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Abstract: We point out that pure supergravity theories in AdS with enough supersym-
metry lead, upon taking the large radius limit, to flat space quantum gravities with a
nonperturbatively exact global symmetry, and are therefore in the Swampland. The argu-
ment applies to any AdS supergravity with gauged R-symmetry group, including truncations
of most well known examples, such as AdS5 without the S5 or AdS4 without the S7. This
demonstrates that extreme scale separation, at least with enough supersymmetry, is not
realizable. Moreover pure AdS theories are also in conflict with some other Swampland
principles including the Weak Gravity Conjecture and the (generalized) Distance Conjecture.
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1 Introduction

The AdS/CFT correspondence (see e.g. [1, 2] for reviews) provides a non-perturbative
definition of what we mean by quantum gravity in AdS space. Although the idea behind
the correspondence is logically independent from string theory, all known examples so far
where the AdS gravity is Einsteinian arise from string theory constructions, where the CFT
corresponds to the worldvolume theory of a certain stack of branes probing a geometry, and
the AdS vacuum describes its near-horizon geometry.

A very important quantity in any holographic pair is the size of the internal dimensions
relative to the curvature scale of the AdS space. A model where the extra dimensions are
much smaller than the AdS scale is said to be “scale-separated”. Let m denote the KK
mass scale. In general one expects

m ∼ |Λ|a → R ∼ `2a (1.1)

where a ≥ 0, ` is the AdS length, and R is the radius of the internal dimension. The
case a = 1

2 occurs when the internal dimension is of the same scale as the AdS scale. For
0 < a < 1

2 the internal dimension will be smaller, but will still grow with the AdS scale. The
extreme case of scale separation occurs when R is fixed and independent of `; for example
it can be Planckian. If achievable, scale separation could serve as a promising ingredient in
proposed constructions of de Sitter vacua [3, 4] — if they indeed exist.

Given its importance, it is remarkable that no example with an explicit embedding in
string theory is scale separated. For instance, in famous examples such as IIB-string theory
on AdS5 × S5 or AdS3 × S3 × T 4, and M-theory on AdS7 × S4 or AdS4 × S7, the sphere
factors are of the same size as the AdS, which corresponds to a = 1

2 .
The strong form of the AdS Distance Conjecture proposes that for the supersymmetric

case a = 1
2 [5]. There are proposed supersymmetric constructions with scale separation

which are consistent only with the weak form of the AdS Distance conjecture, which has
a < 1

2 , such as DGKT [6], but their validity is still a debated topic of active research [7–25].1

1One well-known issue about DGKT is that it predicts the existence of a CFT whose number of degrees
of freedom scales as N9/2 [26, 27] where N is the flux number. No known object in string theory has degrees
of freedom which scales higher than N3. A more recent issue with DGKT-like constructions as in [12] is that
it leads to scale separated internal Einstein manifolds which are in contradiction with the findings of [14].
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In this note, we will consider an extreme version of scale separation, corresponding to
a = 0, which is to assume that the internal dimensions are not there at all or are frozen
at the Planck scale: one just has a pure d-dimensional theory of gravity, with vacuum
AdSd, dual to CFTd−1. A particular case of this are theories including fields in the gravity
(super)multiplet only — theories of “pure” supergravity. The non-supersymmetric version
of this question (the existence of pure gravity in AdS) remains open after much work, even
for AdS3/CFT2. Recently, [28] considered the holographic dual to pure N = 8 SUGRA2 in
AdS5 in the large AdS limit, which is dual to the N = 4 stress-energy tensor superconformal
multiplet (and multi-trace descendants of it); they found that the model satisfied, and in fact
saturated, certain bootstrap constraints. This was interpreted in [28] as indirect evidence
that pure N = 8 SUGRA in AdS5, without the S5 or any other internal dimensions, might
make sense as a consistent quantum gravity.

We also notice that, with enough supersymmetry, pure supergravity in Minkwoski
(without a reference to AdS), regarded as an effective field theory valid up to any given
energy scale E, is also in the Swampland, simply because we can go to a point in moduli
space where BPS black holes become arbitrarily light, thanks to the Swampland Distance
Conjecture, even if the effective field theory of the massless sector always remains the same.

The purpose of this short note is to present a simple argument that with enough
supersymmetry, including pure N = 8 SUGRA in AdS5, in the infinite radius limit (the
“large N” limit) cannot be a consistent quantum gravitational theory. The reason is that
any of these theories defines in this limit a flat-space quantum gravity with a global
symmetry. Absence of global symmetries is perhaps the best established Swampland
constraint, and is amply supported by several independent arguments [29–32] (see [33] for a
review). Additionally, the theories thus constructed are also in trouble with the Distance
Conjecture as well as the Weak Gravity Conjecture and the Completeness Hypothesis. In
fact, the connection to the lattice/tower WGC conjectures has been already pointed out
(in the abelian case) in [34] (the argument there was phrased in terms of the magnetic
WGC cutoff, which is a true EFT cutoff only if there is a tower of WGC particles). Indeed,
the WGC tower of states is often the way that global symmetries become obstructed in
quantum gravity [35]. Although we agree with the conclusions of [34], direct application of
magnetic/lattice WGC to AdS is a strong assumption, particularly since lattice WGC is not
always true even in perturbative limits [36], where only a sublattice of superextremal states
exists, which in principle can be of arbitrary index. Furthermore, the distinction between
single and multi-particle states is murky in AdS, since it behaves as a box, and there is an
obvious tower of superextremal multi-particle states — multi-particle states of the SU(4)
vector bosons themselves. Finally, the extremality condition, and the meaning of WGC in
AdS, are likely to be different from their flat space counterparts (see e.g. [37]). The point
of this note is to sidestep these issues and directly spell out what exactly is bad if the tower
of states is absent: one gets to a quantum gravity with an exact global symmetry.

We will illustrate the argument in detail with the case of pure N = 8 five-dimensional
supergravity in section 2; in section 3, we collect several other examples where a similar
argument applies. Finally, section 4 contains a few concluding remarks.

2We are counting all supercharges, corresponding to bulk killing spinors; so for instance, AdS5 × S5 has
(N = 8) · 4 = 32 real supercharges.
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2 Pure N = 8 SUGRA in five dimensions and extreme scale separation

Consider the standard AdS5 × S5 solution of IIB string theory, dual to N = 4 SYM.
The S5 is supported by N units of RR flux threading it; isometries of S5 appear as a
Spin(6) ≈ SU(4) symmetry, which is gauged. The radius of the S5 is equal to the AdS
lengthscale, `. This flux also controls the hierarchy between the five-dimensional Planck
length,3 `5, and the AdS lengthscale `:(

`

`5

)3
∝ N2, (2.1)

both of which appear in the five-dimensional lagrangian. Classically, there is a consistent
truncation of the full IIB supergravity, described by a five-dimensional gauged supergrav-
ity [38, 39], with the following field content:

• A real scalar in the 20′ (vector symmetric traceless) of SU(4) of mass m2`2 = −4.
This is dual to a scalar of conformal dimension ∆ = 2.

• Complex scalars in the 10 and 1 of SU(4), of masses m2`2 = −3, 0 respectively. Dual
to scalars of dimensions ∆ = 3, 0 respectively.

• Vectors in the 15 (adjoint (of SU(4)), which are massless. These are SU(4) gauge
bosons, dual to the corresponding conserved currents of dimension ∆ = 3 in the dual
field theory.

• A two-form Bµν in the 6 of SU(4), plus its complex conjugate. This is dual to a
two-form in the dual field theory, of dimension ∆ = 3.

• The graviton gµν , dual to the stress-energy tensor of the dual CFT

• Superpartners: Gravitini in the 4 of SU(4) and fermions in the 4 and 10.

The classical truncation described above is dual to the stress-energy tensor short supercon-
formal multiplet [40], whose primary operator is a single-trace scalar in the 20′ built as
Tr(Φ(iΦj)) in terms of fundamental SYM fields.

With this much supersymmetry, the lagrangian and interactions are completely de-
termined. In particular, the gauge coupling of the SU(4) R-symmetry vectors (which is
dimensionful) is related to the two-point function of the dual current, and it also scales as

`

g2 ∼ N
2. (2.2)

Using (2.1), we can write down the SU(4) gauge coupling in five-dimensional Planck units, as

`5
g2 ∼ N

4
3 , (2.3)

3Defined by an Einstein term 1
2`3

5

∫
d5x R.

– 3 –
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where g is the gauge coupling of the bulk dual U(1) current. Focus now on the physics at a
given energy E which we keep fixed in five-dimensional Planck units. Equation (2.3) tells us
that, as we take the large N limit, the five-dimensional gauge coupling goes to zero. At the
same time, the size of the S5 grows with N , so that a tower of KK states becomes light in
Planck units at a rate given by mKK ∼ N−

2
3 . The corresponding species scale, goes to zero

as N →∞, signalling that the infinite N limit cannot be regarded as a five-dimensional
gravity theory. Of course, the physics of this limit is very simple: as N → ∞ the S5

decompactifies and we land in a ten-dimensional theory of gravity, which is simply IIB. In
fact, this limiting procedure, known as the “bulk-point limit” in the holographic literature
(see e.g. [41, 42], has been used to study type IIB string theory in ten dimensions.

Imagine that we now try to do the same in a putative large N family of five-dimensional
pure supergravities, defined as a quantum gravity in AdS where the only light fields are
those of the gravity multiplet described above, and then there is nothing else until energies
of the order the five-dimensional Planck scale, where we hit the black hole threshold. Here
by “N” we simply mean a parameter fixing the scale of AdS as in the AdS5 × S5 case.
In the dual field theory, the spectrum of single-trace operators only contains those in the
stress-energy tensor multiplet, and then there is a large gap until the Planck scale.

In the N → ∞ limit, we must recover a five dimensional theory of gravity with
32 supercharges and vanishing cosmological constant — an ungauged supergravity. An
important feature of this theory is that it preserves the SU(4) R-symmetry exactly, since at
any finite N the symmetry is gauged and is selection rules are exactly preserved. However,
in the infinite N limit, (2.3) suggests that this symmetry is becoming global, and since
there is no tower of KK modes to obstruct the infinite distance limit, the theory posesses a
global symmetry at finite Planck mass, which is not acceptable.

We can be more precise, due to the supersymmetry. There is only one five-dimensional
supergravity with 32 supercharges and a Minkowski vacuum, described effective field theory,
which can be described as the low-energy limit of either M-theory on T 6 or type II on T 5.
One can check that the AdS5 fields described above match, in the infinite N limit, the
fields of this supergravity. For instance, M-theory on T 6 has 42 massless scalars, coming
from deformations of T 6 (which gives 20 scalars), periods of the C3 on 3-cycles (which give(6

3
)

= 20) scalars, and the single scalar coming from the period of C6 on the T 6, matching the
42 real scalars above whose masses go to zero in Planck units. One also has

(6
2
)

= 15 vectors
coming from the periods of C3 on 2-cycles of T 6, six 2-forms from C3 along a 1-cycle of T 6,
as well as six KK vectors that can be dualized to 2-forms in five dimensions. Together with
the metric, all these fields provide a perfect match. Yet there is a fundamental difference:
the vectors in the flat space theory are all abelian, so they cannot be gauge bosons for
an SU(4) symmetry. This yet again shows the symmetry must be global. Indeed, in the
realization of this supergravity from string theory, the R-symmetry is always explicitly
broken to a discrete subgroup by massive charged states. In fact, this supergravity has
a famous E6(6) non-compact global symmetry group [43], which is broken to a discrete
duality subgroup in the usual embedding in M-theory. The SU(4) global symmetry we have
obtained in our theory can be understood as a subgroup of this E6(6), which remains as an
exact global symmetry.

– 4 –
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The connection between the SU(4) gauge bosons in the AdS theory and the 15 abelian
ones from the flat space limit can be understood directly as a consequence of the vanishing
gauge coupling in (2.3): in a non-abelian theory where the gauge coupling is absorbed in
the kinetic term, so that it is

Snon-abelian = 1
2

∫
tr(F ∧ ∗F), (2.4)

the gauge coupling appears in the fieldstrenghts,

F a = dAa + gfabcAbAc, (2.5)

so that in the g → 0 limit, the theory abelianizes, and the lagrangian just looks like that
of dim(G) abelian vector bosons. This is precisely what happens in the infinite N limit
described above. Another way of saying it is that g → 0 replaces the Lie group G by the
tangent space at the identity, and so the gauge group becomes Rdim(G). One might worry
that the limit g → 0 does not exist; indeed, [38, 44] claim this is the case; however, as
explained in [45], this is an artifact of a particular parameterization. Quoting from this
reference: “The appearance of the inverse coupling constant g−1 [. . . ] in this term shows
that, after gauge fixing, the theory no longer possesses a smooth limit to the ungauged
theory. This phenomenon has been observed in the original construction of the SO(p,q)
gauged theories [. . . ] Note that the full Lagrangian [. . . ] in contrast allows a smooth
limit g → 0.”

From whichever perspective, the conclusion is that we have arrived at a flat space
quantum gravity with a global symmetry, which is in the Swampland, and therefore the
theory we started with must be as well. The fact that the infinite distance limit group
is Rdim(G) means that there are also 1-form symmetries [46], and these imply that there
cannot be any magnetically charged states under the abelian factors. This in turn runs
afoul of the ordinary Distance [47] and lattice Weak Gravity Conjectures, [36, 48], which
both demand the existence of these states in the infinite distance limit. As mentioned in
the Introduction, see [34] for a connection with the lattice Weak Gravity Conjecture.

One could entertain the possibility that there is some other tower of states becoming
light in the infinite N limit, different from the usual tower of S5 KK modes, which drives the
cutoff of the five-dimensional theory to zero quickly enough, thereby avoiding the paradox;
for instance, if one formally replaces the S5 by S5/Zn, the tower of KK modes starts at
“level n” relative to the unnormalized KK tower (although in this example one also loses
supersymmetry; we are envisioning some other putative supersymmetric modification of
the theory). Another possibility would be to imagine a theory like Vasiliev, which has a
tower of light modes of arbitrarily high spin, and in which therefore sub-AdS locality loses
meaning. In both these cases, and also in whatever else one does, however, some tower
becoming light in five-dimensional Planck units is necessary to avoid a global symmetry in
the infinite distance limit. In AdS units, this means

mTower` ∼ Nα, α >
2
3 . (2.6)

– 5 –
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3 Examples where extreme scale separation is excluded

The argument carried out above extends almost verbatim to any AdS quantum gravity
where the R-symmetry is gauged, because no flat-space limit of string theory has a gauged
R-symmetry. This is a large classes of AdS quantum gravities, since the R-symmetry current
is often part of the stress-energy tensor multiplet. We can make a similar argument to the
one above, using that the d-dimensional Planck length `d and gauge coupling are related to
the stress-energy and current two-point functions as

CT ∼
(
`

`d

)d−2
, CJ ∼ CT ∼

`d−4

g2 , (3.1)

where we have used that the R-symmetry currents are in the stress-energy tensor supercon-
formal multiplet and thus its two-point function scales as CT . This immediately leads to
the conclusion that the gauge coupling satisfies

g2

`d−4
d

∼ C
− 2

d−2
T , (3.2)

and so it goes to zero for any d > 2 when the central charge is made large. With a
list of all superconformal algebras in hand [49], one can compile table 1. We see that
pure supergravity is excluded for most dimensions and supersymmetry algebras, with one
exceptions: 4d N = 1, where the R-symmetry is trivial and no argument can be made.
This is the case corresponding to DGKT and other putative candidates of scale-separated
AdS vacua, and for good reason: the absence of R-symmetry means precisely that there is
no large extra dimension.

We also need a bit of extra care in the 4d N = 2 and 5d N = 1 cases, where the
R-symmetry is U(1). In the other cases, where the R-symmetry group is non-abelian,
the gauge coupling is uniquely determined by the two-point function CJ , which is tied by
supersymmetry to CT . The normalization of non-abelian currents is uniquely fixed by their
current algebra. But this is not so in the abelian case, where the current can be rescaled
by an arbitrary factor. A canonical nomalization is such that the charge of the operator
of smallest charge is exactly 1, but this may not coincide with the normalization coming
from the CJ of the current appearing in the gravity multiplet; equivalently, the gravitino
R-charge may be a large multiple (perhaps dependent on CT of the elementary charge).
The R-charge of the gravitino cannot diverge in the large CT limit, where the R-symmetry
is ungauged, leading to the same conclusion as in previous cases.

4 Concluding remarks

A common trope of the Swampland Program is the idea that the tower of states of the
Distance Conjecture often appears to protect the theory from developing a global symmetry
in the infinite distance limit [35]. In this short note we have pointed out how this idea
can be straightforwardly applied in the AdS context to rule out an extreme version of
scale-separated examples that may look completely natural, and even appealing, from

– 6 –
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Dimension # of Q’s R-symmetry

d = 4

2 (N = 1) −−
4 (N = 2) so(2)
6 (N = 3) so(3)
8 (N = 4) so(4)
10 (N = 5) so(5)
12 (N = 6) so(6)
16 (N = 8) so(8)

Dimension # of Q’s R-symmetry

d = 5

4 (N = 1) u(1)
8 (N = 2) su(2)⊕ u(1)
12 (N = 3) su(3)⊕ u(1)
16 (N = 4) su(4)

d = 6 8 (N = 1) su(2)

d = 7
8 (N = (1, 0)) su(2)
16 (N = (2, 0)) sp(2)

Table 1. A table of all superconformal algebras in d − 1 spacetime dimensions, taken from [49],
corresponding to quantum gravities in AdSd. We have shaded in red theories for which the arguments
in the main text rule out the possibility of extreme scale separation; there is a single case shaded
in yellow, where the arguments in this note do not work, but we do not know of an embedding in
quantum gravity, either.

supergravity and CFT/boostrap arguments. The maximal supersymmetry examples we
have discussed are an ideal laboratory to confront the predictions of the Swampland program
with CFT/bootstrap expectations due to the simplicity of the setup.

Our observations suggest that, from the CFT point of view, the pathology in these
theories may be apparent in the bulk point limit of stress-energy supermultiplet correlation
functions. Progress in this direction would be very exciting, since the appearance of a
pathology would lead to a nice interpretation of Swampland conditions from a bootstrap
perspective.

Our simple arguments here only apply to extreme scale separation, and cannot be
used in other examples such as DGKT. Extending them to these cases would involve
understanding the precise relation between a small gauge coupling and the cutoff of the
effective field theory in quantum gravity. Recent work in this direction includes [50, 51].

We finish this short note by noting that the theories we have ruled out are just
supersymmetric versions of pure gravity in AdS. Things are usually easier with more
supersymmetry, so our result are not encouraging for the N = 0 version of this question,
where there is not even Bose-Fermi cancellation to ensure a small cosmological constant.4
This paper serves as a cautionary note, that one should not take on face value a low energy
description of AdS and holography and draw conclusions based on it, without showing the
existence of its UV completion. The experience with the Swampland principles lead us to
believe that most consistent looking low energy theories are indeed in the Swampland.

4For example for the holomorphic version of non-supersymmetric AdS3 the evidence for the would be
holographic dual is now pointing to the direction that most of them cannot exist [52].
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