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ABSTRACT
The Internet of Things (IoT) has become a key enabler for con-
necting edge devices with each other and the internet. Massive IoT
services provided by cellular networks offer various applications
such as smart metering and smart cities. Security of the massive
IoT devices working alongside traditional devices such as smart-
phones and laptops has become a major concern. Protecting these
IoT devices from being identified by malicious attackers is often
the first line of defense for cellular IoT devices. In this paper, we
provide an effective attacking method for identifying cellular IoT
devices from cellular networks. Inspired by the characteristics of
Long Short-Term Memory (LSTM) networks, we have developed
a method that can not only capture context information but also
adapt to the dynamic changes of the environment over time. Ex-
perimental validation shows a high detection rate with less than 10
epochs of training on public datasets.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; • Net-
works → Network measurement.
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1 INTRODUCTION
Internet of Things (IoT) gained momentum following the develop-
ment of wireless communications and smart device technologies.
It is capable of connecting billions of objects in our daily life to
the Internet, which will benefit the society fundamentally through
seamless communication and automated management systems [10].
To support IoT applications, different types of mobile communica-
tion technologies and protocols are proposed to provide the required
infrastructure. Cellular networks prove the key means to support
the growing number of IoT services.

Massive IoT devices that work in conjunction with the traditional
cellular devices, e.g., smartphones and laptops, within the cellular
networks have unique characteristics. In particular, they are usually
low-cost devices, consume much less energy and the data exchange
is much less than traditional cellular devices. Consequently, they
are also usually much less capable than traditional cellular devices
in defending against attackers [18]. From an attacker’s perspective,
identification of the cellular IoT devices is the first step of making
consequential sabotages of the IoT-driven services.

There are different strategies to identify IoT devices within cel-
lular networks. They are: (i) MAC address and DHCP negotiation-
based methods [15]; (ii) machine learning-based methods [7, 8, 15]
and (iii) TCP ACK packet-based probing methods [18]. However,
we find that MAC addresses and DHCP negotiation-based methods
are not sufficient, and traditional machine learning-based meth-
ods generally require large volume of training data samples with
different features. The TCP ACK packet-based probing method pro-
posed in [18] is not effective enough to counter different real-world
situations (e.g., due to latency). After data analysis on real-world
datasets, we observe that there are two major reasons that will
complicate the identification process in TCP ACK packet-based
probing method [18]: end-to-end latency over the network and the
alternated operation modes of real world IoT devices. We propose
an effective and efficient method in this work based on TCP ACK
packet-based probing method through employing the Long Short-
Term (LSTM) as a recurrent neural network (RNN) model. LSTM
is highly effective in processing sequences of data and capturing
temporal correlations [14, 16].

The main idea of the attack method is that an attacker will send
a special type of TCP ACK probing packets to both IoT and non-IoT
devices in a cellular network using a fixed interval pattern and
collecting the response ACK packets. We then embed information
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of those probes that failed to receive a response from the probed
device into feature vectors that we use to train the LSTM model.
Different reasons such as network latency, packet loss, sleeping
mode of IoT devices may lead to the failure of a response packet
for the probing packet.

We use two real-world public datasets [5, 11] to analyze the
end-to-end latency of IoT devices and the alternated operation
modes of IoT devices. Furthermore, we combine these two datasets
together to simulate the complicated real-world environment and
validate our proposed method. Our experimental results show a
100% detection accuracy on the test data within less than 10 epochs
of training on the training data. We also discuss potential defense
methods.

2 BACKGROUND AND PRELIMINARIES
2.1 Cellular IoT networks and devices
Essentially, The IoT consists of networks, devices, and data [17].
These three components are intertwined together to provide ser-
vices. Networks that can be used by IoT devices include non-terrestrial
networks (e.g., UAV and satellite networks), cellular networks (e.g.,
2G/3G/4G/5G and beyond mobile networks, LTE-M network), wide
area network (e.g., LoRa, Sigfox) and short-range networks (e.g.,
WiFi, Bluetooth). IoT devices using cellular networks, also known as
cellular IoT devices, have been an emerging solution to connect IoT
devices from a broad area. In this work, we study the vulnerabilities
and security concerns within cellular IoT networks.

The simplified architecture of cellular IoT networks is shown in
Fig. 1. Both IoT and non-IoT devices are connected to the core net-
work through Radio Access Network (RAN). Other networks such
as Public Switched Telephone Network (PSTN), Centralized/Cloud-
based RAN (C-RAN) and Internet are also connected to the core
network. In this architecture, both cellular IoT devices and non-IoT
devices use the same RAN to connect to the core network. Each
of the two types of devices are assigned an IP address for each
device. In this work, we do not consider IoT devices using WiFi and
their identification [3]. We only consider the security of cellular
IoT devices that connect directly to cellular networks.

IoT devices

Non-IoT devices

Core network

PSTN C-RAN

Internet

Servers, hosts, etc.

RAN

Figure 1: The simplified cellular IoT network architecture.

Based on different applications, IoT can be categorized into two
types: massive IoT and critical IoT applications. Massive IoT appli-
cations require a large number of low-power devices to collect data
in different ways, such as IoT applications used in smart homes and

smart cities. Critical IoT is a type of IoT applications that require
much fewer devices, in which each device usually handles large
volumes of data, e.g., IoT applications used in industrial control and
autonomous vehicles. That is why critical IoT application devices
usually are more powerful in terms of capability to communicate
with the data center and have a strong power supply.

Devices used in massive IoT applications often do not need to
transmit large volumes of data, but the number of devices is large.
Also, massive IoT devices are expected to work a much longer
time with low power supply. Therefore, these IoT devices usually
have a Power Saving Mode (PSM) to save energy, in which cellular
IoT devices are powered off and not answering any connection
requests, but remain still registered in the network. Massive IoT
devices can enter sleeping/inactive mode when they have no data
to transmit. It recovers back to the active mode only when they
need to transmit data or perform other functional responsibilities.
We focus on massive IoT application devices that need to alternate
between sleeping and active modes to save power consumption in
this work.

2.2 Cellular IoT device identification
With the proliferation of IoT applications, how to identify IoT de-
vices from all the end devices connected to a network becomes a
key task [15]. For example, when managing the assets in an orga-
nization, system administrators want to know what types of IoT
devices are connected and determine if each device is working as
expected. IoT devices need to be managed and maintained by the
network administrators or the owners of the devices given that IoT
devices usually have less complicated structures and capabilities
compared to traditional non-IoT devices like phones and laptops.

Obtaining "visibility" of IoT devices in a network is also quin-
tessential for the management of the network, especially from a
security perspective. From an attacker’s perspective, if the attacker
can precisely identify cellular IoT devices from non-IoT devices,
then further attacks may be launched such as spamming IoT de-
vices to consume the data plan and further exhaust the network
resources [18]. There are various methods to identify IoT devices in
a cellular network that also have a lot of non-IoT devices connected
to this network. We categorize them into three major directions:

MAC address and DHCP negotiation-based methods An in-
tuitive thinking of identifying IoT devices within a cellular network
is that cellular IoT devices and non-IoT devices can be classified
using their MAC addresses and DHCP negotiations. However, there
are multiple factors that makes this infeasible in real-word scenar-
ios [15]. The MAC address may not convey any information that
can be used to identify IoT devices. MAC addresses can be spoofed,
and the host name used in DHCP can be changed or not meaningful.
Therefore, using MAC addresses and DHCP negotiations are not
sufficient to address the problem.

Machine learning-based methodsMachine learning models
have been widely used in IoT scenarios regarding different appli-
cations [6, 9, 12, 19]. To improve the identification performance, a
machine learning-based method was proposed in [15] to identify
IoT devices based on statistical attributes such as activity cycles,
port numbers, signaling patterns and cipher suites. Other meth-
ods such as [7, 8] used different modeling strategies to classify IoT
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traffic. However, most of the machine learning-based classification
methods require a large volume of data that has different features
embedded over a long time to train learning models [4]. Nonethe-
less, these features may not be available for training. For example,
the cipher suites are not fixed and various encryption methods can
be used in real traffic. A high requirement for the data will make
machine learning-based methods difficult to generalize to broader
scenarios.

TCP ACK packet-based probing methods A much more sim-
ple but efficient cellular IoT identification method was proposed
in [18], in which the adversary can interact with the targeted de-
vice by sending out a special type of TCP ACK probing packets
and collecting the corresponding responses. TCP ACK packets can
be used to indicate the types of IoT devices and non-IoT devices.
When an ACK packet is received, the recipient needs to confirm the
packet by replying another ACK packet. If no response is received
by the sender, it implies that this device is either an IoT device in its
sleeping mode or an offline non-IoT device. This method relies only
on the ACK packets of the end-devices compared to the more com-
plex data requirements of machine learning-based identification
methods.

The basic attack procedure of the TCP ACK packet-based prob-
ing method starts with the attacker sending out multiple probing
packets to an IP address within a network at different time periods
to make sure that at least one probing packet is sent out in a time
period that the device will fall into a sleeping mode if it is a cellular
IoT device. To ensure the reliability of the TCP ACK packet-based
probing method, several measures are employed. For example, to
ensure that one or more probe packets can fall into the sleeping
mode if the device is an IoT device, multiple probes are scheduled
with a set of intervals, in which for each possible active time length
(each PSM-enabled cellular IoT device has three different active
time periods [1] that need to be configured), there exists at least
one interval value greater than the active time and smaller than
the sum of the active time and the minimum sleeping time. This
ensures that at least one of the probes will fall into the sleeping
mode. In [18], the probing intervals are set as 15s, 30s, 60s, 180s
and 300s.

In this paper, we discuss how an attack may fail when using TCP
ACK packet-based method to identify IoT devices and we propose a
more powerful mechanism to strengthen the identification accuracy
by applying LSTM networks, which is a variant of RNNs.

2.3 Long Short-term Memory (LSTM) networks
RNNs, especially LSTM networks have achieved promising perfor-
mances on sequential tasks, such as speech recognition, time series
prediction, and handwriting recognition [16]. The identification of
IoT devices from non-IoT devices within a cellular network based
on the interaction of the attacker and devices can be interpreted
essentially as a classification problem based on time series data.

The reason why RNNs such as LSTM networks have promising
performances on sequential data rather than other deep learning
models is largely due to the feedback mechanism in RNNs [14]. It
models a dynamic system where the hidden state ℎ𝑡 depend not
only on the input of the LSTM layer, but also the previous hidden
state ℎ𝑡−1. We call the output of the LSTM layer as hidden state as

the LSTM output is usually "hidden" within the input and output
of the overall network model. The way an LSTM network works is
similar to a deep learning network but replaces the hidden layers
in a deep learning model with LSTM layers.

Figure 2: The unit structure of LSTM.

A unit structure of an LSTM is shown in Fig. 2. We can observe
from the structure that the core part of a LSTM network model is a
memory unit C𝑡 , which is used to store context information. Other
gate functions are defined as: f𝑡 = 𝜎 (𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 ), i𝑡 =

𝜎 (𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡 ] +𝑏𝑖 ), g𝑡 = 𝜎 (𝑊𝑔 · [ℎ𝑡−1, 𝑥𝑡 ] +𝑏𝑔),C𝑡 = f𝑡 ∗C𝑡−1 +
i𝑡 ∗g𝑡 , o𝑡 = 𝜎 (𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡 ] +𝑏𝑜 ) and h𝑡 = O𝑡 ∗tanh(C𝑡 ), in which
f𝑡 denotes the forget gate, i𝑡 denotes the input gate, g𝑡 denotes the
input modulation gate, o𝑡 denotes the output gate. 𝜎 denotes the
sigmoid function that maps the output between 0 and 1.𝑊 is the
corresponding weight vector and 𝑏 is the bias value. The forget
gate f𝑡 has the capability of deciding what information will be
"forgotten" and removed from the cell state C𝑡 . i𝑡 + g𝑡 determines
what type of information will be "added" to the cell state C𝑡 . The
output h𝑡 is determined by both o𝑡 and the cell state C𝑡 .

3 PROPOSED CELLULAR IOT DEVICE
IDENTIFICATION METHOD

3.1 Motivation
With the proliferation of IoT applications, the security of IoT de-
vices has become an emergent issue as most of the IoT devices are
less capable as non-IoT devices such as mobile phones and laptops.
Most massive IoT devices have a Power Saving Mode (PSM) mech-
anism enabled to save energy such that devices could run a long
time (months or years) without changing battery. However, these
"special" features of IoT devices also exposes themselves to poten-
tial malicious attacks. A malicious attacker can take advantage of
the different architectures of IoT devices and launch attacks such
as data spamming attacks through successful identification of IoT
devices [18].

Successful identification of the IoT devices is often the first step
of launching more aggressive attacks. Therefore, an efficient and ef-
fective way of classifying cellular IoT devices from non-IoT devices
are quintessential. In the TCP ACK packet-based probing method
[18], a fundamental assumption is based on the fact that when there
are probing packetse.g., the TCP ACK packets acknowledge the
sequence number that has not been used yet by the other TCP
connection end are sent out to IP addresses within a network that
the receiver has to respond, all the active mode cellular IoT devices
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Figure 3: The end-to-end latency of IoT devices in three different network scenarios[11]

and online non-IoT devices will response to the probing TCP ACK
packets. If no response packet is received after the probing packet
is sent out, then the IP address will be inferred as a cellular IoT
device that is sleeping in the PSM. In this assumption, the offline
non-IoT device case is excluded because the probing packets will
be sent out only when there exists observed traffic coming from
that IP address.

However, based on the data analysis we conducted on real-world
dataset, we found that things are more complicated in reality than
we thought. There are two important factors that will complicate
this situation:

End-to-end latency. There are various inferences in a cellular
network that could lead to the latency of delivering the TCP ACK
packets in a timely manner and even direct packet loss. When data
is transmitted over a complicated network environment, including
both wireless and wireline, there exists a latency and reliability
problem. End-to-end latency, the time for a packet to be transmit-
ted from the source host to the destination host, is often used to
measure the latency. It generally consists of propagation delay,
processing delay, and queuing delay. For massive IoT applications,
devices usually have features like low-cost, low energy, and small
data volumes, thus the delay can be enlarged if not well-managed,
especially for the processing and queuing delay.

To show the latency problem, we use the dataset provided in [11]
to demonstrate the end-to-end latency of 30,000 IoT data points.
The latency distribution of the devices are shown in Fig. 3. Three
different types of IoT scenarios are measured: unlicensed IoT, cel-
lular IoT, and concatenated IoT. From the measured results, we
can observe that for three different cases, the end-to-end latency
can vary from around one thousand milliseconds to 10 thousand
milliseconds. This kind of end-to-end latency will decrease the
accuracy of the identification of IoT devices based on TCP ACK
packets. The reason is because the attacker might receive an ACK
response packet sent when the device was still in its active mode,
but actually it is in sleeping mode when the attacker sends out new
probing packets. In this situation, the device will not be classified as
IoT devices. On the other hand, if this latency happens to non-IoT
devices, it might mislead the attacker to classify non-IoT devices
as cellular IoT devices when the attacker could not receive the
response packets in time.

Alternation of operation modes. The other factor that com-
plicates the classification process is the characteristics of operation
modes of IoT devices. We analyzed a dataset that contains one

month of binary activities of 4060 urban IoT nodes [5]. We found
that the IoT nodes measured demonstrated a fixed pattern: it always
differs from the status when measured in previous time slot, which
means that the device is always alternating between active and
inactive modes every time it is measured. The results are shown
in Fig.4. This is reasonable for real-world scenarios as cellular IoT
devices are massive IoT applications, which means that usually they
are deployed massively over a wide area to collect data in a fixed
pattern. Therefore, their change of operation modes can also be
fixed.

Figure 4: The alternation between active and inactive modes
of IoT nodes [5].

However, the alternation of operation modes will complicate the
probing process in [18]. When a probing attack is conducted in a
fixed time interval series like 15s, 30s, 60s, 180s, 300s, if the IoT
device is working in a fixed pattern of alternating modes between
active and inactive mode, there is no guarantee that a probing
packet will fall into a specific sleeping mode interval. We know
that if we follow the probing intervals, we will have a packet falling
into the sleeping mode, but we do not know which one will.

On the other hand, reliability is a problem that could be caused
by packet contamination or loss during the transmission. This can
also be enlarged given the low-cost feature of cellular IoT devices.
Many of the IoT devices do not have the powerful capability of
error correction like in non-IoT devices such as mobile phone and
laptops. Combined with the network latency we identified above,
this will make the probing attack much more difficult.

3.2 Attack architecture
Given the two factors we identified above that complicates the
classification of the IoT devices from non-IoT devices in a cellular
network, we propose a new machine learning based method to
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identify the IoT devices more effectively. As we found from the
analysis of real-world data, when an attacker sends out probing
TCP ACK packets to the IP addresses within a cellular network, the
response packets might not arrive at the attacker’s side in a timely
way, or they may be even get lost. However, as demonstrated in [13],
IoT devices are typically less mobile than non-IoT devices, such
as smartphones. This implies that the fundamental environment
factors and patterns of the function of IoT devices are likely to
remain consistent. If the environment changes, then the features
are reflected sequentially. This kind of consistency and variation
can be represented using the cell state in LSTM networks.

From the attacker’s perspective, we propose an effective way of
identifying cellular IoT devices from non-IoT devices using LSTM
networks. After the IoT devices are detected, further attacks such
as data spamming can be deployed [18]. The architecture of our
proposed attack architecture is shown in Fig. 5. The main idea of the
identification process is the attacker will keep sending TCP ACK
probes to both IoT devices and non-IoT devices in a fixed pattern. It
will collect the ACK packets it received from the network and use
this data (including the failure information for those packets not
responded) to train an LSTM-based neural network model. Then
the learned model can be applied to classify new IP addresses when
we interact with them in the same probing pattern we used while
training. The advantage of using LSTM-based architecture is that
we can use the cell state in the LSTM to represent and "memorize"
the environment context and can be updated when it changes.
Therefore, we have the flexibility of adapting to the dynamics of
the probing context.

Internet
Attacker

Cellular network

Cellular IoT devices

Cellular non-IoT devices

LSTM-based model

Fail by packet loss/latency, etc.

Fail by sleeping

Figure 5: Our proposed attack architecture.

The problem can be specifically defined as follows. Given the
data sequence x = {x1, x2, x3, ..., x𝑇 } that we collected while inter-
acting with devices and the corresponding category information
𝑦 = {𝑦1, 𝑦2, 𝑦3, ..., 𝑦𝑇 }, we want to train a LSTM-based machine
learning model 𝑓 : x → 𝑦. During the training process, the attacker
will send out TCP ACK packets in a fixed pattern. We want to
ensure that the pattern is fixed for all probing packets during the
training and identifying process. However, the pattern can be set
by the attacker in any way that can fall into all the modes of the
IoT devices. For example, a random sequence of length𝑚 can be
generated within a time period and used as the time interval to
send out probing packets.

Then the attacker collects the response packets it receives from
the IP address and forms it into a feature vector asx𝑡 = {𝑥1, 𝑥2, ..., 𝑥𝑚}.
If the response of the IP address is not received, the value is de-
noted as 0. Thus, if no response is received for all the probing
packets sent out during a time period, the ACK vector is given by

x𝑡 = {0, 0, ..., 0}. If the IP address is a cellular IoT device, we denote
the corresponding 𝑦𝑡 = 1, otherwise, 𝑦𝑡 = 0. Therefore, our goal is
to train an LSTM model to learn the function 𝑓 : x → 𝑦.

In the training process, we want to obtain enough samples from
the cellular network to improve the accuracy of the learned LSTM
model. The objective of the training process is to minimize the least
square loss function: L(x, 𝜃 ) = min

∑
𝑡
1
2 (𝑦𝑡 − 𝑦𝑡 )2, in which 𝑦𝑡

is the true label while 𝑦𝑡 is the output of the model. Other loss
functions can also be used. In the test process, we adopt the same
fixed pattern we use in the training process to sending out TCP
ACK probing packets to IP addresses we want to evaluate or attack.
After the response information of multiple probing packets are
received, we can feed the data into the learned LSTM-based neural
network model to perform classification.

4 EXPERIMENTAL VALIDATION
To validate the performance of our proposed attack method, we
conduct the validation experiments based on two public datasets.
The first dataset contains over 30,000 data points of IoT devices
regarding the end-to-end latency due to the low-power wide-area
network (LPWAN) inferences [11]. The second dataset contains
one month of the binary activities of 4060 urban IoT nodes [5].

To utilize the two datasets for our experimental validation, we
assume that when non-IoT IP addresses are probed, the attacker will
receive the response packets with a random packet loss. The random
packet loss rate is set as 1.31% [2]. For the cellular IoT devices, the
status given in [5] consists of one month of activities for 4060 IoT
nodes. We generate a fixed random interval pattern of dimension
9 to get 10 probing results, i.e., we make the decision about the
types of IP addresses based on 10 probing results conducted. Every
time when an IoT device is probed, we check out the binary status
from the dataset [5]. If the status at that time is active, then we
add a network end-to-end latency. The latency value is randomly
sampled from the cellular IoT latency in [11]. If the latency is beyond
5 seconds [18], then we set the response as "0", which means the
attacker assumes that the response is not received. Otherwise, it is
set as response packet received, which is represented as "1".

From the the dataset in [5], we have the activity data of 4060
cellular IoT nodes over one month. We generate the response data
as a 10000 × 11 matrix. For each data entry, the first 10 dimensions
are used to represent the response status, and the 11th dimension
is used to denote the type of the device. We use "1" to denote
cellular IoT devices and "0" to denote non-IoT devices. To balance
the training data, we generate the same number of data entries for
the non-IoT devices. In the training process, we use the data of 1000
IoT devices and 1000 non-IoT devices to train the model and use
the remaining data of 3060 IoT devices and 3060 non-IoT devices
as test data. We conduct 10 epochs of training and implement the
LSTM models in TensorFlow 2.4.0. The loss and accuracy results
after each epoch for the training data and test data, respectively,
are shown in Fig. 6. From the experimental results we observe that
after 6 epochs of training, the model converges to the point that it
can precisely classify all the test devices. It achieves the accuracy
of 100%, which demonstrates that our methods could learn and
identify the types of devices in an effective and efficient way.
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Figure 6: The loss and accuracy of training and test processes.

We also evaluate the performance when different number of
training devices are used. Six groups of experiments are performed,
in which data of 200,400,600,800,1000,1200 devices are used to train
the model respectively. The remaining data is used as test data.
Table 1 shows the number of epochs needed to achieve the 100%
accuracy. It only takes 9 epochs to achieve 100% of training accuracy
when only data of 200 devices are used, which validate from another
perspective the efficiency of the LSTM-based identification method.

The size of training devices Epochs required
200 9
400 9
600 7
800 6
1000 6
1200 4

Table 1: The number of epochs required to converge to 100%
of training accuracy under different sizes of training devices.

5 POTENTIAL DEFENSES
IoT cellular devices can be identified by attackers mainly because
they have higher requirements for the power consumption, that is
why PSM is designed to save power of IoT cellular devices. However,
it is this PSM that also exposes IoT cellular devices to various attacks.
From the defender’s perspective, to "hide" the IoT devices among
normal non-IoT devices, one potential strategy is to remedy IoT
cellular devices and reduce the time that IoT devices are running in
PSM or make the PSM time unpredictable, thus making it difficult
for attackers to identify the differences of IoT and non-IoT devices.
A second strategy is to keep the design of IoT devices, but enable it
to send back ACK packets when probed by request from online. The
third strategy is to train a machine learning model on the non-IoT
devices and make IoT cellular devices run in a similar style.

6 CONCLUSION
Cellular IoT technologies have been deployed widely with the pro-
liferation of IoT devices. Massive IoT services supported by cellular
networks are emerging to play an important role in IoT applica-
tions. However, the characteristics of low-cost, low energy and
small data volumes in cellular IoT devices make them less capable
of defending themselves against attacks. In this paper, we developed
an effective and efficient attack method based on a special type of
TCP ACK probing packets. The response information, especially
those failed, is collected and embedded into a feature vector. We

trained an LSTM-based neural network model to identify cellular
IoT devices from the cellular network. We evaluated this method on
public datasets and achieved identification accuracy of 100% within
less than 10 epochs of training, which validates the efficiency and
effectiveness of the proposed method. The results raise the need for
robust defense for the IoT devices against detection by the attackers.
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