
Analysis of EM Fault Injection on Bit-sliced Number Theoretic

Transform Sotware in Dilithium

RICHA SINGH,Worcester Polytechnic Institute, USA

SAAD ISLAM,Worcester Polytechnic Institute, USA

BERK SUNAR,Worcester Polytechnic Institute, USA

PATRICK SCHAUMONT,Worcester Polytechnic Institute, USA

Bitslicing is a software implementation technique that treats an N -bit processor datapath as N parallel single-bit datapaths.

Bitslicing is particularly useful to implement data-parallel algorithms, algorithms that apply the same operation sequence to

every element of a vector. Indeed, a bit-wise processor instruction applies the same logical operation to every single-bit slice. A

second beneit of bitsliced execution is that the natural spatial redundancy of bitsliced software can support countermeasures

against fault attacks. A k-redundant program on an N -bit processor then runs as N /k parallel redundant slices. In this

contribution, we combine these two beneits of bitslicing to implement a fault countermeasure for the number-theoretic

transform (NTT). The NTT eiciently implements a polynomial multiplication. The internal symmetry of the NTT algorithm

lends itself to a data-parallel implementation, and hence it is a good candidate for the redundantly bitsliced implementation.

We implement a redundantly bitsliced NTT on an advanced 667MHz ARM Cortex-A9 processor, and study the fault coverage

for the protected NTT under optimized electromagnetic fault injection (EMFI). Our work brings two major contributions.

First, we show for the irst time how to develop a redundantly bitsliced version of the NTT. We integrate the protected NTT

into a full Dilithium signature sequence. Second, we demonstrate an EMFI analysis on a prototype implementation of the

Dilithium signature sequence on ARM Cortex-M9. We perform a detailed EM fault-injection parameter search to optimize the

location, intensity and timing of injected EM pulses. We demonstrate that, under optimized fault injection parameters, about

10% of the injected faults become potentially exploitable. However, the redundantly bitsliced NTT design is able to catch the

majority of these potentially exploitable faults, even when the remainder of the Dilithium algorithm as well as the control

low is left unprotected. To our knowledge, this is the irst demonstration of a bitslice-redundant design of the NTT that

ofers distributed fault detection throughout the execution of the algorithm.

CCS Concepts: · Security and Privacy→ Post-Quantum Lattice-Based Cryptography; Digital Signatures; Fault Attacks

and Countermeasures.

Additional Key Words and Phrases: Dilithium, Bit-slicing, Intra-Instruction Redundancy, Fault Attack Countermeasure, ARM

Cortex-A9, Electromagnetic Fault Injection

1 Introduction

Due to advancements in Quantum Computing and the discovery of Shor’s algorithm [44], there is a looming
threat to our existing public key infrastructure (PKI). With the possibility of powerful and large-scale quantum
computers in not too distant future, common RSA- and ECC-based protocols become vulnerable.

Authors’ addresses: Richa Singh, rsingh7@wpi.edu, Worcester Polytechnic Institute, 100, Institute Road, Worcester, Massachusetts, USA,

01609; Saad Islam, sislam@wpi.edu, Worcester Polytechnic Institute, 100, Institute Road, Worcester, Massachusetts, USA, 01609; Berk

Sunar, sunar@wpi.edu, Worcester Polytechnic Institute, 100, Institute Road, Worcester, Massachusetts, USA, 01609; Patrick Schaumont,

pschaumont@wpi.edu, Worcester Polytechnic Institute, 100, Institute Road, Worcester, Massachusetts, USA, 01609.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/3-ART $15.00

https://doi.org/10.1145/3583757

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1145/3583757
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583757&domain=pdf&date_stamp=2023-03-31

2 • Singh, et al.

NIST recently initiated a Post-Quantum Cryptography (PQC) Standardization process to select and standardize
quantum-resistant algorithms for Public Key Encryption (PKE), Key Establishment Mechanisms (KEM) and
Digital Signatures (DS) in order to replace RSA and ECC schemes. This process is currently in its fourth and inal
round which has three inalist candidates for digital signing: Dilithium, Falcon and Sphincs+ [4]. The criterion
that determines the selection process includes classical as well as post-quantum (PQ) security guarantees. Besides
theoretical security guarantees, the selection criteria also consider implementation cost and performance, as well
as resistance against active and passive implementation attacks.

In this contribution, we speciically consider active attacks against post-quantum schemes. Several authors have
reported the use of fault injection on structured lattice-based schemes as a basis for attack [14, 15, 32, 36, 37]. The
common fault injection vectors in such cryptographic implementations are controlled EMFI pulses [36, 37] and
clock glitches [15, 47]. These faults appear as bit-lips in the cryptographic state of the selected PQ scheme which
are then used for cryptanalysis. The dominant design concept in countermeasures against fault injection is to
apply redundancy in the implementation. The idea is that a fault injection on a redundant design can be detected
by analyzing the consistency between redundant executions. For example, time-redundant implementations
execute each cryptographic operation multiple times, and compare the consistency between each computed result.
The time-redundancy can be implemented at multiple levels of abstraction. At assembly-level, instructions can be
duplicated or triplicated [9]. At algorithm-level, critical portions can be computed multiple times [8, 16, 43]. At
system-level, a digital signature can be veriied after it is computed [20]. Time-redundant implementations may
still fail in the following two cases. First, if an attacker has precise control over the fault injection process, it may
be possible to inject identical faults in each redundant copy. Multiple-fault injection may fool the consistency
check of the countermeasure. Second, the comparison of time-redundant copies must be fault-resistant by itself. A
verify-after-sign countermeasure, for example, may still be subject to fault injection on the non-redundant verify
operation. An alternate strategy relies on information redundancy provided through error coding techniques
[2, 5]. Coding-based techniques are challenging and require not only the generation and error-checking of
code-words, but also the modiication of computations that operate on encoded information bits.

In this contribution, we pursue a third route for fault-countermeasure development based on spatial redundancy,
in which redundant computations are executed simultaneously. We use the intra-instruction redundancy (IIR)
technique [35]. The application is re-written as a Boolean program (a single-bit algorithm with simple logic
operations) which is then redundantly mapped on the bits of an N -bit processor word. Such a Boolean program
can be generated from the application using logic synthesis. As a fault countermeasure, the advantage of spatial
redundancy over temporal redundancy is that every single instruction simultaneously operates on redundant
bits. Hence, an adversary who wants to thwart the countermeasure not only has to be able to inject identical
faults in each redundant copy, but he also has to inject these faults concurrently over multiple bits of a single
N -bit processor word.
Technically, a Boolean program can be created by bitslicing the application. The bitslicing technique, as

proposed by Biham, creates N redundant copies of an application on an N -bit processor [12]. In a spatially-
redundant fault countermeasure, groups of k slices compute on the same data to implement k-fold redundancy.
Hence, assuming k is a divisor of N , there will be N /k fault-protected redundant copies of the application. We
will focus on a spatially-redundant implementation of the Number Theoretic Transform (NTT) as the application.
The NTT is a central computation step in many post-quantum schemes including Dilithium, and it is used to
eiciently perform polynomial multiplication. The FFT-like structure of the NTT is well suited for protection by
bitslicing. The k-fold protected implementation will compute N /k parallel butterly operations in each stage of
the NTT.
Even though the NTT by itself is not a complete signing algorithm, it serves as a critical component in

several lattice-based post-quantum algorithms, and it contributes a signiicant portion of computation cycles
to post-quantum Signing and Veriication operations. For example, Kim et al. [28] benchmark the NTT in a

ACM Trans. Embedd. Comput. Syst.

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 3

reference implementation of Dilithium on an ARMv8 processor as using 65.7% and 50.4% of the total cycles
needed for Dilithium Signature Generation and Veriication, respectively. However, while our protected NTT
implementation protects a signiicant portion of a post-quantum Digital Signature algorithm, we do not claim to
fully protect the Dilithium Signature algorithm. A fully protected post-quantum digital signature operation is not
within the scope of this paper.

1.1 Our Contributions

The core of our work is a spatially redundant fault countermeasure for the NTT, and its assessment on a realistic
target architecture and a realistic application scenario.

(1) We propose a software countermeasure for fault attacks based on data-redundant bitslicing of the NTT. To
our knowledge, this is the irst work to present a bitsliced NTT implementation, and the irst to demonstrate
its application as a spatially-redundant fault countermeasure.

(2) We implement the bitsliced NTT design on a 667MHz ARM Cortex-A9 processor integrated in a Zynq
FPGA. We make use of the Neon instructions (N = 64) and create a dual data-redundant design (k = 2).

(3) We perform an exhaustive search process to identify the EM fault-injection parameter space, determining
the spatial location of the EM probe, and the moment and power level of the EMFI pulse such that we
optimize the fault impact. We are able to increase the percentage of potentially exploitable faults to 10% of
the fault injection attempts. To our knowledge, this is the irst time that EMFI results are presented for
NTT on an advanced CPU (667MHz, Cortex-A9).

(4) We evaluate the fault detection capability of the redundantly implementedNTT. For this dual data-redundant
design, we determine that about 62% of all injected faults directly afect the data low.

1.2 Outline

In Section 2, we introduce the related literature and relevant background knowledge. Section 3 presents our
bitsliced design for NTT/Inverse NTT, our fault attack countermeasure design based on dual data-redundant
bitslicing and the mapping of the design on the ARM Cortex-A9 processor. Section 4 describes the experimental
setup, including the hardware platform, the integration of the protected NTT into Dilithium, and the associated
performance analysis of the design. Section 5 presents the EMFI evaluation of the protected NTT, covering the
top-down EMFI parameter search for fault injection tuning, and the evaluation of fault protection coverage for
the protected NTT. Section 6 concludes the paper.

2 Background

This section summarizes important background knowledge concepts, including Electromagnetic Fault Injection
(EMFI), implementation of bitsliced code, and fault countermeasures based on redundant bitslicing.

2.1 EMFI Fault Injection

Fault injection is a well known threat to cryptographic chips. An attacker injects faults in a cryptographic
computation by pressuring the chip out of its nominal operating conditions. These faults may result in faulty
ciphertext or faulty signatures, which are the starting point for Diferential Fault Analysis (DFA) [13] and other
cryptanalysis. However, fault injection may also be used to cause data corruption [30], change the control low of
software [40], bypass security mechanisms such as secure boot [17] or cause privileged escalation [22]. Recently,
remote (or software-induced) fault injection techniques such as Rowhammer [33], and CLKSCREW [46], have
increased the attention to fault efects in cryptographic implementations considerably.

Physics of EMFI There are a multitude of attack vectors to induce faults in digital circuits such as power
glitching [49], clock glitching [3], heating [23], EM pulse injection [18], or laser pulse injection [41]. The injected

ACM Trans. Embedd. Comput. Syst.

4 • Singh, et al.

faults can have transient or permanent efects, and they are injected with varying degrees of temporal and spatial
resolution. A higher precision generally implies a more expensive and time consuming fault injection method.

In this contribution we focus on fault injection through electromagnetic pulses. An EM pulse is injected using
a tightly wound coil positioned perpendicularly over the chip surface. A current surge through the coil emits
a rapidly changing magnetic lux into the chip’s metal wires. When these wires form a loop, such as with the
on-chip power distribution mesh, the change of magnetic lux results in an electromagnetic force E, a temporary
increase or decrease of the voltage across the loop terminals. The electromagnetic force can cause a variety of
efects depending on the nature of the wire (power, ground, signal, clock), including temporary signal bit-lips
(0 → 1 or 1 → 0), clock glitches, and lip-lop lips. The ensemble of possible efects stemming from EMFI is
captured in the sampling fault model introduced by Orbas et. al [34]. A more general treatment of fault models is
given by Richter-Brockmann et. al [38].

The spatial resolution of EMFI is in the millimeter range, because of the need to mechanically position the EM
injection coil over the chip. The area afected by the EMFI pulse is directly proportional to the radius of the coil
windings, and is typically in millimeter-range as well. The temporal resolution of EMFI is in the order of tens of
nanoseconds depending on the power control of the EM injection coil. For these reasons, EMFI is a fault injection
tool with mid-range precision. It achieves better spatial locality than classic clock/voltage glitching techniques,
but it is not as precise as optical fault injection. However, EMFI is an easy fault injection technique that requires
very limited sample preparation. In our experiments, we inject EMFI directly into the chip package of an IC on a
standard FPGA development board.

EMFI on ARM processors The target of our EMFI experiments is an ARM processor that executes post-
quantum cryptographic software. Thus, the target of EMFI is secure software, while the actual fault occurs
in the hardware. Before a hardware fault afects the control- and data-low of secure software, the fault must
propagate across several abstraction layers, including the micro-architecture and instruction-set architecture of
the processor. Several authors have studied EMFI for ARM. Early work on EMFI is presented in [19, 42]. Moro et

al. introduced an EMFI fault model for a 32-bit ARM micro-controller [31], and Elmohr et al. later reined the
fault model by showing that multi-instruction skips are possible with a single EM pulse [21]. All parts of a typical
ARM core are vulnerable to EMFI. For example, Rivière et al. performed EM fault injection on the cache of an
ARM Cortex-M4 micro-controller [40]; Menu et al. presents an EMFI attack on the data-prefetch mechanism of
an ARM micro-controller to achieve AES key recovery and AES key resetting with a single fault injection [30].
These examples illustrate the wide variety of fault efects achievable through EMFI.

We observe that the majority of these EMFI are done on relatively simple and low-speed processor architectures,
such as AVR ATMEGA [19], ARM Cortex-M0 [21], ARM Cortex-M3 [30, 31], and ARM Cortex-M4 [40]. The
selection of EMFI parameters, including the spatial and temporal location of the EM pulse, as well as the power
of the EM pulse, becomes a major challenge in complex (pipelined and high-speed) architectures such as the
ARM Cortex-A9 considered in our experiments. A signiicant contribution of our paper is a detailed explanation
of the EMFI parameter tuning process for the ARM Cortex-A9 running at 667 MHz.

2.2 Bitsliced Implementation

Bitslicing is a software optimization technique that is popular for cryptographic software implementations
because it decouples the wordlength required to execute the algorithm from the wordlength provided by the
processor. By reformulating the cryptographic algorithm as a Boolean (1-bit) program, and by allocating suicient
parallel copies of the Boolean program, we can ensure full processor utilization. The downside of bitsliced
execution is that the instruction-set of a 1-bit program is very limited and restricted to Boolean operations. Indeed,
bitsliced programs are written using only bitwise logical operations (AND, OR, NOT, XOR). That also means
that operations that normally beneit from dedicated hardware support, such as hardware multiply, become less

ACM Trans. Embedd. Comput. Syst.

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 5

p bits

V0

V1

VN-1

p registers

slice0slice1sliceN-1

transposition

inverse

transposition

Fig. 1. Interfacing Direct and Bitsliced Code requires Transposition

eicient in bitsliced software [45]. A second drawback is that the parallelization of a boolean program to the
full wordlength of the processor signiicantly increases the register pressure on the processor. Indeed, instead of
executing as a single instance of a cryptographic design, the bitsliced program executes as N instances on an
N -bit processor, and thus requires N times as many registers to achieve the same storage eiciency.

Bitslicing in cryptography Despite this drawback, cryptographic engineers still apply bitslicing as a manual
optimization technique, motivated by primarily two advantages. First, the performance argument is an important
consideration for cryptographic engineering. Bitslicing has been used for traditional symmetric-key performance
records [1, 24] and lightweight cryptography [7]. Second, because of the lack of control low operations and
the very simple instruction set, bitsliced implementations are naturally constant-time and free from micro-
architecture efects. That property has been used to develop constant-time public-key [11] and symmetric-key
implementations [29].

Generation of Bitsliced Code The main challenge in writing bitsliced programs is their low abstraction level.
Boolean programs are single-bit implementations, at the same abstraction level as gate-level netlists in hardware.
Most bitsliced implementations therefore require careful manual logic synthesis and optimization to achieve an
eicient design. Kiaei et al. developed a programming model called Parallel Synchronous Programming (PSP) to
support the development of bitsliced programs [26]. The input of PSP is a high-level synchronous description
in the form of a Register-transfer Level description in Verilog. Through logic synthesis, the RTL description is
converted into a gate-level netlist. The gate-level netlist is then converted into a Directed Acyclic Graph (DAG),
where nodes represent boolean operations and edges represent data dependencies. The DAG is leveled to a single
node per level. Mapping each node into an equivalent bitwise processor instruction then results in a bitsliced
program. The main advantage of the PSP model over direct bitsliced design is that PSP can also capture logic
state (as lip-lops) and control low (as inite state machines). One clock cycle of a PSP program corresponds
to one execution of the DAG. Kiaei et al. present an automatic C code generation tool based on Yosys, which
converts Verilog RTL descriptions into bitsliced PSP functions. We make use of this environment to develop
bitsliced versions of the NTT.

MixingDirect and Bitsliced Code In a practical implementation, bitslicing can be applied to a single function
or to a complete program. Therefore we need an interface to transfer data between direct code and bitsliced code.
This interface transposes the argument bits as illustrated in Fig. 1. If a given function accepts a variable V0 of p
bits as input, then the bitsliced version of this function will store each bit of V0 in a diferent register, and thus
use p registers to represent V0. On an N bit processor, the bitsliced function will compute on N copies of V0 in
parallel, and therefore operate on a block of variables V0 to VN−1, corresponding to slice 0 to slice N − 1 of the
bitsliced execution. When direct C code calls a bitsliced C function, this bit-level rearrangement is implemented
by transposing a bit matrix of N ×p bits into a bit matrix of p ×N bits. On a standard processor, the transposition

ACM Trans. Embedd. Comput. Syst.

6 • Singh, et al.

is implemented using bit-level manipulation, and contributes an additional overhead to the use of bitsliced
implementation. Kiaei et al. have proposed custom instructions to accelerate the transposition operation [25].

2.3 Bitsliced Fault Countermeasures

Patrick et al. proposed intra-instruction redundancy as a technique to obtain spatial redundancy in software
[35]. Given a program P , then the bitsliced execution of P will execute as parallel redundant copies over multiple
slices. Depending on the allocation of the redundant copies to slices, diferent forms of fault countermeasures are
obtained. Data redundancy protects the data low (computations and storage), while control redundancy protects
the control low of a redundant program.

Data redundancy By straightforward duplication of slices, the program becomes data-redundant and can
detect faults that afect the computations or storage of data bits. In data redundancy, slice i and slice i + N /2 are
subjected to the same computations and thus should hold identical results. The rationale is that, because the
attacker has limited control over the fault injection process, it is hard to obtain identical faults in two diferent
slices [35].

Fault checking of data-redundant bitslices does not require an if-then test which is potential fault injection
target of the veriication. Rather, fault checking can be done using only data computations. Assume that V is a
32-bit integer containing redundant slices in the upper half of the processor word, then the expression

MASK = -((V ^ (V >> 16)) & 0xFFFF) >> 16

will compute a MASK with value 0 or 0xFFFFFFFF depending on the occurence of a fault. This mask can be used
to mask of (faulty) ciphertext when a fault has occured.

Control redundancy Control-low faults such as instruction skip cannot be detected using data redundancy.
For those cases, Patrick et al. propose a hybrid form of redundant bitslicing that introduces time redundancy
during bitsliced computation [35]. For example, during the execution of a loop, diferent slices can compute
diferent iterations of the loop. The design of control redundancy depends on the control low of the application.
In this contribution, our focus is on data-redundant execution of the NTT. In the following section we explain
our bitsliced NTT design.

3 Proposed Bit-sliced design of NTT-based Polynomial Multiplication

We propose to use the bitslicing technique on NTT and then utilize this bitsliced NTT design to construct a
data-redundant countermeasure for NTT to provide fault-attack resistance.

3.1 Definition of NTT and Inverse NTT

NTT is a generalized version of the well-known Discrete Fourier Transform (DFT) where all the arithmetic is
performed in the prime inite ield Fq . In ideal lattice-based cryptography, the main operation is polynomial
multiplication in the ring Rq = Zq[x]/(x

n
+ 1), where, ring Zq[x] = (Z/qZ)[x] denotes the set of polynomials

with integer coeicients modulo q and Rq denotes the ring of polynomials with integer coeicients from the ring

Zq reduced by a nth cyclotomic polynomial xn + 1. NTT-based polynomial multiplication requires that n is a
power of two and that the modulus q is chosen to be a prime such that q ≡ 1mod 2n. This way Zq contains a
primitive n-th root of unity ω and its square rootψ , which means that ωn ≡ 1modq.

Deinition Let two polynomials a(x),b(x) ∈ Rq have coeicients a(x) = (a[0],a[1], . . . ,a[n − 1]) and b(x) =
(b[0],b[1], . . . ,b[n − 1]) respectively. Then, polynomial multiplication c = a · b ∈ Rq is deined as

c = INTT(NTT(a) ⊙ NTT(b)) (1)

ACM Trans. Embedd. Comput. Syst.

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 7

a0

a4

a2

a6

a1

a5

a3

a7

â0

â1

â2

â3

â4

â5

â6

â7

�80
�80
�80
�80

�80�81
�80 �81

�80�81�82�83
ai

aj �8� bi = ai + aj �8�
bj = ai - aj �8�

Cooley-Tukey Butterfly

(a) (b)

Fig. 2. (a) 8-point Decimate-in-time NTT (b) Cooley-Tukey Buterfly Operation

where, ⊙ denotes the point-wise multiplication of polynomials. To eliminate the overhead of zero-padding a and
b to length 2n, negative-wrapped convolution property of NTT is used. So, the transformation NTT(a) generates
a polynomial â whose coeicients can be deined as

â[i] =

n−1∑

j=0

ω
i j
nψ

ja[j]modq ∀i ∈ [0,n − 1] (2)

The inverse NTT is computed in exactly same way except that ω
i j
n is replaced with ω

−i j
n and the inal results are

scaled byψ−in−1 factor. The inverse NTT transforms the polynomial â back to a whose coeicients are obtained
as

a[i] = ψ−in−1
n−1∑

j=0

ω
−i j
n â[j]modq ∀i ∈ [0,n − 1] (3)

3.2 Bitsliced NTT/INTT Design

In this section, we describe the decomposition of the NTT/INTT operation into stages, and into bitsliced
computation.

Decomposition of NTT/INTT operations The sums of Equation 2 and Equation 3 are computed eiciently
using an FFT-like structure [48] which recursively decomposes an N -point NTT into two N /2 point NTTs. Figure
2a illustrates the decomposition of an 8-coeicient polynomial NTT into Cooley-Tukey butterly operations. This
NTT completes in loд2(8) = 3 stages. Each stage contains 8/2 = 4 butterly operations. Figure 2b illustrates the
equivalent operations inside each Cooley-Tukey butterly. Each butterly operation is completed in Fq modular
arithmetic with a modular addition, a modular subtraction and a modular constant multiplication. The overall
datalow of the NTT requires the input coeicients to be organized in bit-reversed order. For example, the irst
butterly uses coeicients a0 = a000b = abitr ev(000b) and a4 = a100b = abitr ev(001b).

Data parallelism in NTT/INTT To make bitsliced operation eicient, a high degree of data parallelism is
required, so that each slice in an N bit processor word can contribute useful work. The NTT ofers data parallelism
through the large number of butterly operations that must be computed in each stage of the Cooley-Tukey
NTT. With 32-bit signed coeicients ai , each butterly operation (Figure 2b) includes a 32-bit modular addition,

ACM Trans. Embedd. Comput. Syst.

8 • Singh, et al.

a
PolyBitreverse +

PolyTranspose +

PowMultψ
S1

Reverse

Transpose
S2 S3 S4 S5 S6 S7 S8

Dual data redundancy – compute 8x NTT-32 with redundant bitsliced kernel

No data redundancy – compute 4x NTT-64 with bitsliced kernel

â = NTT(a)

Fig. 3. Block diagram for Bitsliced 256-point NTT.

a 32-bit modular subtraction and a 32-bit modular multiplication. We built a bitsliced butterly function to
compute one stage of the NTT for a 64-coeicient polynomial. The function implements 32 parallel butterly
operations. We mapped Figure 2b in Verilog. Modular reduction for addition and subtraction is performed using
conditional subtraction and addition respectively. Modular reduction for multiplication is based on Barrett
Reduction algorithm [10] as described in Algorithm 6 of Bannerjee et al. [6]. Using the PSP methodology [27],
we then generated bitsliced C code from the Verilog expressions. With 32-bit coeicients, our bitsliced butterly
kernel uses 9,294 bitwise operations. This function computes one stage of a 64-point NTT, and it is the core
function in our design. Next, we use this function as a building block to create a complete NTT/INTT.

Mapping NTT/INTT computations into bit-sliced format We demonstrate mapping of NTT into bit-
sliced computation for 32-bit coeicient precision and 256-element polynomials (N = 32, n = 256). Fig. 3 shows
the step-wise transformation of an input polynomial a into a 256-point NTT output polynomial â. The 256-point
NTT is broken down into four 64-point NTTs, each of which is computed using six calls (S1 to S6 in Figure 3) to
the bitsliced kernel. The results of four 64-point NTTs are then combined into two 128-point NTTs (stage 7) and
inally into one 256-point NTT (stage 8).
We next briely explain each step in Fig. 3.

• PolyBitReversal - Because of the Cooley-Tukey NTT design (see Figure 2a), the coeicients of the
input polynomial amust be permuted into bit-reversed order so that the coeicients of the NTT polynomial
â appear in sequential order.
The bit-reversed input polynomial is then partitioned into two arrays in1 and in2, holding 128 even-indexed
and 128 odd-indexed coeicients from the bit-reversed polynonial, respectively. The arrays are split into 4
subsets of 32 coeicients each, and these subsets of in1 and in2 are then pairwise combined to form the
64 inputs to a 64-point NTT block. In this manner, the irst 64-point NTT is computed on inputs in1[0],
in1[1], . . . , in1[31] and in2[0], in2[1], . . . , in2[31]; the second 64-point NTT is computed on inputs in1[32],
in1[33], . . . , in1[63] and in2[32], in2[33], . . . , in2[63]; and so on.

• PolyTranspose - Before 32-bit input polynomial coeicients can be processed by a bitsliced function,
the inputs have to be transposed. This step as shown in Fig. 4a performs transpose on the two butterly
inputs arrays and converts 32 inputs of in1 and in2 into 32 bitsliced inputs containing red and green colored
slices. This produces the subsets trans_psi_in1 and trans_psi_in2.

• PowMulψ - The transposed butterly subsets trans_psi_in1 and trans_psi_in2 are then passed as input
arguments to pointwisemultiplier() bitsliced function at PowMulψ step to realize multiplication of
polynomial coeicients with respective powers of negative convolution (ψ) factors.

• Stages 1 to 6 - Output subsets trans_in1 and trans_in2 from PowMulψ step are then processed by the
bitsliced butterly kernel butterflyCompute(), resulting in two butterly outputs subsets, trans_out1 and
trans_out2, which together from the outputs of a 64-point NTT block. However, an additional reshule is
needed in between each stage of the NTT. The reason for this can be seen in Figure 2. After any NTT stage,

ACM Trans. Embedd. Comput. Syst.

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 9

in1[0]

in1[31]

in2[0]

in2[31]

PolyTranspose

PolyTranspose

trans_phi_in1[]

trans_phi_in2[]

32 bits 32 slices

(a) Bitslicing format

in1[0]

in2[0]

in2[15]

PolyTranspose

PolyTranspose

trans_phi_in1[]

trans_phi_in2[]

32 bits

16 slices

original

in1[15]

redundant

data

redundant

data

16 slices

redundant

(b) Dual data-redundancy bitslicing format

Fig. 4. Representation of NTT polynomial coeficients in bitslicing format without and with dual data-redundancy.

tra
ns

_o
ut

1[
32

]

trans_out2[32]

trans_in1[32]

trans_in2[32]
butterflyCompute()

transposed twiddle factors

NEON

NEON

NEON

NEON

NEON

NEON

>> 1

<< 1

NEON

NEON
0x55555555

0x55555555
0x55555555

8

0x55555555

0x55555555
0x55555555

8

8x for NEON

y 1
[2

]
y 1

[1
]

y 1
[0

]

y 1
[3

1]
y 1

[3
0]

y 2
[0

]
y 2

[1
]

y 2
[2

]

y 2
[3

0]
y 2

[3
1]

trans_phi_in2[32]

x 2
[2

]
x 2

[1
]

x 2
[0

]

x 2
[3

0]
x 2

[3
1]

32

x 1
[2

]
x 1

[1
]

x 1
[0

]

x 1
[3

0]
x 1

[3
1]

32

pointwisemultiplier()

transposed � factors

trans_phi_in1[32]

(Transposed inputs)

32 Butterflies
in parallel computation

Transposed inputs
point-wise multiplied with
transposed convolution factors
in parallel computation

Operations per stage of Bit-sliced 64-point NTT

Bit-sliced Manipulation
Inputs(in Transposed
form) to Next Stage32 Butterflies outputs

Fig. 5. Data flow diagram of Bit-sliced 256-point NTT composed of four 64-point NTTs. The figure shows operations that

occur in each stage of a Bit-sliced 64-point NTT.

some of the red slices of stage i end up at a green slice for stage i + 1, and vice versa. In order to process
2nd stage inputs by the bitsliced kernel butterflyCompute(), all the irst butterly inputs represented
by red slices should be placed together in one subset and all the second butterly inputs represented by
green slices should to be placed together in the other subset. We achieve this reshuling using a bitmasking
process as illustrated in Fig. 5. The implementation of this reshuling can be optimized by using vectorized
bitwise instructions, which reduces 32 bitwise operations to 8 SIMD bitwise operations. The last stage of a
64-point NTT does not require reshuling because all the 32 butterlies are interleaved with each other
which causes both the butterly output subsets to already have all the irst butterly outputs in one subset
and all the second butterly outputs in the other subset. A 64-point NTT output in bit-sliced domain is
represented in Fig. 6 using a rectangular block with top-half/red portion occupied by 32 irst outputs (in 32
adjacent red slices spread across 32 words) and bottom-half/green portion occupied by 32 second outputs
(in 32 adjacent green slices spread across 32 words) of 32 butterlies in the 6th stage.

ACM Trans. Embedd. Comput. Syst.

10 • Singh, et al.

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

64

64

butterflyCompute()

butterflyCompute()
64

64

256

32 slices
32 slices

32 slices

Stage 7 Stage 8

Outputs of Four
Bit-sliced 64-point NTTs
from Stage 6

Bit-sliced
256-point NTT output
(in Transposed form)

Fig. 6. Data flow diagram in Stages 7 and 8 of Bit-sliced 256-point NTT. A bit-sliced 64-point NTT output from the 6th stage

of 256-point NTT is represented using a rectangular block with top-half/red portion occupied with 32 first outputs (in 32

adjacent red slices spread across 32 words) and botom-half/green portion occupied with 32 second outputs (in 32 adjacent

green slices spread across 32 words) of 32 buterflies.

• Stages 7 to 8 - To compute the 7th stage of 256-point NTT, four 64-point NTT blocks are combined to
form 2 128-point NTT blocks by 4 invocations to the bitsliced butterly kernel butterflyCompute(). Fig.
6 shows that red portions and green portions of top two 64-point NTT blocks are inputs for the irst 32
butterlies and next 32 butterlies, respectively, in the 7th stage of 256-point NTT which combine together
to produce irst 128-point NTT block. Butterly outputs are stored back into same memory locations where

ACM Trans. Embedd. Comput. Syst.

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 11

the inputs are in. Going to the 8th stage, composition of 2 128-point NTT blocks leads to a single 256-point
NTT block which is computed by 4 invocations to the bitsliced butterly kernel butterflyCompute().

• ReverseTranspose - We obtain the inal 256-point NTT output by performing last step in Fig. 3,
ReverseTranspose to convert the 32-bit 256-point NTT outputs from bit-sliced domain to normal domain.

Algorithm 1 outlines the pseudocode for bitsliced 256-point NTT. We use pre-computed transposed twiddle
factors: ω, ω−1modq and ψ , n−1ψ−1modq in our bit-sliced implementation of 256-point NTT and INTT. The
bit-sliced implementation for 256-point INTT is same as 256-point NTT except that there is PowMulψ step at
the end before the ReverseTranspose step instead of the beginning to perform point-wise multiplication of
INTT output polynomial coeicients with respective powers of n−1ψ−1 using pointwisemultiplier() bit-sliced
function.

3.3 Data-Redundant Countermeasure NTT/INTT Design

In this section, we describe the implementation of Fault-Attack Countermeasure based on data redundancy for
NTT/INTT. We utilize the bit-sliced construction deined for NTT/INTT in Section 3.2 as the foundation to add
dual data redundancy to it. Redundancy is introduced during the transposition step (Fig. 4b). Throughout the
computation we maintain a single redundant slice for each real slice, so that faults can be detected at the end of
the 256-point NTT. Because of the additional redundant data, the bitsliced NTT kernel can only be performed on
32 coeicients at a time. The data-redundant bitsliced kernel now covers only 5 stages (Fig. 3) and a 32-point
NTT.

The conversion of a direct butterly to a data-redundant butterly is easy, since each slice is controlled separately.

Except for the use of redundant twiddle factorsω
i j
n , a data-redundant bitsliced butterly kernel is identical to a non-

data-redundant bitsliced butterly kernel. Furthermore, the bitsliced execution ensures that spatial redundancy is
maintained at every step of the NTT computation.
However, to achieve a 256-point NTT, stage 6, 7 and 8 have to be modiied from the non-redundant version.

The data-redundant bitsliced buttely kernel only supports 32-point NTTs, so it must be applied 8 times at each
stage to cover a 256-point NTT. Fig. 7 shows the overall data low. Direct and redundant data slices are marked
with a illed and hashed pattern, respectively. Even and odd sets are marked with red and green colors, as before.
A redundant stage-6 NTT computes four 64-point NTTs redundantly using eight calls to the redundant bitsliced
butterly kernel. Similarly, stage 7 and stage 8 can be computed using eight calls to the redundant bitsliced
butterly kernel.

This countermeasure only provides data redundancy and does not cover control faults. We treat the extension
of redundant bitslicing to cover control faults on an NTT as future work, and do not further consider it in this
paper.

4 Experimental Setup

In this section, we describe the experimental setup, perform performance & footprint evaluation and overhead
analysis of the proposed countermeasure.

4.1 Experimental Fault Injection Setup

This section describes our measurement setup for EM Pulse Injection. The setup consists of a hardware part,
device under attack, a software part and experimental process.

4.1.1 Hardware Setup: The EM fault injection bench is composed of a control PC, the targ device, an automated
XYZ stage, a pulse generator, an oscilloscope and an EMFI transient probe. We use commercially available FI
hardware and software tools [39] to build this setup. The target is placed on the XYZ stage as shown in the
Fig. 8. We use a classic EMFI probe tip made of a copper winding around a ferrite core. It has a lat-head tip

ACM Trans. Embedd. Comput. Syst.

12 • Singh, et al.

Algorithm 1 Bitsliced 256-point NTT

1: Input: a(x) ∈ Rq
2: Output: â(x) ∈ Rq such that â = NTT(a)
3: Setup: Pre-computed transposed twiddle factors trans_w and transposedψ factors trans_psi1 and trans_psi2
4: state1 ← 0, state2 ← 0 ▷ Initialization
5: bitshu f f lemask[5] ← {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF}

6: bitshu f f leinmask[5] ← {0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000}

7: b ← PolyBitReversal(a) ▷ Polynomial Bit-Reversal
8: for i ← 0 to n/2 do ▷ Store polynomial in butterly inputs form
9: in1[i] ← b[i ∗ 2]

10: in2[i] ← b[i ∗ 2 + 1]

11: end for

12: for i ← 0 to n/64 do ▷ Transpose butterly inputs polynomial to bitsliced format
13: trans_psi_in1[i ∗ 32] ← Transpose(in1[i ∗ 32])
14: trans_psi_in2[i ∗ 32] ← Transpose(in2[i ∗ 32])
15: end for

16: for i ← 0 to n/64 do ▷ Point-wise multiply butterly inputs polynomial with respective negative
convolution factors

17: pointwisemultiplier(&trans_psi_in1[i ∗ 32], &trans_psi1[i ∗ 32], &trans_in1[i ∗ 32],
state2)

18: pointwisemultiplier(&trans_psi_in2[i ∗ 32], &trans_psi2[i ∗ 32], &trans_in2[i ∗ 32],
state2)

19: end for

20: for j ← 0 to n/64 do ▷ Loop over 4 64-point NTTs
21: num ← 0

22: while num < 6 do ▷ Loop over 6 stages of 64-point NTT
23: butterflyCompute(&trans_in1[j ∗ 32], &trans_in2[j ∗ 32],
24: &trans_w[j ∗ 32], &trans_out1[j ∗ 32], &trans_out2[j ∗ 32], state1) ▷ Bitsliced computation for 32

butterlies
25: if num ! = 5 then ▷ Bitsliced manipulation to conigure butterly inputs for next stage
26: mask ← vdupq_n_u32(bitshu f f lemask[num])

27: invmask ← vdupq_n_u32(bitshu f f leinmask[num])

28: shi f tval ← 2num

29: for i ← 0 to 8 do ▷ Iterate over 32 butterly outputs in bitsliced format
30: out1 ← vld1q_u32(&trans_out1[i ∗ 4 + j ∗ 32])
31: out2 ← vld1q_u32(&trans_out2[i ∗ 4 + j ∗ 32])
32: andout1 ← vandq_u32(out1,mask)

33: andout2 ← vandq_u32(out2,mask)

34: andnout1 ← vandq_u32(out1, invmask)

35: andnout2 ← vandq_u32(out2, invmask)

36: lsout ← vshlq_n_u32(andout2, shi f tval)
37: orout1 ← vorrq_u32(andout1, lsout)
38: rsout ← vshrq_n_u32(andnout1, shi f tval)
39: orout2 ← vorrq_u32(andnout2, rsout)
40: vst1q_u32(&trans_in1[i ∗ 4 + j ∗ 32],orout1)
41: vst1q_u32(&trans_in2[i ∗ 4 + j ∗ 32],orout2)

ACM Trans. Embedd. Comput. Syst.

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 13

42: end for

43: end if

44: end while

45: end for

46: for i ← 0 to n/2 by 32 do ▷ Conigure butterly inputs for 7th NTT stage
47: for j ← 0 to 32 do

48: trans_in1[j + i] ← trans_out1[j + i]
49: trans_in2[j + i] ← trans_out2[j + i]
50: end for

51: end for

▷ Bitsliced computation for 4 blocks with 32 butterlies/block at 7th NTT stage
52: butterflyCompute(&trans_in1[0], &trans_in1[32], &trans_w[num ∗ 32],

&trans_out1[0], &trans_out1[32], state1)
53: butterflyCompute(&trans_in2[0], &trans_in2[32], &trans_w[(num + 1) ∗ 32],

&trans_out2[0], &trans_out2[32], state1)
54: butterflyCompute(&trans_in1[64], &trans_in1[96], &trans_w[num ∗ 32],

&trans_out1[64], &trans_out1[96], state1)
55: butterflyCompute(&trans_in2[64], &trans_in2[96], &trans_w[(num + 1) ∗ 32],

&trans_out2[64], &trans_out2[96], state1)
56: for i ← 0 to n/2 by 32 do ▷ Conigure butterly inputs for 8th NTT stage
57: for j ← 0 to 32 do

58: trans_in1[j + i] ← trans_out1[j + i]
59: trans_in2[j + i] ← trans_out2[j + i]
60: end for

61: end for

62: ▷ Bitsliced computation for 4 blocks with 32 butterlies/block at 8th NTT stage
63: butterflyCompute(&trans_in1[0], &trans_in1[64], &trans_w[(num + 1) ∗ 32],

&trans_out1[0], &trans_out1[64], state1)
64: butterflyCompute(&trans_in2[0], &trans_in2[64], &trans_w[(num + 2) ∗ 32],

&trans_out2[0], &trans_out2[64], state1)
65: butterflyCompute(&trans_in1[32], &trans_in1[96], &trans_w[(num + 3) ∗ 32],

&trans_out1[32], &trans_out1[96], state1)
66: butterflyCompute(&trans_in2[32], &trans_in2[96], &trans_w[(num + 4) ∗ 32],

&trans_out2[32], &trans_out2[96], state1)
67: for i ← 0 to n/64 do ▷ Reverse Transpose NTT outputs polynomial
68: out1[i ∗ 32] ← Transpose(trans_out1[i ∗ 32])
69: out2[i ∗ 32] ← Transpose(trans_out2[i ∗ 32])
70: end for

71: for i ← 0 to n/64 do ▷ Store outputs in inal 256-point NTT output vector
72: for j ← 0 to 32 do

73: â[j + 2 ∗ i ∗ 32] ← out1[j + i ∗ 32]

74: â[j + (2 ∗ i + 1) ∗ 32] ← out2[j + i ∗ 32]

75: end for

76: end for

ACM Trans. Embedd. Comput. Syst.

14 • Singh, et al.

Outputs of Eight
Bit-sliced dual data-redundant
32-point NTTs
from Stage 5 Stage 7

Bit-sliced dual data-
redundant
256-point NTT output
(in Transposed form) Stage 8

butterflyCompute()

butterflyCompute()

64

16 ODS16 RDS

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

16 ODS16 RDS

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

512

butterflyCompute()

butterflyCompute()

64 butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

butterflyCompute()

or or ()

16 ODS16 RDS

16 ODS16 RDS

Stage 6

 ()

64

64

64

64

64

64

Fig. 7. Data flow diagram in stages 6, 7 and 8 of Bit-sliced 256-point NTT with dual data-redundancy

of positive polarity and 1.5 mm diameter in order to cause disturbance in small part of the device. The probe
is connected to the pulse generator and oscilloscope. Oscilloscope is used to measure the trigger and probe
coil current signals. As soon as the probe receives a pulse from the pulse generator at its digital glitch input, it
discharges the capacitor bank into the coil at the probe tip thereby creating a single EM pulse. The PC controls
every part of the setup including coniguring the injection parameters and capturing the results for analysis. The
control software running on the PC synchronizes its operations with the other components of the setup through
serial communication.

ACM Trans. Embedd. Comput. Syst.

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 15

Fig. 8. Overview photo of EMFI setup and close-up photo of the injection coil. The probe tip is positioned at approximately

0.4mm from the top of the processor package.

4.1.2 Device Under Atack: The attack is realized on a Zynq-7000 SoC, XC7Z030SBG485 Flip-Chip Lidless BGA
device having 19x19 mm package size. This SoC is embedded on Avnet PicoZed, our target board and it consists
of a dual-core 32-bit ARM Cortex-A9 MPCore based processing system (PS) and Xilinx programmable logic (PL)
on CMOS 28nm technology implementing the ARMv7-a ISA and runs by default at 667 MHz. The ARM processor
has two separate 32 KB L1 caches for instruction and data, 256 KB on-chip memory and shares 512 KB L2 cache
with NEON co-processor. The target board has 1 GB external DDR3 Memory and 128 MB QuadSPI Flash.

4.1.3 Sotware Setup: The test program is booted from external lash in PS Master Boot Mode and is executed
from DDR3. We used Xilinx Vitis platform to program lash and for on-chip hardware debugging. We power the
target during all the experiments at nominal voltage. A trigger is implemented using a general purpose IO pin of
the target. The test program running on the target sets this trigger signal high just before the beginning of attack
window and then sets the trigger signal low after the window ends. The test program used for all the experiments
is open-source reference C implementation of Dilithium Round 3 1 version integrated with our countermeasure.
This implementation was compiled with the arm-none-eabi-gcc-9.2.0 using compiler lags -mcpu=cortex-a9
-mfpu=neon-vfpv3 -mfloat-abi=hard -O0. Protected NTT of s1 operation in Line 13 of Algorithm 2 in the
Appendix A is our point of interest for fault injection in the test program and this target operation execution
forms the attack window for all our experiments. For every fault injection, the test program sends a fault response
and complete signature at the end of execution to the PC over UART for faults classiication.

4.1.4 Experimental Process: We conigure four injection parameters in our EMFI setup for getting and increasing
the probability of a successful fault injection. Since the full parameter search space is huge to be exhaustively
covered, we rather focus on searching the optimal values for the most important parameters and keeping
remaining parameters ixed:

1https://github.com/pq-crystals/dilithium/tree/master/ref (Commit f1f8085 on Sep 13, 2021)

ACM Trans. Embedd. Comput. Syst.

16 • Singh, et al.

• Spatial location - The x-y position is deined as the 2D-position of injection probe relative to the reference
points set on the top surface area of the chip. We keep the Z-position ixed at approximately 0.4mm from
the top of the chip.

• Temporal location - The amount of time between the trigger is set high and the actual EM pulse injection.
It is also referred to as EMFI Pulse Delay.

• Injection voltage - The Intensity of EM pulse. It conigures the maximum voltage over the coil which
efects the current induced into the chip. It is also referred to as EMFI Pulse Power and this value is a
percentage of the highest injection voltage of the probe, which is 475V.

• Pulse duration - The amount of time the probe continuously supplies variable coil current. We ixed it to
500 kns.

In this setup, the probe tip coil emits a single EM pulse for a fault injection. Initially, we gather golden signature
response from the target running a fault-free execution for a ixed message and seed. Next, for every EM fault
injection measurement, the output signature response from the target is compared against the golden signature
response. In addition to the output signature, we collect the fault response of the target device. The fault response
indicates if the original data slices and their redundant data slices produce the same or a diferent output at the
end of the signature computation. The outcome of the experiment can be classiied and grouped into diferent
categories:

• No Efect -When the target output matches the expected response and no fault response is detected.
• Crash - When the target halts in an exception condition such as Data Abort, Pre-fetch Abort or an
Undeined Instruction. For each of these exceptions, there is an exception handler set up with an ininite
loop.

• Faults Not Detected -When the output signature response is diferent from the expected response but
fault response is not detected.

• Faults Detected -When the output signature response is diferent from the expected response but fault
response is detected.

We do a software reset of the target after everymeasurement so that the result state of the previousmeasurement
does not efect next measurement. After a reset, the target boots from lash and runs the test program automatically.
In the crash cases, we do manual external reset of the target. Faulty signatures are those which pass the rejection
checks (Lines 16 and 20) when a fault is injected during the attack window in the signing procedure (Algorithm 2
in the Appendix A). When a signature generated in the presence of a fault injection attempt is internally detected
by the rejection sampling steps, signature re-generation takes place until the rejection conditions are satisied.
For such cases, we set an upper bound on the number of times signature re-generation can take place in order
to complete the measurement of a single fault injection attempt in an experiment. In a real-world setting of
the proposed countermeasure, when a fault is detected by our countermeasure, it would not output any faulty
signature for secret key analysis by the attacker.

4.2 Performance Analysis

We performed performance hotspots analysis of the proposed countermeasure integrated in Dilithium Algorithm.
To perform this measurement on ARM Cortex-A9, we use Xilinx Vitis TCF Proiler. Results of proiling the
protected Dilithium algorithm are shown in Table 1. We observe that butterflyCompute() and pointwisemul-

tiplier() bit-sliced functions are the largest contributors to CPU cycles with a CPU usage of 58.6% and 20.4% on
ARM Cortex-A9 target platform. These two functions form the core of bit-sliced polynomial multiplications and
protects the most time-consuming operations from data faults.
Table 2 shows the performance impact of the proposed bit-slicing based IIR countermeasure on the key

operations of Dilithium on ARM Cortex-A9 target platform. We report results for the NIST security level 2 of

ACM Trans. Embedd. Comput. Syst.

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 17

Table 1. Percentage of CPU cycles consumed across active functions and number of active functions calls during the combined

execution of key generation and signature generation of Protected Dilithium on ARM Cortex-A9 CPU.

Active Functions CPU Cycles (%) No. of Calls

butterflyCompute 58.6 16064

pointwisemultiplier 20.4 5360

pointwiseaccumulator 0.26 1024

Table 2. Performance evaluation of bitslicing-based IIR countermeasure for key operations of Dilithium Algorithm on

ARM Cortex-A9 @ 667MHz. The cycle counts are median for 10,000 executions. Unprotected Dilithium is the reference C

implementation with no added countermeasure.

Dilithium

Main

Operations

Cycles Count Slowdown (×)

Unprotected Bitsliced Protected Bitsliced Protected

Forward NTT 28,928 925,824 1,827,584 32.0 63.2

Inverse NTT 30,848 928,128 1,833,152 30.1 59.4

Point-wise Multiplication 4,864 302,144 547,904 62.1 112.6

Full Multiplication 93,888 3,082,496 6,037,888 32.8 64.3

Key Generation 2,231,872 32,030,400 57,659,968 14.4 25.8

Signature Generation 7,150,272 191,078,144 351,530,304 26.7 49.2

Dilithium (Dilithium2). These numbers are median cycle counts for 10,000 executions of Dilithium, including
key generation and signing procedures only, as veriication operates on public information. Note that hardware
performance counters are used to measure cycles count. All the implementations for performance analysis
are compiled with -O3 optimization lag. Both the slowdowns are calculated by dividing by the corresponding
unprotected Dilithium metric. For NTT/INTT, slowdown directly comes from the butterflyCompute() and
pointwisemultiplier() bit-sliced functions since they involve a large number of data transfers as compared
to compute cycles. Their contribution in runtime of Dilithium in terms of number of functions calls is shown
in Table 1. It is observed that Dilithium key generation and signing incurs high performance overhead since a
signiicant portion of their runtime is dominated by NTT/INTTs, thereby, leading to large call counts of these
bit-sliced functions. From the Table 2, it should be noticed that protected version have almost twice the slowdown
compared to the bit-sliced version since the protection is based on dual spatial redundancy.

4.3 Footprint Analysis

Footprint is calculated by measuring the compiled program size. Table 3 shows the footprint results for unpro-
tected, bit-sliced and protected Dilithium implementations. All the implementations for footprint analysis are
compiled with -Os optimization lag. Increased memory requirements in .text memory section for bit-sliced
implementation comes from the butterflyCompute(), pointwisemultiplier() and pointwiseaccumulator()

bit-sliced functions which occupy 77020 bytes, 82708 bytes and 3672 bytes, respectively, of code segment on
ARM Cortex-A9 platform. The code size of a bit-sliced function is directly proportional to the cycles it takes to

ACM Trans. Embedd. Comput. Syst.

18 • Singh, et al.

Table 3. Footprint evaluation of bitslicing-based IIR countermeasure on ARMCortex-A9@ 667MHz target platform. Overhead

is calculated by dividing the total code size by the corresponding unprotected implementation.

Dilithium

Implemen-

tation

Code Size (bytes) Overhead

(×)
.text .data .bss Total

Unprotected 48,572 1,144 145,544 195,260 -

Bitsliced 222,488 1,144 159,056 382,688 1.95

Protected 232,064 1,144 176,464 409,672 2.09

Table 4. Evaluation of diferent bit-sliced functions used in our Bit-sliced Dilithium Implementation on ARM Cortex-A9 @

667MHz. Overhead is calculated as the number of ldr and str instructions as a percentage of the total

Bit-sliced

function

Instruction Mix Overhead

(%)
ORR EOR AND ADD SUB LDR STR

butterflyCompute 1830 2957 3994 2 2 5210 3130 48.70

pointwisemultiplier 1931 3270 4331 2 2 5618 3295 48.31

pointwiseaccumulator 51 97 120 13 1 277 194 62.54

execute due to its linear code structure. This is evident by the protection cost of Dilithium implementation when
protected with our bit-slicing based countermeasure mentioned in Table 2. While pre-computed twiddle and
convolution factors used in bit-sliced polynomial multiplication computations are also part of .text section.
Bit-sliced implementation also shows an overhead in .bss memory section due to uninitialized global intermedi-
ate array variables of polynomial size used in bit-sliced NTT/INTT operations. Table 3 shows that the footprint
overhead of protected Dilithium implementation on target platform is 2.09 times.

4.4 Overhead Analysis

Table 4 shows our analysis of diferent bit-sliced functions used in the Bit-sliced Dilithium implementation in
terms of instruction breakdown and overhead of data movements. The overhead values reported are calculated as
the number of LDR and STR instructions divided by the total number of instructions. We observe the number
of ORR, EOR, AND, ADD and SUB instructions involved during the execution of butterflyCompute(), pointwise-

multiplier() and pointwiseaccumulator() bit-sliced functions. Furthermore, we observe that moving data
from memory to processor is expensive for these functions. The number and composition of logical bit-wise
instructions originates directly from the Boolean gate-level netlist generated from the Verilog description. The
overhead of LDR and STR instructions, however, is introduced by the compiler due to increased register pressure.
There is register pressure because net width in the netlist, i.e., the number of active variables in bit-sliced code
exceeds the number of registers available in the underlying hardware. The overhead related to register spilling
into memory is about 48-62% in terms of instruction count. This overhead explains the slower performance of
the bit-sliced NTT, INTT, Full Multiplication and Matrix-Vector Multiplication operations of Dilithium.

ACM Trans. Embedd. Comput. Syst.

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 19

Table 5. Experiment 1: Injection parameters setings

Injection Parameter Value

x-y Probe Position Right Upper Quadrant Scan

EMFI Pulse Delay Random between 0 ns and 10M ns

EMFI Pulse Power Random between 80% and 100%

5 Fault Countermeasure Evaluation

In this section, we present the experimental fault attack resistance evaluation of the proposed countermeasure.
To inject faults, we use Electromagnetic Fault Injection (EMFI) setup as described in Section 4.1. Our goal is to
maximize the chances of obtaining a successful fault which gets detected by the proposed countermeasure. For
this, determination of injection parameters is an essential step which consists of inding the spatial location,
temporal location and injection voltage. We demonstrate the efectiveness of the proposed countermeasure by
performing fault injection on protected NTT of s1, our point of interest in the test program and it is timed using
a GPIO-based trigger as explained in Section 4.1. Protected NTT is divided into three phases: transpose, compute
and reverse-transpose. As we know that redundant computations take place in the compute phase, therefore, we
set compute phase as our attack window and it takes roughly 10M ns.

We irst performed full chip scan with a 20 x 20 grid resolution and EMFI Pulse Delay and EMFI Pulse Power
were randomly set to values between 0 ns & 10M ns and 70% & 100%, respectively, for each measurement. We
observed through this initial trial that successful faults are obtained in the right upper quadrant of the chip which
also correlates to an area containing target Processing System (PS). Also, there were no successful faults when
EMFI Pulse Power is less than 80%. With this partial identiication of successful faults distribution, we perform
three experiments to ine-tune our injection parameters in a top-down approach:

5.1 Experiment 1: Randomly-chosen EMFI Pulse Power and EMFI Pulse Delay from an estimated

range with a step-wise right upper quadrant chip scan

To determine the best probe x-y position within right upper quadrant of the chip, we performed scan in a 10
x 10 measurement grid and injected 30 faults per probe position, this led to 3000 measurements in total. The
coniguration of injection parameters for this experiment are summarized in the Table 5. Table 6 lists the outcome
for this surface area exploration while injecting into the test program in terms of percentage faults in each
category. Areas where no efect of fault injection is seen are shown in the Fig. 9 while positions which are
sensitive to fault injection where faults are either resulting in a crash, faults being detected and faults not detected
are shown in the Fig. 10a. We can also observe the spatial occurrence of individual fault categories where an
efect of fault injection is visible in the following igures Fig. 10b, 10c and Fig. 10d.

We can identify the best probe x-position as 214638 since 5 out 7 faults detected occur at the same x-position
while best y-position is 199832 by taking the average of y co-ordinates of faults detected that fall in the top-half
area. This means the probe x-y position can be ixed to decrease the spatial location parameter search space,
signiicantly increasing the faults detection rate. We can conclude from Fig. 11 that there are more faults detected
when injection is performed between 0 to 5M ns duration of attack window and EMFI Pulse Power is less than
90%. At higher pulse intensities, more crash behavior is observed while lower pulse intensities does not cause
enough voltage variations in the device to induce computational faults.

ACM Trans. Embedd. Comput. Syst.

20 • Singh, et al.

Fig. 9. Experiment 1: Probe positions over the chip leading to "No Efect" fault cases. Note that it is a jitered scater plot to

prevent overlapping dots at the same position.

Table 6. Experiment 1: Percentage occurrence of diferent fault categories

Classiication Amount Percentage (%)

No Efect 2953 98.4333

Crash 35 1.16667

Faults Not Detected 5 0.16666

Faults Detected 7 0.23333

5.2 Experiment 2: Randomly-chosen EMFI Pulse Power and EMFI Pulse Delay within an identified

range with a fixed x-y probe position

This experiment is performed at a ixed spatial location determined through Experiment 5.1. Also, broad EMFI
delay and intensity spectrum has been reduced from previous experiment and those settings are summarized in
the Table 7. Using these parameters, we investigate the relationship between the EMFI Pulse Delay and EMFI
Pulse Power to ind an optimal parameter range in order to enhance the probability of detected successful faults.
We perform total 6000 measurements in 21 hours and the results of this experiment are shown in Fig. 12 and
Table 8.

The plot shows that a lot of faults detected are spread out in a time window of 3M ns to 3.8M ns after the
trigger. Also, we factorize the faults into two categories: potentially exploitable and non-exploitable. Potentially
exploitable faults are usable for an attacker if the test program executes completely but computes a non-zero
faulty signature whereas zero faulty signatures and correct signatures are non-exploitable. Crashes are faults
aborting the normal execution of test program hence are not usable for an attack. Note that we get few cases

ACM Trans. Embedd. Comput. Syst.

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 21

(a) Grouped "Faults Detected", "Faults Not Detected" and

"Crash" cases

(b) "Crash" cases

(c) "Faults Not Detected" cases (d) "Faults Detected" cases

Fig. 10. Experiment 1: Probe positions over the chip leading to fault cases which change the test program’s intended behavior.

Note that it is a jitered scater plot to prevent overlapping dots at the same position.

where faults get detected but the signature response is as expected. These are also counted as non-exploitable
faults being detected. We are able to ind an easily glitchable area in the plot when EMFI Pulse Power is between
83% and 90% where we can spot clustering of fault detected red crosses. We can observe from the plot that there
is a high correlation between the sensitive area for crashes and the sensitive area for potentially exploitable faults.
To conclude, this experiment shows that the percentage of potentially exploitable faults that are data faults is
63.77%.

5.3 Experiment 3: Parametric-sweep of EMFI Pulse Power and EMFI Pulse Delay with a fixed x-y

probe position

In this experiment, we perform parameter sweep between the narrowed-down ranges identiied through Experi-
ment 5.2. Using the parameters given in Table 9, we perform 3 measurements per step that leads to total 4824

ACM Trans. Embedd. Comput. Syst.

22 • Singh, et al.

Fig. 11. Experiment 1: Relation between EMFI Pulse Delay and EMFI Pulse Power for faults of diferent categories and only

"Faults Detected" category is shown in the let and right plot, respectively.

Table 7. Experiment 2: Injection parameters setings

Injection Parameter Value

x-y Probe Position Fixed at (214638, 199832)

EMFI Pulse Delay Random between 0 ns and 5M ns

EMFI Pulse Power Random between 80% and 90%

Table 8. Experiment 2: Percentage occurrence of diferent fault categories and their breakup into potentially exploitable

faults and non-exploitable faults

Classiication Amount Percentage

(%)
Potentially

Exploitable

Non-

Exploitable

No Efect 5635 93.9157 0 5635

Crash 229 3.81667 0 229

Faults Not Detected 49 0.816667 46 3

Faults Detected 87 1.45 81 6

measurements completed in 16 hours. The results of this experiment are shown in the Fig. 13 and Table 10 further
shows the distribution of fault response.
It is observed that the number of potentially exploitable faults has increased from 127 in Experiment 5.2 to

382 in this experiment. This result further conirms that the spatial parameter search process led to a precise

ACM Trans. Embedd. Comput. Syst.

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 23

Fig. 12. Experiment 2: Relation between EMFI Pulse Delay and EMFI Pulse Power for faults of diferent categories and only

"Faults Detected" category is shown in the let and right plot, respectively.

Table 9. Experiment 3: Injection parameters setings

Injection Parameter Value

x-y Probe Position Fixed at (214638, 199832)

EMFI Pulse Delay Sweep between 3M ns and 3.8M ns by steps of 4000 ns

EMFI Pulse Power Sweep between 83% and 90% by steps of 1%

location on the chip where we are able to achieve large number of attacker usable faults. The plot shows the same
observation as in previous experiments that the attacker usable faults occur at similar locations or locations closer
to crashes. In conclusion, our approach to injection parameters exploration is able to ind reliable and highly
repeatable potentially exploitable faults which afect the datapath are 61.7% while the remaining are control low
faults or memory faults.

6 Conclusions

We conclude that hardening the polynomial multiplication operations in Dilithium with the proposed counter-
measure signiicantly reduced the probability of a successful fault injection attack and increased the time required
to gain enough faulty signatures to mount a complete attack at the cost of increased computational complexity.
FI attack surface for Dilithium is so large that any part of code may become a potential FI attack vector. Our
countermeasure reduces the attack surface by protecting polynomial multiplication operations, second largest
contributor to the run-time of the algorithm after hash operations. The proposed countermeasure estimates the
percentage of potentially exploitable faults which afect the datapath as 62%. However, some exploitable faults
are not detected because time redundancy is not implemented in the proposed countermeasure to detect control

ACM Trans. Embedd. Comput. Syst.

24 • Singh, et al.

Fig. 13. Experiment 3: Relation between EMFI Pulse Delay and EMFI Pulse Power for faults of diferent categories and only

"Faults Detected" category is shown in the let and right plot, respectively.

Table 10. Experiment 3: Percentage occurrence of diferent fault categories and their breakup into potentially exploitable

faults and non-exploitable faults

Classiication Amount Percentage

(%)
Potentially

Exploitable

Non-

Exploitable

No Efect 3762 78 0 3762

Crash 583 12 0 583

Faults Not Detected 230 4.77 146 84

Faults Detected 249 5.23 236 13

low faults. Further, characterization of fault efects is required to better understand the behavior of undetected
potentially exploitable faults at software level. We plan to extend our bit-sliced NTT design with temporal IIR
to detect faults in the control low. Also, we intend to investigate the fault attack resistance of other inalist
lattice-based schemes with our generic countermeasure.

References

[1] Alexandre Adomnicai and Thomas Peyrin. 2021. Fixslicing AES-like Ciphers New bitsliced AES speed records on ARM-Cortex M and

RISC-V. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 1 (2021), 402ś425. https://doi.org/10.46586/tches.v2021.i1.402-425

[2] Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi, Falk Schellenberg, and Tobias Schneider. 2020. Impeccable

Circuits. IEEE Trans. Computers 69, 3 (2020), 361ś376. https://doi.org/10.1109/TC.2019.2948617

[3] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and Assia Tria. 2010. When Clocks Fail: On Critical Paths and

Clock Faults. In Smart Card Research and Advanced Application, 9th IFIP WG 8.8/11.2 International Conference, CARDIS 2010, Passau,

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.46586/tches.v2021.i1.402-425
https://doi.org/10.1109/TC.2019.2948617

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 25

Germany, April 14-16, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6035), Dieter Gollmann, Jean-Louis Lanet, and Julien

Iguchi-Cartigny (Eds.). Springer, 182ś193. https://doi.org/10.1007/978-3-642-12510-2_13

[4] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene

Peralta, Angela Robinson Ray Perlner and, Daniel Smith-Tone, and Yi-Kai Liu. 2022. Status Report on the Third Round of the NIST

Post-Quantum Cryptography Standardization Process.

[5] Sabine Azzi, Bruno Barras, Maria Christoi, and David Vigilant. 2017. Using linear codes as a fault countermeasure for nonlinear

operations: application to AES and formal veriication. J. Cryptogr. Eng. 7, 1 (2017), 75ś85. https://doi.org/10.1007/s13389-016-0138-1

[6] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. 2019. Sapphire: A Conigurable Crypto-Processor for Post-Quantum

Lattice-based Protocols. IACR Transactions on Cryptographic Hardware and Embedded Systems 2019, 4 (Aug. 2019), 17ś61. https:

//doi.org/10.13154/tches.v2019.i4.17-61

[7] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. 2017. GIFT: A Small Present -

Towards Reaching the Limit of Lightweight Encryption. In Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th International

Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10529), Wieland Fischer and

Naofumi Homma (Eds.). Springer, 321ś345. https://doi.org/10.1007/978-3-319-66787-4_16

[8] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. 2006. The Sorcerer’s Apprentice Guide to Fault Attacks. Proc. IEEE 94, 2

(2006), 370ś382. https://doi.org/10.1109/JPROC.2005.862424

[9] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi, and Francesco Regazzoni. 2010. Countermeasures against Fault

Attacks on Software Implemented AES: Efectiveness and Cost. In Proceedings of the 5th Workshop on Embedded Systems Security

(Scottsdale, Arizona) (WESS ’10). Association for Computing Machinery, New York, NY, USA, Article 7, 10 pages. https://doi.org/10.

1145/1873548.1873555

[10] Paul Barrett. 1986. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal

Processor. In Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings (Lecture Notes in Computer Science,

Vol. 263). Springer, 311ś323. https://doi.org/10.1007/3-540-47721-7_24

[11] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. 2015. McBits: fast constant-time code-based cryptography. IACR Cryptol. ePrint

Arch. (2015), 610. http://eprint.iacr.org/2015/610

[12] Eli Biham. 1997. A fast new DES implementation in software. In Fast Software Encryption (FSE). https://doi.org/10.1007/BFb0052352

[13] Eli Biham and Adi Shamir. 1997. Diferential Fault Analysis of Secret Key Cryptosystems. In Advances in Cryptology - CRYPTO ’97, 17th

Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings (Lecture Notes in Computer

Science, Vol. 1294), Burton S. Kaliski Jr. (Ed.). Springer, 513ś525. https://doi.org/10.1007/BFb0052259

[14] Nina Bindel, Johannes Buchmann, and Juliane Krämer. 2016. Lattice-based signature schemes and their sensitivity to fault attacks. In

2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). IEEE, 63ś77.

[15] Leon Groot Bruinderink and Peter Pessl. 2018. Diferential fault attacks on deterministic lattice signatures. IACR Transactions on

Cryptographic Hardware and Embedded Systems (2018), 21ś43.

[16] Mathieu Ciet and Marc Joye. 2005. Practical Fault Countermeasures for Chinese Remaindering Based RSA (Extended Abstract).

[17] Ang Cui and Rick Housley. 2017. BADFET: Defeating Modern Secure Boot Using Second-Order Pulsed Electromagnetic Fault Injection. In

11th USENIX Workshop on Ofensive Technologies (WOOT 17). USENIX Association, Vancouver, BC. https://www.usenix.org/conference/

woot17/workshop-program/presentation/cui

[18] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. 2012. Electromagnetic Transient Faults Injection on a Hardware

and a Software Implementations of AES. In 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven, Belgium, September

9, 2012, Guido Bertoni and Benedikt Gierlichs (Eds.). IEEE Computer Society, 7ś15. https://doi.org/10.1109/FDTC.2012.15

[19] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. 2012. Electromagnetic Transient Faults Injection on a Hardware

and a Software Implementations of AES. In 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography. 7ś15. https://doi.org/10.

1109/FDTC.2012.15

[20] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé. 2018. Crystals-dilithium:

A lattice-based digital signature scheme. IACR Transactions on Cryptographic Hardware and Embedded Systems (2018), 238ś268.

[21] Mahmoud A. Elmohr, Haohao Liao, and Catherine H. Gebotys. 2020. EM Fault Injection on ARM and RISC-V. In 2020 21st International

Symposium on Quality Electronic Design (ISQED). 206ś212. https://doi.org/10.1109/ISQED48828.2020.9137051

[22] Clément Gaine, Driss Aboulkassimi, Simon Pontié, Jean-Pierre Nikolovski, and Jean-Max Dutertre. 2020. Electromagnetic Fault

Injection as a New Forensic Approach for SoCs. In 2020 IEEE International Workshop on Information Forensics and Security (WIFS). 1ś6.

https://doi.org/10.1109/WIFS49906.2020.9360902

[23] Michael Hutter and Jörn-Marc Schmidt. 2014. The Temperature Side Channel and Heating Fault Attacks. IACR Cryptol. ePrint Arch.

(2014), 190. http://eprint.iacr.org/2014/190

[24] Emilia Käsper and Peter Schwabe. 2009. Faster and Timing-Attack Resistant AES-GCM. IACR Cryptol. ePrint Arch. (2009), 129.

http://eprint.iacr.org/2009/129

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1007/978-3-642-12510-2_13
https://doi.org/10.1007/s13389-016-0138-1
https://doi.org/10.13154/tches.v2019.i4.17-61
https://doi.org/10.13154/tches.v2019.i4.17-61
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1007/3-540-47721-7_24
http://eprint.iacr.org/2015/610
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1007/BFb0052259
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui
https://doi.org/10.1109/FDTC.2012.15
https://doi.org/10.1109/FDTC.2012.15
https://doi.org/10.1109/FDTC.2012.15
https://doi.org/10.1109/ISQED48828.2020.9137051
https://doi.org/10.1109/WIFS49906.2020.9360902
http://eprint.iacr.org/2014/190
http://eprint.iacr.org/2009/129

26 • Singh, et al.

[25] Pantea Kiaei, Tom Conroy, and Patrick Schaumont. 2021. Architecture Support for Bitslicing. IACR Cryptol. ePrint Arch. (2021), 1236.

https://eprint.iacr.org/2021/1236

[26] Pantea Kiaei and Patrick Schaumont. 2021. Synthesis of Parallel Synchronous Software. IEEE Embed. Syst. Lett. 13, 1 (2021), 17ś20.

https://doi.org/10.1109/LES.2020.2992051

[27] Pantea Kiaei and Patrick Schaumont. 2021. Synthesis of Parallel Synchronous Software. IEEE Embedded Systems Letters 13, 1 (2021),

17ś20. https://doi.org/10.1109/LES.2020.2992051

[28] Youngbeom Kim, Taek-Young Youn, Jingyo Song, and Seog Chung Seo. 2022. Crystals-Dilithium on ARMv8. Security and Communication

Networks 2022 (2022). https://doi.org/10.1155/2022/5226390

[29] Robert Könighofer. 2008. A Fast and Cache-Timing Resistant Implementation of the AES. In Topics in Cryptology - CT-RSA 2008, The

Cryptographers’ Track at the RSA Conference 2008, San Francisco, CA, USA, April 8-11, 2008. Proceedings (Lecture Notes in Computer Science,

Vol. 4964), Tal Malkin (Ed.). Springer, 187ś202. https://doi.org/10.1007/978-3-540-79263-5_12

[30] Alexandre Menu, Shivam Bhasin, Jean-Max Dutertre, Jean-Baptiste Rigaud, and Jean-Luc Danger. 2019. Precise Spatio-Temporal

Electromagnetic Fault Injections on Data Transfers. In 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). 1ś8.

https://doi.org/10.1109/FDTC.2019.00009

[31] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and Emmanuelle Encrenaz. 2013. Electromagnetic Fault Injection:

Towards a Fault Model on a 32-bit Microcontroller. In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography. 77ś88. https:

//doi.org/10.1109/FDTC.2013.9

[32] Koksal Mus, Saad Islam, and Berk Sunar. 2020. QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. In

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 1071ś1084.

[33] Onur Mutlu and Jeremie S. Kim. 2020. RowHammer: A Retrospective. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39, 8 (2020),

1555ś1571. https://doi.org/10.1109/TCAD.2019.2915318

[34] Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. 2017. Electromagnetic fault injection: the curse of lip-lops. J. Cryptogr.

Eng. 7, 3 (2017), 183ś197. https://doi.org/10.1007/s13389-016-0128-3

[35] Conor Patrick, Bilgiday Yuce, Nahid Farhady Ghalaty, and Patrick Schaumont. 2016. Lightweight Fault Attack Resistance in Software

Using Intra-instruction Redundancy. In Selected Areas in Cryptography - SAC 2016 - 23rd International Conference, St. John’s, NL, Canada,

August 10-12, 2016, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 10532), Roberto Avanzi and Howard M. Heys (Eds.).

Springer, 231ś244. https://doi.org/10.1007/978-3-319-69453-5_13

[36] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay, and Shivam Bhasin. 2019. Exploiting determinism

in lattice-based signatures: practical fault attacks on pqm4 implementations of NIST candidates. In Proceedings of the 2019 ACM Asia

Conference on Computer and Communications Security. 427ś440.

[37] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, and Debdeep Mukhopadhyay. 2019. Number łnot usedž

once-practical fault attack on pqm4 implementations of NIST candidates. In International Workshop on Constructive Side-Channel Analysis

and Secure Design. Springer, 232ś250.

[38] Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. 2021. Revisiting Fault Adversary Models - Hardware Faults in Theory and

Practice. IACR Cryptol. ePrint Arch. (2021), 296. https://eprint.iacr.org/2021/296

[39] Riscure. 2001. Inspector FI. Retrieved March 25, 2022 from https://www.riscure.com/security-tools/inspector-i

[40] Lionel Rivière, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien Bringer, and Laurent Sauvage. 2015. High precision fault injections

on the instruction cache of ARMv7-M architectures. In 2015 IEEE International Symposium on Hardware Oriented Security and Trust

(HOST). 62ś67. https://doi.org/10.1109/HST.2015.7140238

[41] Cyril Roscian, Alexandre Saraianos, Jean-Max Dutertre, and Assia Tria. 2013. Fault Model Analysis of Laser-Induced Faults in SRAM

Memory Cells. In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20, 2013, Wieland

Fischer and Jörn-Marc Schmidt (Eds.). IEEE Computer Society, 89ś98. https://doi.org/10.1109/FDTC.2013.17

[42] Jörn-Marc Schmidt and Michael Hutter. 2007. Optical and EM Fault-Attacks on CRT-based RSA: Concrete Results. In Austrochip 2007,

15th Austrian Workhop on Microelectronics, 11 October 2007, Graz, Austria, Proceedings. Verlag der Technischen Universität Graz, 61ś67.

Austrochip 2007 ; Conference date: 11-10-2007 Through 11-10-2007.

[43] Jörn-Marc Schmidt and Marcel Medwed. 2012. Countermeasures for Symmetric Key Ciphers (1 ed.). Springer, 73ś88.

[44] Peter W. Shor. 1994. Polynomial time algorithms for discrete logarithms and factoring on a quantum computer. In Algorithmic Number

Theory, Leonard M. Adleman and Ming-Deh Huang (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 289ś289.

[45] Richa Singh, Thomas Conroy, and Patrick Schaumont. 2020. Variable Precision Multiplication for Software-Based Neural Networks.

In 2020 IEEE High Performance Extreme Computing Conference, HPEC 2020, Waltham, MA, USA, September 22-24, 2020. IEEE, 1ś7.

https://doi.org/10.1109/HPEC43674.2020.9286170

[46] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. 2017. CLKSCREW: Exposing the Perils of Security-Oblivious Energy

Management. In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda

and Thomas Ristenpart (Eds.). USENIX Association, 1057ś1074. https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/tang

ACM Trans. Embedd. Comput. Syst.

https://eprint.iacr.org/2021/1236
https://doi.org/10.1109/LES.2020.2992051
https://doi.org/10.1109/LES.2020.2992051
https://doi.org/10.1155/2022/5226390
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1109/FDTC.2019.00009
https://doi.org/10.1109/FDTC.2013.9
https://doi.org/10.1109/FDTC.2013.9
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1007/s13389-016-0128-3
https://doi.org/10.1007/978-3-319-69453-5_13
https://eprint.iacr.org/2021/296
https://www.riscure.com/security-tools/inspector-fi
https://doi.org/10.1109/HST.2015.7140238
https://doi.org/10.1109/FDTC.2013.17
https://doi.org/10.1109/HPEC43674.2020.9286170
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang

Analysis of EM Fault Injection on Bit-sliced Number Theoretic Transform Sotware in Dilithium • 27

[47] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma. 2021. Fault-Injection Attacks against NIST’s Post-Quantum

Cryptography Round 3 KEM Candidates. Springer-Verlag. https://doi.org/10.1007/978-3-030-92075-3_2

[48] Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei, and Leibo Liu. 2020. Highly Eicient Architecture of NewHope-NIST

on FPGA using Low-Complexity NTT/INTT. IACR Transactions on Cryptographic Hardware and Embedded Systems 2020, 2 (Mar. 2020),

49ś72. https://doi.org/10.13154/tches.v2020.i2.49-72

[49] Loïc Zussa, Jean-Max Dutertre, Jessy Clédière, and Assia Tria. 2013. Power supply glitch induced faults on FPGA: An in-depth analysis

of the injection mechanism. In 2013 IEEE 19th International On-Line Testing Symposium (IOLTS), Chania, Crete, Greece, July 8-10, 2013.

IEEE, 110ś115. https://doi.org/10.1109/IOLTS.2013.6604060

A Proposed FA Countermeasure Protected Polynomial Multiplication Instances in Dilithium Signing

and Key Generation Algorithms

Algorithm 2 Polynomial multiplications within the Dilithium Signature Generation [20] algorithm which are
protected using the bit-slicing based FA countermeasures are highlighted in blue.

1: Input: sk - Secret Key,M - Message
2: Output: σ - Signature
3: A ∈ Rk×lq ← ExpandA(ρ)

4: µ ∈ {0, 1}384 ← CRH (tr ∥ M)

5: κ ← 0, (z,h) ←⊥

6: ρ ′ ∈ {0, 1}384 ← CRH (K ∥ µ) (or ρ ′ ← {0, 1}384 randomized)
7: while (z,h) =⊥ do

8: y ∈ S lγ 1 ← ExpandMask(ρ ′,κ)

9: w ← Ay ▷ Ay is protected
10: w1 ← HiдhBitsq(w, 2γ2)

11: c̃ ∈ {0, 1}256 ← H (µ ∥ w1)

12: c ∈ Bτ ← SampleInBall(c̃)

13: z ← y + c .s1 ▷ c .s1 is protected
14: r0 ← LowBitsq(w − c .s2, 2γ2) ▷ c .s2 is protected
15: if ∥z∥ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then

16: (z,h) ←⊥

17: else

18: h ← MakeHintq(−c .t0,w − c .s2 + c .t0, 2γ2) ▷ c .t0 and c .s2 are protected
19: if ∥c .t0∥∞ ≥ γ2 or the # of 1’s in h > ω then ▷ c .t0 is protected
20: (z,h) ←⊥

21: end if

22: end if

23: κ ← κ + l

24: end while

25: return σ = (z,h, c̃)

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1007/978-3-030-92075-3_2
https://doi.org/10.13154/tches.v2020.i2.49-72
https://doi.org/10.1109/IOLTS.2013.6604060

28 • Singh, et al.

Algorithm 3 Polynomial multiplication within the Dilithium Key Generation [20] algorithm which are protected
using the bit-slicing based FA countermeasures are highlighted in blue.

1: Output: pk - Public Key, sk - Secret Key
2: ζ ← {0, 1}256

3: (ρ, ς ,K) ∈ {0, 1}256×3 ← H (ζ)

4: (s1, s2) ∈ S lη × Skη ← H (ς)

5: A ∈ Rk×lq ← ExpandA(ρ)

6: t ← As1 + s2 ▷ As1 is protected
7: (t1, t0) ← Power2Roundq(t ,d)

8: tr ∈ {0, 1}384 ← CRH (ρ∥t1)

9: return (pk = (ρ, t1), sk = (ρ,K , tr, s1, s2, t0))

ACM Trans. Embedd. Comput. Syst.

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Outline

	2 Background
	2.1 EMFI Fault Injection
	2.2 Bitsliced Implementation
	2.3 Bitsliced Fault Countermeasures

	3 Proposed Bit-sliced design of NTT-based Polynomial Multiplication
	3.1 Definition of NTT and Inverse NTT
	3.2 Bitsliced NTT/INTT Design
	3.3 Data-Redundant Countermeasure NTT/INTT Design

	4 Experimental Setup
	4.1 Experimental Fault Injection Setup
	4.2 Performance Analysis
	4.3 Footprint Analysis
	4.4 Overhead Analysis

	5 Fault Countermeasure Evaluation
	5.1 Experiment 1: Randomly-chosen EMFI Pulse Power and EMFI Pulse Delay from an estimated range with a step-wise right upper quadrant chip scan
	5.2 Experiment 2: Randomly-chosen EMFI Pulse Power and EMFI Pulse Delay within an identified range with a fixed x-y probe position
	5.3 Experiment 3: Parametric-sweep of EMFI Pulse Power and EMFI Pulse Delay with a fixed x-y probe position

	6 Conclusions
	References
	A Proposed FA Countermeasure Protected Polynomial Multiplication Instances in Dilithium Signing and Key Generation Algorithms

