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Abstract. We study 4-dimensional homology cobordisms without 3-handles, showing that they
interact nicely with Thurston geometries, character varieties, and instanton and Heegaard Floer
homologies. Using these, we derive obstructions to such cobordisms. As one example of these
obstructions, we generalize other recent results on the behavior of knot Floer homology under ribbon
concordances. Finally, we provide topological applications, including to Dehn surgery problems.

1. Introduction

The advent of topological quantum field theories (TQFTs) in the past few decades has renewed
interest in smooth cobordisms and the associated category. In dimension 4, Seiberg–Witten Floer
homology, a gauge-theoretic TQFT, was recently used by Manolescu [Man16] to study the homology
cobordism group Θ3

Z, disproving the Triangulation Conjecture in dimensions n ≥ 5. Many questions
remain: For example, it is unknown whether Θ3

Z has any torsion.
In this article, we study 4-dimensional cobordisms from a new perspective, in terms of their

directionality. More precisely, we study ribbon cobordisms, which are 2n-dimensional manifolds that
can be built from k-handles with k ≤ n. They arise in at least two natural ways: as Stein cobordisms
between closed, contact manifolds, and as the exterior of (strongly homotopy-) ribbon surfaces,
which are cobordisms between link exteriors [Gor81]. Note that every (homology) cobordism can be
split into two ribbon (homology) cobordisms. While homology cobordism is an equivalence relation,
ribbon homology cobordisms are not symmetric. In fact, as we will see, ribbon homology cobordisms
give rise to a preorder on 3-manifolds that seems to agree with orderings by various invariants and
Thurston geometries. We conjecture:

Conjecture 1.1 (cf. [Gor81, Conjecture 1.1]). The preorder on the set of homeomorphism classes
of closed, connected, oriented 3-manifolds given by ribbon Q-homology cobordisms is a partial order.

Here, an R-homology cobordism between two compact, oriented 3-manifolds Y1 and Y2 is an
oriented, smooth cobordism W : Y1 → Y2 such that H∗(W,Yi;R) = 0 for i ∈ {1, 2}. For example,
the exterior of a knot concordance is a Z-homology cobordism. Our results can be summarized as:

Metatheorem. Let Y− and Y+ be compact, connected, oriented 3-manifolds possibly with boundary,
and suppose that there exists a ribbon homology cobordism from Y− to Y+. Then the complexity of
Y− is no greater than that of Y+, as measured by each of the following invariants:

(A) The fundamental group;
(B) The G-character variety, for a compact, connected Lie group G, and its Zariski tangent

space at a conjugacy class;
(C) Various flavors of instanton and Heegaard Floer homologies.

These comparisons are sometimes realized by explicit morphisms in the appropriate category.

Note that (A) was proved by Gordon [Gor81] in the case that Y− and Y+ have toroidal boundary,
and his proof immediately generalizes to the closed case following Geometrization; see Section 1.1
for context. We will provide more precise statements for (B) and (C) in Section 1.2 and Section 1.3.
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Our metatheorem has many topological applications, which we will discuss below. But first, (A)
and Geometrization together give us the following:

Theorem 1.2. There is a hierarchy among the Thurston geometries with respect to ribbon Q-
homology cobordisms, given by the diagram

S3 → (S2 × R) → R3 → Nil → Sol → (H2 × R) ∪ ˜SL(2,R) ∪ H3.

In other words, suppose that Y− and Y+ are compact 3-manifolds with empty or toroidal boundary
that admit distinct geometries, and that there exists a ribbon Q-homology cobordism from Y− to Y+.
Then there is a sequence of arrows from the geometry of Y− to that of Y+ in the diagram above.

A more refined version of Theorem 1.2 is stated in Theorem 3.4.

Remark 1.3. It is natural to ask how the ribbon Q-homology cobordism preorder interacts with
the JSJ decomposition. Unfortunately, there exist examples where Y± is hyperbolic and Y∓ has
non-trivial JSJ decomposition; see Remark 8.10 for more details.

Evidence for Conjecture 1.1 is provided by the metatheorem and Theorem 1.2, as well as
Corollary 1.16, and Corollary 4.3 below. Conjecture 1.1 is analogous to [Gor81, Conjecture 1.1],
which states that the preorder on the set of knots in S3 by ribbon concordance is a partial order.

Remark 1.4. Another major open problem regarding ribbon concordance is the Slice–Ribbon
Conjecture. In a similar spirit, a natural question to ask is whether a Z-homology sphere bounding
a Z-homology 4-ball always bounds a Z-homology 4-ball without 3-handles.

We now turn to some new applications. We begin with an application to Seifert fibered homology
spheres that illustrates the use of several different tools described above.

Theorem 1.5. Suppose that Y− and Y+ are the Seifert fibered homology spheres Σ(a1, . . . , an) and
Σ(a′

1, . . . , a
′
m) respectively, and that there exists a ribbon Q-homology cobordism from Y− to Y+.

Then

(1) The Casson invariants of Y− and Y+ satisfy |λ(Y−)| ≤ |λ(Y+)|;
(2) Either Y− and Y+ both bound negative-definite plumbings, or both bound positive-definite

plumbings; and
(3) The numbers of exceptional fibers satisfy n ≤ m.

The first two items above can be proved with either instanton or Heegaard Floer homology using
Metatheorem (C). However, the authors do not know of a Floer-homology proof of (3).

Next, we have applications to ribbon concordance. Recall that a strongly homotopy-ribbon
concordance is a knot concordance in S3 × I whose exterior is ribbon.1

Corollary 1.6. Suppose that K− and K+ are Montesinos knots in S3 of determinant 1, and that
the number of rational tangles in K− with denominator at most 2 is greater than that of K+. Then
there does not exist a strongly homotopy-ribbon concordance from K− to K+.

Recall that a knot in S3 is small if there are no closed, non–boundary-parallel, incompressible
surfaces in its exterior, and that torus knots are small.

Corollary 1.7. Suppose that K− is a composite knot in S3, and that K+ is a small knot in S3.
Then there does not exist a strongly homotopy-ribbon concordance from K− to K+.

1All ribbon concordances are strongly homotopy-ribbon.
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We also obtain applications to reducible Dehn surgery problems. The following is a sample
theorem; see Section 9 for its proof, as well as another similar result. The same techniques can be
used to obtain other results along the same lines, which we do not pursue in this article.

Theorem 1.8. Suppose that Y is an irreducible Q-homology sphere, L is a null-homotopic link in
Y of ` components, and Y0(L) ∼= N ] `(S1 × S2), where Y0(L) denotes the result of 0-surgery along
each component of L. Then N is orientation-preserving homeomorphic to Y .

Remark 1.9. Since the first appearance of this article, Hom and the second author [HL20,
Corollary 1.2] have used Theorem 1.8 to show that when L is a knot, L must in fact be trivial.

Remark 1.10. The technique used to prove Theorem 1.8 can also be applied to the case where
Y is an L-space Z-homology sphere and L is a non-trivial knot. In this case, one could show that
Y0(L) does not contain an S1 × S2 summand, which follows from Ni [Ni13, p. 1144].

Finally, we also obtain an application to the computation of the Furuta–Ohta invariant λFO for
Z[Z]-homology S1 × S3’s [FO93].

Corollary 1.11. Suppose that Y− and Y+ are Z-homology spheres, and that W : Y− → Y+ is a

ribbon Q-homology cobordism, and that D(W ) is the Z[Z]-homology S1 × S3 obtained by gluing the

ends of D(W ) by the identity. Then λFO(D(W )) = λ(Y−). In particular, λFO(D(W )) agrees with
the Rokhlin invariant of Y− mod 2.

Remark 1.12. We believe that the proof of Corollary 1.11 can be adapted to show the analogous
statement λSW(D(W )) = −λ(Y−) for the Mrowka–Ruberman–Saveliev invariant λSW [MRS11].
This would verify the conjecture that λSW = −λFO [MRS11, Conjecture B], for Z[Z]-homology

S1 × S3’s that are of the form D(W ). See Remark 4.16 for more details.

Remark 1.13. Suppose that Y+ is a Z-homology sphere. Then for any Q-homology sphere Y−, a
ribbon Q-homology cobordism from Y− to Y+ is in fact a ribbon Z-homology cobordism, and the
existence of such a cobordism implies that Y− is also a Z-homology sphere. See Lemma 3.2 for the
proof. This is relevant, for example, to Theorem 1.5 and Corollary 1.11, as well as Theorem 4.1 and
Theorem 4.8 later.

To ease our discussion, we set up some conventions for the article.

Conventions. All 3- and 4-manifolds are assumed to be oriented and smooth, and, except in
Section 7.1, they are also assumed to be connected.2 Accordingly, we also assume that handle
decompositions of cobordisms between non-empty 3-manifolds have no 0- or 4-handles. We say
that a handle decomposition is ribbon if it has no 3-handles. We always denote the ends of a
ribbon homology cobordism by Y±; for results that hold for more general cobordisms, we typically
denote the cobordism by, for example, W : Y1 → Y2. All sutured manifolds are assumed to be
balanced. We denote by I the interval [0, 1]. Unless otherwise specified, all singular homologies have
coefficients in Z, instanton Floer homologies have coefficients in Q, and Heegaard Floer homologies
have coefficients in Z/2.

1.1. Context. In the seminal work of Gordon [Gor81] on ribbon concordance, the key theorem,
which is very special to the absence of 3-handles, is the following.

Theorem 1.14 (Gordon [Gor81, Lemma 3.1]). Let Y− and Y+ be compact 3-manifolds possibly
with boundary, and suppose that W : Y− → Y+ is a ribbon Q-homology cobordism. Then

2Connectedness is often not essential in our statements, but we impose it for ease of exposition.
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(1) The map ι∗ : π1(Y−) → π1(W ) induced by inclusion is injective; and
(2) The map ι∗ : π1(Y+) → π1(W ) induced by inclusion is surjective.

(While Gordon’s original statement is only for exteriors of ribbon concordances, the more general
result holds, as explained in this subsection.) Gordon uses the theorem above, combined with
various properties of knot groups, to study questions related to ribbon concordance.

Our employment of several different approaches above is motivated by two observations. First,
since Gordon’s work, there have been many breakthroughs in low-dimensional topology, including
the Geometrization Theorem for 3-manifolds, the applications of representation theory and gauge
theory, and, relatedly, the advent of Floer theory. Each of these constitutes a new, powerful tool
that can be applied in the context of ribbon homology cobordisms, and a major goal of the present
article is to systematically carry out these applications. In particular, we will develop obstructions
from these theories, which we will then use for topological gain.

Second, while the approaches reflect very different perspectives, there are interesting theoretical
connections between them. To illustrate this point, we discuss Theorem 1.14 further. This theorem
follows from the deep property of residual finiteness of 3-manifold groups together with the elegant
results of Gerstenhaber and Rothaus [GR62] on the representations of finitely presented groups to
a compact, connected Lie group G. (The residual finiteness of closed 3-manifold groups has only
been known after the proof of the Geometrization Theorem; this new development is the ingredient
that extends Gordon’s original statement to closed 3-manifolds in Theorem 1.14.) The statement
of Gerstenhaber and Rothaus can be reinterpreted as saying that the G-representations of π1(Y−)
extend to those of π1(W ), and Theorem 1.14 (2) implies that any non-trivial representation of π1(W )
determines a non-trivial representation of π1(Y+) by pullback. Thus, Theorem 1.14 naturally leads
to the study of the character varieties of Y±. Moving further, focusing on G = SU(2), we observe
that the SU(2)-representations of π1(Y±) are related to the instanton Floer homology of Y±. Like
instanton Floer homology, Heegaard Floer homology is defined by considering certain moduli spaces
of solutions; however, while they share many formal properties, the exact relationship between these
two theories remains somewhat unclear. Finally, we note that the Geometrization Theorem implies
that if Y± is geometric, its geometry can be determined from π1(Y±) in many situations.

In fact, apart from theoretical connections, there is considerable interplay among these perspectives
even in their applications. We direct the interested reader to Theorem 1.5, Remark 1.17, and
Remark 3.6 for a few examples.

1.2. Character varieties and ribbon homology cobordisms. As briefly mentioned above, the
proof of Theorem 1.14 requires understanding the relationship between G-representations of π1(Y±)
and π1(W ). Consequently, given a ribbon Q-homology cobordism W : Y− → Y+, we will also obtain
relations between the character varieties of Y− and Y+. Recall that for a group π and compact,
connected Lie group G (e.g. SU(2)), we can define the representation variety RG(π), which is the
set of G-representations of π; we can also quotient by the conjugation action to obtain the character
variety XG(π). For a path-connected space X, we will write RG(X) for RG(π1(X)), and XG(X) for
XG(π1(X)). As discussed above, we have the following proposition.

Proposition 1.15. Let Y− and Y+ be compact 3-manifolds possibly with boundary, and suppose
that W : Y− → Y+ is a ribbon Q-homology cobordism. Then any ρ− ∈ RG(Y−) can be extended to
an element ρW ∈ RG(W ) that pulls back to an element ρ+ ∈ RG(Y+), and distinct elements in
RG(Y−) corresponds to distinct elements in RG(Y+). The analogous statement for XG also holds.

See Proposition 2.1 for a restatement and proof. Recall that the Chern–Simons functional gives
an R/Z-valued function on RG(Y ); the image of this function is a finite subset of R/Z, which
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we call the G–Chern–Simons invariants of Y . Proposition 1.15 implies a relation between the
G–Chern–Simons invariants of Y− and Y+.

Corollary 1.16. Let Y− and Y+ be closed 3-manifolds, and suppose that there exists a ribbon
Q-homology cobordism from Y− to Y+. Then the set of G–Chern–Simons invariants of Y− is a
subset of that of Y+.

Remark 1.17. Stein manifolds provide a large family of 4-manifolds without 3-handles. It is
interesting to compare the discussion above with the work of Baldwin and Sivek [BS18], who
use instanton Floer homology to prove that if Y is a Z-homology sphere that admits a Stein
filling with non-trivial homology, then π1(Y ) admits an irreducible SU(2)-representation. In
comparison, if W : Y− → Y+ is a Stein Q-homology cobordism, and π1(Y−) admits a non-trivial
SU(2)-representation, then it extends to an SU(2)-representation of π1(W ) that pulls back to a
non-trivial SU(2)-representation of π1(Y+) by Proposition 1.15, which requires no gauge theory.

In fact, with a bit more work, we can compare the local structures of the character varieties. For
a path-connected space X and a representation ρ : π1(X) → G, recall that the Zariski tangent space
to XG(X) at the conjugacy class [ρ] is the first group cohomology of π1(X) with coefficients in the
adjoint representation associated to ρ, denoted by H1(X; Adρ); see Section 2.2 for more details.
Below, we also consider the zeroth group cohomology H0(X; Adρ).

Proposition 1.18. Let Y− and Y+ be compact 3-manifolds possibly with boundary, and suppose
that W : Y− → Y+ is a ribbon Q-homology cobordism. Fix ρ− ∈ RG(Y−), choose an extension
ρW ∈ RG(W ), and denote by ρ+ ∈ RG(Y+) the pullback of ρW . Suppose that dimRH

0(Y−; Adρ−
) =

dimRH
0(Y+; Adρ+

). Then

dimRH
1(Y−; Adρ−

) ≤ dimRH
1(W ; AdρW ) ≤ dimRH

1(Y+; Adρ+
).

This seemingly technical result, applied to ribbon Q-homology cobordisms between Seifert fibered
homology spheres, will be our avenue to prove Theorem 1.5 (3).

1.3. Floer homologies and ribbon homology cobordisms. Another way that representations
appear in 3- and 4-manifold topology is through instanton Floer homology, where we specialize
to G = SU(2) or SO(3). Recall that a Floer homology associates a vector space or module to a
3-manifold, and a linear transformation or homomorphism to a cobordism. In the case of instanton
Floer homology, the associated group comes roughly from counting SU(2) or SO(3) representations
of the fundamental group. Below, we state a theorem for the behavior of a general Floer homology
theory under ribbon homology cobordisms. In Section 4, we give results for most versions of Floer
homology with precise conditions on the 3-manifolds and the ribbon homology cobordism.

Theorem 1.19. Let F be one of the 3-manifold Floer homology theories discussed in Section 4. Let
Y− and Y− be compact 3-manifolds, and suppose that W : Y− → Y+ is a ribbon homology cobordism.
Then F (W ) includes F (Y−) into F (Y+) as a summand.3

Very recently, Zemke and his collaborators [Zem19c, MZ21, LZ19] have shown that ribbon
concordances induce injections on knot Heegaard Floer homology and Khovanov homology, and
this has led to several other interesting results [JMZ20, Sar20], including an exciting relationship
between knot Heegaard Floer homology and the bridge index [JMZ20, Corollary 1.9]. In the special
case that F is sutured Heegaard Floer homology, and W is the exterior of a strongly-homotopy
ribbon concordance, Theorem 1.19 recovers the results of Zemke [Zem19c, Theorem 1.1] and Miller

3For some flavors of Floer homology, we prove the weaker statement that F (Y−) is isomorphic to a summand of
F (Y+).
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and Zemke [MZ21, Theorem 1.2] on knot Heegaard Floer homology. (For a more precise statement,
see Corollary 4.13.)

While much of the work involving Floer homologies is inspired by the work of Zemke et al., our
proofs use a different argument that holds in a more general context.

Organization. In Section 2, we study the relationship between ribbon homology cobordisms
and character varieties, proving Proposition 1.15 and Proposition 1.18. In Section 3, we prove
Theorem 1.2, pertaining to Thurston geometries.

Next, in Section 4, we give the precise statements associated with Theorem 1.19, on the behavior
of various versions of Floer homology under ribbon homology cobordisms. The following three
sections are then devoted to proving these Floer-theoretic results. First, in Section 5, we give the
necessary topological background to analyze the double of a ribbon homology cobordism, and give a
short application to metrics with positive scalar curvature. In Section 6, after giving an overview
of the Chern–Simons functional (proving Corollary 1.16) and instanton Floer homology, we prove
Theorem 4.1 to Theorem 4.8 which are instantiations of Theorem 1.19 for instanton Floer homology,
as well as Corollary 1.11; we also outline a proof of one of these theorems via character varieties. In
Section 7, we set up the necessary tools for Heegaard Floer homology and prove Theorem 4.10 to
Theorem 4.15 which are versions of Theorem 1.19 for Heegaard Floer homology.

Combining the results above, in Section 8, we prove some specific obstructions that arise from
results discussed so far, including Theorem 1.5, Corollary 1.6, Corollary 1.7, and other statements.
Finally, in Section 9, we provide further applications of ribbon homology cobordisms to Dehn surgery
problems, proving Theorem 1.8.

We provide a few routes for the reader. The reader solely interested in character varieties,
Thurston geometries, or Dehn surgeries can read only Section 2, Section 3, or Section 9, respectively.
If the sole interest is in instanton Floer homology, then refer to Section 4, Section 5 and Section 6.
For Heegaard Floer homology, see Section 4, Section 5 and Section 7.
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2. The fundamental group and character varieties

In this section, we study the fundamental groups and character varieties of 3-manifolds related
by ribbon cobordisms.



RIBBON HOMOLOGY COBORDISMS 7

2.1. Background. Throughout, we let G denote a compact, connected Lie group. For a group π,
let RG(π) denote the space of G-representations. If X is a connected manifold, we write RG(X) for
RG(π1(X)). We write XG(π) for the set of conjugacy classes of G-representations. We will omit G
from the notation when G = SU(2).

We first prove the following proposition, which is a restatement of Theorem 1.14 and Proposi-
tion 1.15. The argument, using work of Gerstenhaber and Rothaus [GR62], repeats that of Gordon
[Gor81] and also that of Cornwell, Ng, and Sivek [CNS16].

Proposition 2.1. Let Y− and Y+ be compact 3-manifolds possibly with boundary, and suppose
that W : Y− → Y+ is a ribbon Q-homology cobordism. Then the inclusion ι+ : Y+ → W induces
a surjection (ι+)∗ : π1(Y+) → π1(W ) and an injection ι∗+ : RG(W ) → RG(Y+), and the inclusion
ι− : Y− → W induces an injection (ι−)∗ : π1(Y−) → π1(W ) and a surjection ι∗− : RG(W ) → RG(Y−).

Proof. Since W consists entirely of 1- and 2-handles, we may flip W upside down and view it as a
cobordism from −Y+ to −Y−. From this perspective, W is obtained by attaching 2- and 3-handles to
−Y+. It follows that the inclusion from −Y+ into W induces a surjection from π1(−Y+) to π1(W ).

For ι− : Y− → W , we will prove the second claim first. Choose a representation ρ : π1(Y−) → G.
Since W is a Q-homology cobordism, it admits a handle decomposition with an equal number m of
1- and 2-handles. This allows us to write π1(W ) ∼= (π1(Y−) ∗ 〈b1, . . . , bm〉)/⟪v1, . . . , vm⟫, where the
generators bi are induced by the 1-handles and the relators vi are induced by the 2-handles. The
words vi induce a map K : Gm → Gm, and the existence of an extension of ρ to π1(W ) is equivalent
to solving the equation K = ~e. (To handle the elements in π1(Y−) that appear in vi, we apply ρ to
the element to view it in G.) By quotienting out by π1(Y−), each element vi induces a word v′

i in
the free group 〈b1, . . . , bn〉. Consider the matrix B whose (ij)th coordinate is the signed number of
times that bj appears in v′

i. Since H1(W,Y−;Q) = 0, we see that det(B) 6= 0. It now follows from
[GR62, Theorem 1] that there exists a solution to the equation K = ~e.

Now we show that the inclusion map (ι−)∗ from π1(Y−) to π1(W ) is injective. The residual
finiteness property of 3-manifold groups implies that for any non-trivial x ∈ π1(Y−), there exists a
finite quotient H of π1(Y−) by a normal subgroup N such that x /∈ N . We claim that the induced

map (ι−)∗ : H → π1(W )/⟪(ι−)∗(N)⟫ is injective; this will imply that (ι−)∗(x) is a non-trivial element
of π1(W ). To prove our claim, note that π1(W )/⟪(ι−)∗(N)⟫ ∼= (H ∗ 〈b1, . . . , bm〉)/⟪v′′

1 , . . . , v
′′
m⟫,

where v′′
i is obtained from vi by reducing the elements in π1(Y−) to H. Now [GR62, Theorem 2]

says that there is a finite extension H̃ containing elements β1, . . . , βm such that v′′
i (β1, . . . , βm) = e

for each i ∈ {1, . . . ,m}. In other words, there is a homomorphism Φ: π1(W )/⟪(ι−)∗(N)⟫→ H̃ such

that Φ ◦ (ι−)∗ is the inclusion of H into H̃. This implies that (ι−)∗ is injective, and our proof is
complete. �

Corollary 2.2. Let Y− and Y+ be compact 3-manifolds possibly with boundary, and suppose that
W : Y− → Y+ is a ribbon Q-homology cobordism. If XG(Y+) is finite, then XG(Y−) is finite.

Proof. This is a direct consequence of Proposition 2.1. �

In the next subsection, we give a more structured comparison of the character varieties with a bit
more work.

2.2. Group cohomology computations and Zariski tangent spaces. We briefly review some
definitions and constructions in group cohomology; see [Bro94] for more details. Let π be a group
and let M be a Z[π]-module. The group cohomology H∗(π;M) with coefficients in M is defined by
taking a projective Z[π]-resolution · · · → P1 → P0 → Z of Z, where Z has the Z[π]-module structure
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where π acts by the identity. Then C∗(π;M) is defined by applying HomZ[π](−,M), and omitting
Z, as in

0 → HomZ[π](P0,M) → HomZ[π](P1,M) → · · · ,

and H∗(π;M) is the cohomology of this cochain complex. A natural way of constructing a free
resolution of Z is as follows. Consider an aspherical CW complex X with π1(X) = π, and lift this

to a CW structure on the universal cover X̃. Then, the (augmented/reduced) CW chain complex

for X̃ naturally inherits a Z[π]-module structure, where π acts by the deck transformation group
action, and this is a free Z[π]-resolution of Z. (The lift of an individual cell in X yields a π’s worth
of cells upstairs, and these constitute a single copy of Z[π] in the cellular chain complex for the
universal cover.) Recall that a presentation π = 〈aα |wβ〉 determines a CW structure on X with
one 0-cell, one 1-cell e1

α for each generator aα, and one 2-cell e2
β for each relator wβ ; then H∗(π;M)

can be computed from a cochain complex with Abelian groups

C0(π;M) = HomZ[π](Z[π],M) ∼= M, C1(π;M) ∼=
∏

α

M, C2(π;M) ∼=
∏

β

M,

and possibly non-trivial higher cochain groups Ci(π;M) for i > 2 that we will not be concerned
with. The (αβ)th component of the differential from C1(π;M) to C2(π;M) is non-zero only if aα
appears in wβ. Indeed, in X, if e1

α ∩ e2
β = ∅, then the same is true in the universal cover.

Now, given a representation ρ ∈ RG(π), we can consider the Z[π]-module Adρ, which is the
Lie algebra g of G with the Z[π]-action where π acts by the composition of ρ and the adjoint
representation. Note that Adρ is in fact an R[π]-module, and so H∗(π; Adρ) is an R–vector space.
Recall also that H1(π; Adρ) is the Zariski tangent space of XG(π) at [ρ]. We are now ready to show
that ribbon homology cobordisms induce relations between the Zariski tangent spaces.

Proof of Proposition 1.18. We begin by comparing dimRH
1(W ; AdρW ) and dimRH

1(Y+; Adρ+
).

First, we recall the inflation–restriction exact sequence in group cohomology (see, for example,
[Wei94, 6.8.3]), which says that, given a normal subgroup N of π and a Z[π]-module M , there exists
an injection of H1(π/N ;MN ) into H1(π;M), where MN is the subgroup of elements of M fixed by
the action of π restricted to N . It is clear that MN naturally inherits a Z[π/N ]-module structure.
(Further, if M actually has an R[π]-module structure, then everything respects the R–vector space
structures.)

In our case, we take π = π1(Y+), take N to be the kernel of the quotient map from π1(Y+) to
π1(W ), and take M = Adρ+

; then (Adρ+
)N is a Z[π1(W )]-module. By construction, N ⊂ ker(ρ+) ⊂

ker(Ad ◦ρ+); thus, N acts by the identity on Adρ+
, and so (Adρ+

)N is in fact AdρW . Therefore, we

conclude that dimRH
1(W ; AdρW ) ≤ dimRH

1(Y+; Adρ+
).

Next, we consider the restriction of ρW to π1(Y−). Suppose that π1(Y−) has a presentation of the
form π1(Y−) = 〈a1, . . . , ag |w1, . . . , wr〉. (We do not require Y± to be closed, and so there may not
exist a balanced presentation.) Then π1(W ) admits a presentation of the form

π1(W ) = 〈a1, . . . , ag, b1, . . . , bm |w1, . . . , wr, v1, . . . , vm〉 .

As discussed above, H∗(Y−; Adρ−
) is the cohomology of a cochain complex of the form

(2.3) 0 → g
ψ
−→

g⊕

i=1

g
φ
−→

r⊕

j=1

g → · · · .

Thus, H0(Y−; Adρ−
) = ker(ψ), and dimRH

1(Y−; Adρ−
) = dimR ker(φ) − dimR im(ψ). We consider

a similar setup for π1(W ), where C1(W ; AdρW ) (resp. C2(W ; AdρW )) has g+m (resp. r+m) copies
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of g, and write ψ′ and φ′ for the associated differentials. It is obvious now that the condition
dimRH

0(Y−; Adρ−
) = dimRH

0(W ; AdρW ) implies that dimR im(ψ) = dimR im(ψ′).
We now aim to compare H1(Y−; Adρ−

) and H1(W ; AdρW ). Note that we have an R–vector space

decomposition Ci(W ; AdρW ) = Ci(Y−; Adρ−
) ⊕ gm for i ∈ {1, 2}. Since the relators w1, . . . , wr do

not interact with the m additional generators in π1(W ), we have a block decomposition

φ′ =

(
φ 0
η γ

)
.

Writing dimR g = d, we note that η is a (dm× dg)-matrix and γ is a (dm× dm)-matrix. We deduce

dimRH
1(Y−; Adρ−

) = dimR ker(φ) − dimR im(ψ)

= dg − dimR im(φ) − dimR im(ψ)

= dg + dm− (dimR im(φ) + dm) − dimR im(ψ′)

≤ d(g +m) − dimR im(φ′) − dimR im(ψ′)

= dimR ker(φ′) − dimR im(ψ′)

= dimRH
1(W ; AdρW ),

which completes the proof. �

3. Thurston geometries

In this section, we study the relationship between ribbon Q-homology cobordisms between
compact 3-manifolds and the Thurston geometries that these manifolds admit.

We first prove a homology version of Theorem 1.14.

Lemma 3.1. Let Y− and Y+ be compact 3-manifolds possibly with boundary, and suppose that
W : Y− → Y+ is a ribbon Q-homology cobordism. Then

(1) The inclusion of Y− into W induces an injection on H1; and
(2) The inclusion of Y+ into W induces a surjection on H1.

Proof. For (1), view W as constructed by attaching 1- and 2-handles to Y−; the fact that W is a
Q-homology cobordism implies that the attaching circles of the 2-handles are linearly independent
in H1(Y− ] m(S1 × S2))/H1(Y−), implying that H2(W,Y−) = 0. The statement now follows from
the long exact sequence associated to the pair (W,Y−).

The statement (2) follows from Abelianizing the statement of Theorem 1.14 (2). �

This has the following consequence, explaining Remark 1.13:

Lemma 3.2. Suppose that Y− and Y+ are Q-homology spheres such that H1(Y−) and H1(Y+) are
isomorphic. Then any ribbon Q-homology cobordism from Y− to Y+ is in fact a ribbon Z-homology
cobordism. In particular, in view of Lemma 3.1, the same conclusion holds in the case that Y+ is a
Z-homology sphere.

Proof. First note that for any ribbon Q-homology cobordism, we have H2(W,Y−) = H3(W,Y−) = 0,
by considering the attachment of 1- and 2-handles to Y− to form W . Analogously, we also have
H1(W,Y+) = H3(W,Y+) = 0. Thus, in general, the only possibly nonzero relative homology groups
are H1(W,Y−) ∼= H2(W,Y+), which are torsion. (These are isomorphic via H2(W,Y−).)

When H1(Y−) ∼= H1(Y+), Lemma 3.1 implies that H1(Y−), H1(W ), and H1(Y+) all have the
same finite cardinality, and so the injection of H1(Y−) into H1(W ) must be an isomorphism; thus,
H1(W,Y−) = 0. �
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The authors thank Cameron Gordon for pointing out that Lemma 3.2 is false when b1(Y−) > 0;
this case was mistakenly included in a previous version.

We now turn to the key lemma that relates π1(Y−) and π1(Y+) under a ribbon Q-homology
cobordism.

Lemma 3.3. Let P be one of the following properties of groups:

(1) Finite;
(2) Cyclic;
(3) Abelian;
(4) Nilpotent;
(5) Solvable; or
(6) Virtually P ′, where P ′ is one of the properties above.

Let Y− and Y+ be compact 3-manifolds. Suppose that π1(Y+) has property P, while π1(Y−) does not.
Then there does not exist a ribbon Q-homology cobordism from Y− to Y+.

Proof. Suppose that there exists a ribbon Q-homology cobordism W : Y− → Y+. By Theorem 1.14,
π1(Y−) is a subgroup of π1(W ), which is a quotient of π1(Y+). For (1) to (5), the lemma is now
evident. For (6), a simple algebraic argument shows that if P ′ is a property inherited by subgroups
(resp. quotients), then so is the property “virtually P ′”. �

Let Y be a compact 3-manifold with empty or toroidal boundary. These are the only cases that
we will be interested in. Then according to [AFW15, Theorem 1.11.1], Y belongs to one of the
classes in Figure 1 (if Y is closed) or Figure 2 (if Y has toroidal boundary). Indeed, if Y is spherical

or has a finite solvable cover Ỹ that is a torus bundle, then Y is obviously closed. In the latter
case, by [AFW15, Theorem 1.10.1], Ỹ admits either a Euclidean, Nil-, or Sol-geometry; by [AFW15,
Theorem 1.9.3], Y is itself geometric, and, according to [AFW15, Table 1.1], also admits one of
these geometries. That the last rows of Figure 1 and Figure 2 encompass all remaining cases is a
consequence of the Geometric Decomposition Theorem; see [AFW15, Theorem 1.9.1]. Note that
five out of seven (S2 × R)-manifolds [Sco83, p. 457] either have S2 as a boundary component or are
not orientable; the other two are S1 × S2 and RP3 ] RP3. Also, if Y is geometric and has toroidal
boundary, and is not homeomorphic to K ×̃ I, S1 ×D2, or T 2 × I, then it must have (H2 × R)-,
˜SL(2,R)-, or hyperbolic geometry.

Theorem 3.4. Suppose that Y− and Y+ are compact 3-manifolds with empty or toroidal boundary
that belong to distinct classes in Figure 1 or Figure 2, such that there does not exist a sequence
of arrows from the class of Y− to the class of Y+. Then there does not exist a ribbon Q-homology
cobordism from Y− to Y+.

Proof. We begin by inspecting Figure 1, which consists of two columns corresponding to whether
π1(Y ) is finite; we call them the finite column and the infinite column respectively. Focusing on each
of these columns separately, successive application of Lemma 3.3 shows that there are no arrows
that point up. Of course, one must check that the manifolds in each class indeed have fundamental
groups that are characterized by the property on the left. For the finite column, Y is a lens space if
and only if π1(Y ) is cyclic, and π1(Y ) is solvable unless it is the direct sum of a cyclic group and the
binary icosahedral group P120 (in which case Y is known as a type-I manifold); the only spherical
3-manifold with fundamental group P120 is the Poincaré homology sphere Σ(2, 3, 5). See [AFW15,
Section 1.7] for a discussion. For the infinite column, the classification by π1 follows from [AFW15,
Table 1.1 and Table 1.2]; the fact there are no arrows between RP3 ] RP3 and S1 × S2 reflects the
fact that their Q-homologies have different ranks.
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π1(Y ) is finite and ... π1(Y ) is infinite and virtually ...

trivial Y ∼= S3

cyclic but
not trivial

Y is a lens space Y ∼= RP3 ] RP3 Y ∼= S1 × S2

Abelian but
not cyclic

Y is Euclidean

nilpotent but
not Abelian Y is spherical and

not cyclically covered

by S3 or Σ(2, 3, 5)4

Y admits a Nil-geometry

solvable but
not nilpotent Y admits a Sol-geometry

not solvable
Y is cyclically

covered by Σ(2, 3, 5)

Y admits an (H2 × R)-,

˜SL(2,R)-, or hyperbolic
geometry, or Y admits a

non-trivial geometric
decomposition, or Y is

not prime (and not RP3 ] RP3)

Figure 1. Hierarchy of ribbon Q-homology cobordisms of closed 3-manifolds. For
3-manifolds with infinite π1, the adverb “virtually” applies to all adjectives in the
leftmost column. (For example, the fundamental group of a Euclidean manifold is
virtually Abelian but not virtually cyclic.)

π1(Y ) is infinite and virtually ...

solvable Y ∼= S1 ×D2 Y ∼= K2 ×̃ I Y ∼= T 2 × I

not solvable Y admits an (H2 × R)-, ˜SL(2,R)-, or hyperbolic geometry,
or Y admits a non-trivial geometric decomposition, or Y is not prime

Figure 2. Hierarchy of ribbon Q-homology cobordisms of compact 3-manifolds
with toroidal boundary.

We now move on to arrows between the two columns. First, there are clearly no arrows from the
infinite to the finite column. Also, the ranks of the Q-homologies obstruct any arrow from the finite
column to S1 × S2. The only remaining obstructions are as follows. There are no arrows

(1) From lens spaces to RP3 ] RP3. Indeed, Lemma 3.1 implies that H1(Y−) is a subgroup of a
quotient of H1(RP3 ]RP3), and thus can only be the trivial group, Z/2, or Z/2 ⊕Z/2. Since
Y− is a lens space, it has non-trivial cyclic H1; thus, H1(Y−) ∼= Z/2. Suppose there exists
a ribbon Q-homology cobordism from Y− to RP3 ] RP3; then (−Y−) ] RP3 ] RP3 bounds a
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Q-homology ball. This implies that |H1(−Y− ] RP3 ] RP3)| = 8 is a perfect square, which is
a contradiction.

(2) From spherical manifolds that are not cyclically covered by S3 to RP3 ] RP3.5 Here, Y−

is a non–lens space spherical manifold. Recall that such a manifold has π1 isomorphic to
a central extension of a polyhedral group, which in particular is a non-cyclic group, with
elements of order 4, that does not embed into a dihedral group; see [AFW15, Section 1.7]
and [Orl72, Section 6.2]. Suppose there exists a ribbon Q-homology cobordism from Y−

to RP3 ] RP3; then Theorem 1.14 implies that π1(Y−) is a subgroup of a quotient of
π1(RP3 ] RP3) ∼= Z/2 ∗ Z/2. However, it is an elementary exercise to see that each quotient
of Z/2 ∗ Z/2 is either a cyclic group, a dihedral group, or itself (which does not contain
elements of order 4). In any case, π1(Y−) cannot be a subgroup of a quotient of Z/2 ∗ Z/2,
which is a contradiction.

(3) From type-I manifolds to any manifold with solvable π1; for manifolds in the infinite column,
these are exactly the ones with virtually solvable π1 (see [AFW15, Theorem 1.11.1]), i.e. all
classes except the one in the last row.

For Figure 2, it suffices to observe that, in the first row, the Q-homology of T 2 × I differs from
those of S1 ×D2 and K2 ×̃ I, and Lemma 3.1 shows that there is no ribbon Q-homology cobordism
from K2 ×̃ I to S1 ×D2. �

Remark 3.5. It is easy to construct a ribbon Q-homology cobordism from S1 ×D2 to K2 ×̃ I.

Remark 3.6. Boyer, Gordon, and Watson [BGW13, Theorem 2] show that all Q-homology spheres
with Sol-geometry are L-spaces. By Corollary 8.11, there do not exist ribbon Z/2-homology
cobordisms from any Q-homology sphere that is not an L-space to a manifold that admits a Sol-
geometry. Observe that this is consistent with Figure 1, since Q-homology spheres with spherical,
(S2 × R)-, Euclidean, and Nil-geometry are also L-spaces [BGW13, Proposition 5].

4. Statements of results on Floer homologies

In the next few sections of this article, we will prove a number of results of the following flavor:
If W : Y− → Y+ is a ribbon homology cobordism, then F (Y−) is a summand of F (Y+), where F
is a version of Floer homology (e.g. sutured instanton Floer homology, involutive Heegaard Floer
homology, etc.). In the theorems below, we give the precise statements, which have varying technical
hypotheses and conclusions. However, the rough idea is the same throughout and indeed quite
simple, which is to show that the double D(W ) of W induces an isomorphism on Floer homology.
All cobordism maps and isomorphisms can easily be checked to be graded; we leave this task to the
reader, although we do use this fact in Theorem 1.5 and Corollary 8.12 below.

We begin with results for instanton Floer homology. We start with Floer’s original homology I
for Z-homology spheres [Flo88].

Theorem 4.1. Let Y− and Y+ be Z-homology spheres, and suppose that W : Y− → Y+ is a ribbon
Q-homology cobordism. Then the cobordism map I(D(W )) : I(Y−) → I(Y−) is the identity map up
to a sign, and I(W ) includes I(Y−) into I(Y+) as a summand.

4For this class, π1(Y ) is solvable but not Abelian; it is nilpotent if and only if it is a direct sum of a cyclic group and
the generalized quaternion group Q2n ; all such manifolds Y are prism (i.e. type-D) manifolds. One could accordingly
stratify the class into two classes with an arrow between them.

5An alternative proof can be given here as follows. First deduce that H1(Y−) ∼= Z/2 ⊕ Z/2 with an argument
involving perfect squares, which implies that the ribbon Q-homology cobordism is a Z-homology cobordism. Then
observe that by [Doi15, Example 15], the set of d-invariants of Y− does not match that of RP3 ] RP3, a contradiction.
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Next, we have an analogous statement for the framed instanton Floer homology I] [KM11b].

Theorem 4.2. Let Y− and Y+ be closed 3-manifolds, and suppose that W : Y− → Y+ is a ribbon
Q-homology cobordism. Then the cobordism map I](D(W )) : I](Y−) → I](Y−) satisfies

I](D(W )) = |H1(W,Y−)| · II](Y−)

up to a sign, and I](W ) includes I](Y−) into I](Y+) as a summand.

Theorem 4.2 implies the following corollary, which may also be proved using Theorem 4.10 below
for ribbon Z/2-homology cobordisms.

Corollary 4.3. Let Y− and Y+ be closed 3-manifolds, and suppose that there exists a ribbon
Q-homology cobordism from Y− to Y+. Then the unit Thurston norm ball of Y− includes that of Y+.

Proof. This follows from the fact that I] detects the Thurston norm [KM10], together with the
fact that a ribbon Q-homology cobordism induces a concrete identification between H2(Y−;Q) and
H2(Y+;Q). �

The following is an analogue for the sutured instanton Floer homology SHI [KM10]. Here and
below, by a cobordism between sutured manifolds, we mean a cobordism obtained by attaching
interior handles to a product cobordism; this means that the 3-manifolds have isomorphic sutured
boundaries. This definition is narrower than the one used by Juhász [Juh16]. See Definition 6.10 for
a precise definition.

Theorem 4.4. Let (M−, η−) and (M+, η+) be sutured manifolds, and suppose that N : (M−, η−) →
(M+, η+) is a ribbon Q-homology cobordism. Then the cobordism map SHI(D(N)) : SHI(M−, η−) →
SHI(M−, η−) satisfies

SHI(D(N)) = |H1(N,M−)| · ISHI(M−,η−)

up to a sign, and SHI(N) includes SHI(M−, η−) into SHI(M+, η+) as a summand.

Recall that for a knot K in a closed 3-manifold Y , the sutured instanton Floer homology of the
exterior of K is also denoted by KHI(Y,K) [KM10]. By the isomorphism between KHI and the
reduced singular knot instanton Floer homology I\ [KM11a], Theorem 4.4 implies the following
result.

Corollary 4.5. Let Y− and Y+ be closed 3-manifolds, and let K− and K+ be knots in Y− and
Y+ respectively. Suppose that there exists a concordance C : K− → K+ in a cobordism W : Y− →
Y+, such that the exterior of C is a ribbon Q-homology cobordism. Then the cobordism map
I\(D(W ), D(C)) : I\(Y−,K−) → I\(Y−,K−) satisfies

I\(D(W ), D(C)) = |H1(W,Y−)| · II\(Y−,K−)

up to a sign, and I\(W,C) includes I\(Y−,K−) into I\(Y+,K+) as a summand.

Remark 4.6. Sherry Gong has informed the authors of a direct proof of a version of Corollary 4.5
with coefficients in Z for concordances in Y− × I, without appealing to the isomorphism between
KHI and I\.6 Kang [Kan22] has very recently provided a general proof of Corollary 4.5 for conic
strong Khovanov–Floer theories for concordances in S3 × I, which may be used to recover the
version of Corollary 4.5 for ribbon concordances in S3 × I.

6Since the first appearance of this article, a version of Gong’s argument has appeared in the work of Kronheimer
and Mrowka [KM21, Theorem 7.4].
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Remark 4.7. One can easily see that the double cover of S3 × I branched along the concordance is
a ribbon Z/2-homology cobordism, and so Theorem 4.2 applies to show an inclusion of I](Σ2(K−))
into I](Σ2(K+)), for knots K− and K+ in S3. A similar statement holds for surgeries along K±.
We omit these statements for brevity.

We also provide a version for equivariant instanton Floer homologies [Don02, Dae20]. Denote by

I◦ any of the equivariant instanton Floer homologies qI, Î, and I.7 (We adopt the notation in [Dae20]
for these homologies.)

Theorem 4.8. Let Y− and Y+ be Z-homology spheres, and suppose that W : Y− → Y+ is a ribbon
Q-homology cobordism. Then the cobordism map I◦(W ) includes I◦(Y−) into I◦(Y−) as a summand.

Remark 4.9. Equivariant instanton Floer homologies can be extended to Q-homology spheres
(with certain auxiliary data) [Mil19, AB96]. We expect (but do not prove) that Theorem 4.8 holds
also for these extensions.

We now turn to Heegaard Floer homology [OSz04c]. Denote by HF◦ any of the Heegaard Floer

homologies ĤF, HF+, HF−, and HF∞, and by F ◦
W the corresponding cobordism map.

Theorem 4.10. Let Y− and Y+ be closed 3-manifolds, and suppose that W : Y− → Y+ is a ribbon
Z/2-homology cobordism. Then the cobordism map F ◦

W includes HF◦(Y−) into HF◦(Y+) as a

summand. In fact, F̂D(W ) : ĤF(Y−) → ĤF(Y−) is the identity map.

Remark 4.11. We also provide a Spinc-refinement of Theorem 4.10; see Theorem 7.9 for the precise
statement.

As in instanton Floer theory, there is also a version for the sutured Heegaard Floer homology
SFH [Juh06]. We expect that the stated isomorphism below coincides with the cobordism map
defined by Juhász [Juh16], although we do not prove it.

Theorem 4.12. Let (M−, η−) and (M+, η+) be sutured manifolds, and suppose that there exists a
ribbon Z/2-homology cobordism from (M−, η−) to (M+, η+). Then SFH(M−, η−) is isomorphic to a
summand of SFH(M+, η+).

As in Corollary 4.5, by the isomorphism [Juh06, Proposition 9.2] between the knot Heegaard Floer

homology ĤFK [OSz04a, Ras03] of a null-homologous knot and SFH of its exterior, Theorem 4.12
immediately implies the following statement for such concordances. This recovers a version of the
results in [Zem19c] and [MZ21] when the concordance is in S3 × I;8 again, we do not prove that the
stated isomorphism coincides with the knot cobordism map.

Corollary 4.13 (cf. [Zem19c, Theorem 1.1] and [MZ21, Theorem 1.2]). Let Y− and Y+ be closed
3-manifolds, and let K− and K+ be null-homologous knots in Y− and Y+ respectively. Suppose that
there exists a concordance from K− to K+ in a cobordism from Y− to Y+, whose exterior is a ribbon

Z/2-homology cobordism. Then ĤFK(Y−,K−) is isomorphic to a summand of ĤFK(Y+,K+). �

Remark 4.14. Corollary 4.13 has been used to obtain a genus bound on knots related by ribbon
concordance [Zem19c, Theorem 1.5] analogous to Corollary 4.3, and on band connected sums of
knots [Zem19c, Theorem 1.6]; Corollary 4.5 provides an alternative proof of these results using knot
instanton Floer homology. It also recovers the well-known theorem that, if a ribbon concordance
exists in S3 × I from K− to K+, where K− and K+ have the same genus, then the fiberedness of
K+ implies that of K−.

7The homologies qI, Î, and I may be viewed as analogues of HF+, HF−, and HF∞ respectively.
8Note that the exterior of a concordance in S3

× I is a Z-homology cobordism.
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As explained in Remark 4.7, one could also use Theorem 4.10 to obtain analogous statements for
HF◦ of certain cyclic covers of S3 branched along K±, and for surgeries along K±.

We also give an extension for the involutive Heegaard Floer homology ĤFI [HM17].

Theorem 4.15. Let Y− and Y+ be closed 3-manifolds, and suppose that there exists a ribbon

Z-homology cobordism from Y− to Y+. Then ĤFI(Y−) is isomorphic to a summand of ĤFI(Y+).

The rough strategy for proving all of the theorems above is fairly straightforward. First, a
topological argument (Proposition 5.1 below) shows that D(W ) is given by surgery along a collection
of m loops in (Y− × I) ] m(S1 × S3). By using surgery formulas, it can be shown that the induced
map for D(W ) is the same as that for the 4-manifold obtained by surgering along the m cores of
the S1 × S3 summands, which is just Y− × I. Of course, this induces the identity map.

We will also outline an alternative proof of Theorem 4.1 in Section 6.7 that passes more directly
through the fundamental group and Theorem 1.14.

Remark 4.16. We expect the analogue of Theorem 4.10 to hold also for the monopole Floer

homology groups }HM, ĤM, and HM [KM07]. Note that by the isomorphisms between Heegaard and
monopole Floer homologies [KLT, CGH11, Tau10], we already know that HM◦(Y−) is isomorphic
to a summand of HM◦(Y+). In order to prove that the isomorphism coincides with the cobordism
map, one could, for example, prove a surgery formula analogous to Proposition 7.2 for monopole
Floer homology. Although we expect that this surgery formula holds for monopole Floer homology
(especially because an analogous result holds for a variation of Bauer–Furuta invariants [KLS20,
Example 1.4]), we do not give a proof of this result for brevity.

We also expect an analogue of Corollary 1.11 to hold for the Mrowka–Ruberman–Saveliev invariant
λSW [MRS11]. Using the splitting theorem [LRS18], we have

λSW(D(W )) = − Lef(HMred(D(W ))) − h(Y−),

where h is the monopole Frøyshov invariant. Since the Casson invariant of Y− can alternatively be

computed as χ(HMred(Y−)) + h(Y−), we would obtain that λSW(D(W )) = −λ(Y−). In particular,

we have λSW(D(W )) = −λFO(D(W )). This would verify [MRS11, Conjecture B] for the 4-manifolds

with the Z[Z]-homology of S1 × S3 that have the form D(W ).

5. Topology of the double of a ribbon cobordism

Recall that the double D(W ) of a cobordism W : Y1 → Y2 is formed by gluing W and −W along
Y2. In analogy with the arguments used in ribbon concordance, our strategy to prove Theorem 4.1,
Theorem 4.2, and Theorem 4.10 will be to prove the cobordism map on Floer homology induced by
D(W ) is an isomorphism, when W is ribbon. First, we need a topological description of D(W ). In
what follows, we will use F to denote any field. Note that a ribbon F-homology cobordism has the
same number of 1- and 2-handles.

Proposition 5.1. Let Y− and Y+ be compact 3-manifolds, and suppose that W : Y− → Y+ is a
ribbon cobordism, where the number of 1-handles is m, and that of 2-handles is `. Then D(W ) can
be described by surgery on X ∼= (Y− × I) ]m(S1 ×S3) along ` disjoint simple closed curves γ1, . . . , γ`.

Suppose that, in addition, W is also an F-homology cobordism, and denote by αi ∈ H1(X) the
homology class of the core of the ith S1 × S3 summand. Then, writing

[γj ] = σj +
m∑

i=1

cijαi, σj ∈ H1(Y−),
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we have that the matrix (cij) ⊗Z F is invertible over F, and |det(cij)| = |H1(W,Y−)|; in particular,

[γ1] ∧ · · · ∧ [γ`] = det(cij) · α1 ∧ · · · ∧ α` ∈ (Λ∗(H1(X)/Tors)/〈H1(Y−)/Tors〉) ⊗Z F,

where 〈H1(Y−)/Tors〉 is the ideal generated by H1(Y−)/Tors, is an equality of non-zero elements.

Of course, working with elements in Λ∗(H1(X)/Tors)/〈H1(Y−)/Tors〉 is the same as first pro-
jecting H1(X) to the submodule corresponding to the S1 × S3 summands and then working in the
exterior algebra there. See Figure 3 for a schematic diagram when m = 1.

Y− Y−X \ ν(γ)

S1 ×D3 D2 × S2

Figure 3. An illustration of Proposition 5.1 in the case of m = ` = 1. Here,
ν(γ) denotes a neighborhood of γ. Reattaching the S1 × D3 would yield X ∼=
(Y− × I) ] (S1 × S3), while we may obtain D(W ) by switching it for the D2 × S2.

Before we prove Proposition 5.1, we first establish an elementary fact.

Lemma 5.2. Let M1 and M2 be (n− 1)-manifolds, and suppose that N : M1 → M2 is a cobordism
associated to attaching an n-dimensional k-handle h. Then the double D(N) can be described by
surgery on M1 × [−1, 1] along some Sk−1 ⊂ M1 × {0} given by the attaching sphere of h.

Proof. Write D(N) = (M1 × [−1, 0]) ∪ h ∪ h′ ∪ (M1 × [0, 1]), where h′ is the dual handle of h. The
cocore of h and the core of h′ together form an Sn−k with trivial normal bundle, which may be
identified with h ∪ h′. (The case where n = 4 and k = 2 is described, for example, in [GS99,
Example 4.6.3].) Note that h meets the lower M1 × [−1, 0], and h′ meets the upper M1 × [0, 1], at
the same attaching region Sk−1 ×Dn−k ⊂ M1 × {0}, with the same framing. Thus, removing h∪ h′

from D(N) would result in (M1 × [−1, 1]) \ (Sk−1 ×Dn−k × (−ε, ε)). In other words, D(N) may be
formed by removing Sk−1 ×Dn−k × (−ε, ε) ∼= Sk−1 ×Dn−k+1 from M1 × [−1, 1] and replacing it
with h ∪ h′ ∼= Dk × Sn−k, which is the definition of surgery. �

In the case where n = 4 and k = 2, the handles h and h′ above can be described by a Kirby
diagram consisting of a loop γ with some (possibly non-zero) framing and the linking circle of γ with
zero framing; the fact that this corresponds to surgery is well known to experts; see, for example,
[Akb99, p. 500].

Proof of Proposition 5.1. First, decompose W into a cobordism W1 from Y− to Ỹ ∼= Y− ]m(S1 ×S2)

and a cobordism W2 from Ỹ to Y+, corresponding to the attachment of 1- and 2-handles respectively.
Below, we will compare D(W ) = W1 ∪W2 ∪ (−W2) ∪ (−W1) with W1 ∪ (−W1).

Applying Lemma 5.2 to each of the 2-handles in W2, we see that W2 ∪ (−W2) can be described

by surgery on Ỹ × [−1, 1] along some γ1, . . . , γ`, where the γi’s are given by the attaching circles of
the 2-handles. (Perform isotopies and handleslides first, if necessary, to ensure that the attaching

regions of the 2-handles lie in Ỹ and are disjoint.)
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Note that W1 ∪(−W1) ∼= W1 ∪(Ỹ × [−1, 1])∪(−W1) is diffeomorphic to X ∼= (Y− ×I)]m(S1 ×S3).
Thus, we see that D(W ) = W1 ∪ W2 ∪ (−W2) ∪ (−W1) can be described by surgery on X along
γ1, . . . , γ`.

Finally, suppose W is a ribbon F-homology cobordism; then m = `. Present the differential
∂2 : C2(Y−) → C1(Y−) by a matrix A; then in the corresponding cellular chain complex of W , the
presentation matrix Q of the differential ∂2 : C2(W ) → C1(W ) is of the form

Q =

(
A B
0 C

)
,

where C is an (m × m)-matrix representing the attachment of the 2-handles in W2. As the γi’s
are given by the attaching circles of these 2-handles, we see that Cij is given by the algebraic
intersection number of γj with {p} × S3 in the ith S1 × S3 summand, and so Cij = cij . Since
W is an F-homology cobordism, we have H1(W,Y−;F) = 0, implying that C ⊗Z F : Fm → Fm is
surjective, and hence invertible. It is now clear that |det(Cij)| = |H1(W,Y−)|, and the equality in
(Λ∗(H1(X)/Tors)/〈H1(Y−)/Tors〉) ⊗Z F is obvious. �

While it will not be used later in the paper, we conclude this section with the following geometric
result, which may be of independent interest.

Proposition 5.3. Suppose that W is a compact 4-manifold with connected boundary and a ribbon
handle decomposition. Then W admits a metric with positive scalar curvature.

Proof. By Proposition 5.1, D(W ) is obtained by surgery on a collection of ` loops in ]m(S1 × S3).
First, it is well known that S1 × S3 has a p.s.c. metric. By the work of Gromov and Lawson [GL80,
Theorem A], ]m(S1 × S3) admits a p.s.c. metric. Next, surgery on loops is a codimension-3 surgery,
and so we may again apply the result of Gromov and Lawson to see that D(W ) admits a p.s.c.
metric. Since W is a codimension-0 submanifold of D(W ), it inherits a p.s.c. metric as well. �

6. Instanton Floer homology

6.1. The Chern–Simons functional. Let G be a compact, connected, simply connected, simple
Lie group, and let P be a principal G-bundle on Y . Any such bundle can be trivialized, and we fix
one such trivialization. Denote by ad(P ) the adjoint bundle associated to P ; this vector bundle
is induced by the adjoint action of G on its Lie algebra g. The space of connections A(P ) on P
is an affine space modeled on Ω1(Y ; ad(P )), with a distinguished element Θ, which is the trivial
connection (associated to the trivialization we chose). Given a connection B ∈ A(P ), let A be the
connection on the bundle P ×R over Y ×R that is equal to the pull-back of B on P × (−∞,−1] and
the pull-back of Θ on P × [1,∞). The Chern–Simons functional of B is defined by the Chern–Weil
integral

(6.1) C̃S(B) = −
1

32π2ȟ

∫

Y×R
tr(ad(F (A)) ∧ ad(F (A))),

where F (A) is the ad(P )-valued curvature 2-form, and ad(F (A)) is the corresponding induced

element of End(ad(P )). The constant ȟ is the dual Coxeter number, which depends on G; it is equal
to N when G = SU(N).

Let GG be the space of smooth maps from Y to G. This space can be identified with the group of
automorphisms of P , known as the gauge group; in particular, any g ∈ GG acts on A(P ) by mapping
a connection A to its pull-back g∗(A). The integral in (6.1) is not necessarily invariant with respect
to this GG-action; however, it always changes by multiples of a fixed constant, and the normalization

in (6.1) is chosen such that the change in C̃S is always an integer. In particular, if we denote by
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B(P ) the quotient of A(P ) by this GG-action, then (6.1) induces a map CS : B(P ) → R/Z. An
important feature of CS is that it is a topological function, in that its definition does not require a
metric on Y .

It is not hard to see from the definition that a connection B is a critical point of C̃S if and only if
B has vanishing curvature, i.e. if B is flat. Given a flat connection, one may take its holonomy along
closed loops in Y to obtain a homomorphism ρ : π1(Y ) → G, i.e. an element of the representation
variety RG(Y ). This is not necessarily a one-to-one correspondence, but if we quotient the space
of flat connections by the gauge group action and quotient RG(Y ) by conjugation, we do get an
identification of the isomorphism classes of flat connections with the character variety XG(Y ). In
other words, XG(Y ) is the set of critical points of CS. Further, the set of critical values of the
Chern–Simons functional CS is a finite set, which is a topological invariant of Y .

In the definition of the Chern–Simons functional, the assumptions on the Lie group G are not
essential. Indeed, we may take G to be a compact, connected, simple Lie group that is possibly
not simply connected, with universal cover G̃. An important example to keep in mind is when
G = SO(3) and G̃ = SU(2). Instead of a trivial principal bundle, we consider a possibly non-trivial
principal G-bundle on Y . We may still form the space of connections A(P ) as before, and we
may form the configuration space B(P ) by quotienting A(P ) by the G

G̃
-action (rather than the

GG-action). There is no longer a distinguished element Θ ∈ A(P ). Instead, we arbitrarily choose

a connection B0 ∈ A(P ), which plays the role of Θ in the definitions of C̃S; this determines an
R/Z-valued functional CS on B(P ) that is well defined up to addition by a constant (representing
the indeterminacy of the choice of B0). The critical points of CS are isomorphism classes of flat
connections on P . Moreover, the set of (relative) values of the Chern–Simons functional at this set
of critical points is a topological invariant of the pair (Y, P ).

Proof of Corollary 1.16. Let W : Y− → Y+ be a ribbon Q-homology cobordism. Let α− be a flat
connection on Y−, whose holonomy gives an element ρ− ∈ RG(Y−). By Proposition 1.15, we may
extend ρ− to an element ρW ∈ RG(W ), which pulls back to an element ρ+ ∈ RG(Y+). We may then
choose a corresponding flat connection α+ on Y+. By Auckly [Auc94], the Chern–Simons invariants
of α− and α+ agree. �

6.2. An overview of instanton Floer theory. In this section, we review the two main versions
of instanton Floer homology and develop some properties of the associated cobordism maps. (Other
versions will be discussed later in this section.) Throughout, we work only with coefficients in Q.
We begin with Floer’s original version of instanton Floer homology [Flo88], which associates to any
Z-homology sphere Y a Z/8-graded vector space I(Y ). To a Q-homology cobordism W : Y1 → Y2 of
Z-homology spheres, the theory associates a homomorphism I(W ) : I(Y1) → I(Y2) of vector spaces
[Don02].9

The vector space I(Y ) is the homology of a chain complex (C(Y ), d). The chain complex C(Y )
is defined roughly as the Morse homology of the Chern–Simons functional CS with the Lie group
G = SU(2) and the trivial bundle on Y . Recall from Section 6.1 that the critical set of CS is exactly
the space of isomorphism classes of flat connections; in this setup, all non-trivial flat connections
are irreducible. Here, a connection is irreducible if its isotropy group is {±1}; when the connection
is flat, this is equivalent to the condition that the associated representation is irreducible.

In order to achieve Morse–Smale transversality, one perturbs the Chern–Simons functional. The
critical set of the perturbed Chern–Simons functional still contains the trivial connection; the
other critical points are no longer necessarily flat, but the perturbation can be chosen to be small,

9The homomorphism I(W ) is also defined for more general cobordisms W ; see [Don02] for details. We focus on
Q-homology cobordisms here for ease of exposition, as this specialization suffices for our purposes.
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which guarantees that the non-trivial critical points are still (isomorphism classes of) irreducible
connections.10 We denote the set of all non-trivial critical points by S(Y ).11 Then C(Y ) is the
Q-vector space generated by the elements of S(Y ), equipped with the differential d, where the
coefficients 〈d(α), β〉 are given by the signed count of index-1 gradient flow lines of the perturbation
of CS that are asymptotic to α and β. A useful observation, which is also essential in the development
of the analytical aspects of the theory, is that the gradient flow lines of (a perturbation of) CS may
be viewed as the solutions of (a corresponding perturbation of) the ASD (anti–self-dual) equation
for the trivial SU(2)-bundle on Y × R.

The cobordism map I(W ) : I(Y1) → I(Y2) is also defined with the aid of the ASD equation. We
first attach cylindrical ends to W and fix a Riemannian metric on this new manifold, which we
also denote by W by abuse of notation. For any pair (α1, α2) ∈ S(Y1) × S(Y2), we may form a
moduli space M(W ;α1, α2) of connections that satisfy a perturbed ASD equation for the trivial
SU(2)-bundle on W and that are asymptotic to α1 and α2 on the ends. Here, the perturbation of
the ASD equation is chosen such that it is compatible with the perturbations of the Chern–Simons
functionals of Y1 and Y2, and guarantees that each connected component of M(W ;α1, α2) is a
smooth manifold, of possibly different dimensions. We write M(W ;α1, α2)d for the union of the
d-dimensional connected components of M(W ;α1, α2). The value of d mod 8 is determined by α1

and α2. We then define a chain map C(W ) : C(Y1) → C(Y2) by

(6.2) C(W )(α1) =
∑

α2∈S(Y2)

#M(W ;α1, α2)0 · α2 ∈ C(Y2).

Here, #M(W ;α1, α2)0 is the signed count of the elements of M(W ;α1, α2)0. The homomorphism
I(W ) : I(Y1) → I(Y2) is the map induced by C(W ) at the level of homology. It turns out that
this map depends only on W and is independent of the choice of Riemannian metric on W and
perturbation of the ASD equation.

A variation of instanton Floer homology is obtained by replacing the trivial SU(2)-bundles with
non-trivial SO(3)-bundles. Fix a closed 3-manifold Y . The isomorphism class of an SO(3)-bundle P
on Y is determined by its second Stiefel–Whitney class w = w2(P ) ∈ H2(Y ;Z/2). As described
in Section 6.1, we may define a Chern–Simons functional CSw on the configuration space B(P ) of
connections on P up to gauge group action. We say that (Y,w) is an admissible pair if the pairing
of w with H2(Y ) is not trivial. This condition guarantees that the set of critical points of CSw, or
equivalently, the set of flat connections on P , consists only of irreducible elements of B(P ). This
assumption considerably simplifies the analytical aspects of gauge theory and allows us to define an
instanton Floer homology I(Y,w) for an admissible pair, analogous to instanton Floer homology of
a Z-homology sphere. As in the previous case, we apply a small perturbation to CSw to obtain a
Morse–Smale functional with the critical set S(Y,w). Again, the critical points of the perturbed
functional are no longer necessarily flat, but they remain irreducible. We define C(Y,w) to be the
Q-vector space generated by S(Y,w), equipped with a differential d defined using gradient flow
lines of the perturbed Chern–Simons functional.

Instanton Floer homology of admissible pairs is also functorial with respect to cobordisms.
Let (Y1, w1) and (Y2, w2) be admissible pairs, let W : Y1 → Y2 be an arbitrary cobordism (i.e.
not necessarily a Q-homology cobordism), and let c ∈ H2(W ;Z/2) be a cohomology class whose

10For simplicity, it is customary to blur the line between connections and isomorphism classes of connections
(i.e. connections up to the gauge group action). From now on, we will often follow this custom; for example, by an
irreducible element of S(Y ), we will mean an isomorphism class of irreducible connections.

11Although it is not reflected in the notation, the set S(Y ) depends on the choice of perturbation of the Chern–
Simons functional.
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restriction to Yi is equal to wi. The cohomology class c determines an SO(3)-bundle on W , and
solutions to a perturbed ASD equation for connections on this bundle that are asymptotic to
α1 ∈ S(Y1, w1) and α2 ∈ S(Y2, w2) give rise to the moduli space M(W, c;α1, α2). As in the
previous case, the perturbation of the ASD equation is chosen such that it is compatible with the
perturbations of the Chern–Simons functionals of (Y1, w1) and (Y2, w2) and that each component
of M(W, c;α1, α2) a smooth manifold. As in (6.2), these moduli spaces can be used to define a
homomorphism I(W, c) : I(Y1, w1) → I(Y2, w2). In general, this map is defined only up to a sign;
this sign can be determined if we fix a homology orientation on W , which is an orientation of
ΛtopH1(W ;Q) ⊗ ΛtopH+(W ;Q) ⊗ ΛtopH1(Y2;Q). Here H+(W ;Q) is the subspace of H2(W ;Q)
represented by L2 self-dual harmonic 2-forms on W . (See, for example, [KM11b] for more details
on how to use homology orientations to remove the sign ambiguity of I(W, c).) In particular, for a
Q-homology cobordism W , there is a canonical choice of homology orientation.

There are more general cobordism maps defined for instanton Floer homology of admissible pairs.
Let A(W ) be the Z-graded algebra Sym∗(H2(W ;Q)⊕H0(W ;Q))⊗Λ∗(H1(W ;Q)), where the elements
in Hi(W ;Q) have degree 4 − i. For any z ∈ A(W ) with degree i, a standard construction gives rise
to a cohomology class µ(z) of degree i in M(W, c;α1, α2)d, represented by a linear combination of
submanifolds V (W, c;α1, α2; z)d−i of codimension i; see, for example, [DK90, Chapter 5]. Then the
homomorphism C(W, c; z) : C(Y1, w1) → C(Y2, w2) defined by

(6.3) C(W, c; z)(α1) =
∑

α2∈S(Y2,w2)

#V (W, c;α1, α2; z)0 · α2 ∈ C(Y2, w2)

is a chain map, and the induced homomorphism I(W, c; z) at the level of homology is independent
of the choice of metric, perturbation, and the representative submanifold V (W, c;α1, α2; z)0. The
homomorphism I(W, c; z) depends linearly on z, and is again defined up to a sign that can be fixed
using a homology orientation on W . It is also functorial: Let (Y1, w1), (Y2, w2), and (Y3, w3) be
admissible pairs, W : Y1 → Y2 and W ′ : Y2 → Y3 be cobordisms equipped with homology orientations,
and c◦ be an element of H2(W ′ ◦W ;Z/2) whose restrictions to W and W ′ are denoted by c and c′

respectively, and fix z ∈ A(W ) and z′ ∈ A(W ′); then I(W ′ ◦W, c◦; z · z′), defined using the composed
homology orientation, is equal to I(W ′, c′; z′) ◦ I(W, c; z).

It is natural to ask whether for a cobordism W between Z-homology spheres, the definition of
the cobordism map I(W ) can also be extended to a homomorphism I(W ; z) for z ∈ A(W ). In this
context, it would also be useful to define I(W ; z) when W is not a Q-homology cobordism, e.g.
when b1(W ) > 0; to do so, we would also need to make use of homology orientations to remove
the sign ambiguity. In general, the main obstruction to defining this extension is the existence of
reducible ASD connections on W : One can still define a subspace V (W ;α1, α2; z)0 of M(W ;α1, α2)d
in the case that deg(z) = d, but V (W ;α1, α2; z)0 might not be compact because of the existence
of reducible connections. Thus one cannot proceed easily, as in (6.3), to define I(W ; z). In the
case that b+(W ) > 1, the cobordism map I(W ; z) : I(Y1) → I(Y2) is defined for any z ∈ A(W ); see
[Don02, Chapter 6]. For our purposes, we need to consider the case where b+(W ) = 0 and the
degree of z is sufficiently small. The following compactness result provides the essential analytical
input to define I(W ; z) in this context.

Lemma 6.4. Let Y1 and Y2 be Z-homology spheres, and let α1 ∈ S(Y1) and α2 ∈ S(Y2). Suppose
that W : Y1 → Y2 is a cobordism with b1(W ) = m and b+(W ) = 0, and that {Ai}

∞
i=1 is a sequence of

connections on W each representing an element of M(W ;α1, α2)d, where d ≤ 3m+ 4. Then there
are α′

1 ∈ S(Y1) ∪ {Θ}, α′
2 ∈ S(Y2) ∪ {Θ}, a finite set of points {p1, . . . , p`} ⊂ W , and an irreducible

connection A0 on W representing an element of M(W ;α′
1, α

′
2)d′, such that

(1) 0 ≤ d′ ≤ d− 8`; and
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(2) after possibly passing to a subsequence and changing each connection Ai by an action of the
gauge group, the sequence of connections {Ai} converges in C∞-norm to A0 on any compact
subspace of the complement of {p1, . . . , p`}.

Proof. This is a consequence of the standard compactness theorem for the solutions of the ASD
equation on manifolds with cylindrical ends (see, for example, [Don02, Chapter 5]), together with
the following observation. If the chosen perturbations of the Chern–Simons functionals of Y1 and Y2

and of the ASD equation on W are small enough, then any reducible ASD connection on W is a
(singular) element of a moduli space of the form M(W ; Θ,Θ)e, where Θ is the trivial connection,
and e ≥ 3m− 3. A straightforward index computation shows that such reducible connections do
not appear as limits of a sequence in M(W ;α1, α2)d when d ≤ 3m+ 4. �

Suppose that W is a cobordism as in the statement of Lemma 6.4. We equip W with a homology
orientation by fixing an orientation for the vector space H1(W ;Q). Suppose also that z ∈ A(W )
has degree at most 3m+ 3. Lemma 6.4 together with a standard counting argument shows that the
moduli space V (W ;α1, α2; z)0 is compact. Thus we may use a formula similar to (6.3) to define the
cobordism map I(W ; z) : I(Y1) → I(Y2). A standard argument shows that this map is independent
of the choice of metric, perturbation, and representative submanifold for the cohomology class
associated to z.

6.3. Surgery and cobordism maps in instanton Floer theory. We first start with two basic
propositions, in which we will relate certain cobordism maps associated to two cobordisms X and Z,
where Z is the result of surgery on X along a loop γ. First, we have a surgery formula for instanton
Floer homology of admissible pairs.

Proposition 6.5. Let (Y1, w1) and (Y2, w2) be admissible pairs, and let X : Y1 → Y2 be a cobordism.
Suppose that γ ⊂ Int(X) is a loop with neighborhood ν(γ) ∼= γ × D3, and denote by Z the result
of surgery on X along γ. Fix a properly embedded surface S ⊂ Int(X) supported away from ν(γ),
such that the cohomology class cX ∈ H2(X;Z/2) dual to [S] restricts to w1 and w2 on Y1 and Y2

respectively, and denote by cZ the class in H2(Z;Z/2) determined by [S]. Suppose that zX ∈ A(X)
admits representatives for its homology classes that are supported away from ν(γ), and denote by zZ
the class in A(Z) determined by these representatives. Then up to a sign,

I(X, cX ; [γ] · zX) = I(Z, cZ ; zZ).

Proof. This is essentially [Don02, Theorem 7.16], and the same proof works in this set up. �

Similarly, we have a surgery formula for instanton Floer homology of Z-homology spheres.

Proposition 6.6. Let Y1 and Y2 be Z-homology spheres, and suppose that X : Y1 → Y2 is a cobordism
with b1(X) = m and b+(X) = 0. Suppose that γ ∈ Int(X) is a loop with neighborhood ν(γ) ∼= γ×D3,
and denote by Z the result of surgery on X along γ. Suppose that zX ∈ A(X) has degree at most
3m− 3 and admits representatives for its homology classes that are supported away from ν(γ), and
denote by zZ the class in A(Z) determined by these representatives. Then up to a sign,

I(X; [γ] · zX) = I(Z; zZ).

Proof. This is again essentially [Don02, Theorem 7.16]. �

Remark 6.7. While we do not provide a proof, we expect that it is possible to remove the sign
ambiguities in Proposition 6.5 and Proposition 6.6, which would then remove the sign ambiguities
in Theorem 4.1, Theorem 4.2, Theorem 4.4, and Corollary 4.5. In the case that [γ] = 0, both sides
of the equation vanish. In the case that [γ] 6= 0, we would have to choose homology orientations.
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Note that, in this case, H+(X;Q) ∼= H+(Z;Q) and H1(X;Q) ∼= 〈[γ]〉 ⊕H1(Z;Q). Fix a homology
orientation oZ on Z; we may set oX = ω ∧ o, where ω ∈ H1(X;Q) is determined by [γ]. With
this choice, we expect the equations in Proposition 6.5 and Proposition 6.6 to hold without a sign
adjustment.

We now use the propositions above to study ribbon homology cobordisms. First, we verify an
analogue of Theorem 4.1 for admissible pairs, which we will use in the following subsections.

Theorem 6.8. Let (Y−, w−) and (Y+, w+) be admissible pairs, and suppose that W : Y− → Y+ is a
ribbon Q-homology cobordism. Fix a properly embedded surface S ⊂ Int(W ) supported away from the
cocores in a ribbon handle decomposition of W , such that the cohomology class cW ∈ H2(W ;Z/2)
dual to [S] restricts to w− and w+ on Y− and Y+ respectively, and denote by cD(W ) ∈ H2(D(W );Z/2)

and cY−×I ∈ H2(Y− × I;Z/2) the cohomology classes determined by D(S). Then up to a sign, the
cobordism map I(D(W ), cD(W )) : I(Y−, w−) → I(Y−, w−) satisfies

I(D(W ), cD(W )) = |H1(W,Y−)| · I(Y− × I, cY−×I).

In particular, if cY−×I is the pull-back of w−, then up to a sign,

I(D(W ), cD(W )) = |H1(W,Y−)| · II(Y−,w−),

and I(W, cW ) includes I(Y−, w−) into I(Y+, w+) as a summand.

Proof. By Proposition 5.1, D(W ) is described by surgery on X ∼= (Y− × I) ] m(S1 × S3) along m
disjoint circles γ1, . . . , γm, with

[γ1] ∧ · · · ∧ [γm] = det(cij) · α1 ∧ · · · ∧ αm ∈ (Λ∗(H1(X)/Tors)/〈H1(Y−)/Tors〉) ⊗Z Q,

where αi ∈ H1(X) is the homology class of the core of the ith S1 ×S3 summand, cij is the multiplicity
of αi in [γj ], and |det(cij)| = |H1(W,Y−)|. Applying Proposition 6.5 with Z = D(W ), we have that,
up to a sign,

I(X, cX ; [γ1] ∧ · · · ∧ [γm]) = I(D(W ), cD(W )).

We claim that

(6.9) I(X, cX ; [γ1] ∧ · · · ∧ [γm]) = det(cij) · I(X, cX ;α1 ∧ · · · ∧ αm),

where we are using oX,γ on both sides of the equation; indeed, by the linearity of I, it suffices to show
that I(X, cX ; ξ) = 0 for ξ ∈ Λm(H1(X;Q)) ∩ 〈H1(Y−;Q)〉. To see this, we may apply Proposition 6.5
in the opposite direction to see that I(X, cX ; ξ) = I(Z ′, cZ′) for some cobordism Z ′ with at least one
S1 × S3 connected summand; the general vanishing theorem for connected sums implies that this
map is zero. (The interested reader may compare this argument with the penultimate paragraph of
the proof of Theorem 4.10 in Section 7.1.) Note that det(cij) = |H1(W,Y−)| up to a sign.

Applying Proposition 6.5 again with Z = Y− × I, we see that up to a sign,

I(X, cX ;α1 ∧ · · · ∧ αm) = I(Y− × I, cY−×I).

This completes our proof. �

Similarly, we prove Theorem 4.1.

Proof of Theorem 4.1. The proof is completely analogous to that of Theorem 6.8, without the need
to keep track of the cohomology classes or consider elements of H1(Y−). �
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Proof of Corollary 1.11. A standard gluing argument shows that the signed count of elements in the
moduli space of index-0 (perturbed) ASD connections on D(W ) is equal to 2 Lef(I(D(W ) : I(Y−) →
I(Y−)). (See [Don02, Theorem 6.7] for a similar gluing result.) By definition, the former count

is equal to 4λFO(D(W )), and by Theorem 4.1, the Lefschetz number Lef(I(D(W )) is the Euler
characteristic of I(Y−), which is precisely twice the Casson invariant of Y−. �

6.4. Framed instanton Floer theory. Instanton Floer homology of admissible pairs can be used
to define a 3-manifold invariant called framed instanton Floer homology [KM11b]. First, by a framed
manifold, we mean a closed 3-manifold with a framed basepoint. Fix (T 3, u) to be the admissible
pair of the 3-dimensional torus and the element of H2(T 3;Z/2) given by the dual of S1 × {q} ⊂ T 3

for some point q ∈ T 2. Let Y be a framed manifold with a framed basepoint p ∈ Y . Then define Y ]

to be Y ] T 3, where the connected sum takes place in a neighborhood of p, and let w] ∈ H2(Y ];Z/2)
be the class induced by the trivial class in Y and u in T 3. Let x ∈ A(Y ] × I) be the class of degree 4
determined by the homology class of a point in Y ]×I. The operator µ(x) = I(Y ]×I, π∗

1(w]);x) acts
on the Z/8-graded vector space I(Y ], w]), and satisfies µ(x)2 = 4 · II(Y ],w]) [KM10, Corollary 7.2].

The framed instanton Floer homology of Y , denoted by I](Y ), is defined to be the kernel of µ(x) − 2;
it inherits a Z/4-grading from I(Y ], w]). This flavor of instanton Floer homology is conjectured to
agree with the hat flavor of Heegaard Floer homology, when both are computed over Q.

Framed instanton Floer homology is functorial with respect to cobordisms of framed manifolds.
Given framed 3-manifolds Y1 and Y2 with framed basepoints p1 and p2 respectively, a framed
cobordism W : Y1 → Y2 is a cobordism together with a choice of an embedded framed path in
W between p1 and p2. A framed cobordism W : Y1 → Y2 can be used to define a cobordism

W ] : Y ]
1 → Y ]

2 by taking the sum with T 3 × I along a regular neighborhood of the framed path in W .
A homology orientation on W induces a homology orientation on W ] in an obvious way. Moreover,

the dual of S1 × {q} × I ⊂ T 3 × I defines a cohomology class c ∈ H2(W ];Z/2) that restricts to w]1
and w]2 on Y ]

1 and Y ]
2 respectively. The functoriality of instanton Floer homology of admissible

pairs implies that

I(W ], c) ◦ I(Y ]
1 × I, π∗

1(w]1);x1) = I(Y ]
2 × I, π∗

1(w]2);x2) ◦ I(W ], c).

In particular, I(W ], c) gives rise to a homomorphism I](W ) : I](Y1) → I](Y2).

Proof of Theorem 4.2. Let W : Y− → Y+ be a ribbon Q-homology cobordism of framed 3-manifolds.

We also denote by w]− and w]+ the cohomology classes in Y ]
− and Y ]

+ induced by u respectively. Then

(Y ]
−, w

]
−), (Y ]

+, w
]
+), W ], and S1 × {q} × I ⊂ W ] satisfy the conditions of Theorem 6.8, and we can

thus apply it to conclude that, up to a sign, I(D(W )], c) is equal to multiplication by |H1(W,Y−)|.
Since this map clearly respects the eigenspace decomposition of µ(x), we obtain the analogous
statement for I](D(W )). �

6.5. Sutured instanton Floer theory. We first define what we mean by a cobordism of sutured
manifolds. Note that this definition is narrower than the one used by Juhász [Juh16].

Definition 6.10. Let (M1, η1) and (M2, η2) be sutured manifolds. A cobordism N : (M1, η1) →
(M2, η2) is a 4-manifold N obtained by a sequence of interior handle attachments on M1 × I. In
particular, there is a natural diffeomorphism of ∂M1 and ∂M2 that identifies η1 with η2.

If Y is a framed 3-manifold, then we can define a sutured manifold (M,η), where M is the
complement of a regular neighborhood of the basepoint diffeomorphic to the 3-ball, and α is the
equator in ∂M . A framed cobordism W : Y1 → Y2 of framed 3-manifolds then induces a cobordism
of the sutured manifolds associated to Y1 and Y2.
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More generally, the theory of instanton Floer homology of admissible pairs can be also used to define
a functorial invariant of sutured manifolds, generalizing the framed instanton Floer construction.
Instanton homology of sutured manifolds is defined using closures of sutured manifolds, which we
now recall.

Let (M,η) be a sutured manifold whose set of sutures η has d elements. Denote by Fg,d the
genus-g surface with d boundary components. Fix an arbitrary g ≥ 0; we glue (M,η) to the product
sutured manifold Fg,d × [−1, 1] by identifying A(η) with (∂Fg,d) × [−1, 1]. The resulting space has

two boundary components R̂±
∼= R±(η) ∪ (Fg,d× {±1}), which are closed surfaces of the same genus;

we choose a diffeomorphism φ of these two boundary components that fixes some point p ∈ Fg,d,

and glue R̂± together by φ to obtain a closed 3-manifold M̂ . Then {p} × [−1, 1] ⊂ Fg,d × [−1, 1]

determines a closed curve in M̂ , and we write w ∈ H2(M̂ ;Z/2) for its Poincaré dual. The image of

R̂± gives rise to an embedded oriented surface R of a certain genus g′ in M̂ with g′ ≥ g, and (M̂, w)
is an admissible pair because the pairing of w with R is not trivial. At this point, we require g′ ≥ 1;
this could be ensured by the sufficient (but not necessary) condition that we choose g ≥ 1. Then, R
induces an endomorphism

µ(R) = I(M̂ × I, π∗
1(w);R) : I(M̂, w) → I(M̂, w).

If g′ > 1, then the instanton homology of (M,η) is defined by

SHI(M,η) = ker(µ(R) − (2g′ − 2))

In the case that g′ = 1, the operator µ(R) acts trivially and the definition of SHI(M,η) should be

modified using the operator µ(x) = I(M̂ × I, π∗
1(w);x), where x ∈ A(M̂ × I) is the class given by a

point. Thus, if g′ = 1, we define

SHI(M,η) = ker(µ(x) − 2)

In any case, the key fact is that this construction of SHI(M,η) above is independent of all choices
made in the process. (The interested reader may compare the above with the proof of Theorem 4.12
in Section 7.3, in the context of sutured Heegaard Floer theory.)

We also have an analogous construction for a cobordism of sutured manifolds N : (M1, η1) →
(M2, η2). First, fix g ≥ 0, and glue the product of an interval and the product sutured manifold
Fg,d × [−1, 1] to N to obtain a cobordism of manifolds with boundary, where the induced cobordism

of the boundary components is the trivial cobordism (R̂+ × I) t (R̂− × I) to itself. Using the

diffeomorphism φ of R̂+ and R̂−, we identify R̂+ × I with R̂− × I to obtain a cobordism N̂ from

a closure M̂1 of (M1, η1) to a closure M̂2 of (M2, η2). (As before, we require that the image R of

R̂± has genus g′ ≥ 1.) Also, the product of an interval and {p} × [−1, 1] determines a properly

embedded surface in N̂ , whose Poincaré dual c ∈ H2(N̂ ;Z/2) restricts to wi ∈ H2(M̂i;Z/2) for

i ∈ {1, 2}. Thus, we obtain a cobordism map I(N̂ , c) : I(M̂1, w1) → I(M̂2, w2) of admissible pairs.

It turns out that I(N̂ , c) respects the eigenspace decompositions of I(M̂1, w1) and I(M̂2, w2), and
so we obtain a homomorphism SHI(N) : SHI(M1, η1) → SHI(M2, η2) simply by restricting to the
(+2)-eigenspace.

Proof of Theorem 4.4. This follows directly from Theorem 6.8 together with the description of
sutured instanton Floer homology as the eigenspace of the instanton Floer homology for an
admissible pair. �

The sutured instanton homology of the sutured manifold associated to a framed 3-manifold Y is
isomorphic to I](Y ). In fact, the manifold Y ] can be obtained as a closure of the sutured manifold
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associated to Y , where we use the product sutured manifold F1,1 × I in the construction of the
closure.

Proof of Corollary 4.5. The main idea of this proof is that the known isomorphism between KHI
and I\ is natural with respect to cobordism maps. To simplify the exposition, we focus on the
cobordism maps associated to (D(W ), D(C)) below.

To make this precise, we first recall an explicit description of KHI(Y,K), as contained in [KM10,
Section 5.1 and Section 7.6]. Let K be a knot in a closed, oriented 3-manifold Y ; first, we associate
to the pair (Y,K) the sutured manifold (Y \ ν(K), η), where Y \ ν(K) is the exterior of Y , and
η ⊂ ∂(Y \ ν(K)) consists of two sutures that are oppositely oriented meridians. Then KHI(Y,K)
is defined as SHI(Y \ ν(K), η). As described earlier in this subsection, SHI(Y \ ν(K), η) is in turn
defined by taking a closure; we choose to work with the closure associated to F0,2, the genus-0 surface

with 2 boundary components, and denote this closure M̂ by T 3
K . According to [KM10, Section 5.1],

the closed 3-manifold T 3
K admits an equivalent description. It is formed by gluing F1,1 × S1 to

Y \ ν(K), with ∂F1,1 × {p} being identified with a longitude of K on ∂ν(K), and {q} × S1 being
identified with the meridian of K on ∂ν(K). In this new description, the element w ∈ H2(T 3

K ;Z/2)
is the Poincaré dual of the oriented loop γ× {p} ⊂ F1,1 ×S1 ⊂ T 3

K , where γ ⊂ F1,1 is some oriented,
non-separating loop. The embedded oriented surface R is then γ′ × S1 ⊂ F1,1 × S1 ⊂ T 3

K , where γ′

is another non-separating loop in F1,1 that intersects γ at exactly one point. This, in particular,
means that R has genus g′ = 1, and so

KHI(Y,K) = SHI(Y \ ν(K), η) = ker(µ(x) − 2),

where µ(x) : I(T 3
K , w) → I(T 3

K , w) is a degree-4 operator determined by a point x ∈ T 3
K . By [KM10,

Corollary 7.2], one can see that µ(x) has eigenvalues ±2 (so that µ(x)2 = 4 · II(T 3
K
,w)), each of whose

eigenspace has half the dimension of I(T 3
K , w). In particular, one concludes that the dimension of

KHI(Y,K) is half that of I(T 3
K , w).

Next, we recall the isomorphism between KHI and I\. In [KM11a, Section 5], a degree-4
involution ψK : I(T 3

K , w) → I(T 3
K , w) is constructed, whose associated quotient is denoted I(T 3

K , w)ψ;
then, using a version of Floer’s Excision Theorem, it is shown that there is an isomorphism
Φ(Y,K) : I\(Y,K) → I(T 3

K , w)ψ. From this, one again concludes that the dimension of I\(Y,K) is half

that of I(T 3
K , w), and thus that I\(Y,K) is isomorphic to KHI(Y,K).

Let (Y±,K±) and (W,C) : (Y−,K−) → (Y+,K+) be as in the statement. We now argue that
the isomorphism between KHI and I\ is natural with respect to cobordism maps associated to
(D(W ), D(C)). To begin, let N : (Y− \ ν(K−), η−) → (Y+ \ ν(K+), η+) be the cobordism of sutured
manifolds, in the sense of Definition 6.10, obtained by removing a regular neighborhood of C from
W ; obviously, N is a ribbon Q-homology cobordism. Then, the cobordism map

KHI(D(W ), D(C)) : KHI(Y−,K−) → KHI(Y−,K−)

is defined as the cobordism map

SHI(D(N)) : SHI(Y− \ ν(K−), η−) → SHI(Y− \ ν(K−), η−).

By Theorem 4.4, we know that, up to a sign,

SHI(D(N)) = |H1(N,Y− \ ν(K−))| · ISHI(Y−\ν(K−),η−) = |H1(W,Y−)| · ISHI(Y−\ν(K−),η−),

which in particular implies that it is a degree-0 map. Passing to the closure, this homomorphism is
in turn induced by a cobordism map

I(D(N̂), c) : I(T 3
K−
, w−) → I(T 3

K−
, w−)
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of admissible pairs that commutes with µ(x−) : I(T 3
K−
, w−) → I(T 3

K−
, w−), where x− ∈ T 3

K−
. In

particular, SHI(D(N)) is the restriction of I(D(N̂), c) to the (+2)-eigenspace of µ(x−). Taking into
account the facts that I(T 3

K−
, w−) is a Z/8-graded vector space and that µ(x−) is a degree-4 map,

we conclude that I(D(N̂), c) itself must satisfy

I(D(N̂), c) = |H1(W,Y−)| · II(T 3
K

−

,w−)

up to a sign.
Now I(D(N̂), c) commutes with the degree-4 involution ψK−

: I(T 3
K−
, w−) → I(T 3

K−
, w−) [KM11a,

Section 5], and thus induces a map

I(D(N̂), c)ψ : I(T 3
K−
, w−)ψ → I(T 3

K−
, w−)ψ

on the quotients. Clearly, this must also satisfy

I(D(N̂), c)ψ = |H1(W,Y−)| · II(T 3
K

−

,w−)ψ

up to a sign. Finally, we claim that Φ(Y−,K−) : I\(Y−,K−) → I(T 3
K−
, w−)ψ intertwines I(D(N̂), c)ψ

with I\(D(W ), D(C)) : I\(Y−,K−) → I\(Y−,K−):

Φ(Y−,K−) ◦ I(D(N̂), c)ψ = I\(D(W ), D(C)) ◦ Φ(Y−,K−).

Indeed, this claim follows from the fact that the excision map Φ(Y−,K−) is itself a cobordism map,
meaning that the two sides of the identity above can be interpreted as two homomorphisms associated
to diffeomorphic cobordisms. This implies that the desired result that

I\(Y−,K−) = |H1(W,Y−)| · II\(Y−,K−)

holds, up to a sign. �

6.6. Equivariant instanton Floer theory. For a Z-homology sphere Y , one can define a stronger
invariant that contains the information of I(Y ) and I](Y ). Let (C(Y ), d) be the instanton Floer chain

complex whose homology is equal to I(Y ). We consider a larger chain complex (C̃(Y ), d̃) defined

by C̃(Y ) = C(Y ) ⊕ Q ⊕ C(Y )[3], where C(Y )[3] denotes the complex C(Y ) with the Z/8-grading

shifted up by 3. The complex C̃(Y ) is equipped with a Z/8-grading on C̃(Y ) by assigning degree 0

to the summand Q. With respect to the direct sum decomposition of C̃(Y ) above, the differential d̃,
which has degree −1, has the matrix form

(6.11) d̃ =



d 0 0
D1 0 0
U D2 −d


 ,

where U : C(Y ) → C(Y )[4] is a degree-preserving map, D1 is a functional on C(Y ) that is not zero
only on elements of degree 1, and D2(1) is a degree-4 element in C(Y ). We refer the reader to
[Don02, Frø02] for more details on the definition of U , D1, and D2. Here we use the same conventions

as in [Dae20], where an exposition of the definition of (C̃(Y ), d̃) is given. The characterizing feature

of the special form of d̃ in (6.11) is that it anti-commutes with the endomorphism of C̃(Y ) given by

χ =




0 0 0
0 0 0
1 0 0


 .
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We call a chain complex (C̃, d̃) over Q whose differential has the form in (6.11) an SO-complex.12

The chain complex (C̃(Y ), d̃) depends on some auxiliary choices, namely the Riemannian metric
on Y and the perturbation of the Chern–Simons functional of Y . However, the chain homotopy
type of (C̃(Y ), d̃) is an invariant of Y in an appropriate sense. Suppose (C̃′(Y ), d̃′) is the chain
complex that is obtained from another set of auxiliary choices. Then there is a degree-0 chain map
λ̃ : C̃(Y ) → C̃′(Y ), such that

(6.12) λ̃ =



λ 0 0

∆1 1 0
µ ∆2 λ


 .

Notice that the map λ̃ commutes with χ. Similarly, there is a degree-0 chain map λ̃′ : C̃′(Y ) → C̃(Y )
with the same form as (6.12), with λ′ playing the role of λ. Moreover, there are degree-1 maps

K̃ : C̃(Y ) → C̃(Y ) and K̃ ′ : C̃′(Y ) → C̃′(Y ) that anti-commute with χ, such that

K̃ ◦ d̃+ d̃ ◦ K̃ = λ̃′ ◦ λ̃− I
C̃(Y )

, K̃ ′ ◦ d̃′ + d̃′ ◦ K̃ ′ = λ̃ ◦ λ̃′ − I
C̃′(Y )

.

As is customary in Floer theories, the existence of the maps λ̃ and λ̃′ is a consequence of a more
general functoriality of the theory. In fact, for any Z-homology cobordism W : Y1 → Y2, there is a
chain map λ̃(W ) : C̃(Y1) → C̃(Y2) of the form in (6.12). In particular, this morphism contains in its
data a chain map λ(W ) : C(Y1) → C(Y2), which induces the cobordism map I(W ) : I(Y1) → I(Y2)
on the level of homology.

For general SO-complexes, a chain map of the form (6.12), with the number 1 possibly replaced
by a non-zero rational number, is called an SO-morphism. An SO-homotopy from an SO-morphism

λ̃1 to another SO-morphism λ̃2 is given by a map K̃ of degree 1 that anti-commutes with χ, such
that

K̃ ◦ d̃+ d̃ ◦ K̃ = λ̃2 − λ̃1,

and we say that two SO-complexes C̃ and C̃ ′ are SO-homotopy equivalent if there are SO-morphisms
λ̃ : C̃ → C̃ ′ and λ̃′ : C̃ ′ → C̃ such that λ̃′ ◦ λ̃ and λ̃ ◦ λ̃′ are SO-homotopic to identity maps. In other
words, the discussion above shows that the SO-homotopy type of (C̃(Y ), d̃) is an invariant of Y .

The SO-homotopy type of the complex (C̃(Y ), d̃) contains the information of the instanton
homology groups I(Y ) and I](Y ). It is clear from the definition that I(Y ) is the homology of the
quotient complex (C(Y ), d), whose chain homotopy type can be recovered from the SO-homotopy

type of (C̃(Y ), d̃). The homology of the chain complex (C̃(Y ), d̃+ 4χ) is also isomorphic to I](Y )
[Sca15].

One could extract from (C̃(Y ), d̃) several other homologies, which are analogous to HF−, HF+,
and HF∞ in Heegaard Floer theory respectively. Following [Don02, Dae20], consider the Z/8-graded

chain complexes (Ĉ(Y ), d̂) and (qC(Y ), qd) defined by

Ĉ(Y ) = C(Y )[3] ⊕ Q[x], d̂

(
α,

N∑

i=0

aix
i

)
=

(
dα−

N∑

i=0

U iD2(ai), 0

)
,

qC(Y ) = C(Y ) ⊕ (QJx−1, x]/Q[x]), qd


α,

−1∑

i=−∞

aix
i


 =


dα,

−1∑

i=−∞

D1U
−i−1(α)xi


 .

12For a topological space with an SO(3)-action that has a unique fixed point, one can form an SO-complex whose
homology is the homology of the space. This justifies the terminology SO-complex.
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Here, the degree of x is defined to be −4. The homology of (Ĉ(Y ), d̂) and (qC(Y ), qd) are denoted by

Î(Y ) and qI(Y ) respectively. They are modules over the polynomial ring Q[x], with the action of x
given by the endomorphisms

x : Ĉ(Y ) → Ĉ(Y ), x ·

(
α,

N∑

i=0

aix
i

)
=

(
Uα,D1(α) +

N∑

i=0

aix
i+1

)
,

x : qC(Y ) → qC(Y ), x ·


α,

−1∑

i=−∞

aix
i


 =


Uα+D2(a−1),

−2∑

i=−∞

aix
i+1


 .

We define (C(Y ), d) to be the Q[x]-module QJx−1, x] with the trivial differential; although it is

independent of Y , it is convenient to consider it and its homology I(Y ) ∼= QJx−1, x]. Together, Î(Y ),
qI(Y ), and I(Y ) are called the equivariant instanton Floer homologies of Y .

The modules Î(Y ), qI(Y ) and I(Y ) fit into an exact triangle

(6.13) qI(Y )
j∗ // Î(Y )

i∗||

I(Y )

p∗

bb

where the module homomorphisms are induced by the maps

i : Ĉ(Y ) → C(Y ), i

(
α,

N∑

i=0

aix
i

)
=

−1∑

i=−∞

D1U
−i−1(α)xi +

N∑

i=0

aix
i,

j : qC(Y ) → Ĉ(Y ), j


α,

−1∑

i=−∞

aix
i


 = (−α, 0),

p : C(Y ) → qC(Y ), p




N∑

i=−∞

aix
i


 =




N∑

i=0

U iD2(ai),
−1∑

i=−∞

aix
i


 .

As is apparent from the definitions, the construction of the equivariant instanton homologies and
the exact triangle (6.13) from (C̃(Y ), d̃) is completely algebraic and does not require any additional

geometric input. In particular, for any SO-complex (C̃, d̃), one can define the chain complexes (Ĉ, d̂),

( qC, qd), their homologies Î, qI, and the analogue of the exact triangle (6.13). These constructions

are functorial; given an SO-morphism λ̃ : C̃ → C̃ ′, there are corresponding chain maps λ̂ : Ĉ → Ĉ ′,
qλ : qC → qC ′, and λ : C → C

′
, which induce module homomorphisms λ̂∗ : Î → Î ′, qλ∗ : qI → qI ′, and

λ∗ : I → I
′

that commute with the exact triangles associated to C̃ and C̃ ′, as explained in [Dae20,

Section 2.3]. An SO-homotopy between two SO-morphisms λ̃1 and λ̃2 induces a homotopy between

λ̂1 and λ̂2, a homotopy between qλ1 and qλ2, and a homotopy between λ1 and λ2. Moreover, the maps
corresponding to the composition λ̃′ ◦ λ̃ of two SO-morphisms are equal to the compositions of the
maps corresponding to λ̃′ and λ̃. As a consequence of this functoriality, the equivariant instanton

homologies Î(Y ), qI(Y ), I(Y ) and the exact triangle (6.13) are invariants of Y , and do not depend on

the auxiliary choices in the definition of (C̃(Y ), d̃).
We now turn our attention to the behavior of equivariant instanton Floer homologies under

ribbon Q-homology cobordisms. (Recall from Remark 1.13 that Q-homology cobordisms between
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Z-homology spheres are in fact Z-homology cobordisms.) The key statement is the following
proposition about the associated SO-complexes.

Proposition 6.14. Let Y− and Y+ be Z-homology spheres, and suppose that W : Y− → Y+ is a

ribbon Q-homology cobordism. Then the SO-morphism λ̃(D(W )) : C̃(Y−) → C̃(Y−) is SO-homotopic
to an SO-isomorphism.

Proof. Write the differential d̃ of the SO-complex (C̃(Y−), d̃) as in (6.11), with the maps d, U , D1,

and D2, and write the SO-morphism λ̃(D(W )) as in (6.12), with the maps λ(D(W )), ∆1, ∆2, and
µ. Since we are working with chain complexes over a field, our argument in Section 6.3 shows
that there is a chain homotopy K : C(Y−) → C(Y−) such that K ◦ d+ d ◦K = IC(Y−) − λ(D(W )).

Defining the map K̃ : C̃(Y−) → C̃(Y−) by

K̃ =



K 0 0
0 0 0
0 0 −K


 ,

we immediately see that K̃ anti-commutes with χ; moreover, we can compute that

K̃ ◦ d̃+ d̃ ◦ K̃ + λ̃(D(W )) =



IC(Y−) 0 0

∗ 1 0
∗ ∗ IC(Y−)


 ,

and so K̃ is an SO-homotopy between λ̃(D(W )) and q̃ = K̃ ◦ d̃+ d̃ ◦ K̃ + λ̃(D(W )), which is clearly
invertible over Q. �

Proof of Theorem 4.8. Proposition 6.14 and the discussion above it together imply that Î(D(W )) =

q̂∗, qI(D(W )) = qq∗, and I(D(W )) = q∗, where q̂ : Ĉ(Y−) → Ĉ(Y−), qq : qC(Y−) → qC(Y−), and

q : C(Y−) → C(Y−) are the chain maps corresponding to some SO-isomorphism q̃ : C̃(Y−) → C̃(Y−).
It is clear that q̂∗, qq∗, and q∗ are Q[x]-module isomorphisms. �

6.7. A character variety approach to Theorem 4.1. In this subsection, we sketch a different
approach to prove Theorem 4.1 and Theorem 4.2. For simplicity, we focus on the proof of Theorem 4.1.
In particular, let Y− and Y+ be Z-homology spheres, and suppose that W : Y− → Y+ is a ribbon
Q-homology cobordism. (See Remark 1.13.) Our approach in this section is based on the relationship
between the character varieties of Y− and Y+. A key component of our proof is an energy argument
that also appears in [BD95, Fuk96, DFL21].

Fix a Riemannian metric on Y− and a cylindrical metric on D(W ) that is compatible with the
metric on Y−. For simplicity, we first assume that these metrics allow us to define the instanton Floer
homology I(Y−) and the cobordism map I(D(W )) without perturbing the Chern–Simons functional
of Y− or the ASD equation on D(W ). In particular, I(Y−) is the homology of a chain complex
(C(Y−), d), where C(Y−) is generated by gauge equivalence classes of non-trivial flat connections, or
equivalently, non-trivial elements of the character variety of Y−. The cobordism map I(D(W )) is
defined using the moduli spaces M(D(W );α1, α2), i.e. gauge equivalence classes of solutions of the
(unperturbed) ASD equation

(6.15) F (A)+ = 0,

where A is an SU(2)-connection on D(W ) asymptotic to the non-trivial flat SU(2)-connections α1

and α2 on the ends of D(W ).
Let B(D(W );α1, α2) be the space of gauge equivalence classes of connections on D(W ) that are

asymptotic to α1 and α2 on the ends (that may or may not satisfy (6.15)). For a connection A
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representing an element of B(D(W );α1, α2), the topological energy of A, given by the Chern–Weil
integral

E(A) =
1

8π2

∫

D(W )
tr(F (A) ∧ F (A)),

can easily be verified to be invariant under the action of the gauge group, and also under continuous
deformation of A. Moreover, (6.15) implies that, for connections A that represent an element in
M(D(W );α1, α2), we always have E(A) ≥ 0, and E(A) = 0 if and only if A is a flat connection.
We will also need the following fact, which says that the topological energy of A determines the
dimension of the component of the moduli space M(D(W );α1, α2) that contains A.

Lemma 6.16. There exists a function ε that associates to each non-trivial (i.e. irreducible) flat
connection α on Y− a real number ε(α), such that the equality

d = 8E(A) + ε(α1) − ε(α2)

holds whenever [A] ∈ M(D(W );α1, α2)d.

Proof. To each connection A representing an element of M(D(W );α1, α2), we may associate the
ASD operator DA, which is an elliptic operator; if A represents an element of M(D(W );α1, α2)d,
then d is equal to the index of DA. Therefore, it suffices to show that, for some choice of ε,

(6.17) ind(DA) = 8E(A) + ε(α1) − ε(α2).

We first verify this formula when α1 = α2. Since index and topological energy are invariant under
continuous deformation, we may assume without loss of generality that the connection A is the
pull-back of a fixed flat connection α1 on the cylindrical ends of D(W ). In particular, A induces a

connection A on the closed 4-manifold D(W ) obtained by gluing the incoming and the outgoing
ends of D(W ) by the identity. Clearly, the topological energy of A and A are equal to each other.
Moreover, the additive property of indices with respect to gluing (see [Don02, Chapter 3]) implies

that ind(DA) = ind(DA). Since D(W ) has the same Z-homology as S1 × S3, the standard index
theorems for the ASD operator on closed 4-manifolds imply that

ind(DA) = 8E(A).

This shows that (6.17) holds in the case that α1 = α2.
In the more general case, we fix an arbitrary irreducible flat connection α1 on Y−, and set

ε(α1) = 0. For any other irreducible flat connection α, we take an arbitrary connection B on Y− ×R
that is equal to the pull-backs of representatives of α1 and α on (−∞,−1] × Y− and [1,∞) × Y−

respectively, and define

ε(α) = ind(DB) −
1

π2

∫

Y−×R
tr(F (B) ∧ F (B)).

One can check that ε is well defined, and it only depends on the gauge equivalence class of α.
Another application of the additive property of the index of ASD operators with respect to gluing
completes the proof of the lemma. �

Lemma 6.18. If the moduli space M(D(W );α1, α2)0 is not empty, then either ε(α2) > ε(α1),
or α1 = α2. Moreover, the moduli space M(D(W );α1, α1)0 consists of an odd number of flat
connections.

Proof. Lemma 6.16 implies that, if there is an element [A] in M(D(W );α1, α2)0, then ε(α2) ≥ ε(α1).
Moreover, if ε(α1) = ε(α2), then the connection A has to be flat, which is to say that A represents an
element of the character variety XSU(2)(D(W )). In particular, Proposition 2.1 implies that α1 = α2.
By assumption, any element of M(D(W );α1, α1)0 is cut out regularly, and we do not need to
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perform any perturbation. Regularity of a flat connection A on D(W ) is equivalent to the property
that H1(D(W ); AdA) is trivial. The proof of Proposition 2.1 implies that the SU(2)-representations
of π1(D(W )) that extend a given representation of π1(Y−) is the set of solutions of K(g1, . . . , gm) = 1,
where K : SU(2)m → SU(2)m is a map of degree ±1. Since the solutions of these equations are cut
out transversely, the number of solutions of this extension problem is an odd integer. �

Lemma 6.18 implies that if we sort flat connections on Y− based on their ε-values, then the chain
map C(D(W )) is upper triangular with non-zero diagonal entries. In particular, I(D(W )) is an
isomorphism.

In general, we need to consider perturbations of the Chern–Simons functional of Y− and the ASD
equation on D(W ). There are standard functions on the space of connections on Y− that give rise
to perturbed Chern–Simons functionals of Y− (see [Don02, Chapter 5]) that are sufficient to define
the instanton Floer homology I(Y−). Any such perturbation can be extended to a perturbation of
the ASD equation on D(W ) that is time independent in the sense defined by Braam and Donaldson
[BD95]. The main point of considering such perturbations is that, even after we slightly modify
the definition of topological energy, the solutions of the perturbed ASD equation will still have
non-negative topological energy. Having fixed the above, another technical issue would be to know
whether the solutions of the perturbed ASD equation with vanishing topological energy are cut out
regularly. If we happen to know that our chosen perturbation has this additional property, then we
can proceed as above to show that the map I(D(W )) is an isomorphism. However, the authors have
not checked whether there is a time-independent perturbation with this property.

7. Heegaard Floer homology

7.1. Surgery and cobordism maps in Heegaard Floer theory. In light of Proposition 5.1,
our strategy to prove Theorem 4.10 will be to show that the cobordism map for D(W ) is actually
just determined by that for X ∼= (Y− × I) ] m(S1 × S3) and the homology classes of the γi’s, and

hence must agree with that of Y− × I. We will first focus on ĤF; it will be shown later in the proof
of Theorem 4.10 that this is sufficient to recover the result for the other flavors. The necessary tool
is Proposition 7.2 below, which shows the behavior of the Heegaard Floer cobordism maps under
surgery along circles, and is the counterpart of Proposition 6.5 and Proposition 6.6 for Heegaard
Floer homology. This statement is known to experts, and can be derived from the link cobordism
TQFT of Zemke; see Remark 7.4 below. A closely related result is also already established in
[KLS20, Example 1.4]. For completeness, we provide a proof in this subsection. Note that we do
not assume 3- and 4-manifolds to be connected in this subsection.

Recall that given a connected Spinc-cobordism (W, t) : (Y1, s1) → (Y2, s2) between closed, con-
nected 3-manifolds, Ozsváth and Szabó [OSz06] define cobordism maps

F ◦
W,t : HF◦(Y1, s1) ⊗ (Λ∗(H1(W )/Tors) ⊗ Z/2) → HF◦(Y2, s2).

These maps have the property that

(7.1) F ◦
W,t(x⊗ ξ) = F ◦

W,t(ξ1 · x) + ξ2 · F ◦
W,t(x),

whenever ξ ∈ H1(W )/Tors satisfies ξ = ι1(ξ1) − ι2(ξ2), where ξi ∈ H1(Yi)/Tors and ιi is induced
by inclusion; see [OSz03a, p. 186]. We may also sum over all Spinc-structures on W , and obtain a
total map

F ◦
W : HF◦(Y1) ⊗ (Λ∗(H1(W )/Tors) ⊗ Z/2) → HF◦(Y ),

satisfying a property analogous to (7.1). We are now ready to state:
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Proposition 7.2. Let Y1 and Y2 be closed, connected 3-manifolds, and let X : Y1 → Y2 be a connected
cobordism. Suppose that γ1, . . . , γ` ⊂ Int(X) are loops with disjoint neighborhoods ν(γi) ∼= γi ×D3,

and denote by Z the result of surgery on X along γ1, . . . , γ`. Then for x ∈ ĤF(Y1),

(7.3) F̂X(x⊗ ([γ1] ∧ · · · ∧ [γ`])) = F̂Z(x).

Thus, F̂Z depends only on X and [γ1] ∧ · · · ∧ [γ`] ∈ Λ∗(H1(X)/Tors) ⊗ Z/2.

Remark 7.4. A surgery formula for link cobordisms and link Floer homology, similar to Proposi-
tion 7.2, is provided by Zemke [Zem19a, Proposition 5.4]. One may obtain Proposition 7.2 via an
identification, also provided by Zemke [Zem19d, Theorem C], of link cobordism maps with maps
induced by cobordisms between 3-manifolds. In this paper, we instead provide a direct proof without
mentioning any link cobordism theory, in the interest of providing a self-contained discussion.

Before giving the proof, we describe the idea informally. Surgery on γi is the result of removing a
copy of S1 ×D3 and replacing it with D2 × S2. The cobordism map for D2 × S2 agrees with that
of S1 ×D3 if one contracts the latter map by the generator of H1. Composing with the cobordism
map for X \ (

∐
ν(γi)), the result follows. However, to prove this carefully, we must cut and re-glue

several different codimension-0 submanifolds, and thus need to use the graph TQFT framework by
Zemke [Zem21b]. Below, we give a brief review of the necessary elements.

Let Y be a possibly disconnected 3-manifold, and let p be a set of points in Y with at least one
point in each component. Let W : Y1 → Y2 be a cobordism, and let Γ be a graph embedded in W

with ∂Γ = p1 ∪ p2. Then, Zemke [Zem21b] constructs Heegaard Floer homology groups ĤF(Yi,pi)

and cobordism maps F̂W,Γ : ĤF(Y1,p1) → ĤF(Y2,p2).
In a later paper, Zemke [Zem19b] constructs cobordism maps

FAW,Γ,t : HF◦(Y1,p1, t|Y1
) → HF◦(Y2,p2, t|Y2

), FBW,Γ,t : HF◦(Y1,p1, t|Y1
) → HF◦(Y2,p2, t|Y2

)

for each t ∈ Spinc(W ), for various flavors HF◦ of Heegaard Floer homology groups. One may also
take the sum over all t ∈ Spinc(W ) to obtain maps FAW,Γ and FBW,Γ. In this theory, for HF−, the
graph Γ needs to be equipped with a cyclic ordering of the edges adjacent to each vertex; however, for

ĤF, the map is independent of this choice of a cyclic ordering [Zem19b, Lemma 4.5]. Furthermore,

for ĤF, the maps FAW,Γ,t and FBW,Γ,t coincide, as can be seen by combining [Zem19b, Lemma 5.7]

and the definitions of the type-A and type-B graph action maps [Zem19b, Equation (7.1) and
Equation (7.2)].

As pointed out to the authors by Ian Zemke, for ĤF, the maps FAW,Γ = FBW,Γ in fact agree with

F̂W,Γ. Indeed, it suffices to check this for maps associated to 4-dimensional 1-, 2-, and 3-handles,
as well as maps associated to three elementary graph cobordisms: free-stabilization cobordisms,
free-destabilization cobordisms, and wye-shaped cobordisms [Zem21b, Figure 1.1 (Γ-1) and (Γ-2)].

For handles, the definitions of F̂W,Γ [Zem21b, Section 2.4 and Section 3] and FAW,Γ = FBW,Γ [Zem19b,

Section 8 and Section 9] coincide, as they are ultimately equal to the maps described by Ozsváth and

Szabó [OSz06]. For graph cobordisms, F̂W,Γ is computed in [Zem21b, Section 4], while FAW,Γ = FBW,Γ
are computed in [Zem21a, Section 4]. This equivalence between the two graph TQFTs helps us

establish some of the properties for F̂W,Γ in the following theorem.

Theorem 7.5 (Zemke [Zem21b, Zem19b]). The cobordism maps F̂W,Γ satisfy the following.

(1) Under disjoint union, we have that ĤF(Y1 t Y2,p1 t p2) = ĤF(Y1,p1) ⊗ ĤF(Y2,p2), and

F̂(W1,Γ1)t(W2,Γ2) = F̂(W1,Γ1) ⊗ F̂(W2,Γ2).
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(2) Given (W,Γ): (Y1,p1) → (Y2,p2) and (W ′,Γ′) : (Y2,p2) → (Y3,p3), then F̂W ′,Γ′ ◦ F̂W,Γ =

F̂W∪W ′,Γ∪Γ′; see [Zem21b, Theorem 1.2 (2)].

(3) F̂W,Γ admits a decomposition by Spinc-structures in the usual way. In particular, F̂W,Γ =∑
t∈Spinc(W ) F̂W,Γ,t, and

F̂W ′,Γ′,tW ′
◦ F̂W,Γ,tW =

∑

t∈Spinc(W∪W ′)
t|W=tW , t|W ′ =tW ′

F̂W∪W ′,Γ∪Γ′,t;

see [Zem19b, Theorem C]. (We take the convention that this equation remains valid when
tW |Y2

6= tW ′ |Y2
, in which case both sides of the equation are identically zero.)

(4) If λ is an arc from the boundary of some B4 ⊂ W to Γ, then F̂W,Γ(x) = F̂W\B4,Γ∪λ(x⊗ y),

where y is the generator of ĤF(∂B4); see [Zem19b, Proposition 11.1].
(5) Suppose that Y1 and Y2 are connected, p1 and p2 each consist of a single point, and Γ is

a path. Then F̂W (x) = F̂W,Γ(x), where F̂W is the original Ozsváth–Szabó cobordism map;
see [Zem21b, Theorem 1.2 (1)]. (Implicitly, the Ozsváth–Szabó cobordism map requires a
choice of basepoints and a choice of path, but the injectivity statement in Theorem 4.10 is
independent of both choices.)

(6) Suppose again that Y1 and Y2 are connected, p1 and p2 each consist of a single point, and Γ
is a path. Let γ be a simple closed loop in Int(W ) that intersects Γ at a single point. Then

F̂W (x ⊗ [γ]) = F̂W,Γ∪γ(x), where the left-hand side is the Ozsváth–Szabó cobordism map
defined above; see [Zem21b, Lemma 4.3].

(7) As a special case of (6), Let Y be connected and let p consist of a single point. Consider
Γ = p × I ⊂ Y × I. Choose a simple closed loop γ in Y based at p and let Γγ be the

graph obtained by appending γ × {1/2} to Γ. Denote the cobordism map F̂Y×I,Γγ by F(γ).
Then, F(γ) depends only on [γ] ∈ H1(Y ). Furthermore, F(γ ∗ γ′) = F(γ) + F(γ′) and
F(γ) ◦ F(γ) = 0. Here, γ ∗ γ′ is a simple closed loop in the based homotopy class of the
concatenation.

We now need a slight generalization of Theorem 7.5 (6), i.e. [Zem21b, Lemma 4.3], which will
allow us to analyze the effect on the cobordism map of appending multiple loops to a path. We
begin with the identity cobordism.

Lemma 7.6. Suppose that Y is connected, and that p consists of a single point. Suppose that Γ
is a graph obtained by taking p × I ⊂ Y × I and appending to it ` disjoint simple closed curves
γ1, . . . , γ`, which each intersect p × I only at a single point. Then

F̂Y×I(x⊗ ([γ1] ∧ · · · ∧ [γ`])) = F̂Y×I,Γ(x),

where the left-hand side is the Ozsváth–Szabó cobordism map.

Proof. This is implicit in the work of Zemke [Zem21b], but we give the proof for completeness. By
a homotopy, and hence isotopy, in Y × I, we may arrange that γi ⊂ Y × {i/(` + 1)}. Therefore,

using Theorem 7.5 (2), we can write F̂Y×I,Γ as a composition of the maps F(γi). Viewing F as a

function from H1(Y ) to EndZ/2(ĤF(Y )), Theorem 7.5 (7) implies that this descends to the exterior
algebra. �

We move on to more general cobordisms.

Lemma 7.7. Suppose that Y1 and Y2 are connected, and that p1 and p2 each consist of a single
point. Let W : Y1 → Y2 be a connected cobordism. Suppose that Γ is a graph obtained by taking
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a path α from p1 to p2 and appending to it ` disjoint simple closed loops γ1, . . . , γ`, which each
intersect α only at a single point. Then

F̂W (x⊗ ([γ1] ∧ · · · ∧ [γ`])) = F̂W,Γ(x),

where the left-hand side is the Ozsváth–Szabó cobordism map.

Proof. We may decompose (W,Γ) as a composition of three cobordisms: (W1,Γ1), where W1 consists
only of 1-handles and Γ1 is a path; (∂W1 × I,Γ∗), where Γ∗ consists of a graph in ∂W1 × I as in the
statement of Lemma 7.6; and (W2,Γ2), where W2 consists of 2- and 3-handles, and Γ2 is again a
path. The result now follows from Lemma 7.6 together with Theorem 7.5 (2). �

With this generalization, we may now complete the proof of Proposition 7.2.

Proof of Proposition 7.2. Let ν(γi) ∼= γi ×D3 be a neighborhood of γi, and let P = X \ (
∐
i ν(γi)).

Let X ′ = X \ (B4
1 t · · · t B4

` ), where B4
i ⊂ Int(ν(γi)). We construct a properly embedded graph

ΓX′ in X ′ as follows; see Figure 4.

p0
p1 p2 p` p`+1α0 α1 α2 α`

β1 β2 β`

q1 q2 q`

γ1 γ2 γ`r1 r2 r`

δ1 δ2 δ`

ε1 ε2 ε`s1 s2 s`

S3 S3 S3

Y1 Y2

Figure 4. The embedded graph ΓX′ in X ′.

We begin with the vertex set. Choose ` points p1, . . . , p` in the interior of P , and points p0

and p`+1 in Y1 and Y2 respectively. Choose ` points q1, . . . q` with qi ∈ ∂ν(γi), which are copies of
S1 × S2. Choose ` points r1, . . . , r` with ri ∈ γi. Finally, let si be a point in S3

i = ∂B4
i for each i.

Now we define the edge sets. Choose any collection of embedded arcs α0, . . . , α` with αi ⊂ P
connecting pi and pi+1. Let βi ⊂ P be an arc from pi to qi. Connect qi and ri by arcs δi, and ri
and si by arcs εi, in ν(γi) \B4

i . We may choose the edges above in such a way that their interiors
are mutually disjoint, avoid the γi, and are contained in the interior of X ′. Then, the edge set of
ΓX′ consists of the edges αi, βi, γi, δi, and εi. In accordance with Theorem 7.5 (1), we view the
cobordism map for (X ′,ΓX′) as a map

F̂X′,ΓX′
: ĤF(Y1) ⊗

(⊗̀

i=1

ĤF(S3
i )

)
→ ĤF(Y2).

It follows from Lemma 7.7 as well as Theorem 7.5 (1) and (4) that

F̂X(x⊗ ([γ1] ∧ · · · ∧ [γ`])) = F̂X′,ΓX′
(x⊗ y1 ⊗ · · · ⊗ y`),

where yi is the generator of ĤF(S3
i ). (We can first contract the homology elements, and then

contract the arcs βi ∪ δi ∪ εi.) Let ΓP be the intersection of ΓX′ with P , which can alternatively be
obtained by excising the γi, δi, and εi arcs.

Note that Z = P ∪ (
∐
i(D

2 × S2)i). Here, we suppress the choice of gluing from the notation.
Similarly, we let Z ′ = Z \ (B4

1 t · · · t B4
` ) where B4

i ⊂ (D2 × S2)i; then Z ′ = P ∪ (
∐
iRi), where
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each Ri is a punctured D2 × S2. Let ζi be an arc in Ri that connects qi and si; then we define ΓRi
in Ri to be ζi, and define ΓZ′ in Z ′ as the union of the arcs αi, βi, ζi. See Figure 5 for an illustration
of (Z ′,ΓZ′).

p0
p1 p2 p` p`+1α0 α1 α2 α`

β1 β2 β`

q1 q2 q`

ζ1 ζ2 ζ`

s1 s2 s`

S3 S3 S3

Y1 Y2

Figure 5. The embedded graph ΓZ′ in Z ′.

Viewing the cobordism map for (Z ′,ΓZ′) as a map F̂Z′,ΓZ′
: ĤF(Y1) ⊗ (

⊗
i ĤF(S3

i )) → ĤF(Y2),
we have

F̂Z(x) = F̂Z′,ΓZ′
(x⊗ y1 ⊗ · · · ⊗ y`),

again by Theorem 7.5 (4). Thus, (7.3) will follow if we can show

F̂X′,ΓX′
(x⊗ y1 ⊗ · · · ⊗ y`) = F̂Z′,ΓZ′

(x⊗ y1 ⊗ · · · ⊗ y`).

To do so, let Qi = ν(γi) \B4
i , and let ΓQi be the intersection of ΓX′ with Qi. Both (Qi,ΓQi) and

(Ri,ΓRi) are cobordisms from (S3, si) to (S1 × S2, qi); see Figure 6.

si

ri

qi

εi

γi

δi

S3 S1 × S2

(a) The cobordism (Qi,ΓQi
).

S3 S1 × S2si qi

ζi

(b) The cobordism (Ri,ΓRi
).

Figure 6. The cobordisms (Qi,ΓQi) and (Ri,ΓRi).

Viewing (P,ΓP ) as a cobordism from (Y1, p0)t (
∐
i(S

1 ×S2)i, qi) → (Y2, p`+1), by Theorem 7.5 (1)
and (2), we have that

F̂X′,ΓX′
= F̂P,ΓP ◦

(
I
ĤF(Y1)

⊗ F̂Q1,ΓQ1
⊗ · · · ⊗ F̂Q`,ΓQ`

)

and
F̂Z′,ΓZ′

= F̂P,ΓP ◦
(
I
ĤF(Y1)

⊗ F̂R1,ΓR1
⊗ · · · ⊗ F̂R`,ΓR`

)
.

Thus, we need only to show that F̂Qi,ΓQi = F̂Ri,ΓRi for each i. On the one hand, Theorem 7.5 (6)

together with (7.1) imply that

F̂Qi,ΓQi (yi) = F̂Qi(yi ⊗ [γi]) = [γi] · F̂Qi(yi).
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Since Qi is simply a 1-handle attachment to S3, its cobordism map, by Ozsváth and Szabó’s

definition, sends yi to the topmost generator of ĤF(S1 × S2) (see [OSz06, p. 364]), and the action
by [γi] sends this to the bottommost generator (see [OSz04b, Proposition 6.4]). On the other hand,
Theorem 7.5 (5) implies that

F̂Ri,ΓRi (yi) = F̂Ri(yi).

Since Ri is simply a 0-framed 2-handle attachment along the unknot in S3, its cobordism map

sends yi to the bottommost generator of ĤF(S1 × S2). (One could directly compute the map
from the definition on [OSz06, pp. 356–357] using the standard Heegaard triple diagram for Ri.

Alternatively, one could observe that F̂Ri must not be zero because of the exact triangle for surgery

along the unknot; since the cobordism map respects the H1-action, and the H1-action on ĤF(S3) is

trivial, this means that F̂Ri(yi) is in the kernel of the H1-action on ĤF(S1 × S2).) Consequently,

F̂Qi,ΓQi (yi) = F̂Ri,ΓRi (yi) as desired. �

Proof of Theorem 4.10. We consider the hat flavor first. Consider the double D(W ) of W . Then,
by Proposition 5.1, D(W ) is described by surgery on X ∼= (Y− × I) ] m(S1 × S3) along m circles
γ1, . . . , γm, where [γ1] ∧ · · · ∧ [γm] = α1 ∧ · · · ∧αm ∈ (Λ∗(H1(X)/Tors)/〈H1(Y−)/Tors〉) ⊗ZZ/2, and
αi is the homology class of the core of the ith S1 × S3 summand. Note that the same description is
true of Y− × I; in this case, the surgery is performed along the core circles γ′

i of the (S1 × S3)’s
themselves.

Applying Proposition 7.2 with Z = D(W ), we have that

F̂X(x⊗ ([γ1] ∧ · · · ∧ [γm])) = F̂D(W )(x) = F̂−W ◦ F̂W (x).

Now consider Y− × I as surgery on X along the cores γ′
i. Applying Proposition 7.2 again, this time

with Z = Y− × I, we have

F̂X(x⊗ ([γ′
1] ∧ · · · ∧ [γ′

m])) = F̂Y−×I(x) = I
ĤF(Y−)

.

Since [γ1] ∧ · · · ∧ [γm] = [γ′
1] ∧ · · · ∧ [γ′

m] in Λ∗(H1(X)/Tors)/〈H1(Y−)/Tors〉 ⊗Z Z/2, by the

linearity of F̂ , it suffices to show that F̂X(x⊗ ξ) = 0 for x ∈ ĤF(Y−) and ξ ∈ Λm(H1(X)/Tors) ∩

〈H1(Y−)/Tors〉 ⊗Z Z/2. Indeed, this will imply that F̂−W ◦ F̂W = I
ĤF(Y−)

, and we have the desired

result for ĤF.
Note that Λm(H1(X)/Tors) ∩ 〈H1(Y−)/Tors〉 is generated by elements of the form ω ∧ (

∧
i∈I αi),

where ω is a wedge of elements in H1(Y−)/Tors and I ( {1, . . . ,m}; we would like to show that

if ξ ∈ 〈H1(Y−)/Tors〉 ⊗Z Z/2 is of this form, then F̂ (x ⊗ ξ) = 0 for x ∈ ĤF(Y−). Therefore, let
ξ = ω ∧ (

∧
i∈I αi) be of this form. The idea is that ξ misses at least one S1 × S3 summand, and the

cobordism map associated to a twice punctured S1 × S3, without an H1-action, is identically zero.
Concretely, choose j ∈ {1, . . . ,m}\I, and write X = Tj ∪S3 V , where Tj is the jth S1 ×S3 summand
punctured once, and V = ((Y− × I) ] (m− 1)(S1 × S3)) \B4; then ξ determines a graph Γξ in X

such that F̂X(x⊗ ξ) = F̂X,Γξ(x), and we may assume that Γξ ∩ Tj = ∅. Let X ′ = X \ B4
j , where

B4
j ⊂ Int(Tj). As in Theorem 7.5 (4), choose an arc λ from ∂B4

j to Γξ that intersects ∂Tj = ∂V

once, and let Γ′
ξ = Γξ ∪ λ; then we have

F̂X,Γξ(x) = F̂X′,Γ′

ξ
(x⊗ yj),

where yj is the generator of ĤF(∂B4
j ). Writing T ′

j = Tj \B4
j , it is also clear that

F̂X′,Γ′

ξ
= F̂V,Γ′

ξ
∩V ◦

(
I
ĤF(Y−)

⊗ F̂T ′

j ,λ∩T ′

j

)
.
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Since λ ∩ T ′
j is simply a path, F̂T ′

j ,λ∩T ′

j
= F̂T ′

j
. Note that T ′

j
∼= (S3 × I) ] (S1 × S3) is obtained by

adding a 1-handle and a 3-handle to S3 × I, and so a direct computation shows that F̂T ′

j
(yj) = 0;

thus, F̂X(x⊗ ξ) = 0, as desired.
To obtain the analogous result for the other flavors of Heegaard Floer homology, we use that the

long exact sequences relating the various flavors are natural with respect to cobordism maps. It is

straightforward to see that only an isomorphism on HF+ can induce the identity map on ĤF, and
similarly for HF−. Finally, only an isomorphism on HF∞ can induce an isomorphism on both HF+

and HF−. �

7.2. A Spinc-refinement of Theorem 4.10. We now provide a Spinc-refinement of Theorem 4.10.
First, observe that any Spinc-structure t on a cobordism W : Y1 → Y2 can be extended to a Spinc-
structure D(t) on D(W ), since t on W and t on −W coincide on the intersection W ∩ −W = Y2.
We now have the following observation when W is a ribbon Q-homology cobordism.

Lemma 7.8. Let Y− and Y+ be closed 3-manifolds, and suppose that W : Y− → Y+ is a ribbon
Q-homology cobordism. If a Spinc-structure s+ on Y+ can be extended to a Spinc-structure t on W ,
then the extension is unique; moreover, in this case, D(t) is the unique Spinc-structure on D(W )
that restricts to s+ on Y+.

Proof. For the first statement, consider

H2(W,Y+) → H2(W ) → H2(Y+)

from the long exact sequence of the pair (W,Y+). By the Poincaré Duality, H2(W,Y+) ∼= H2(W,Y−).
Take a ribbon handle decomposition of W ; since W is a Q-homology cobordism, the numbers m of
1- and 2- handles are the same, and the differential ∂2 : C2(W,Y−) → C1(W,Y−) in the cellular chain
complex is given by a homomorphism R : Zm → Zm such that R ⊗Z Q is an isomorphism. This
means that R, and hence ∂2, are injective, and so H2(W,Y−) = 0. Thus, the map H2(W ) → H2(Y+)
induced by inclusion is injective, proving that any extension t of s+ is unique.

For the second statement, consider

H1(W ) ⊕H1(−W ) → H1(Y+) → H2(D(W )) → H2(W ) ⊕H2(−W )

from the Mayer–Vietoris exact sequence; we wish to prove the first map is surjective. In fact,
we will prove that the map H1(W ) → H1(Y+) is an isomorphism. To do so, consider the map
H1(Y+) → H1(W ). Since W is a Q-homology cobordism, we have rkZH1(Y+) = rkZH1(W ),
and we denote this number by k; then the map in question is given by some homomorphism
R′ : Zk ⊕ T1 → Zk ⊕ T2, where T1 and T2 are torsion, with matrix

R′ =

(
A 0
B C

)
.

Viewing W upside down, it is built from Y+ by adding 2- and 3-handles, which implies that R′ is
surjective; in particular, A : Zk → Zk is also surjective, and thus an isomorphism. By the Universal
Coefficient Theorem, the map H1(W ) → H1(Y+) is exactly given by the transpose AT : Zk → Zk,
which is also an isomorphism. Returning to the exact sequence, we see that the third map is
injective, showing that the extension from t to D(t) is unique. �

We are now ready to state the following refinement of Theorem 4.10.
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Theorem 7.9. Let Y− and Y+ be closed 3-manifolds, and suppose that W : Y− → Y+ is a ribbon
Z/2-homology cobordism. Fix a Spinc-structure s on Y−. Then the sum of cobordism maps




∑

t∈Spinc(W )
t|Y

−
=s

F ◦
W,t


 : HF◦(Y−, s) →

⊕

t∈Spinc(W )
t|Y

−
=s

HF◦(Y+, t|Y+
)

includes HF◦(Y−, s) into the codomain as a summand. In fact,



∑

t∈Spinc(W )
t|Y

−
=s

F̂D(W ),D(t)


 : ĤF(Y−, s) → ĤF(Y−, s)

is the identity map.

Proof. The assertion that the first map is injective is a direct consequence of Theorem 4.10, since it
is simply the restriction of F ◦

W to the summand HF◦(Y−, s) of HF◦(Y−). (However, in writing the
codomain as the direct sum above, we have implicitly used the fact that for distinct t1, t2 ∈ Spinc(W ),
their restrictions t1|Y+

, t2|Y+
∈ Spinc(Y+) are distinct, which is a consequence of Lemma 7.8.) The

second assertion is obtained by restricting the identity map F̂D(W ) in Theorem 4.10 to the summand

ĤF(Y−, s), and observing that all Spinc-structures on D(W ) are of the form D(t), which follows
from Lemma 7.8. �

With the additional condition that W is a Z-homology cobordism, a Spinc structure s− on Y−

determines a unique t on W , and hence a unique s+ on Y+. We have:

Corollary 7.10. Let Y− and Y+ be 3-manifolds, and suppose that W : Y− → Y+ is a ribbon Z-
homology cobordism. Fix a Spinc-structure s− on Y−, and let t and s+ be the corresponding Spinc

structures on W and Y+ respectively. Then the cobordism map F ◦
W,t : HF◦(Y−, s−) → HF◦(Y+, s+)

includes HF◦(Y−, s−) into HF◦(Y+, s+) as a summand. �

7.3. Sutured Heegaard Floer theory. First, we mention that the definition of a cobordism of
sutured manifolds is given in Definition 6.10.

We now use Theorem 7.9 to prove the sutured analogue.

Proof of Theorem 4.12. Recall from Lekili’s work [Lek13, Theorem 24] that the sutured Floer
homology of a sutured manifold (M,η) can be described in terms of the Heegaard Floer homology of

the sutured closure M̂ = M ∪ (Fg,d × [−1, 1]) and a closed surface R in M̂ obtained from Fg,d, where
Fg,d is a surface of genus g ≥ 2 and d boundary components. For more details on the construction

of M̂ and R, see Section 6.5. Then we have the isomorphism

SFH(M,η) ∼=
⊕

〈c1(s),R〉=2g−2

HF+(M̂, s).

Now, given a ribbon Z/2-homology cobordism N : (M−, η−) → (M+, η+) between sutured manifolds,

we can attach Fg,d × [−1, 1] × I to obtain a ribbon Z/2-homology cobordism N̂ between the sutured

closures. Furthermore, for any Spinc-structure t on N̂ ,
〈
c1

(
t|
M̂−

)
,
[
R
M̂−

]〉
=
〈
c1

(
t|
M̂+

)
,
[
R
M̂+

]〉
.

Consequently, the desired result follows from Theorem 7.9. �
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7.4. Involutive Heegaard Floer theory. We now extend our work in Section 7.1 to prove

Theorem 4.15. Recall that ĤFI(Y ) is defined as the homology of the mapping cone of 1 + ι, where ι

is a chain homotopy equivalence on ĈF(Y ) coming from Spinc-conjugation. Since we are working

over Z/2, we have that ĤFI(Y ) is in fact isomorphic to the homology of the mapping cone of

1 + ι∗ : ĤF(Y ) → ĤF(Y ). Unfortunately, the theory of cobordism maps is not fully developed in the
theory, but we can still compare the involutive Heegaard Floer homologies under ribbon homology
cobordisms.

Proof of Theorem 4.15. Fix a self-conjugate Spinc-structure s− on Y−, which determines a unique
Spinc-structure t on W and a unique s+ on Y+. Then we have the commutative diagram

ĤF(Y−, s−)
F̂W,t //

1+ι∗
��

ĤF(Y+, s+)
F̂−W,t //

1+ι∗
��

ĤF(Y−, s−)

1+ι∗
��

ĤF(Y−, s−)
F̂W,t // ĤF(Y+, s+)

F̂−W,t // ĤF(Y−, s−).

The result now follows from Theorem 7.9. �

8. Some specific obstructions

In this section, we derive some obstructions to ribbon homology cobordisms from our results on
character varieties (Section 2) and Floer homologies (Section 4).

8.1. Ribbon cobordisms between Seifert fibered homology spheres. First, we prove Theo-
rem 1.5, a statement on ribbon Q-homology cobordisms between Seifert fibered homology spheres.
Since Theorem 1.5 (1) and (2) will follow easily from instanton or Heegaard Floer homology, our
main goal is to prove the following, which is a restatement of Theorem 1.5 (3). The complete proofs
of Theorem 1.5 and Corollary 1.6 are given at the end of this subsection.

Theorem 8.1. Suppose that there exists a ribbon Z-homology cobordism from the Seifert fibered
homology sphere Σ(a1, . . . , an) to Σ(a′

1, . . . , a
′
m). Then the numbers of fibers satisfy n ≤ m.

Our strategy will be to use Proposition 1.18 with G = SU(2). We begin by mentioning a basic
fact about SU(2)-representations. Every representation ρ : π → SU(2) is either trivial, Abelian, or
irreducible, and dimRH

0(π; Adρ) is respectively 3, 1, or 0, according to this trichotomy.
We now review some useful facts from the work of Fintushel and Stern [FS90] on SU(2)-

representations for Seifert fibered homology spheres (see also the work of Boyer [Boy88]). To
fix our notation, the Seifert fibered homology sphere Σ(a1, . . . , an) has base orbifold S2 and presen-
tation (b; (a1, b1), . . . , (an, bn)), where we do not require that 0 < bi < ai, but do require that ai and
bi are relatively prime, and that

−b+
n∑

i=1

bi
ai

=
1

a1 · · · an
.

Then the fundamental group of Σ(a1, . . . , an) is given by

π1(Σ(a1, . . . , an)) ∼=
〈
x1, . . . , xn, h

∣∣∣h central, xaii = h−bi , x1 · · ·xn = h−b
〉
.

Theorem 8.2 (Fintushel and Stern [FS90]). Suppose that ρ ∈ R(Σ(a1, . . . , an)) is irreducible. Then

(1) [FS90, Lemma 2.1] ρ(h) = ±1;
(2) [FS90, Lemma 2.2] ρ(xi) 6= ±1 for at least three values of i ∈ {1, . . . , n}; and
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(3) [FS90, Proposition 2.5] dimRH
1(Σ(a1, . . . , an); Adρ) = 2t− 6, where t is the number of xi’s

such that ρ(xi) 6= ±1.

We also recall their recipe for constructing conjugacy classes of irreducible SU(2)-representations.
For this, it will be useful to think of elements of SU(2) as unit quaternions. After choosing the

sign of ρ(h), we may choose an integer `1 and define ρ(x1) = eiπ`1/a1 , as long as 0 ≤ `1 ≤ a1

and (−1)`1 = (ρ(h))−b1 . Next, for each q ∈ {2, . . . , n}, we choose an integer `q with analogous

constraints and consider eiπ`q/aq ; we will eventually define ρ(xq) to be some element conjugate to
this. (The choice of the integers `q is also subject to Theorem 8.2 (2).) Note that once we choose
ρ(x2), . . . , ρ(xn−1), they will determine ρ(xn) by the equation

(8.3) ρ(x1) · · · ρ(xn) = (ρ(h))−b;

the difficulty, however, lies in ensuring that ρ(xn) is also conjugate to eiπ`n/an for some integer `n
with analogous constraints. Plugging this last condition into (8.3), we see that ρ(x2), . . . , ρ(xn−1)
must satisfy

(8.4) (ρ(x1) · · · ρ(xn−1))an = (ρ(h))−ban+bn = ±1.

To fulfill this condition, let Sq denote the set of elements in SU(2) conjugate to eiπ`q/aq , for each

q ∈ {2, . . . , n − 1}. If eiπ`q/aq 6= ±1, then Sq is a copy of S2. In any case, consider the map
φ : S2 × · · · × Sn−1 → [0, π] given by

φ(s2, . . . , sn−1) = Arg(ρ(x1)s2 · · · sn−1),

where Arg(z) is defined to be the value θ ∈ [0, π] such that z is conjugate to eiθ. If π`′n/an is in

the image of φ, then, for each integer `′n such that 0 ≤ `′n ≤ an and (−1)`
′

n = (ρ(h))−ban+bn , there

exists some choice of ρ(x2), . . . , ρ(xn−1) such that ρ(x1) · · · ρ(xn−1) is conjugate to eiπ`
′

n/an (and
hence (8.4) holds). This determines a well-defined representation ρ. Finally, note that since the
Abelianization of π1(Σ(a1, . . . , an)) is trivial, there are no non-trivial Abelian SU(2)-representations,
and every non-trivial representation is irreducible.

We now proceed towards the proof of Theorem 8.1. The main technical proposition we will prove
is the following. While this is well known, we include a direct proof for completeness.

Proposition 8.5. Suppose that Y is the Seifert fibered homology sphere Σ(a1, . . . , an). Then there
exists an irreducible ρ ∈ R(Y ) such that H1(Y ; Adρ) has the maximal dimension possible, i.e. 2n−6.

We now briefly describe our strategy to prove this proposition. By Theorem 8.2 (3), we would
like to show that π1(Σ(a1, . . . , an)) admits an irreducible SU(2)-representation that does not send
any xi to ±1. The idea is to reduce to the case where there are exactly three singular fibers; in
other words, we will construct such a representation from an irreducible SU(2)-representation of
π1(Σ(a1, a2, a3 · · · an)), by a pinching argument. A subtlety here is that for this pinching argument
to work, we will require the representation of π1(Σ(a1, a2, a3 · · · an)) to be of a certain form; to show
that this exists, we will assume the primality of the ai’s. Thus, we begin by reducing to the case
that all the ai’s are prime.

Lemma 8.6. Let r ∈ Z≥0. Suppose that π1(Y ) admits an irreducible representation ρ such that
dimRH

1(Y ; Adρ) = r for Y ∼= Σ(a1, . . . , an). Then the same holds for Y ∼= Σ(a1, . . . , an−1, kan),
where k is relatively prime to a1, . . . , an−1.

Proof. Fix a presentation (b; (a1, b1), . . . , (an−1, bn−1), (kan, bn)) for Σ(a1, . . . , an−1, kan); then

Σ(a1, . . . , an) = S2(kb; (a1, kb1), . . . , (an−1, kbn−1), (an, bn)).
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We denote by xi and yi the respective generators of π1(Σ(a1, . . . , an−1, kan)) and π1(Σ(a1, . . . , an))
associated to the singular fibers, but we abusively write h for the central generator in both groups.
Consider the homomorphism φ : π1(Σ(a1, . . . , an−1, kan)) → π1(Σ(a1, . . . , an)) defined by

φ(h) = hk, φ(xi) = yi for all i ∈ {1, . . . , n} ,

which can be easily checked to be well-defined. (For completeness, we note that φ is induced by the
k-fold cover of Σ(a1, . . . , an) branched over the singular fiber of order an.)

Since ρ ∈ R(Σ(a1, . . . , an)) is irreducible, so is φ∗ρ ∈ R(Σ(a1, . . . , an−1, kan)), and the number
of xi’s such that φ∗ρ(xi) = ±1 is exactly the same as the number of yi’s such that ρ(yi) =
±1. Therefore, by Theorem 8.2 (3), we conclude that dimRH

1(Σ(a1, . . . , an−1, kan); Adφ∗ρ) =
dimRH

1(Σ(a1, . . . , an); Adρ) = r. �

Next, we reduce to the case where there are exactly three singular fibers. Given Σ(a1, . . . , an),
let p = a3 · · · an. Denote the generators for π1(Σ(a1, . . . , an)) corresponding to the singular fibers
by x1, . . . , xn, and those for π1(Σ(a1, a2, p)) by y1, y2, and z respectively; we continue to write h for
the central generator. Note that the ai’s are not assumed to be prime in the following lemma; their
primality will instead be used later.

Lemma 8.7. Suppose that n ≥ 4. Then there exists a surjective homomorphism

f : π1(Σ(a1, . . . , an)) → π1(Σ(a1, a2, p))

such that, for every irreducible ρ ∈ R(Σ(a1, a2, p)) where ρ(z) is conjugate to eiπ`z/p with `z relatively
prime to p, we have that f∗ρ ∈ R(Σ(a1, . . . , an)) is irreducible and f∗ρ(xi) 6= ±1 for all i; in other
words, dimRH

1(Σ(a1, . . . , an); Adf∗ρ) is maximal.

Recall that there exists a degree-1 map from Σ(a1, . . . , an) to Σ(a1, a2, a3 · · · an) given by pinching
along a suitable vertical torus in the Seifert fibration. The homomorphism f above is induced by
this map.

Proof. Fix a presentation (b; (a1, b1), . . . , (an, bn)) for Σ(a1, . . . , an), and let q =
∑n
i=3 pbi/ai. Then

Σ(a1, a2, p) = S2(b; (a1, b1), (a2, b2), (p, q)).

(Since the ai’s are pairwise relatively prime, p and q are relatively prime.) The two fundamental
groups are

π1(Σ(a1, . . . , an)) ∼=
〈
x1, . . . , xn, h

∣∣∣h central, xaii = h−bi , x1 · · ·xn = h−b
〉
,

π1(Σ(a1, a2, p)) ∼=
〈
y1, y2, z, h

∣∣∣h central, yaii = h−bi , zp = h−q, y1y2z = h−b
〉
.

With these presentations, we now define f . Since the ai’s are pairwise relatively prime, for each
i ≥ 3, we may choose an integer ηi such that ηip/ai ≡ 1 mod ai. Clearly, ηi and ai are relatively
prime for each i. We define

f(x1) = y1, f(x2) = y2, f(xi) = zαihβi for i ≥ 3, f(h) = h,

where αi = ηip/ai and βi = (ηiq−bi)/ai. (Note that f does not depend on the choice of ηi.) Observe
that

∑n
j=3 αj ≡ 1 mod ai for each i ≥ 3, which implies that

∑n
j=3 αj ≡ 1 mod p; using this fact, it

is straightforward to check that f is a well-defined group homomorphism.
We now claim that, for an irreducible ρ ∈ R(Σ(a1, a2, p)) satisfying the conditions in the lemma,

we have f∗ρ(xi) 6= ±1 for i = 1, . . . , n. This is clear for i = 1 and i = 2. For i ≥ 3, suppose

that f∗ρ(xi) = ±1 for some i ≥ 3; then ρ(z)ηip/ai = ±1, implying that eiπ`zηi/ai = ±1, which is a
contradiction since ηi is relatively prime to ai. �
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We now demonstrate the existence of an irreducible ρ ∈ R(Σ(a1, a2, p)) satisfying the conditions
of Lemma 8.7, in the case that the ai’s are pairwise prime.

Proposition 8.8. Suppose that n ≥ 4, and that a1 < · · · < an are positive prime numbers. There
exists an irreducible ρ ∈ R(Σ(a1, a2, p)) such that ρ(z) is conjugate to eiπ`z/p, where `z is relatively
prime to p.

Proof. We continue to write Σ(a1, a2, p) = S2(b; (a1, b1), (a2, b2), (p, q)), and use the same presenta-
tion for π1(Σ(a1, a2, p)) as before. First, we make some general observations. Recall the construction
of irreducible SU(2)-representations in the paragraph after Theorem 8.2. Observe that ρ(z) is

conjugate to eiπ`z/p for some `z relatively prime to p if and only if ρ(y1)ρ(y2) is conjugate to eiπ`
′

z/p

for some `′z relatively prime to p; thus, the goal is to show that after picking appropriate values for
ρ(h), `1, and `2 satisfying (−1)`j = (ρ(h))−bj (for us to define ρ(y1) = eiπ`1/a1 and decree ρ(y2) to

be conjugate to eiπ`2/a2), there exists an integer `′z such that

(1) `′z is relatively prime to p;

(2) (−1)`
′

z = (ρ(h))−bp+q; and
(3) π`′z/p is in the image of φ : S2 → [0, π].

Since φ is continuous, to satisfy (3), we simply need to exhibit choices s2, s
′
2 ∈ S2 (i.e. elements s2

and s′
2 that are conjugate to eiπ`2/a2) such that

(8.9) Arg(ρ(y1)s2) ≤
π`′z
p

≤ Arg(ρ(y1)s′
2).

Our strategy will be to find s2, s′
2, and two values of `′z of opposite parities satisfying (1) and (3);

then exactly one of them will satisfy (2). Finally, by construction, ρ is not trivial, and thus is
irreducible.

First, we consider the special case that a1 = 2. In this case, we may choose a presentation where
b1 = 1 and b2 is odd (at the expense of changing b). We take ρ(h) = −1, `1 = 1, and `2 = 1. We
claim that the image of φ contains πr±/p, where `′z = r± = (p± 1)/2. Note that these two numbers
are both integers relatively prime to p, and have opposite parities; thus, if πr±/p are both in the
image of φ, the proof will be complete in this case. To prove our claim, note that if we choose
s2 = e−iπ/a2 and s′

2 = eiπ/a2 , which are both conjugate to eiπ/a2 , then since a2 < p, we have

Arg(eiπ/2e−iπ/a2) =
π(a2 − 2)

2a2
≤
π(p± 1)

2p
≤
π(a2 + 2)

2a2
= Arg(eiπ/2eiπ/a2);

in other words, (8.9) is satisfied.
We may now assume that all the ai’s are odd. Next, we consider the special case that a1 = 3 and

a2 = 5. Again, we may choose a presentation where b1 and b2 are both odd, and take ρ(h) = −1
and `1 = `2 = 1. We again claim that the image of φ contains πr±/p, where `′z = r± = (p± 1)/2.

Indeed, if we choose s2 = e−iπ/5 and s′
2 = eiπ/5, both of which are conjugate to eiπ/5, then since

p > 15, we have

Arg(eiπ/3e−iπ/5) =
2π

15
<
π(p± 1)

2p
<

8π

15
= Arg(eiπ/3eiπ/5),

and (8.9) is satisfied.
By dispensing with the two cases above, we may assume that all the ai’s are odd, and further

that 1/a1 + 1/a2 < 1/2. In this case, there are several choices we could take for `j and ρ(h); for
concreteness, we choose a presentation where b1 and b2 are both even, and take `1 = `2 = 2 and
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ρ(h) = 1. We choose s2 = e−iπ2/a2 and s′
2 = eiπ2/a2 , and compute the arguments to be

0 < Arg(eiπ2/a1e±iπ2/a2) = 2π

(
1

a1
±

1

a2

)
< π.

As before, we now wish to find two values r and r′ for `′z, of opposite parities, each relatively prime
to p, such that (8.9) is satisfied, i.e.

2

(
1

a1
−

1

a2

)
≤
r

p
,
r′

p
≤ 2

(
1

a1
+

1

a2

)
.

Let I denote the interval governed by the above inequality. Note that the length of this interval is
4/a2, and 4/a3 < 4/a2 < 1. Therefore, we may choose an integer k with 0 < k < k + 2 < a3, such
that [k/a3, (k + 2)/a3] ⊂ I; we can rewrite this as

[
k p
a3

p
,
(k + 2) pa3

p

]
⊂ I.

In fact, since p/a3 > a3, we have

k p
a3

+ a3

p
,
k p
a3

+ 2a3

p
∈ I.

Let r = kp/a3 +a3 and r′ = kp/a3 + 2a3. Note that r and r′ are between 0 and p, and have opposite
parities since a3 is odd. It remains to see that r and r′ are relatively prime to p. First, since
0 < k < a3 and a3 is prime, we see that k is relatively prime to a3; thus, r, r′ ≡ kp/a3 6≡ 0 mod a3.
At the same time, for i > 3, we observe that r ≡ a3 mod ai and r′ ≡ 2a3 mod ai; since the ai’s are
odd, prime, and greater than a3, we have that a3 and 2a3 are also relatively prime to ai. Putting
this together, we conclude that r, r′ are relatively prime to p, which completes the proof. �

Proof of Proposition 8.5. Since the Casson invariant of any Seifert fibered homology sphere is never
zero, we have that the result trivially holds for n = 3. For n ≥ 4, the result follows from combining
Lemma 8.6, Lemma 8.7, and Proposition 8.8. �

Proof of Theorem 8.1. Theorem 8.2 (3) says that the Zariski tangent space to the SU(2)-character
variety of Σ(a1, . . . , an) has dimension less than or equal to 2n−6. By Proposition 8.5, the equality is
always realized at some irreducible representation. The result then follows from Proposition 1.18. �

Proof of Theorem 1.5. (1) This follows from Theorem 4.1, since 2|λ(Y )| = |χ(I(Y ))| = dim I(Y ) for
a Seifert fibered homology sphere Y [Sav92].

(2) The only Seifert fibered homology sphere with trivial Casson invariant is S3, which bounds
both positive- and negative-definite plumbings. Again by [Sav92], I(Y+) is supported in one Z/2-
grading; this Z/2-grading determines the sign of λ(Y+) and hence the definiteness of the plumbing
Y+ bounds. Theorem 4.1 implies that I(Y−) is supported in the same Z/2-grading.

(3) This is Theorem 8.1. �

Note that the first two items above can also be proved using Heegaard Floer homology, by
[OSz03a, Theorem 1.3] and [OSz03b, Corollary 1.4].

Remark 8.10. While the conclusions in Theorem 1.5 seem strong, the authors do not know of
any ribbon Q-homology cobordisms between two Seifert fibered homology spheres distinct from S3,
or from a non–Seifert fibered space to a Seifert fibered space. For comparison, given any closed
3-manifold Y−, one can always construct a ribbon Q-homology cobordism from Y− to a hyperbolic
3-manifold, and one to a 3-manifold with non-trivial JSJ decomposition, as explained below.
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To construct a ribbon Q-homology cobordism to a hyperbolic 3-manifold, first attach a 1-handle
to Y−, so that the positive end is Y− ] S1 × S2. Let K ⊂ Y− ] S1 × S2 be a hyperbolic knot that is
homotopic to S1 × {p}; such a knot exists by a result of Myers [Mye93, Theorem 1.1]. Attaching a
2-handle along K with any framing will then yield a ribbon Z-homology cobordism. By Thurston’s
Hyperbolic Dehn Surgery Theorem, all but finitely many surgeries along K will yield a hyperbolic
3-manifold. In other words, for any choice among all but finitely many surgery slopes, we have
constructed a ribbon Z-homology cobordism from Y− to a hyperbolic 3-manifold.

To construct a ribbon Q-homology cobordism to a 3-manifold with non-trivial JSJ decomposition,
recall that the exterior of a hyperbolic knot has incompressible boundary. Again, we attach a
1-handle to Y−, and choose a hyperbolic knot K ⊂ Y− ] S

1 ×S2 that is homotopic to S1 × {p}. This
time, we will attach a 2-handle along a satellite knot with K as the companion; for any framing, this
will give a ribbon Z-homology cobordism as long as the pattern P of the satellite knot P (K) has
winding number 1, since K and P (K) will be homologous. To carry this out, take a hyperbolic knot
P ⊂ S1 ×D2 with winding number 1, such as the Mazur pattern; note that Thurston’s Hyperbolic
Dehn Surgery Theorem again implies that all but finitely many surgeries along P will give rise to a
hyperbolic 3-manifold. A 3-manifold obtained via surgery along the satellite P (K) ⊂ Y− ] S1 × S2

can be expressed as the union of Y− ] S1 × S2 \ K and a surgery along P ⊂ S1 × D2. In other
words, for any choice among all but finitely many surgery slopes, the positive end of the ribbon
Z-homology cobordism we have constructed is obtained by gluing two hyperbolic 3-manifolds with
incompressible torus boundary, which is exactly a 3-manifold with non-trivial JSJ decomposition.

Theorem 1.5 (3) immediately implies a statement on Montesinos knots.

Proof of Corollary 1.6. Let C : K− → K+ be a strongly homotopy-ribbon concordance from K−

to K+. The branched double cover of C gives a ribbon Q-homology cobordism between Seifert
fibered homology spheres Y±, where the number of exceptional fibers in Y± is precisely the number
of rational tangles in the Montesinos knot K± with denominator at most 2. �

8.2. Ribbon homology cobordisms and L-spaces. We now utilize the U -action on HF− to
derive two obstructions to ribbon homology cobordisms involving L-spaces.

Recall that the reduced Heegaard Floer homology HFred is the U -torsion submodule of HF−, and
a Q-homology sphere Y is an L-space if HFred(Y ) = 0.13

Corollary 8.11. Suppose that Y− and Y+ are Q-homology spheres, and that Y+ is an L-space while
Y− is not. Then there does not exist a ribbon Z/2-homology cobordism from Y− to Y+.

Note that this applies whenever Y− is a toroidal Z-homology sphere, since such a manifold is
necessarily not an L-space [Eft18, Theorem 1.1] (see also [HRW17, Corollary 10]).

Proof. Suppose that W : Y− → Y+ is a ribbon Z/2-homology cobordism; then Theorem 4.10 implies
that F−

W : HF−(Y−) → HF−(Y+) is injective. Under this map, U -torsion elements must be mapped

to U -torsion elements; thus, we obtain an injection on HFred as well. �

Corollary 8.12. Suppose that Y1 and Y2 are Q-homology spheres that are not L-spaces. Then there
does not exist a ribbon Z/2-homology cobordism from Y1 ] Y2 to a Seifert fibered space.

Proof. If Y1 and Y2 both have non-trivial HFred, then in both Z/2-gradings, HFred(Y1 ] Y2) is not
trivial. Indeed, by the Künneth formula [OSz04b, Theorem 1.5], HFred(Y1 ] Y2) contains a summand
isomorphic to two copies of HFred(Y1) ⊗ HFred(Y2), with one copy shifted in grading by 1. (One

13Technically, Y should be called a Z/2–Heegaard L-space. One could also define L-spaces with other coefficients,
or with instanton Floer homology. However, we never consider these concepts of L-spaces in the present article.



RIBBON HOMOLOGY COBORDISMS 45

comes from the tensor product and one from the Tor term.) Meanwhile, Seifert fibered spaces have
HFred supported in a single Z/2-grading [OSz03b, Corollary 1.4]. �

8.3. Ribbon homology cobordisms from connected sums. Corollary 8.12 concerns the
existence of ribbon homology cobordisms from a connected sum. The following corollary also
concerns connected sums, but is proved using RG.

Corollary 8.13. Let Y and N be compact 3-manifolds, and suppose that N 6∼= S3. Then there does
not exist a ribbon Q-homology cobordism from Y ] N to Y .

Proof of Corollary 8.13. First, we fix some notation. Let π be a group, and let G be a compact,
connected Lie group. Fix a presentation 〈a1, . . . , ag |w1, . . . , wr〉 of π. For each ρ ∈ RG(π), the
words wi give a smooth map Φ: Gg → Gr; denote by φρ the derivative of Φ at (ρ(a1), . . . , ρ(ag)),
and we define ωG : RG(π) → Z≥0 by

ωG(ρ) = dimR ker(φρ).

(The reader may wish to compare φρ here with the map φ in (2.3).) It is not difficult to check that
ωG is independent of the presentation of π. We also define

ωG(π) = max
ρ∈RG(π)

ωG(ρ),

and write ωG(X) for ωG(π1(X)), for a path-connected space X.
Suppose that Y−, Y+, W , ρ−, ρ+, and ρW are as in Proposition 1.15. By Proposition 2.1, we have

ωG(ρ−) ≤ ωG(ρW ) ≤ ωG(ρ+).

Indeed, since π1(W ) is obtained from π1(Y+) by adding relations, the matrix for ωG(ρW ) contains
that for ωG(ρ+) as a block, with additional rows; similarly, the matrix for φρW contains that for
φρ−

as a block, with m additional rows and columns. Consequently, we see that

(8.14) ωG(Y−) ≤ ωG(W ) ≤ ωG(Y+).

Now suppose that there exists a ribbon Q-homology cobordism W : Y ] N → Y . Homology
considerations show that N must be a Z-homology sphere (cf. Remark 1.13 and Lemma 3.1).
This means that π1(N) cannot be solvable, since the Abelianization of a solvable group is trivial.
Thus, the residual finiteness of 3-manifold groups implies the existence of a non-trivial, finite
quotient H of π1(N). Since π1(N) is perfect, the quotient H is also perfect. Take any non-trivial,
irreducible representation of H in GLn(C); by Weyl’s trick, we may turn it into a non-trivial,
irreducible, unitary representation from H to U(n); since U(1) is Abelian and H is perfect, we
may assume n ≥ 2. (Of course, the possible choices for n depend on H.) Let η : π1(N) → U(n) be
the associated representation, and choose ρ ∈ RU(n)(Y ) that maximizes ωU(n). Consider the free
product representation ρ ∗ η : π1(Y ] N) → U(n). It follows from the definitions that

ωU(n)(ρ ∗ η) = ωU(n)(ρ) + ωU(n)(η).

It is easy to see that since η is irreducible, we have ωU(n)(η) > 0. We see that ωU(n)(Y ]N) > ωU(n)(Y ),
which contradicts (8.14). �

Note that Corollary 8.13 can alternatively be proved if N has non-trivial HFred, by an application
of the Künneth formula, as in the proof of Corollary 8.12. However, such an argument does not
work for N = Σ(2, 3, 5) ] (−Σ(2, 3, 5)), since this is an L-space. (In fact, in this case, Y ] N is even
Z-homology cobordant to Y .) The same issue arises for framed instanton Floer homology I]. For I,
it is difficult to study the instanton Floer homology of connected sums in general.
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Corollary 8.13 can be viewed as obstructing ribbon homology cobordisms from a 3-manifold with
an essential sphere to one without. We now turn to proving Corollary 1.7, which is a statement for
knots with a similar flavor: It states that there are no strongly homotopy-ribbon concordances from
a connected sum K1 ] K2 to a knot without a closed, non–boundary-parallel, incompressible surface
in its exterior.

Proof of Corollary 1.7. Write K−
∼= K1 ] K2. For a knot K ⊂ S3, denote a fixed meridian by µ,

and a fixed longitude by λ. Also, write R(K) for RSU(2)(S
3 \ K) and X (K) for XSU(2)(S

3 \ K).
First, recall from the proof of [Kla91, Proposition 12] that if ρ1 ∈ R(K1) and ρ2 ∈ R(K2) satisfy
ρ1(µ) = ρ2(µ), then we can amalgamate ρ1 and ρ2 into a 1-parameter family of representations
ρ ∈ R(K1 ] K2), by fixing ρ on one summand and conjugating it on the other by the U(1)-stabilizer
of the peripheral subgroup.

Now by [SZ22, Theorem 4.1], for a non-trivial knot K ⊂ S3, at least one of the following holds:

(1) There is a smooth 1-parameter family of irreducible ρt ∈ R(K), such that ρt(µ) = diag(i,−i)
and ρt(λ) = diag(eit, e−it), for t in some interval (t0, t2); or

(2) There is a smooth 1-parameter family of irreducible ρs ∈ R(K), such that ρs(µ) =
diag(eis, e−is), where s ∈ [π/2, π/2 + ε), for some ε > 0.

Note that in either case, there is a representation ρ′ ∈ R(K) with ρ′(µ) = diag(i,−i). (See also
[KM10, Corollary 7.17].) If (2) holds for both K1 and K2, then we may amalgamate representations
with the same eigenvalue on the meridian to get a 2-parameter family ρ ∈ R(K1 ] K2). If (1) holds
for K1, then we may amalgamate this 1-parameter family with ρ′ ∈ R(K2), again to obtain a
2-parameter family of representations ρ ∈ R(K1 ] K2).

In any case, note that these representations ρ can in fact be conjugated. Thus, we have shown
that R(K−) has an open submanifold of dimension at least 5 on which the conjugation action
by SO(3) is free. Suppose that there is a strongly homotopy-ribbon concordance C : K− → K+;
Proposition 2.1 implies that R(K+) has an open submanifold of dimension at least 5 on which
SO(3) acts freely. (Although the representation variety is not a smooth manifold in general, it is a
real algebraic variety and hence can be stratified into the union of finitely many smooth manifolds
[Whi57]; it is easy to see that the maps ι∗− and ι∗+ in Proposition 2.1 induce smooth maps on an
open subset of each stratum.) Thus, X (K+) must have a component of dimension at least 2. By
[Kla91, Proposition 15], this implies that K+ is not small, which is a contradiction. �

Remark 8.15. Eliashberg [Eli90] shows that a Stein filling of a connected sum is a boundary sum
of Stein fillings. It is interesting to compare this with the two results above.

9. Surgery obstructions

In this section, we give some applications of the work above on ribbon homology cobordisms
to reducible Dehn surgery problems. We first explain the main idea in this section. Let Y be a
Q-homology sphere, and L a null-homologous link of ` components in Y . Denote by Y0(L) the result
of 0-surgery along each component of L. Suppose that Y0(L) ∼= N ] `(S1 × S2); in this case, we may
deduce facts about N or L with the following construction.

Consider the cobordism W : Y → N obtained by attaching a 0-framed 2-handle along each of the
components of L, and then a 3-handle along some {p} × S2 in each of the S1 × S2 summands of
Y0(L). Flipping W upside down and reversing its orientation, we obtain a cobordism −W : N → Y .

Lemma 9.1. Suppose that Y is a Q-homology sphere, L is a null-homologous link of ` components
in Y , and Y0(L) ∼= N ] `(S1 × S2). Then the cobordism −W : N → Y constructed above is a ribbon
Z-homology cobordism.
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Proof. On the one hand, since L ⊂ Y is null-homologous, we have H1(Y0(L)) ∼= H1(Y ) ⊕ (Z`/M),
where M is given by the linking matrix. On the other hand, we have H1(Y0(L)) ∼= H1(N) ⊕ Z`.
Since b1(Y ) = 0, rank considerations imply that M is trivial. (In particular, the linking matrix of L
must be identically zero.) Thus, we have H1(Y ) ∼= H1(N).

Now the cobordism −W : N → Y consists of the same number ` of 1- and 2-handles and so is
ribbon. It is a Q-homology cobordism if and only if the attaching circles of the 2-handles are linearly
independent in H1(N ] `(S1 × S2))/H1(N), which is obviously true since the 3-manifold resulting
from the 2-handle attachments is Y , which has b1(Y ) = 0. By Lemma 3.2, −W is in fact a ribbon
Z-homology cobordism. �

9.1. Null-homotopic links and reducing spheres. In this subsection, we focus on proving
Theorem 1.8, which we recall asserts that when 0-surgery on an `-component null-homotopic link
in an irreducible Q-homology sphere Y produces N ] `(S1 × S2), then N is orientation-preserving
homeomorphic to Y . Recall that a closed 3-manifold Y is aspherical if it is irreducible and has
infinite fundamental group.

We begin by relating the fundamental groups of Y and N :

Proposition 9.2. Suppose that Y is an irreducible Q-homology sphere, L is a null-homotopic link
of ` components in Y , and Y0(L) ∼= N ] `(S1 × S2). Then there is an orientation-preserving degree-1
map from N to Y that induces isomorphisms on π1. Moreover, the inclusions of Y and N into the
cobordism W : Y → N constructed above also induce isomorphisms on π1.

Proof. Consider the Z-homology cobordism W : Y → N constructed above, and decompose W
into two cobordisms W2 : Y → N ] `(S1 × S2) and W3 : N ] `(S1 × S2) → N , corresponding to the
attachment of 2- and 3-handles respectively. We claim that there is a retraction ρ : W → Y .

Indeed, first observe that since L is null-homotopic, W2 is homotopy equivalent to Y ∨ `S2, which
retracts onto Y . More precisely, there is a retraction ρ2 : W2 → Y given by deformation retracting
the 2-handles to their cores, homotoping the attaching curves of the 2-handles to a point, and
collapsing the resulting S2 summands. Next, we see that ρ2 extends to W3. Indeed, to prove that
ρ2 extends over the 3-handles, it suffices to see that for each S1 × S2 summand in N ] `(S1 × S2),
the image ρ2({p} × S2) ⊂ Y is null-homotopic. (Recall that the 3-handles are attached along the
` copies of {p} × S2.) Since Y is irreducible, the Sphere Theorem implies that π2(Y ) = 0, and ρ2

extends to a retraction ρ : W → Y .
We now claim that pre-composing ρ with the inclusion ιN : N → W results in a map ρ◦ιN : N → Y

that induces an isomorphism on π1. First, we check that the induced map is injective. Indeed, by
Lemma 9.1, −W : N → Y is a ribbon Z-homology cobordism, which implies that (ιN )∗ : π1(N) →
π1(W ) is injective by Theorem 1.14 (1). Turning to ρ∗ : π1(W ) → π1(Y ), note that since ρ is a
retraction, we have ρ ◦ ιY = idY . This implies that (ιY )∗ : π1(Y ) → π1(W ) is injective; at the same
time, Theorem 1.14 (2) states that (ιY )∗ is surjective. Thus, (ιY )∗, and hence ρ∗, is an isomorphism.
This shows that (ρ ◦ ιN )∗ is injective.

Next, observe that H3(W ) ∼= H3(Y ) ∼= Z, which implies that ρ∗ : H3(W ) → H3(Y ) is an
isomorphism, since ρ is a retraction. In fact, since ιN : N → W also induces an isomorphism on
H3, we see that (ρ ◦ ιN )∗ : H3(N) → H3(Y ) sends [N ] to [Y ] (and not −[Y ]), which means that
ρ ◦ ιN : N → Y is an orientation-preserving degree-1 map.

We claim that such a map must induce a surjection (ρ ◦ ιN )∗ : π1(N) → π1(Y ), for otherwise we

could factor the map through a non-trivial cover Ỹ of Y corresponding to (ρ ◦ ιN )∗(π1(N)), showing
that its degree is not 1. We conclude that (ρ ◦ ιN )∗ is an isomorphism. This gives the first claim.
For the second claim, since ρ∗ is an isomorphism, we see that (ιN )∗ is also an isomorphism. Since
we have already proved that (ιY )∗ is an isomorphism, this concludes the proof. �
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To deal with the case that Y is a spherical manifold, we will need one additional technical lemma.
In what follows, we will fix a basepoint pY ∈ Y and a basepoint pN ∈ N . We will say that Ŷ is
an unoriented (resp. oriented) Ỹ -cover of Y if Ŷ corresponds to a concrete subgroup of π1(Y, pY )

and Ŷ is unoriented (resp. orientation-preserving) homeomorphic to Ỹ . Here, we do not consider
subgroups up to conjugacy. Note that, since Y is spherical, π1(Y, pY ) is finite, and so all covers we
consider are finite.

Lemma 9.3. Suppose that Ỹ does not admit an orientation-reversing homeomorphism, and that
both the hypotheses and conclusions of Theorem 1.8 hold for Ỹ . Suppose that Y also satisfies the
hypotheses of Theorem 1.8. If Y is unoriented homeomorphic to N and has an odd number n of
unoriented Ỹ -covers, then Y satisfies the conclusions of Theorem 1.8.

Proof. By assumption, we know that Y and N are homeomorphic. We assume for contradiction
that they are not orientation-preserving homeomorphic, and in particular that Y ∼= −N .

Suppose that Y0(L) ∼= N ] `(S1 × S2) and consider the (non-ribbon) Z-homology cobordism
W : Y → N constructed in the paragraph preceding Lemma 9.1. Since we are working with
covers, we will be a bit pedantic with basepoints for the cautious reader. Pick a path γ in W
that starts at pY ∈ Y and ends at pN ∈ N ; this gives rise to a change-of-basepoint isomorphism
Φγ : π1(W,pY ) → π1(W,pN ). By Proposition 9.2, the inclusions (ιY )∗ : π1(Y, pY ) → π1(W,pY ) and
(ιN )∗ : π1(N, pN ) → π1(W,pN ) are isomorphisms. (In this pedantic language, the map on π1

induced by ρ in Proposition 9.2 is ρ∗ : π1(W,pY ) → π1(Y, pY ), and the isomorphism (ρ ◦ ιN )∗ is
really ρ∗ ◦ Φ−1

γ ◦ (ιN )∗.)

Choose an oriented Ỹ -cover Ŷ corresponding to a subgroup H ≤ π1(Y, pY ) of index [π1(Y, pY ) :

H] = h. Consider (ιY )∗(H) ≤ π1(W,pY ) and its associated oriented cover Ŵ of W . This is

a cobordism whose incoming end is Ŷ , and whose outgoing end N̂ is the oriented cover of N
corresponding to (ιN )−1

∗ ◦ Φγ ◦ (ιY )∗(H) ≤ π1(N, pN ). Note that N̂ is path connected, because N is

path connected and N̂ corresponds to a concrete subgroup of π1(N, pN ). Since (ιY )∗ and (ιN )∗ are

isomorphisms, each oriented Ỹ -cover Ŷ of Y produces a distinct oriented cover N̂ of N .

Since W is built out of the same number ` of 2- and 3-handles, we see that Ŵ is built by attaching
the same number h` of 2- and 3-handles to Ŷ . (To see this, simply pull back a Morse function on
W using the covering map.) Since the attaching curves for the 2-handles in W are null-homotopic,

the attaching curves for the 2-handles in Ŵ form a null-homotopic link L̂ ⊂ Ŷ . Note also that N̂
does not contain any non-separating 2-spheres, since b1(N̂) = 0. Now, since N̂ is connected, the

result of the surgery along L̂ in Ŷ must be of the form N̂ ] h`(S1 ×S2), since, from the upside-down
perspective, it is also the result of attaching 1-handles along h` copies of S0 ×D3. For homology
reasons, we see that the surgery coefficients for L̂ ⊂ Ŷ must be identically 0. By our assumption,
Theorem 1.8 holds for Ỹ , and so we see that N̂ is orientation-preserving homeomorphic to Ŷ , and
hence to Ỹ .

Note that a simple orientation-reversal argument shows that Theorem 1.8 also holds for −Ỹ ,
and so we may also repeat the above arguments for oriented (−Ỹ )-covers, where the corresponding

covers of N are then orientation-preserving homeomorphic to −Ỹ .
Suppose that Y has n+ (resp. n−) oriented Ỹ -covers (resp. (−Ỹ )-covers); then n = n+ + n−.

Then N ∼= −Y has n+ (resp. n−) oriented (−Ỹ )-covers (resp. Ỹ -covers). However, by the above

argument, each oriented (±Ỹ )-cover of Y induces a distinct oriented (±Ỹ )-cover of N , which implies
that n+ = n−. This contradicts the fact that n is odd. �

With this, we are ready to prove Theorem 1.8. We use the notation as above.
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Proof of Theorem 1.8. First, suppose that Y is aspherical. Since Y is irreducible and π1 detects
irreducibility [Sta59], it follows from Proposition 9.2 that N is also irreducible. Proposition 9.2
also states that there is an orientation-preserving, degree-1 map from N to Y that induces an
isomorphism on π1. Asphericity implies that this map is an orientation-preserving homotopy
equivalence by Whitehead’s Theorem. It is thus homotopic to a homeomorphism by the Borel
Conjecture in dimension 3; see, for example, [KL09, Theorem 0.7]. Note that this homeomorphism
must also preserve orientation, since this property is preserved under homotopy. This concludes the
proof when Y is an aspherical Q-homology sphere.

Therefore, we may assume that π1(Y ) is finite, or equivalently, that Y and N have spherical
geometry. We first dispense with the case that Y and N are lens spaces. Recall from Lemma 9.1
that N and Y are Z-homology cobordant. Two Z-homology cobordant lens spaces are orientation-
preserving homeomorphic; see, for example, the discussion in [DW15]. This concludes the proof
when Y is a lens space.

It remains to consider the case that Y is spherical but not a lens space. Recall that two spherical
3-manifolds with isomorphic fundamental groups are (possibly orientation-reversing) homeomorphic
unless they are lens spaces; therefore, Proposition 9.2 implies that N and Y are homeomorphic.
Recall also that a non–lens space spherical 3-manifold Y has π1 isomorphic to a central extension
of a polyhedral group, and in particular, |π1(Y )| = 2km, where k ≥ 2 and m is odd; see [AFW15,
Section 1.7] and [Orl72, Section 6.2]. In the following, we will provide a proof, first for the case that
m = 1 by inducting on k, and then generalizing to the case that m ≥ 3.

Before we proceed, we collect three additional observations here. First, if the fundamental
group of a lens space has order 2k with k ≥ 2, then it does not admit an orientation-reversing
homeomorphism, since −1 is not a square mod 2k. Second, a non–lens space spherical manifold Y
also does not admit an orientation-reversing homeomorphism. Indeed, by considering an order-4
subgroup of π1(Y ), we see that such a manifold has an unoriented L(4, 1)-cover. (Recall that there
are no 3-manifolds Y with π1(Y ) ∼= Z/2 ⊕ Z/2, and L(4, 3) ∼= −L(4, 1).) An orientation-reversing
homeomorphism of Y would induce an orientation-reversing homeomorphism of L(4, 1), which is
impossible. Third, the number of index-2 subgroups of any finite group π is odd. Indeed, the
index-2 subgroups of π correspond to non-trivial homomorphisms to Z/2, and Hom(π,Z/2) is a
vector space over Z/2, which has even cardinality.

We begin by showing that the theorem holds in the case that m = 1. As mentioned, we will
induct on k; to help illustrate the idea of the proof, we will give a more detailed description for small
values of k. If k = 2, then Y is a lens space L(4, q). If k = 3, then π1(Y ) has an odd number of
index-2 subgroups; in other words, Y has an odd number of unoriented L(4, 1)-covers. We may thus

apply Lemma 9.3 with Ỹ = L(4, 1), and conclude that the theorem holds for spherical manifolds
with order 8.

Next, if k = 4, again π1(Y ) has an odd number of index-2 subgroups. This means that the total
number of unoriented covers of Y (of possibly distinct unoriented homeomorphism types) whose

π1 has order 8 is odd. Hence, there must be an unoriented homeomorphism type Ỹ of spherical
manifolds with |π1(Ỹ )| = 8, such that Y has an odd number of (2-sheeted) unoriented Ỹ -covers.

Again we may apply Lemma 9.3 with this choice of Ỹ , and the proof is complete for those spherical
manifolds Y with |π1(Y )| = 16. (Here, Ỹ may be a lens space L(8, q), or the unique type-D manifold
with π1 isomorphic to the quaternion group Q8; in either case, the actual homeomorphism type
of Ỹ is irrelevant, and we are simply relying on the fact that there is no orientation-reversing
homeomorphism of Ỹ , in order to invoke Lemma 9.3.) Similarly, we may now continue this induction
on k to complete the proof in the case that |π1(Y )| = 2k with k ≥ 2.
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Finally, we consider the case that Y is a non–lens space spherical manifold with |π1(Y )| = 2km,
where k ≥ 2 and m ≥ 3 is odd. In this case, the Sylow 2-subgroups of π1(Y ) have order 2k, and
there are an odd number of them by the Third Sylow Theorem. Hence, there exists an unoriented
homeomorphism type Ỹ of spherical manifolds with |π1(Ỹ )| = 2k, such that Y has an odd number

of finite, unoriented Ỹ -covers. We may now apply a similar argument using Lemma 9.3. This
completes the proof. �
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