore, we conclude that SPORQ can help users to explore
programs and find code snippets of interest in real codebases.

The reason why 2 of the users could not get the correct results
for Task 2 using SPORQ can be attributed to some form of user error.
In both cases, the users labeled a correct prediction as false, and
one of them had labeled an incorrect prediction as true, possibly
due to not understanding the code snippet corresponding to the
prediction they labeled.

Sporq: An Interactive Environment for Exploring Code using Query-by-Example

UIST 21, October 10-14, 2021, Virtual Event, USA

Table 5: Results of user study involving 5 participants. # Users indicates the number of users who completed the task, while
Interactions indicates the average number of interactions needed by each user who completed the task. Avg Time is the
average time in minutes taken by these users to complete the task.

Task SPORQ Semmle Semgrep
Users # Interactions Avg Time (m) | # Users Avg Time (m) | # Users Avg Time (m)
Task 1 5 8.2 22.75 3 18.25 1 35.00
Task 2 3 6 13.81 2 13.47 1 19.21

By contrast, only 3 participants succeed in solving Task 1, and
2 in solving Task 2 using Semmle. We manually inspected all the
CodeQL queries submitted by the users and found two reasons for
the failure. First of all, finding relevant relations and libraries in a
query is difficult for people unfamiliar with CodeQL. For example,
one participant who does not have any experience with CodeQL
wrote the following query:

where a.getRValue().getType() instanceof FloatingPointType
and a.getlLValue().getType() instanceof IntegralType
select a
where AssignExpr is not related to the desired cast expressions.
Second, even people experienced with CodeQL may not know the
subtle difference between different API functions. As an example,
one participant who is familiar with CodeQL (scored 4 out of 5)
wrote the query:

where c.getType() instanceof IntegralType

and c.getUnconverted().getType() instanceof FloatingPointType

select ¢

where the correct query should use getUnspecifiedType() in-
stead of getType() because the latter does not resolve typedef
and causes false negatives in the query result.

Similarly, only 1 participant managed to solve both Tasks 1 and
2 using Semgrep in 45.03 minutes for Task 1 and 31.97 minutes
for Task 2. We also inspected the reason why participants fail to
solve the given tasks by checking the Semgrep patterns. Instead of
expressing the high-level concept, we found participants frequently
wrote a union of ad-hoc rules. For example, one participant wrote a
set of rules like “(int) $X”and “(long) $X” to match all variables
cast to integer and long types. This might happen if a codebase
has a small number of examples which are all covered by specific
patterns such as above. However, such patterns may miss specific
corner cases, for example, casts to short types. In general, writing
patterns to match interesting code snippets in this way is not ideal.
In SPORQ’s case, the user starts with more general queries and it-
eratively specializes them by labeling some of the results during
each interaction. This allows SPORQ to avoid over-fitting the exam-
ples labeled by the user which helps to prevent mistakes like the
participant committed above.

Overall, our user study shows that more participants are able to
solve Task 1 and Task 2 using SPorQ than using Semmle or Semgrep.
In addition, Table 6 summarizes the results of our post-study survey.
Participants in our user study rate SPORQ as 3.6 on a 0 — 5 scale in
terms of whether the tool is easy to use or not. In contrast to SPORQ,
Semmle gets 3.4 and Semgrep only gets 1.2 on ease to use. These

results provide us with some preliminary evidence that Sporg is
easier to use than Semmle and Semgrep (RQ5).

The survey results also suggest that users believe many features
supported by SPorgq are helpful for code exploration, including
primary keys, generalized negative examples, and removing an-
notated examples. However, there was mixed feedback regarding
whether inspecting the synthesized queries is useful. Participants
with more experience in program analysis found it helpful, while
participants with less or no experience disagree. This observation is
reasonable because interpreting the synthesized query requires the
users to have a good understanding of Datalog, and a background
in program analysis. The result also indicates that SPORQ can help
users with different levels of experience in program analysis to
explore codebases.

7 RELATED WORK

We survey related work classified into three categories: program
analysis frameworks, synthesis of logic queries, and learning in
program analysis.

Program Analysis Frameworks. SPORQ can be viewed as a
framework that allows users to craft custom program analyses.
Examples of such frameworks widely used in industry include Find-
bugs [7], Coverity [9], Tricorder [43], Infer [12], and Clang Static
Analyzer [33]. While these frameworks offer a variety of checkers,
however, they are intended to be extended only by experts with
specialized knowledge.

Recognizing the rich diversity of modern programming environ-
ments and application domains, a modern generation of frameworks
seeks to enable non-experts to write custom queries, bug checkers,
and even entire static analyzers. Examples of such frameworks
include Chord [38], Doop [11], Semmle [45], SonarQube [13], and
Semgrep [17]. The query languages in these frameworks are pre-
dominantly based on extensions of Datalog, such as LogiQL [22],
CodeQL [6], Flix [34], Datafun [5], and Formulog [8]. While these
frameworks are a step in the right direction, however, they expect
users to master complex language schemas, logic programming
constructs, and program analysis libraries. SPOrQ builds atop the
program representations and query languages employed by these
frameworks to provide an improved user experience while retaining
their expressivity, flexibility, and performance.

Synthesis of Logic Queries. A large body of work on Inductive
Logic Programming (ILP) has proposed techniques for synthesizing
logic queries from relational input-output data. Conventional ILP
techniques (e.g. Metagol [36, 37]) require templates (i.e. meta rules)
to restrict the space of candidate queries. Modern ILP techniques

UIST 21, October 10-14, 2021, Virtual Event, USA

Naik et al.

Table 6: Post user study survey.

Question Metric Answer
How easy is it to use SPORQ? 0: hard - 5: easy 3.6
How easy is it to use Semgrep? 0: hard - 5: easy 1.2
How easy is it to use CodeQL/Semmle? 0: hard - 5: easy 34

How helpful are uniqueness constraints in SPORQ?
How helpful are generalized negative examples in SPORQ?
How helpful is it to show synthesized queries in SPORQ?

How helpful is it to remove examples in SPORQ?

0: not at all - 5: very helpful 2.6
0: not at all - 5: very helpful 4.6
0: not at all - 5: very helpful 1.6
0: not at all - 5: very helpful 4.2

(e.g. ILASP [30] and FastLAS [29]) use Answer Set Programming
(ASP) which scales better by leveraging SAT solvers for the search,
but still requires the user to provide syntactic bias in the form
of mode declarations (e.g., signatures of invented predicates) to
constrain the search space. In general, annotations such as templates
or modes require extensive tuning in practice, since too small a
search space limits the kinds of queries that can be synthesized,
whereas too large a search space makes the synthesis procedure
intractable.

Program synthesis techniques such as ALPS [48], Difflog
[50], and Prosynth [40] follow the same high-level CEGIS
(Counterexample-Guided Inductive Synthesis) architecture as Gen-
Synth: they differ in the search technique used by the generator
of candidate queries but are similar in the use of a Datalog solver
to evaluate the generated queries. However, with the exception of
GenSynth, these approaches also require candidate rules to con-
strain the search space. A notable exception, EGS [53], does not
require candidate rules but is limited to a fragment of Datalog
without recursion and negation, and does not scale to large input
databases. In fact, even off-the-shelf GenSynth does not scale to
our application domain, which motivated our optimizations and
the relation pruning discussed in Section 4.2.

Neural learning approaches such as Neural Theorem Proving
(NTP) [41], NeuralLP [57], Neural Logic Machine (NLM) [19], and
OILP [20] scale well and handle tasks that involve noise or require
subsymbolic reasoning. However, they struggle with generalizabil-
ity and data efficiency. On the other hand, GenSynth is able to
generalize effectively from a few labels.

Learning in Program Analysis. Several works have applied ma-
chine learning to program analysis, either to synthesize them or
to prioritize their results. Bielik et al. apply decision tree learn-
ing algorithms to synthesize static analyzers for JavaScript [10].
One approach to finding suspicious entities in the codebase is to
phrase it as an anomaly detection problem [2, 58]. Neural networks
have been used for program analysis tasks, notably for type infer-
ence [3, 23, 55] and invariant generation [42, 47, 49]. Concurrently,
there have been efforts to use classification or ranking algorithms
to predict which conclusions reached by a static analysis represent
true bugs, including that of Koc et al. [26], URSA [59], Bingo [39],
and Arbitrar [32]. Learning algorithms have also been proposed
to intelligently devote resources to specific parts of the analyzed
program [24]. These approaches are orthogonal and complemen-
tary to SPORQ, for instance, to rank SPORQ’s alarms by their ground
truth or expected payoff in labeling them.

8 THREATS TO VALIDITY, LIMITATIONS
AND DESIGN IMPROVEMENTS

In this section, we discuss threats to the validity of our user study
and evaluation, and describe the limitations of SPorQ that we plan
to address in future work.

Threats to Validity. There are several threats, both internal and
external, to the validity of our empirical findings. The main threat
to internal validity arises because of the small sample size of partic-
ipants in our user study. Furthermore, the participants are graduate
students with previous experience in logic programming. Regular
programmers are likely to face an even steeper learning curve while
using Semmle and Semgrep. For example, in one of the author’s soft-
ware engineering MOOC on Udacity, only 47 out of 171 graduate
students were able to correctly write Datalog queries of difficulty
comparable to those in our user study. Lastly, while it is conceivable
that users will become more proficient in using tools like Semmle
and Semgrep over time, we hypothesize that SPorQ will be more
usable even for such users, especially for crafting queries that are
complex or involve predicates computed by program analyses.
The threats to external validity stem from the fact that our con-
clusions may not generalize to queries and codebases beyond those
in our evaluation. We have mitigated this concern by employing
a suite of diverse queries on widely-used programs like the GNU
core utilities. Likewise, our evaluation only targets two languages
C and C++, but surprises for other languages are mitigated by the
substantial overlap of Semmle’s schemas across different languages.

Limitations of SPORQ. We outline four limitations of SPorqQ and
suggest ways to alleviate them.

(1) Expressiveness. GenSynth, and by extension the queries syn-
thesized by SPorQ, do not support useful features such as
aggregation, pattern matching, and foreign functions. Ex-
tending GenSynth with these features does not pose special
challenges, but their absence prevents SPorQ from synthesiz-
ing more complex queries written in Semmle and Semgrep.

(2) Transferability. The queries learnt by SPorQ on one codebase
may not perfectly capture the pattern intended by the user—
and therefore may produce unexpected results when applied
to other codebases. This is because the user may prematurely
stop interacting with SPOrQ even when it only yields an
incomplete pattern. Moreover, even exhaustive interaction
could yield a query that overfits the pattern in the original
codebase. While avoiding such overfitting is an outstanding
challenge in the program synthesis community, GenSynth

Sporq: An Interactive Environment for Exploring Code using Query-by-Example

mitigates this problem by learning concise queries that are

likely to generalize better.
(3) Active Learning. SPORQ does not prioritize the examples it
predicts, leaving it up to the user to decide which exam-
ples to inspect. As a result, the user could end up labeling
more examples than the minimal needed. An active learning
algorithm such as Query-by-Committee [46] could be em-
ployed to determine examples that prune the synthesizer’s
search space the most and thereby minimize user annotation
burden.
Imperfect Recall. While SPoRrQ can achieve perfect precision
through user interaction and feedback, it cannot ensure per-
fect recall. However, this is an open challenge across much
of programming-by-example and machine learning. Some
recent techniques have been proposed to address this chal-
lenge, such as through the use of active learning [21], or by
leveraging background knowledge [54]. Combining SPOrQ
with these techniques suggests exciting directions for future
research.

4

=

Design Improvements. There are many ways SPORQ’s user in-
terface could be improved to make interactions more intuitive and
efficient. Here we suggest only a few areas worthy of exploration
in future iterations.

Currently, SPORQ requires a seed example in order to generate an
initial query. However, a user might have a target pattern in mind
without knowing if there are examples in the current codebase.
To generate a matching query, SPORQ could give the programmer
access to a “sandbox” window where they could type in a toy
program containing an instance of the pattern. SPOrQ’s synthesis
engine would then generate a query based on this example, which
could then be applied to the codebase.

The quality of SPORQ’s output depends on the quality of user
feedback. The multi-modal approach [31] implies that there can be
different forms of feedback in each mode which can let the user
better express “why” an example is undesired, as opposed to just the
fact that it is undesired. In particular, natural language processing
techniques could be explored as a means to clarify the user’s intent
as well as translate the resulting Datalog programs into a format
that is more easily interpretable.

9 CONCLUSION

We presented SPORQ, an interactive environment for exploring code
using a query-by-example approach. SPorQ provides a familiar and
flexible interface that allows developers to conveniently specify
examples of patterns that they wish to mine in their codebases. It
uses the examples to automatically learn those patterns by synthe-
sizing database queries over relational program representations.
Sporq thereby provides a significantly improved user experience
over state-of-the-art tools which require programmers to manually
write queries in unfamiliar or inflexible interfaces. Our experiments
and user studies demonstrate that SPORQ is effective in enabling
programmers to discover bugs in large codebases with minimal
effort.

UIST 21, October 10-14, 2021, Virtual Event, USA

ACKNOWLEDGMENTS

We thank our anonymous shepherd and reviewers for insightful
feedback which substantially improved the presentation. We also
thank the participants of our user study, and Semmle for helping
us understand the internal workings of CodeQL. This research
was supported by grants from AFRL (#FA8750-20-2-0501), ONR
(#N00014-18-1-2021), and NSF (#2107429 and #2107261).

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1994. Foundations of Databases:

The Logical Level (1st ed.). Pearson.

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A Survey of Machine Learning for Big Code and Naturalness. Comput. Surveys

(2018).

[3] Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. 2020. Typ-
ilus: Neural Type Hints. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI).

[4] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, , and Geoffrey Washburn. 2015. Design and

Implementation of the LogicBlox System. In Proceedings of the International

Conference on Management of Data (SIGMOD).

Michael Arntzenius and Neelakantan R. Krishnaswami. 2016. Datafun: A Func-

tional Datalog. In Proceedings of the ACM International Conference on Functional

Programming (ICFP).

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schifer. 2016.

QL: Object-oriented Queries on Relational Data. In Proceedings of the European

Conference on Object-Oriented Programming (ECOOP).

Nathaniel Ayewah, William Pugh, David Hovemeyer,] David Morgenthaler, and

John Penix. 2008. Using static analysis to find bugs. IEEE software 25, 5 (2008),

22-29.

Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog:

Datalog for SMT-Based Static Analysis. In Proceedings of the ACM Conference on

Object Oriented Programming Systems Languages and Applications (OOPSLA).

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles

Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few

Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.

Commun. ACM 53, 2 (2010).

Pavol Bielik, Veselin Raychev, and Martin Vechev. 2017. Learning a Static Analyzer

from Data. In Proceedings of the International Conference on Computer Aided

Verification (CAV).

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-

tion of Sophisticated Points-to Analyses. In Proceedings of the ACM Conference

on Object Oriented Programming Systems Languages and Applications (OOPSLA).

Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter

Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Pur-

brick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification. In

Proceedings of the NASA Formal Method Symposium.

[13] G. Ann Campbell and Patroklos P. Papapetrou. 2013. SonarQube in Action. Man-

ning Publications Co.

Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. 1989. What you always wanted

to know about Datalog (and never dared to ask). IEEE transactions on knowledge

and data engineering 1, 1 (1989), 146-166.

[15] Maria Christakis and Christian Bird. 2016. What Developers Want and Need
from Program Analysis: An Empirical Study. In Proceedings of the IEEE/ACM In-
ternational Conference on Automated Software Engineering (Singapore, Singapore)
(ASE 2016). Association for Computing Machinery, New York, NY, USA, 332-343.

[16] CWE Community. 2008. CWE 681: Incorrect Conversion Between Numeric Types.
https://cwe.mitre.org/data/definitions/681.html.

[17] Return To Corporation. 2021. Semgrep. https://semgrep.dev.

[18] Andrew Cropper, Sebastijan Dumanci¢, and Stephen H. Muggleton. 2020. Turning
30: New Ideas in Inductive Logic Programming. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI).

[19] Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny
Zhou. 2019. Neural Logic Machines. In Proceedings of the International Conference
on Learning Representations (ICLR).

[20] Richard Evans and Edward Grefenstette. 2018. Learning Explanatory Rules from
Noisy Data. Journal of Artificial Intelligence Research 61 (2018).

[21] Sara Evensen, Chang Ge, Dongjin Choi, and Cagatay Demiralp. 2020. Data Pro-
gramming by Demonstration: A Framework for Interactively Learning Labeling
Functions. arXiv:2009.01444 [cs.LG]

[22] Todd]. Green. 2015. LogiQL: A Declarative Language for Enterprise Applications.

In Proceedings of the Symposium on Principles of Database Systems (PODS).

Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. 2018.

Deep Learning Type Inference. In Proceedings of the Joint Meeting on European

[2

[5

[6

[7

[8

[9

=
2

[11

[12

[14

I
&

https://cwe.mitre.org/data/definitions/681.html
https://semgrep.dev
https://arxiv.org/abs/2009.01444

UIST 21, October 10-14, 2021, Virtual Event, USA

[24]

[25]

[26]

[27

[28]
[29]

[30]

[31]

[35]
[36]

[37]

[38]

[39]

[40]

Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE).

Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2019. Resource-Aware Program
Analysis Via Online Abstraction Coarsening. In Proceedings of the International
Conference on Software Engineering (ICSE).

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?. In
Proceedings of the International Conference on Software Engineering (San Francisco,
CA, USA) (ICSE 13). IEEE Press, 672-681.

Ugur Koc, Parsa Saadatpanah, Jeffrey S. Foster, and Adam A. Porter. 2017. Learn-
ing a Classifier for False Positive Error Reports Emitted by Static Code Analysis
Tools. In Proceedings of the ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages (MAPL).

Daphne Koller, Nir Friedman, Sao DZzeroski, Charles Sutton, Andrew McCallum,
Avi Pfeffer, Pieter Abbeel, Ming-Fai Wong, Chris Meek, Jennifer Neville, et al.
2007. Introduction to statistical relational learning. MIT press.

GitHub Security Lab. 2021. Bounties. https://securitylab.github.com/bounties/.
Mark Law, Alessandra Russo, Elisa Bertino, Krysia Broda, and Jorge Lobo. 2020.
FastLAS: Scalable Inductive Logic Programming Incorporating Domain-Specific
Optimisation Criteria. In Proceedings of the Conference on Artificial Intelligence
(AAAI).

Mark Law, Alessandra Russo, and Krysia Broda. 2014. Inductive Learning of
Answer Set Programs. In Proceedings of the European Conference on Logics in
Artificial Intelligence.

Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi, Wan-
ling Ding, Tom M. Mitchell, and Brad A. Myers. 2018. APPINITE: A Multi-Modal
Interface for Specifying Data Descriptions in Programming by Demonstration
Using Natural Language Instructions. In Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). 105-114.

Ziyang Li, Aravind Machiry, Binghong Chen, Ke Wang, Mayur Naik, and Le
Song. 2021. Arbitrar: User-Guided API Misuse Detection. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P).

LLVM. 2021. Clang Static Analyzer. https://clang-analyzer.llvm.org/.

Magnus Madsen, Ming-Ho Yee, and Ondfej Lhotak. 2016. From Datalog to Flix:
A Declarative Language for Fixed Points on Lattices. In Proceedings of the ACM
Conference on Programming Language Design and Implementation (PLDI).
Jonathan Mendelson, Aaditya Naik, Mayur Naik, and Mukund Raghothaman.
2021. GenSynth: Synthesizing Datalog Programs without Language Bias. (2021).
Stephen Muggleton. 1995. Inverse Entailment and Progol. New Generation
Computing 13, 3 (Dec. 1995).

Stephen Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. 2015. Meta-
interpretive Learning of Higher-order Dyadic Datalog: Predicate Invention Re-
visited. Machine Learning 100, 1 (July 2015).

Mayur Naik. 2011. Chord: A versatile platform for program analysis. In Tutorial
at the ACM Conference on Programming Language Design and Implementation
(PLDI).

Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018.
User-guided Program Reasoning Using Bayesian Inference. In Proceedings of the
ACM Conference on Programming Language Design and Implementation (PLDI).
Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, and
Bernhard Scholz. 2020. Provenance-Guided Synthesis Of Datalog Programs.
In Proceedings of the ACM Symposium on Principles of Programming Languages
(POPL).

[41

[42

[43

=
&

N
X2

‘o
=

[54

[55]

[56

o
=)

[58

[59

Naik et al.

Tim Rocktdschel and Sebastian Riedel. 2017. End-to-end Differentiable Proving.
In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS).
Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana. 2020.
CLN2INV: Learning Loop Invariants with Continuous Logic Networks. In Pro-
ceedings of the International Conference on Learning Representations (ICLR).
Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Soederberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In Proceedings
of the International Conference on Software Engineering (ICSE).

Bernhard Scholz, Herbert Jordan, Pavle Suboti¢, and Till Westmann. 2016. On
Fast Large-scale Program Analysis in Datalog. In Proceedings of the International
Conference on Compiler Construction (CC).

Semmle. 2021. https://lgtm.com.

H. S. Seung, M. Opper, and H. Sompolinsky. 1992. Query by Committee. In
Proceedings of the Annual Workshop on Computational Learning Theory (COLT).
Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. 2018.
Learning Loop Invariants for Program Verification. In Proceedings of the Advances
in Neural Information Processing Systems (NeurIPS).

Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris, and
Mayur Naik. 2018. Syntax-Guided Synthesis of Datalog Programs. In Proceedings
of the Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE).

Xujie Si, Aaditya Naik, Hanjun Dai, Mayur Naik, and Le Song. 2020. Code2Inv:
A Deep Learning Framework for Program Verification. In Proceedings of the
International Conference on Computer Aided Verification (CAV).

Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. 2019. Synthesizing
Datalog Programs Using Numerical Relaxation. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI).

Y. Smaragdakis and M. Bravenboer. 2010. Using Datalog for Fast and Easy
Program Analysis. In Proceedings of the Datalog 2.0 Workshop.

Bjarne Stroustrup and Herb Sutter. 2021. https://isocpp.github.io/
CppCoreGuidelines/CppCoreGuidelines.

Aalok Thakkar, Aaditya Naik, Nate Sands, Rajeev Alur, Mayur Naik, and Mukund
Raghothaman. 2021. Example-Guided Synthesis of Relational Queries. In Proceed-
ings of the ACM Conference on Programming Language Design and Implementation
(PLDI).

Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang. 2021.
Data-Driven Synthesis of Provably Sound Side Channel Analyses. In Proceedings
of the IEEE/ACM International Conference on Software Engineering (ICSE). 810~
822.

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. LambdaNet: Prob-
abilistic Type Inference using Graph Neural Networks. In Proceedings of the
International Conference on Learning Representations (ICLR).

J. Whaley, D. Avots, M. Carbin, and M. Lam. 2005. Using Datalog with Binary
Decision Diagrams for Program Analysis. In Proceedings of the Asian Symposium
on Programming Languages and Systems (APLAS).

Fan Yang, Zhilin Yang, and William Cohen. 2017. Differentiable learning of
logical rules for knowledge base reasoning. In Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS).

Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik.
2016. APISAN: Sanitizing API Usages through Semantic Cross-Checking. In
Proceedings of the USENIX Security Symposium.

Xin Zhang, Radu Grigore, Xujie Si, and Mayur Naik. 2017. Effective interactive
resolution of static analysis alarms. In Proceedings of the ACM International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA).

https://securitylab.github.com/bounties/
https://clang-analyzer.llvm.org/
https://lgtm.com
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

	Abstract
	1 Introduction
	2 Illustrative Overview
	3 Relational Program Representations
	4 DESIGN AND IMPLEMENTATION OF THE Sporq SYSTEM
	4.1 The Datalog Query Synthesis Problem
	4.2 Synthesizing Queries Using Evolutionary Search
	4.3 Implementing the IDE Extension

	5 Experimental Evaluation
	5.1 Benchmarks
	5.2 Main Results
	5.3 Impact of Uniqueness Constraints and Generalized Examples

	6 User Study
	6.1 Tasks
	6.2 Participants
	6.3 Methodology
	6.4 Results

	7 Related Work
	8 Threats to Validity, Limitations and Design Improvements
	9 Conclusion
	Acknowledgments
	References

