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Abstract

Specification of cell polarity is vital to normal cell growth,
morphogenesis, and function. As other eukaryotes, plants
generate cellular polarity that is coordinated with tissue polarity
and organ axes. In development, new cell types are generated by
stem-cell division and differentiation, a process often involving
proteins that are polarized to cortical domains at the plasma
membrane. In the past decade, pioneering work using the model
plant Arabidopsis identified multiple proteins that are polarized in
dividing cells to instruct divisional behaviors and/or specify cell
fates. In this review, we use these polarized cell-division regula-
tors as example to summarize key mechanisms underlying pro-
tein polarization in plant cells. Recent progress underscores that
self-organizing amplification processes are commonly involved in
establishing cell polarity, and cellular polarity is influenced by both
tissue-level and local mechanochemical cues. In addition, protein
polarization during asymmetric cell division shows a distinct
feature of temporal control in the stomatal lineage. We further
discuss possible coordination between protein polarization and
the progression of cell cycle in this developmental context.
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Cellular polarization is manifested by spatially segre-
gated distribution of biological molecules (RNAs,
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proteins, and lipids), organelles, and structures. This
fundamental feature of the cell contributes to cellular
growth, morphogenesis, and function [1]. In asym-
metrically dividing cells, cell polarity instructs division-
plane orientation, influences cell-division potentials,
and helps to specify distinct daughter-cell fates [2,3].
At an organizational scale, polarity of individual cells
can be collectively aligned and coordinated with the
tissue plane, a phenomenon known as planar cell po-
larity, to contribute to organ patterning and formation
in development [2].

In the model plant Arabidopsis, well-known polarized
proteins are the auxin efflux carriers, PIN-FORMED
(PIN) proteins, and some of their regulatory proteins,
such as the AGC kinases (see recent reviews [4,5]).
Recently, several other proteins have been identified
to polarize in dividing cells and their polarization as-
sociates with the divisional behaviors of the expressing
cells. These polarity proteins include BASL
(BREAKING OF ASYMMETRY IN THE STOMATAL
LINEAGE) in the stomatal lineage cells [6], SOK
(SOSEKI) proteins in the embryos and roots [7ee], and
opposingly polarized BRX (BREVIS RADIX) and OPS
(OCTOPUS) in the protophloem [8,9]. These polarity
factors are membrane-associated and attached to a
subdomain of the plasma membrane through interac-
tion with proteins and/or lipids. More recently, trans-
membrane cell-surface receptors IRK
(INFLORESCENCE AND ROOT APICES RECEP-
TOR KINASE) and KOIN (KINASE ON THE
INSIDE) were shown to display intracellular contra-
polar localization in the root meristem [10ee,11ee]
(Figure 1a—b). Although this is not a comprehensive
list, these genes are selected in this article for further
discussion because they are functionally connected
with the regulation of cell division, often asymmetric,
in plant development.

Here, we review recent advances on the molecular
mechanisms by which protein polarization is initialized,
established, and maintained in plants. We discuss new
insights about how the polarity site is placed coordi-
nately with the tissue axes. Finally, we discuss how
protein polarization might be temporally controlled to
coordinate with cell division and differentiation in
development.
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Polarized proteins associated with stem cells in plant development. (a) Diagrams show cell division and distinct cell types in developing leaf and root,
respectively. (b) Diagrams depict polarization of the selected proteins in dividing cells. BASL localizes in the nucleus and accumulate to a polar crescent
at the cell cortex of stomatal lineage cells. BRX and PAX co-polarize at the rootward plasma membrane in developing protophloem, while OPS is
polarized to the shootward site. SOSEKI (SOK) family proteins show unique localization at polar cell edges in different root cells. Receptor kinases IRK
and KOIN display opposite polarization to the outer and inner endodermal membrane domain, respectively. (¢) Diagrams show abnormal cell division and/
or differentiation when the designated polarity protein is absent or ectopically overexpressed. Abnormal cell division/differentiation are tranced with bold
lines. Stomatal ACDs are disrupted in bas/ mutants, leading to abnormal division and cell-fate determination. A smaller root meristem with discontinued
phloem differentiation was observed in a loss-of-function brx or ops mutant. Ectopic overexpression of SOK1 (ox, driven by the RPS5A promoter in
dividing cells) induces extra and misorientated cell divisions. A loss-of-function irk mutant produces excess periclinal cell divisions.

Protein polarization associated with cell
division and differentiation

In invertebrate model systems for studying asymmetric
cell division (ACD), for example, C. elegans zygotes and
Drosophila neuroblasts (neural stem cells), the polari-
zation of antagonistic anterior and posterior PAR
modules is instrumental to asymmetric spindle posi-
tioning and unequal segregation of cell-fate de-
terminants [12]. The most conceptually comparable
system in plants is probably the Arabidopsis stomatal
lineage cells that possess stem cell-like activity and
divide asymmetrically to generate stomatal guard cells
and pavement cells in the epidermis. In the stomatal
lineage precursor, meristemoid mother cell (MMCQC),
BASL protein is polarized to direct the asymmetric

placement of cell-division plane, a process mediated by
microtubule-based nuclear migration [13e,14e]. After
an ACD, the polarization of BASL is only inherited by
the large daughter cell, stomatal lineage ground cell
(SLGC), in which polarized BASL eventually sup-
presses the protein abundance of bHLH transcription
factor SPCH (SPEECHLESS) and stomatal differen-
tiation [14e,15]. In the absence of BASL, stomatal
lineage divisions become less asymmetric and lose
unequal daughter-cell fates [6] (Figure 1c). Therefore,
although BASL is a recently evolved, plant-specific
scaffold protein [16], as its counterpart PAR proteins
in animals, polarization of BASL specifies two
daughter-cell fates by generating unequal distribution
of cell-fate regulators or determinants.
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BRX, before being established as one of the BASL
physical partners in stomatal development [17e], was
initially discovered for its function in root growth and
localization at the rootward polarity site in developing
protophloem [8,18]. Interestingly, the other membrane-
associated protein OPS is polarized shootward in these
cells, although its polarization was later found not
absolutely required for function [19] (Figure 1b). The
loss-of-function drx and ops mutants display similar
phenotype of discontinued phloem differentiation
(Figure 1c). Genetic analyses placed their parallel
functions in phloem differentiation with BRX’s contri-
bution as a molecular rheostat in modulating auxin flux
[20] and OPS’s debatable contribution in activating
brassinosteroid (BR) signaling [21,22]. More specif-
ically, BRX co-polarizes with the AGC-type PROTEIN
KINASE ASSOCIATED WITH BRX (PAX) but inhibits
PAX’s activation of PIN-mediated auxin efflux, so that
auxin levels can accumulate high [20]. However, when
the intracellular auxin levels are high enough, the inhi-
bition of BRX on PAX can be released by BRX dissoci-
ation from the membrane, allowing the activation of
PAX and auxin efflux [20]. The absence of PAX results
in phloem phenotypes resembling those of the ébrx
mutant (Figure 1c). Functions of OPS were recently
connected to the CLE45-mediated peptide signaling by
directly interfering with the CLE45 signaling compo-
nent interactions [23].

The five SOSEKI (“cornerstone” in Japanese) proteins
were identified as targets of the MP/ARF5 (MONOP-
TEROS/AUXIN RESPONSE FACTOR 2) transcrip-
tion factor that regulates cell-division patterning in
Arabidopsis early embryos [7ee]. Each SOK protein
exhibits specific localization to polar cell edges of
multiple cell types in developing embryos and roots
[7ee]. Interestingly, the local polarization of SOK pro-
teins was found to interpret global polarity along the
body axes [24] (Figure 1b). While knocking-out the
individual SOK genes did not result in discernable
phenotypes, ectopically expressing SOK/ in root mer-
istem induced altered cell division orientation [7ee]
(Figure 1c). It is not clear how SOK proteins orient cell
division, but one of the effectors might be the
membrane-associated protein AN (ANGUSTIFOLIA)
that interacts with SOK1 and polarizes with SOK1 to
the cell edges [25ee].

Two transmembrane receptor kinases, IRK and KOIN,
were recently identified to polarly localize in specific
cells at the root tip [10ee,11ee]. In the endodermal cell
layer, IRK accumulates to the outer side, whereas KOIN
enriches to the inner side of the plasma membrane
[10ee,11ee]. The major defects caused by the absence
of IRK or KOIN are similar, both produce excessive cell
divisions in the ground tissue, leading to an enlarged
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root meristem [11ee] (Figure 1c¢). The role of IRK in
restricting cell division was genetically linked to
CYCD6; 1 that promotes formative cell divisions in the
ground tissue lineage [10ee].

Self-reinforcing is central to protein
polarization

Although almost all cell types exhibit some form of po-
larity (shape, structure, and function), their polarization
status may not be readily revealed by size or shape, but
by the expression of a molecular marker. For example,
when the wall-less, spherical tobacco protoplasts were
used to express exogenous proteins, Arabidopsis BASL
appeared in a polarized manner at the cell cortex and in a
randomly oriented axis [26e]. The polarization process
of BASL in protoplasts is likely induced by spontaneous
protein fluctuation and accumulation [26e], and facili-
tated by feedback regulations with the components of a
conserved Mitogen-activated protein kinase (MAPK)
pathway and the partner BRX proteins [17e,27]. The
pursuit for the origin of cell polarization, or “symmetry
breaking,” has never been trivial because these events
can be transient, dynamic, and often involve self-
organization feedback processes [28]. Interestingly,
recent studies suggested that the polarization informa-
tion can simply be encoded by intrinsic properties of
the protein.

The SOK proteins are membrane-associated and deeply
conserved in land plants [25ee]. Intriguingly, a
conserved DIX domain in SOK proteins is biochemically
and structurally equivalent to the DIX domain in
Dishevelled, a key signaling molecule in the establish-
ment of planar cell polarity in the Drosophila epithelia
[29]. In a reciprocal experiment, the chimeric SOK1
protein with its DIX domain replaced with the human
DVL2 DIX can polymerize and polarize to the cell
edges, and function indistinguishably from the wild-
type SOKL1 in Arabidopsis [25ee]. Furthermore, protein
oligomerization of PAR3 was found to generate subcel-
lular clustering and polarization in Drosophila epithelial
cells [30,31]. Similarly, when expressed in Arabidopsis
early embryos, SOK1 aggregated into puncta at the
plasma membrane and enriched at the polar edges
[25ee] (Figure 2a). Thus, protein oligomerization pro-
vides a common mechanism to induce protein clustering
at the peripheral membrane, contributing to cell
polarization.

While self-oligomerization may provide an access to
evolving simple polarity circuits, additional positive and
negative feedback regulations are essential to form and
stabilize protein polarization. Positive feedback loops
arise from the assembly of partners to form a protein
complex, interactions with regulatory proteins, and
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Self-reinforcement is central to protein polarization in plants. (a) SOK1 polarization at the cell edges is induced by the DIX domain-mediated protein
oligomerization and clustering. (b—c) Positive feedback loops contribute to the polarization of BASL and PAX-BRX complexes, respectively. (b), in

stomatal lineage cells, BASL is phosphorylated and activated by MAPK 3 and 6 to become polarized at the cell cortex, where it enriches the MAPKKK
YODA and MPK®3/6 to establish a polarity complex in stomatal ACD cells. BASL also interacts with the BRX proteins and they help each other to reinforce
polarization. Palmitoylation of BRX, a reversible lipid modification, is essential for the polarization. (c), in root protophloem, the BRX—PAX complex recruits
the phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks), which catalyze the formation of PI(4,5)P2 at the basal side of the membrane. While the

membrane association of PAX depends on a polybasic motif (+++) to interact with PI1(4,5)P2, the polar localization of the PAX—BRX—-PIP5K module is

reinforced by both protein-protein and protein-lipid interactions.

reorganization of structural components (cytoskeleton
and membranes) to amplify and stabilize the polar
domain. In stomatal lineage cells, polarization of BASL.
involves a positive feedback loop with the MAPK
cascade, in which BASL nuclear export and polarization
is promoted by MAPK6-mediated phosphorylation, in
turn polarized BASL interacts with the MAPKK Kinase
YODA to concentrate MAPK signaling that further
promotes BASL polarization [27]. In addition, when
BASL is expressed simultaneously with BRX in stomatal
lineage cells, the nuclear pool of BASL is greatly alle-
viated and both proteins strongly polarize at the cell
periphery, indicating an self-reinforcing system for po-
larization [17e] (Figure 2b).

On the other hand, quantitative live-cell imaging
showed that BRXL2, the representative BRX member in
the stomatal lineage, becomes polarized earlier than
BASL, indicating the presence of a BASL-independent
pathway for BRX proteins to polarize [32]. Indeed, in
root protophloem where no BASL function was estab-
lished, the AGC kinase PAX interacts and polarizes
rootward with BRX [20]. The BRX—PAX complex re-
cruits the phosphatidylinositol-4-phosphate 5-kinases
(PIP5Ks), which catalyze the formation of phosphati-
dylinositol-4,5-bisphosphate (PI(4,5)P2) [33]. Because
the membrane association of PAX largely depends on its
basic-hydrophobic patch to interact with PI1(4,5)P2, the
recruitment of PIP5Ks reinforces the polar accumula-
tion of PAX—BRX at the plasma membrane in root
protophloem [34ee] (Figure 2c). Whether the BRX-
PAX-PIP5K positive feedback loop exists in the stoma-
tal lineage awaits further exploration.

Apparently, to establish stable polarization at the plasma
membrane, self-organizing amplification processes
require the presence of inhibitory mechanisms to ensure
spatial restriction and formation of a singular pole of the
polarity site [35]. Global inhibition can be achieved by
dissociation of the polarity proteins from the plasma
membrane. Interestingly, putative palmitoylation sites
were frequently detected in the polarized proteins, such
as BRX, OPS, and SOK [7ee,9,17e]. Mutating the
palmitoylation site is disruptive for BRX polarization
[17e]. In addition, polarization of PAX is abolished when
its polybasic motif is mutated or the PI(4,5)P2 abun-
dance is reduced [34ee]. Thus, lipid modification and
lipid binding provide inhibitory basis for the reversibility
of protein association with the plasma membrane that is
required for self-organization of protein polarization.

Coordination of cell polarity globally and
locally

Cells exhibiting an intrinsic orientation need to coor-
dinate with their neighbors with respect to a tissue axis.
In Arabidopsis, a proximodistal polarity field in leaf
development is revealed by ectopic expression of BASL.
in the epidermal cells [36], and the apical-basal and
radial organismal axes in embryos and roots are reflected
by SOKSs’ polarization at the cell edges [7ee]
(Figure 3a). In the well-studied planar cell polarity
systems, one major mechanism driving the alignment of
cell polarity is connected to mechanical forces at the
tissue scale [37]. Plant cells are encased in the cell walls
that play a key role in sensing and responding to me-
chanical changes during cell growth. Strikingly, the
plasma membrane association of SOK proteins was
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Coordination of cellular polarity with tissue axes and local signals. (a) Ectopic expression of BASL (driven by the 35S promoter) in pavement cells
reveals a distal-proximal polarity field at the tissue level. Arrows indicate BASL polarity orientation. Polarization of SOK proteins reflects the global outer-
inner and apical-basal polarity axes in developing embryos. (b) Tissue-wide mechanical forces influence the global pattern of BRXL2 polarization (orange
crescents) in a leaf. Local chemical signaling overrides global cues to reposition the BASL polarity site. Peptide ligands, e.g. EPF1 (Epidermal Patterning
Factor 1) secreted from the adjacent developing guard cells, may trigger signaling to induce the BASL polarity shift (dashed lines, disappearing BASL

polarity).

found greatly disturbed when the cell walls are detached
or removed [7ee]. It was also shown that the cortical
microtubes accurately align with the tissue mechanical
patterns [38]. Knocking-out the microtubule severing
protein KATANIN results in the loss-of-coordination
between growth related mechanical tension and
tissue-wide cellular polarity exhibited by BRXL.2 in the
leaf [39]. Despite the lack of mechanistic understanding
of how mechanical signals instruct protein polarization,
the emerging view is that mutual and dynamic interplay
between mechanical and biochemical signaling across
the cell wall-membrane-microtubule continuum un-
derlies cell polarity, growth, and morphogenesis in plants
(see recent reviews [39,40]).

It is also evident that short-distance chemical cues can
guide protein polarization. In stomatal lineage cells, the
reiterative ACD of meristemoids requires the reinitia-
tion of the polarity site after each round of division.
Positioning of the new polarity site is likely propelled
away by unidentified components in the newly formed
cell walls [41]. However, when SLGC undergoes
another round of ACD, the post-mitotic polarity site is
spatially switched to become adjacent to a developing

guard mother cell, a process likely involving local
peptide-receptor interactions [6,42e] (Figure 3b). The
mechanisms underlying the contrasting polarization of
IRK and KOIN in the root endodermis is unknown but
might depend on cell identity and informed by adjacent
cells, instead of the global radial axis [10ee]. Domain
swapping results also suggested the extracellular domain
of IRK and the intracellular domain of KOIN contain
information required for their polarization [11ee].

Temporal control of protein polarization
during cell division

Cell polarization, as one major mechanism regulating
stem-cell ACD, must be coupled to the progression of
cell division and cell-fate differentiation. In recent
years, exciting insights have been obtained about the
dynamic assembly and function of the polarity compo-
nents during stomatal ACD in Arabidopsis [43e,44ee],
mirroring those of the core polarity modules in animals
[45,46]. Thus, in this section we focus discussion on
stomatal lineage divisions.

Polarization of BASL. was observed before, during, and
after a stomatal ACD [6]. By temporally restricting
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BASLs expression before or after stomatal ACD, pre-
division BASL. was shown to dictate directional nuclear
migration and division orientation, but post-division
BASL specifies cell fate [13e,14e], indicating that the
seemingly same polarity site contains distinct molecular
components at different stages. Indeed, a few key
signaling molecules have been identified in the stomatal
polarity site to control subsequent cellular events during
ACD (Figure 4a). The precursor cell (MMC) is distinct
from the daughter cell (SLLGC) by its high cell-division
potential that is connected to high protein abundance of
SPCH and its partner SCRM (SCREAM)/ICE1
[27,43e,4400]. Both transcription factors are negatively
regulated by MAPK-mediated phosphorylation [47,48].
It was recently determined that, in MMC, SPCH level
is maintained high through the inhibition of the inhib-
itory MAPK signaling, which is originated from the
polarized protein complex. More specifically, the
MAPKK Kinase YODA that activates MAPK signaling is

Figure 4

recruited to the polarity complex through physical
interaction with BASL [27]. Nevertheless, in MMC, the
kinase activity of YODA is suppressed by the presence of
its inhibitor, the GSK3-like BIN2 (BRASSINOSTE-
ROID INSENSITIVE 2) kinases that are brought in
proximity by the scaffold protein POLAR [43e,49].
Therefore, SPCH is maintained high, so is the MMC
division capability, by BINZ-mediated inhibition of
YODA at the polarity site in MMC.

However, following the MMC division, BIN2-mediated
suppression of YODA activity must be attenuated in the
daughter cell SLGC to ensure lowered SPCH and
lowered division potential. This transition is made
possible by the synergistic activities of multiple com-
ponents in the polarity complex. First, polarized BIN2
can phosphorylate POLAR for protein turnover that al-
leviates BIN2’s association with the polarity site [43e].
Secondly, BASL recruits an inhibitor of BIN2, the BSIL.1
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Temporal control of protein polarization in stomatal ACD and the cell-cycle regulators. (a) Firstly, in early MMCs, BASL, BRX, and POLAR are
polarized scaffold proteins. BASL association to the plasma membrane requires the BRX proteins to be palmitoylated, whilst POLAR polarization de-
pendents on BASL. Secondly, before stomatal ACD, the polarity complex employs POLAR to recruit the GSK3-like kinase BIN2 that suppresses YODA’s
activity to allow stomatal ACD. Thirdly, upon the entry into mitosis (preprophase band, blue lines), the Ser/Thr-protein phosphatase BSL1 interacts and
colocalizes with BASL at the cell periphery. By joint regulation of the BIN2 GSK kinase and the YODA kinase, BSL1 functions as a spatiotemporal
molecular switch to promote the transition from cell division to cell-fate differentiation. Broken piece of POLAR indicate protein degradation. Lastly, after
ACD, the BASL polarity complex is only inherited by SLGC, where elevated YODA and MAPK signaling inhibits stomatal differentiation. Pink and blue
shades indicate distinct daughter-cell fates. (b) Cell-cycle regulators implicated in stomatal ACD. During the G1/S phase, CDKA through a CDKA; 1-
CYCD complex inhibits RBR1 to allow the expression of SPCH. CDKA; 1 also directly activates SPCH activity through phosphorylation. Activated SPCH
induces the expression of BASL and POLAR. During the G2/M phase, microtubule networks need to be reorganized for mitosis. A positive feedback
regulation between CDKB-CYCB and R1R2R3 MYB (MYB3R) transcription factors may regulate functions of the microtubule nucleation factor GIP1. In
addition, the mitotic Aurora kinases directly regulate the MAP65 bundling factor to organize dynamics of microtubule networks needed for mitosis.
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(BRI1 SUPPRESSOR-LIKE 1) protein phosphatase,
leading to the dissociation of BINZ from the plasma
membrane [44ee]. Then, the preferential nuclear
localization of BINZ2 results in reduced suppression on
YODA at the cortex and increased suppression on SPCH
in the nucleus [50]. Thirdly, BSL1 directly de-
phosphorylates  YODA to further enhance MAPK
signaling that suppresses SPCH [44ee]. Thus, collec-
tively, the SLLGC is produced with low cell-division
potential enabled by elevated MAPK signaling and
lowered SPCH abundance.

Apparently, these successive signaling events need to be
temporally controlled along the cell cycle of stomatal
ACD. Live-cell imaging combined with genetic analyses
suggested that in MMC, POLAR polarizes before BIN2
[43e] and BRXI.2 polarizes before BASL but the exact
timing for POLAR, BRXI.2, and BASL in polarization
has not been defined yet. In a protein co-expression
experiment, BSLL1 showed delayed polarization than
that of BASLL in MMC and strikingly, polarization of
BSL1 coincides with the formation of the pre-prophase
band [44ee], a microtubule array appearing at the entry
of mitosis. The temporal control of BSLL1 polarization is
critical because its activity promotes the progression of
stomatal ACD by bridging up the pre-division activity of
BINZ to the post-division activity of YODA [44ee].

The coordination of cell polarity and cell-cycle pro-
gression has been found crucial for ACD and metazoan
development [51]. For example, the mitotic kinases
Polo and Aurora A were suggested to regulate PAR pro-
teins, cell polarity, and asymmetric division [52,53]. As
in other eukaryotes, the cell-cycle progression in plants
is driven by the rise and fall of cyclin-dependent kinases
(CDKs) whose activity depends on the activator cyclins.
Functions of the core cell-cycle components (CDKAs
and CDKBs) and coordination with plant developmental
have been recently reviewed [54,55]. In stomatal
development, significant progress has been made to-
wards understanding the terminal, one-time symmetric
cell division (reviewed in [56]), therefore is not further
discussed in this review. Here, we highlight some of the
components that might regulate G1/S and G2/M phases
in stomatal ACD (Figure 4b) prior to the terminal di-
vision. Arabidopsis CDKA; 1 is the sole ortholog of
mammalian Cdkl that controls the S-phase entry in
plants, including the stomatal lineage cells. It does so
through collectively positive regulation of SPCH. On
one hand, CDKA; 1 phosphorylates to inhibit RBR1
(Retinoblastoma-replated protein 1) that drives the cell
cycle and suppresses SPCH gene expression [57]. On
the other hand, CDKA; 1 directly phosphorylates SPCH
protein for activation [58]. Thus, SPCH is collectively
promoted by CDKA; 1’s activity, leading to increased
expression of the polarity proteins, such as POLAR and
BASL, for the execution of ACD [59]. Whether CDKA;
1 directly regulates cell polarity is unknow but its
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localization was detected at the microtubule arrays that
must coordinate with cell polarity during mitosis [60].
Next, to enable the G2/M transition, a positive feedback
loop is necessary, involving B-type CDKs and the acti-
vating MYB3R (R1R2R3-type MYB) transcription fac-
tors that induce the expression of mitotic cyclins, the
activator of CDKB [55]. One of the downstream events
under the CDKB2-CYCB1 complexes is to orchestrate
mitotic microtubule networks through regulating
GIP1 (GAMA-TUBULIN COMPLEX PROTEIN 3-
INTERACTING PROTEIN 1), a component of the
microtubule nucleation complex [61e]. Furthermore,
the evolutionarily conserved mitotic regulator in plants,
alpha Aurora kinases, has a role in specifying stem-cell
asymmetric divisions, including in the stomatal lineage
[62]. The Aurora kinases function in part through
regulating the microtubule-bundling protein MAP65-1
[62,63]. Whether the mitotic regulators mentioned
above contribute to cell polarity in ACD is an important
future research direction.

Conclusion and perspectives

Recent progress in the identification of polarized pro-
teins participating in stem-cell divisions in plants
inspired an unprecedently exciting momentum to
pursue the underlying molecular mechanisms for pro-
tein polarization. We have learned that positive feed-
back regulations involving protein oligomerization and
signaling amplification play a central role in polarizing
membrane-associated proteins in plants. Due to the
space limit, we did not discuss membrane trafficking-
based mechanisms for polarizing proteins in plants. It
should be noted that polarization of BRX, PAX, IRK, and
BASL. is disturbed when membrane trafficking is
disturbed the ARF GEF inhibitor, Brefeldin A,
[11ee,20,64]. Members of a protein family called PRAF/
RLD (RCC1-like domain) were identified as interactors
of BASL and the ARF GEF GNOM [64]. Four PRAF/
RLD members are redundantly required for the estab-
lishment of BASL polarity in stomatal lineage cells.
Whether and how the connected function of PRAF and
GNOM may regulate the other polarity proteins should
be studied in the future. Furthermore, accumulating
evidence suggested that multiple polarity domains along
the cell periphery can be defined by distinct proteins in
one single plant cell. How multiple polarity poles are
formed and coordinated intracellularly and intercellu-
larly is a key challenging question. At the tissue scale,
new regulators that set up planar or axial polarity can be
identified by genome-wide genetic screens and/or pro-
tein interactome mapping strategies. Furthermore, the
polarization process is complicated since one single
polarity site can be dynamically occupied by distinct
components at different time point, especially during
cell division and differentiation. How ACD is coordi-
nated in time with other events of the cell cycle and
whether surveillance mechanisms exist to ensure an
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ACD takes place only when polarity is established are all
outstanding questions in the field.
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