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Abstract
Ando’s classical characterization of the unit ball in the numerical radius norm was
generalized by Farenick, Kavruk, and Paulsen using the free joint numerical radius
of a tuple of Hilbert space operators (X1, . . . , Xm). In particular, the characterization
leads to a positive definite completion problem. In this paper, we study various aspects
of Ando’s result in this generalized setting. Among other things, this leads to the study
of finding a positive definite solution L to the equation

L = I +
m∑

j=1

[(
L

1
2 X∗

j L X j L
1
2 + 1

4
I

) 1
2 +

(
L

1
2 X j LX

∗
j L

1
2 + 1

4
I

) 1
2
]

,

which may be viewed as a fixed point equation. Once such a fixed point is identified,
the desired positive definite completion is easily obtained. Along the way we derive
other related results including basic properties of the free joint numerical radius and
an easy way to determine the free joint numerical radius of a tuple of generalized
permutations. Finally, we present some open problems.
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1 Introduction

For a bounded Hilbert space operator X ∈ B(H), the numerical radius is defined by

w(X) = sup{|〈Xh, h〉| : h ∈ H, ‖h‖ = 1}.

The numerical radius corresponds to the radius of the smallest circle centered at 0 that
contains the numerical range

W (X) = {〈Xh, h〉 : h ∈ H, ‖h‖ = 1}.

Ando’s [1] well known characterization of operators whose numerical radius is at
most 1 states that w(X) ≤ 1 if and only if there exists Z = Z∗ ∈ B(H) so that

[
I − Z X
X∗ I + Z

]
≥ 0,

where T ≥ 0 is shorthand for T being a positive semidefinite operator. Equivalently,
w(X) ≤ 1 if and only if there exist A1, A2 ∈ B(H) with A1 + A2 = I so that

[
A1

X
2

X∗
2 A2

]
≥ 0. (1)

One way to prove Ando’s result is to observe that w(X) ≤ 1 if and only if

Q(eiθ ) = I − Re(eiθ X) ≥ 0, for all θ ∈ [0, 2π ],

and subsequently use Fejér-Riesz factorization

I − z
X

2
− z

X∗

2
= Q(z) = (P0 + P1z)

∗(P0 + P1z), |z| = 1.

Now P∗
0 P0 + P∗

1 P1 = I and P∗
0 P1 = − X

2 and thus

0 ≤
[

P∗
0−P∗
1

] [
P0 −P1

] =:
[
A1

X
2

X∗
2 A2

]

where A1 = P∗
0 P0 and A2 = P∗

1 P1 satisfy A1 + A2 = I .
There are different ways to find A1 and A2 so that (1) holds. In finite dimensions,

one can find A1 and A2 numerically by using semidefinite programming, as a block
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matrix (1) is in the intersection of the cone of positive semidefinite matrices and the
affine space

{[
I X

2
X∗
2 0

]
+

[−Z 0
0 Z

]
: Z = Z∗

}
.

Semidefinite programming is exactly designed to handle such a situation.
An alternative process to arrive at (1), which was used by Ando in his original

paper, is to consider Zk = Z∗
k defined via

〈Zkh, h〉 = inf
h1,...,hk

〈
⎡

⎢⎢⎢⎢⎣

I X
2 · · · 0

X∗
2 I

. . .
...

...
. . .

. . . X
2

0 · · · X∗
2 I

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

h
h1
...

hk

⎤

⎥⎥⎥⎦ ,

⎡

⎢⎢⎢⎣

h
h1
...

hk

⎤

⎥⎥⎥⎦

〉
.

Then Zk converges decreasingly to Z , say; and we obtain

[
I − Z X

2
X∗
2 Z

]
≥ 0 (2)

yielding representation (1). In fact, this process yields the maximal Z in (2) (and gives
a co-outer factorization of Q(z)). In the case whenw(X) < 1, this leads to the iterative
scheme

Z1 = I and Zk+1 = I − X

2
Z−1
k

X∗

2
for k ∈ N,

which monotonically decreases; see Algorithm 4.1 in [2].
In [3], Ando’s result was generalized to the multivariable setting as follows.

Theorem 1.1 [3, Theorem 3.4] Let X1, . . . , Xm ∈ B(H). The following are equiva-
lent:

(i) w(X1, . . . , Xm) < 1
2 .

(ii) There exist A1, . . . , Am+1 ∈ B(H) so that
∑m+1

j=1
A j = I and

�(A1, . . . , Am+1) :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A1 X1 0 · · · 0

X∗
1 A2 X2

...

0 X∗
2

. . .
. . . 0

...
. . . Am Xm

0 · · · 0 X∗
m Am+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

> 0. (3)
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In (3), T > 0 is shorthand for T being a positive definite operator. Condition (i)
in Theorem 1.1 concerns the free joint numerical radius of a tuple of m Hilbert space
operators X1, . . . , Xm ∈ B(H), defined as

w(X1, . . . , Xm) = sup {w (X1 ⊗U1 + · · · + Xm ⊗Um)} ,

where the supremum is taken over every Hilbert space K, every choice of m unitaries
U1, . . . ,Um ∈ B(K), and the tensor product is spatial, which can be defined as
follows. Consider an inner product on the algebraic tensor of H and K by letting
〈h1 ⊗ k1, h2 ⊗ k2〉 := 〈h1, h2〉H · 〈k1, k2〉K for all h1, h2 ∈ H, k1, k2 ∈ K, and then
extending linearly. Denote byH⊗K the resulting Hilbert space after completion. For
R ∈ B(H) and S ∈ B(K), consider defining a map (R⊗S)(h⊗k) := (Rh)⊗(Sk) for
all h ∈ H and k ∈ K, and then extending linearly. The resulting operator R⊗ S has the
property that ‖R ⊗ S‖ = ‖R‖ · ‖S‖. Hence, the algebraic tensor of B(H) and B(K)

naturally inherits a norm (called the spatial tensor norm) as a subset of B(H ⊗ K).
Taking the closure with respect to the spatial tensor norm yields a C∗-subalgebra of
B(H ⊗ K).

The free joint numerical radius coincides with the classical numerical radius when
there is only one operator (m = 1), and Theorem 1.1 reduces toAndo’s classical result.
The objective of this paper is to pursue the different aspects of Ando’s result in this
more general setting. This includes (i) finding a solution using semidefinite program-
ming; (ii) finding a solution via an iterative scheme (which may have the potential to
generalize to the infinite dimensional case); and (iii) exploring the connection with
factorization. As we will see, along the way we derive other related results including
basic properties of the free joint numerical radius and an easy way to determine the
free joint numerical radius of a tuple of generalized permutations.

Our approach to solve for A1, . . . , Am+1 in (3) will be different than Ando’s. We
will show, in finite dimensions, that a solution A1, . . . , Am+1 in (3) exists exactly
when the function fX1,...,Xm defined below has a positive definite fixed point. For a
given tuple X1, . . . , Xm ∈ B(H) and for any Z ≥ 0, define

fX1,...,Xm (Z) := I +
m∑

j=1

[(
Z

1
2 X∗

j Z X j Z
1
2 + 1

4
I

) 1
2

+
(
Z

1
2 X j Z X

∗
j Z

1
2 + 1

4
I

) 1
2
]

. (4)

Operator monotonicity of t
1
2 implies fX1,...,Xm (Z) ≥ (m + 1)I > 0 for any Z ≥ 0.

Theorem 1.2 Let X1, . . . , Xm ∈ B(H). Consider the following statements:

(i) fX1,...,Xm as defined in (4) has a positive definite fixed point, i.e., there exists
positive definite L ∈ B(H) for which

L = I +
m∑

j=1

[(
L

1
2 X∗

j L X j L
1
2 + 1

4
I

) 1
2 +

(
L

1
2 X j LX

∗
j L

1
2 + 1

4
I

) 1
2
]

, (5)
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(ii) w(X1, . . . , Xm) < 1
2 .

Then (i)→(ii). If dim(H) < ∞, then (ii)→(i).

Corollary 1.3 Let X1, . . . , Xm ∈ B(H) with dim(H) < ∞. Then (i) and (ii) in Theo-
rem 1.2 are equivalent.

We prove Theorem 1.2 using matrix completion techniques (Sect. 2). A discussion
of difficulties encountered in generalizing (i i) → (i) to the infinite dimensional case is
presented in Remarks 2.6 and 4.11. Once a positive definite fixed point for fX1,...,Xm is
identified, there is an easy construction for the unknowns A1, . . . , Am+1 in (3) (which
works in all dimensions); see Proposition 2.5.

In order to find a solution L to (5), one can use well known iterative schemes to find
such a fixed point, with the iterative scheme Lk+1 = fX1,...,Xm (Lk) being the standard
choice. The choice of a starting point is of course important, and we have found that
the choice L1 = (m+1)I (which is the fixed point when X1 = · · · = Xm = 0) works
perfectly numerically, and in fact we find that the corresponding sequence {Lk}k∈N is
monotonically nondecreasing in the Loewner partial ordering. Recall that the Loewner
partial ordering on Hermitian operators is given by R ≤ S if and only if S − R ≥ 0.
This leads to the following conjecture.

Conjecture 1.4 Let X1, . . . , Xm ∈ B(H). Consider the recurrence

L1 = (m + 1)I and Lk+1 = fX1,...,Xm (Lk) for k ∈ N, (6)

where fX1,...,Xm is defined in (4). Then

(i) Lk ≤ Lk+1 for all k ∈ N.
(ii) If w(X1, . . . , Xm) < 1

2 , then {Lk}k∈N converges in the weak operator topology
to a fixed point L ∈ B(H) of fX1,...,Xm .

In general, L1 = (m + 1)I ≤ f (L1) = L2. We will prove Conjecture 1.4 in the
case when X1, . . . , Xm are generalized permutations, i.e., each X j is the product of a
permutation matrix and a diagonal matrix; see Theorems 4.6 and 4.13. It is worthwhile
to observe that our iterative scheme has a different origin than the iterative scheme
from Ando’s work. Indeed, in Ando’s approach one maximizes A2 in (1) (in the
Loewner partial order) while our approach is based on maximizing the determinant
of (1). Even though our approach is based on finite dimensional considerations, the
iteration scheme can also be defined in infinite dimensional settings. It is our hope that
a convergence proof for that case can be obtained in the future.

Aside from the resultsmentioned above, wewill also cover the following. In Sect. 3,
we will show some basic properties of the free joint numerical radius. In Sect. 4,
we will prove a closed formula for the free joint numerical radius of a tuple of n-
by-n generalized permutations. In Sect. 5, we will describe how to use semidefinite
programming to numerically compute w(X1, . . . , Xm) for a tuple of n-by-n matrices.
In Sect. 6, we will prove a limit formula for the free joint numerical radius of a tuple of
generalized permutations on infinite dimensional separable Hilbert spaces. In Sect. 7,
we will discuss the connection with factorization of Hermitian pencils, and in the final
section we will highlight some open problems.
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2 Existence of a Fixed Point UsingMatrix Completions

When dim(H) < ∞, wewill showfirst that if a solution A1, . . . , Am+1 exists such that∑m+1

j=1
A j = I and �(A1, . . . , Am+1) > 0 in (3), then there is a unique one that max-

imizes the determinant among all positive definite completions. This unique maximal
determinant solution has the property that the diagonal blocks in �(A, . . . , Am+1)

−1

are all the same. This diagonal block in the inverse is the L that appears in Conjec-
ture 1.4(ii).

Proposition 2.1 Given are X1, . . . , Xm ∈ B(H) with dim(H) < ∞. Suppose that

A1, . . . , Am+1 exist so that
∑m+1

j=1
A j = I and �(A1, . . . , Am+1) > 0 as defined in

(3). Then there exist unique solution A1, . . . , Am+1 with the additional property that

�(A1, . . . , Am+1)
−1 =

⎡

⎢⎣
L ∗ ∗
∗ . . . ∗
∗ ∗ L

⎤

⎥⎦ .

This unique solutionmay be found bymaximizing the determinant of�(A1, . . . , Am+1)

among all possible A1, . . . , Am+1 with
∑m+1

j=1
A j = I and �(A1, . . . , Am+1) > 0.

Proof Let n = dim(H) and consider �(A1, . . . , Am+1) as a Hermitian matrix of size
(m + 1)n. Let S(m+1)n denote the real vector space of Hermitian matrices of size
(m + 1)n, with the inner product 〈Y , Z〉 = trace(ZY ). Let W be the subspace of
S(m+1)n consisting of block diagonal Hermitian matrices defined by

W =
⎧
⎨

⎩W1 ⊕ · · · ⊕ Wm+1 ∈ S(m+1)n :
m+1∑

j=1

Wj = 0

⎫
⎬

⎭ .

Adopting the setup of [4], we are now interested in the positive definite elements in
the affine space �(I , 0, . . . , 0) +W . By the main result in [4], since the subspaceW
contains no nonzero positive semidefinite matrix, among all positive definite elements
in the affine space�(I , 0, . . . , 0)+W , there is a unique onewithmaximal determinant
(call it �0), and the optimality conditions yield �−1

0 ∈ W⊥. Since

W⊥ = {[Y jk]m+1
j,k=1 ∈ S(m+1)n : Y11 = · · · = Ym+1,m+1},

the result follows. ��
Proposition 2.1 suggests we look at operator matrices with block tridiagonal

inverses. Let us start with the 3-by-3 case. First, we recall some useful facts about

2-by-2 invertible operator matrices. If A is invertible, then

[
A B
C D

]
is invertible if and
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only if D − CA−1B is invertible. In that case,

[
A B
C D

]−1

=
([

I 0
CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

])−1

=
[
I −A−1B
0 I

] [
A−1 0
0 (D − CA−1B)−1

] [
I 0

−CA−1 I

]

=
[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
.

In particular, if A is positive definite, then

[
A B
C D

]
is positive definite if and only if

D − CA−1B is positive definite.

Now let P = [Pi j ]3i, j=1 be an operator matrix with P22 and

[
P11 P12
P21 P22

]
invertible.

Then

P =
⎡

⎣
I P12P

−1
22 0

0 I 0
0 P32P

−1
22 I

⎤

⎦

⎡

⎣
Q 0 R
0 P22 0
S 0 T

⎤

⎦

⎡

⎣
I 0 0

P−1
22 P21 I P−1

22 P23
0 0 I

⎤

⎦ (7)

where Q := P11− P12P
−1
22 P21, R := P13− P12P

−1
22 P23, S := P31− P32P

−1
22 P21, and

T := P33 − P32P
−1
22 P23. By assumption, Q is invertible. Because of their structure,

the first and third factor on the right-hand side of (7) are also invertible. Hence, P is

invertible if and only if

[
Q R
S T

]
is invertible, or equivalently, T − SQ−1R is invertible.

Suppose P is invertible. By (7),

P−1 =
⎡

⎣
I 0 0

−P−1
22 P21 I −P−1

22 P23
0 0 I

⎤

⎦

⎡

⎣
Q 0 R
0 P22 0
S 0 T

⎤

⎦
−1 ⎡

⎣
I −P12P

−1
22 0

0 I 0
0 −P32P

−1
22 I

⎤

⎦ . (8)

The middle factor simplifies to

⎡

⎣
Q−1 + Q−1R(T − SQ−1R)−1SQ−1 0 −Q−1R(T − SQ−1R)−1

0 P−1
22 0

−(T − SQ−1R)−1SQ−1 0 (T − SQ−1R)−1

⎤

⎦ . (9)

Assume further that P−1 is block tridiagonal. By (8)–(9), the (1, 3) entry of P−1 is 0
implies 0 = R = P13 − P12P

−1
22 P23, equivalently, P13 = P12P

−1
22 P23. Similarly, the

(3, 1) entry of P−1 is 0 implies S = 0, equivalently, P31 = P32P
−1
22 P21. Moreover,

T − SQ−1R = T = P33 − P32P
−1
22 P23 is invertible, and thus

[
P22 P23
P32 P33

]
is invertible.
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We also obtain the following decomposition of P−1 from (8)–(9):

P−1 =
[

Q−1 −Q−1P12P
−1
22 0

−P−1
22 P21Q

−1 P−1
22 P21Q

−1P12P
−1
22 + P−1

22 P23T
−1P32P

−1
22 + P−1

22 −P−1
22 P23T

−1

0 −T−1P32P
−1
22 T−1

]

=
⎡

⎣
[
P11 P12
P21 P22

]−1 0
0

0 0 0

⎤

⎦ +
⎡

⎣
0 0 0

0
0

[
P22 P23
P32 P33

]−1

⎤

⎦ −
⎡

⎣
0 0 0
0 P−1

22 0
0 0 0

⎤

⎦. (10)

Conversely, suppose P13 = P12P
−1
22 P23 and P31 = P32P

−1
22 P21. If

[
P22 P23
P32 P33

]
is

invertible, then T is invertible and so is

[
Q R
S T

]
=

[
Q 0
0 T

]
. In particular, P is also

invertible. The operator P−1 satisfies (8)–(9), and hence P−1 is block tridiagonal.
Similar assertions about a matrix with a banded inverse have been considered in [5]

for thematrix case and in [6] for the blockmatrix case. Furthermore, if P22,

[
P11 P12
P21 P22

]
,

[
P22 P23
P32 P33

]
> 0, then (8)–(9) implies that P > 0. The above 3-by-3 case generalizes

to the (m + 1)-by-(m + 1) case.

Theorem 2.2 Consider an operator matrix P = [Pi j ]m+1
i, j=1 with m ≥ 2. Assume that

the following are invertible:

(i) Pii for i = 2, . . . ,m and

(ii)

[
Pii Pi,i+1

Pi+1,i Pi+1,i+1

]
for i = 1, . . . ,m.

Then P is invertible and P−1 is block tridiagonal if and only if

Pi j = Pi,i+1P
−1
i+1,i+1Pi+1, j and Pji = Pj,i+1P

−1
i+1,i+1Pi+1,i for j ≥ i + 2. (11)

In that case, P−1 equals

⎡

⎢⎢⎢⎢⎣

[
P11 P12
P21 P22

]−1 · · ·
· · ·

0
0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 0

⎤

⎥⎥⎥⎥⎦
+ · · · +

⎡

⎢⎢⎢⎢⎣

0 · · · 0 0
.
.
.

. . . .
.
.

.

.

.

0
0

· · ·
· · ·

[
Pmm Pm,m+1

Pm+1,m Pm+1,m+1

]−1

⎤

⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎣

0 · · · 0
.
.
.

m⊕

j=2

P−1
j j

.

.

.

0 · · · 0

⎤

⎥⎥⎥⎦ . (12)

Moreover, if the operators in assumption (ii) are positive definite, then so is P.

Proof The m = 2 case, which corresponds to the 3-by-3 case, follows from the
calculations before the theorem.
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Consider the (m + 1)-by-(m + 1) case viewed as a 3-by-3:

⎡

⎢⎢⎢⎢⎢⎣

P11 P12 P13 · · · P1,m+1

P21 P22 P23 · · · P2,m+1

P31
...

Pm+1,1

P32
...

Pm+1,2

P33 · · · P3,m+1
...

. . .
...

Pm+1,3 · · · Pm+1,m+1

⎤

⎥⎥⎥⎥⎥⎦
. (13)

Suppose the statement is true for operator matrices of size at most m.
Assume P is invertible and P−1 is block tridiagonal. By applying the 3-by-3 case

to (13), we get

[
P13 · · · P1,m+1

] = P12P
−1
22

[
P23 · · · P2,m+1

]

and

⎡

⎢⎣
P31
...

Pm+1,1

⎤

⎥⎦ =
⎡

⎢⎣
P32
...

Pm+1,2

⎤

⎥⎦ P−1
22 P21.

In particular, (11) holds when i = 1. By the 3-by-3 case, [Pi j ]m+1
i, j=2 is invertible and

its inverse is block tridiagonal due to (10).

Conversely, assume the expressions in (11) hold.By assumption, P22 and

[
P11 P12
P21 P22

]

are invertible. The induction hypothesis applies to [Pi j ]m+1
i, j=2, and so it is invertible

whose inverse is block tridiagonal. The 3-by-3 case guarantees that the conditions
P1 j = P12P

−1
22 P2 j and Pj1 = Pj2P

−1
22 P21 for j ≥ 3 are equivalent to the assertion

that P is invertible and P−1 is block tridiagonal conformal to the partitioning in (13).
Also, the 3-by-3 case gives

P−1 =
⎡

⎣
[
P11 P12
P21 P22

]−1 0
0

0 0 0

⎤

⎦ +
[
0 0
0 ([Pi j ]m+1

i, j=2)
−1

]
−

⎡

⎣
0 0 0
0 P−1

22 0
0 0 0

⎤

⎦ . (14)

By (14) and the induction hypothesis, P−1 is block tridiagonal conformal to the orig-
inal partitioning of P as [Pi j ]m+1

i, j=1 and that (12) holds. If the operators in assumption
(ii) are positive definite, then the 3-by-3 case and the induction hypothesis guarantees
that P is also positive definite. ��
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Given X1, . . . , Xm ∈ B(H), let us now consider the operator matrix completion
problem

⎡

⎢⎣
P11 ? ?

?
. . . ?

? ? Pm+1,m+1

⎤

⎥⎦

−1

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

? X1 0 · · · 0

X∗
1 ? X2

...

0 X∗
2

. . .
. . . 0

...
. . . ? Xm

0 · · · 0 X∗
m ?

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

where we would like the completion to be positive definite. Let us fill in the unknowns
in (15) with symbols Pi j for i �= j and A1, . . . , Am+1:

(
[Pi j ]m+1

i, j=1

)−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A1 X1 0 · · · 0

X∗
1 A2 X2

...

0 X∗
2

. . .
. . . 0

...
. . . Am Xm

0 · · · 0 X∗
m Am+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Due to the right-hand side being block tridiagonal, Theorem 2.2 guarantees that(
[Pi j ]m+1

i, j=1

)−1
can be written in the form (12). Combining (16) with (12) leads to

the following 2-by-2 operator matrix completion problem for i = 1, . . . ,m:

[
Pii ?
? Pi+1,i+1

]−1

=
[
? Xi

X∗
i ?

]
, (17)

where we would like the completion to be positive definite. The matrix version of this
completion problem has been considered in [7] where the prescribed blocks are not
necessarily square matrices.

We will show in Theorem 2.4 that there is a unique positive definite completion in
(17). We need the following result.

Lemma 2.3 If S ∈ B(H), then S

[(
S∗S + 1

4 I
) 1
2 + 1

2 I

]−1

S∗ + 1
2 I =

(
SS∗ + 1

4 I
) 1
2

.

Proof Since both sides are positive semidefinite, it suffices to show equality when we
square both sides. Squaring the left hand side gives

1

4
I + S

⎧
⎨

⎩

[(
S∗S + 1

4
I

) 1
2 + 1

2
I

]−1

+
[(

S∗S + 1

4
I

) 1
2 + 1

2
I

]−1

S∗S
[(

S∗S + 1

4
I

) 1
2 + 1

2
I

]−1
⎫
⎬

⎭ S∗
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which simplifies to

1

4
I + S

[(
S∗S + 1

4
I

) 1
2 + 1

2
I

]−1

⎧
⎨

⎩

[(
S∗S + 1

4
I

) 1
2 + 1

2
I

]2
⎫
⎬

⎭

[(
S∗S + 1

4
I

) 1
2 + 1

2
I

]−1

S∗ = 1

4
I + SS∗.

��
Theorem 2.4 Let P, Q, X ∈ B(H) be given such that P, Q are positive definite. If

[
P ?
? Q

]−1

=
[
? X
X∗ ?

]
(18)

has a positive definite completion, then it is unique. In particular, if we set

W = −PX

[
Q− 1

2

(
Q

1
2 X∗PXQ

1
2 + 1

4 I
) 1

2
Q− 1

2 + 1
2Q

−1
]−1

, (19)

then

[
P W
W ∗ Q

]−1

is positive definite and is equal to

[
P− 1

2 (P
1
2 XQX∗P 1

2 + 1
4 I )

1
2 P− 1

2 + 1
2 P

−1 X

X∗ Q− 1
2 (Q

1
2 X∗PXQ

1
2 + 1

4 I )
1
2 Q− 1

2 + 1
2Q

−1

]
.

(20)

Conversely, (19) and (20) define a positive definite completion of (18).

Proof Suppose

[
P W
W ∗ Q

]−1

=
[
Y X
X∗ Z

]
. (21)

In particular, (21) implies QZ+W ∗X = I and X∗P+ZW ∗ = 0. Hence, ZQZ−Z =
Z(QZ − I ) = −ZW ∗X = X∗PX . Moreover,

(
Q

1
2 ZQ

1
2 − 1

2 I
)2 = Q

1
2 X∗PXQ

1
2 + 1

4 I . (22)

We claim that Q
1
2 ZQ

1
2 − 1

2 I ≥ 1
2 I ≥ 0. Indeed,

Q
1
2 ZQ

1
2 − I = Q− 1

2 (QZ − I )Q
1
2 = −Q− 1

2W ∗XQ
1
2 .
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Now, YW + XQ = 0 follows from (21), and so

Q
1
2 ZQ

1
2 − I = −Q− 1

2W ∗(−YWQ−1)Q
1
2 = Q− 1

2W ∗YWQ− 1
2 ≥ 0.

Hence, Q
1
2 ZQ

1
2 − 1

2 I is the unique positive semidefinite square root of the right-hand
side of (22). Solving for Z , we obtain

Z = Q− 1
2

(
Q

1
2 X∗PXQ

1
2 + 1

4 I
) 1

2
Q− 1

2 + 1
2Q

−1 .

Since PX +WZ = 0 from (21), we have W = −PX Z−1 and (19) holds. To see that
the formula for Y in (20) holds, we apply the argument above to the permutation of (21)

as

[
Q W ∗
W P

]−1

=
[
Z X∗
X Y

]
. For the uniqueness, suppose there exist W̃ , Ỹ , Z̃ for which

(21) is positive definite. In particular, Z̃ satisfies (22), and so
(
Q

1
2 Z̃ Q

1
2 − 1

2 I
)2 =

Q
1
2 X∗PXQ

1
2 + 1

4 I =
(
Q

1
2 ZQ

1
2 − 1

2 I
)2
. Since Q

1
2 Z̃ Q

1
2 − 1

2 I ≥ 0,weobtain Z̃ = Z

due to the uniqueness of the positive semidefinite square root. Similarly, Ỹ = Y , and
W̃ = −PX Z̃−1 = −PX Z−1 = W .

Conversely, suppose Y and Z are the (1, 1) and (2, 2) entries in (20) and W is
defined as (19). Direct computation reveals that (21) holds. Hence, Y − X Z−1X∗ =
P−1, which by assumption is positive definite. Since Z is also positive definite, the
completion defined by (19) and (20) is positive definite. ��

For each i = 1, . . . ,m, the unique positive definite completion of (17) is given by
(20) where we take P = Pii , Q = Pi+1,i+1, and X = Xi in Theorem 2.4. Thus, (12)
and (20) imply that the unknowns A1, . . . , Am+1 in (16) can be taken to be

A1 = P
− 1

2
11

(
P

1
2
11X1P22X

∗
1 P

1
2
11 + 1

4
I

) 1
2

P
− 1

2
11 + 1

2
P−1
11

A j = P
− 1

2
j j

(
P

1
2
j j X

∗
j−1Pj−1, j−1X j−1P

1
2
j j + 1

4
I

) 1
2

P
− 1

2
j j

+P
− 1

2
j j

(
P

1
2
j j X

∗
j Pj+1, j+1X j P

1
2
j j + 1

4
I

) 1
2

P
− 1

2
j j , for j = 2, . . . ,m, and

Am+1 = P
− 1

2
m+1,m+1

(
P

1
2
m+1,m+1X

∗
m PmmXm P

1
2
m+1,m+1 + 1

4
I

) 1
2

P
− 1

2
m+1,m+1 + 1

2
P−1
m+1,m+1.

(23)

If for some L > 0, we insist P11 = · · · = Pm+1,m+1 = L in the considerations

above and
∑m+1

j=1
A j = I (like the setting in Proposition 2.1), then adding (23) gives

I =
∑m+1

j=1
A j = L− 1

2 fX1,...,Xm (L)L− 1
2 or fX1,...,Xm (L) = L .
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Conversely, if there exists L > 0 such that fX1,...,Xm (L) = L , then setting P11 = · · · =
Pm+1,m+1 = L in (23) suggests the following formula for A1, . . . , Am+1.

Proposition 2.5 Given are X1, . . . , Xm ∈ B(H). Suppose fX1,...,Xm has a positive definite
fixed point L ∈ B(H). Let

A1 = L− 1
2

[(
L

1
2 X1LX

∗
1L

1
2 + 1

4
I

) 1
2 + 1

2
I

]
L− 1

2 ,

A j = L− 1
2

(
L

1
2 X∗

j−1LX j−1L
1
2 + 1

4
I

) 1
2

L− 1
2

+L− 1
2

(
L

1
2 X j LX

∗
j L

1
2 + 1

4
I

) 1
2

L− 1
2 , for j = 2, . . . ,m, and

Am+1 = L− 1
2

[(
L

1
2 X∗

mLXmL
1
2 + 1

4
I

) 1
2 + 1

2
I

]
L− 1

2 .

Then
∑m+1

j=1
A j = I and �(A1, . . . , Am+1) > 0 as defined in (3).

Proof Note that
∑m+1

j=1
A j = L− 1

2 fX1,...,Xm (L)L− 1
2 = I . Let P11 = · · · = Pm+1,m+1 =

L . For each i = 1, . . . ,m, Theorem2.4 guarantees that there exists Pi,i+1 given by (19) such

that

[
Pii Pi,i+1

P∗
i,i+1 Pi+1,i+1

]
solves the positive definite completion problem (17). If we define

Pi j as in (11), then Theorem 2.2 implies that P := [Pi j ]m+1
i, j=1 is positive definite and P−1

is block tridiagonal. In particular, P−1 satisfies (12) and hence �(A1, . . . , Am+1) = P−1

is positive definite. ��
We now prove Theorem 1.2.

Proof of Theorem 1.2 Thefirst statement is Proposition 2.5 in conjunctionwith Theorem1.1.
The second statement follows from Proposition 2.1 and Theorem 1.1. ��
Remark 2.6 The finite dimensionality of the underlying Hilbert space is used in Proposi-
tion 2.1. In particular, the argument to prove the main result in [4] uses the compactness of
the closed unit ball. This guarantees the existence of a maximizer for the determinant. In the
following example,H is not necessarily finite dimensional but we show that if a completion
exists satisfying analogous assumptions in Proposition 2.1, then it has to be unique. What
is left to show then is the existence of a completion with the desired properties.

Example 2.7 LetR be a C∗-algebra with faithful normal tracial state τ . Consider the analo-
gous problem of Proposition 2.1 in Mm+1(R), i.e., if �(A1, . . . , Am+1) ∈ Mm+1(R)−1+ for

some A1, . . . , Am+1 ∈ R−1+ with
∑m+1

j=1
A j = I , can we find A1, . . . , Am+1 ∈ R−1+ sat-

isfying the same properties and such that �(A1, . . . , Am+1)
−1 has the same block diagonal

entries? (Here, A−1+ denotes the positive and invertible elements of a C∗-algebra A.)
To show uniqueness, we first prove a generalization of Fiedler’s inequality [8]:

τ [(A − B)(B−1 − A−1)] ≥ τ [(A − B)2]
‖A‖ · ‖B‖ for all A, B ∈ R−1+ .
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Indeed, the argument is similar to the one in [8]. First, observe that for any X ,Y ∈ R,

τ(XYY ∗X∗) ≤ ‖X‖2τ(YY ∗). (24)

Now,write A = X∗X and B = Y ∗Y for some invertible X ,Y ∈ R. Note that ‖A‖ = ‖X∗‖2
and ‖B‖ = ‖Y ∗‖2. Then

τ [(A − B)(B−1 − A−1)] = τ [(A − B)B−1(A − B)A−1]
= τ [(A − B)Y−1Y−∗(A − B)X−1X−∗]
= τ [X−∗(A − B)Y−1Y−∗(A − B)X−1]
≥ τ [(A − B)Y−1Y−∗(A − B)]

‖X∗‖2

by taking X1 = X∗ and Y1 = X−∗(A− B)Y−1 in (24). Rewriting the last expression in the
inequality and using X2 = Y ∗ and Y2 = Y−∗(A − B) in (24), we obtain

τ [(A − B)(B−1 − A−1)] ≥ τ [Y−∗(A − B)2Y−1]
‖A‖ ≥ τ [(A − B)2]

‖A‖ · ‖Y ∗‖2 = τ [(A − B)2]
‖A‖ · ‖B‖ .

Going back to the uniqueness assertion, suppose �(A(k)
1 , . . . , A(k)

m+1) ∈ Mm+1(R)−1+
whose inverse has the same diagonal entry equal to Lk and

∑m+1

j=1
A(k)
j = I for k = 1, 2.

Byusing the faithful normal trace τ̃ ([xi j ]) = 1
m+1

∑m+1

j=1
τ(x j j )onMm+1(R) andFiedler’s

inequality, we see that for some s > 0

τ̃

{[
�(A(1)

1 , . . . , A(1)
m+1) − �(A(2)

1 , . . . , A(2)
m+1)

]2}

≤ sτ̃

⎧
⎨

⎩

⎡

⎣
m+1∑

j=1

A(1)
j −

m+1∑

j=1

A(2)
j

⎤

⎦ (L2 − L1)

⎫
⎬

⎭ = 0.

Since τ̃ is faithful, �(A(1)
1 , . . . , A(1)

m+1) = �(A(2)
1 , . . . , A(2)

m+1), i.e., the completion with
equal diagonal blocks is unique.

3 Basic Properties of the Free Joint Numerical Radius

Recall that an isometry is a distance-preserving map between two metric spaces. By [9,
Proposition 5.2], a linear isometry between Hilbert spaces can be characterized as follows:
forHilbert spacesH andK, a linearmapV : H → K is an isometry if andonly ifV ∗V = IH.
From now on, whenever we mention isometry, we assume it is a linear isometry between
Hilbert spaces. A surjective linear isometry U : H → K is called unitary. Equivalently, U
is unitary if and only if both U∗U = IH and UU∗ = IK hold.

The following proposition is well-known and can be verified easily.
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Proposition 3.1 Let V : H → K be an isometry and T ∈ B(K). Then W (V ∗T V ) ⊆ W (T )

andw(V ∗T V ) ≤ w(T ). In particular, if V is unitary, then equality holds in both assertions.

SupposeH andK are Hilbert spaces. IfH has an orthonormal basis {ei }i∈� with� ⊆ N,
then H ⊗ K and

⊕

i∈�

K are isomorphic as Hilbert spaces. In particular, we can take the

unitary extension of the mapping defined by ei ⊗ k �→ [
i−1︷ ︸︸ ︷

0 · · · 0 k 0 · · · ]t for all i ∈ � and
k ∈ K (here we write elements of

⊕

i∈�

K as column vectors and the superscript “t” indicates

transpose).

Proposition 3.2 SupposeH andK are Hilbert spaces such thatH is separable. If X = [xi j ]
is the matrix representation of R ∈ B(H) with respect to a countable orthonormal basis
{ei }i∈� ofH and S ∈ B(K), then there exists unitary U such that U (R⊗ S)U∗ = [xi j S] =:
X ⊗ S and ‖X ⊗ S‖ = ‖R‖ · ‖S‖.

Proof There exists a unitaryU defined by the mapping ei ⊗ k �→ [
i−1︷ ︸︸ ︷

0 · · · 0 k 0 · · · ]t for all
i ∈ � and k ∈ K. Let h =

∑
j∈�

h j e j ∈ H and k ∈ K. ThenU (h ⊗ k) = [h1k h2k · · · ]t .
Since [U (R ⊗ S)U∗](U (h ⊗ k)) = U (Rh ⊗ Sk), note that

U (Rh ⊗ Sk) = U

⎛

⎝
∑

j∈�

h j Re j ⊗ Sk

⎞

⎠ = U

⎛

⎝
∑

j∈�

∑

i∈�

h j xi j ei ⊗ Sk

⎞

⎠

= U

⎛

⎝
∑

i∈�

ei ⊗
∑

j∈�

h j xi j Sk

⎞

⎠ =
∑

i∈�

U

⎛

⎝ei ⊗
∑

j∈�

h j xi j Sk

⎞

⎠

= [xi j S](U (h ⊗ k)).

Thus, ‖X ⊗ S‖ = ‖U (R ⊗ S)U∗‖ = ‖R ⊗ S‖ = ‖R‖ · ‖S‖. ��
For X ∈ B(H), the invariance w(X) = w(UXU∗) for any unitary U and the basic

inequality 1
2‖X‖ ≤ w(X) ≤ ‖X‖ have analogues in the free joint numerical radius context,

as stated in Proposition 3.3. The first assertion below follows from the fact that the numerical
radius is unchanged under conjugation by a unitary (in particular, U ⊗ I ) while the second
one can be deduced from the subadditivity of the numerical radius, the definition of the free
joint numerical radius, and the fact that w(X ⊗U ) = w(X) for any unitaryU ∈ B(H) [10,
Proposition 2.4].

Proposition 3.3 Let X1, . . . , Xm ∈ B(H).

(i) w(X1, . . . , Xm) = w(UX1U∗, . . . ,UXmU∗) for any unitary U.

(ii)
1

2

∥∥∥
∑m

j=1
X j

∥∥∥ ≤ w
(∑m

j=1
X j

)
≤ w(X1, . . . , Xm) ≤

∑m

j=1
w(X j ) ≤

∑m

j=1
‖X j‖.

(iii) The free joint numerical radius is a norm on
m⊕

j=1

B(H).
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Let X ,Y ∈ B(H). Note that A = X⊗ I and B = I ⊗Y doubly commute, i.e., AB = BA
and AB∗ = B∗A. By [11, Theorem 3.4],

w(X ⊗ Y ) = w(AB) ≤ min{w(A)‖B‖, ‖A‖w(B)}
= min{w(X)‖Y‖, ‖X‖w(Y )}. (25)

Hence, if a1, . . . , am ∈ C and U1, . . . ,Um ∈ B(K) are unitary, then

w

⎛

⎝
m∑

j=1

a j X ⊗Uj

⎞

⎠ = w

⎡

⎣X ⊗
⎛

⎝
m∑

j=1

a j ⊗Uj

⎞

⎠

⎤

⎦

≤ w(X)

∥∥∥∥∥∥

m∑

j=1

a jU j

∥∥∥∥∥∥
≤ w(X)

m∑

j=1

|a j |,

and so w(a1X , . . . , am X) ≤
∑m

j=1
|a j |w(X). Equality holds by letting the unitaries be

e−i arg(a j ), for j = 1, . . . ,m (if a j = 0, take arg(a j ) = 0).

Proposition 3.4 Let X ∈ B(H) and a1, . . . , am ∈ C. Then w(a1X , . . . , am X) =∑m

j=1
|a j |w(X).

Recall that C ∈ B(H) is called a contraction if ‖C‖ ≤ 1.

Proposition 3.5 If X1, . . . , Xm ∈ B(H), then

w(X1, . . . , Xm) = sup{w (X1 ⊗ C1 + · · · + Xm ⊗ Cm)}

where the supremum is taken over every Hilbert space K, every choice of m contractions
C1, . . . ,Cm ∈ B(K), and the tensor product is spatial.

Proof Let � be the left-hand side and ρ be the right hand side of the desired equality. Note
that � ≤ ρ since unitaries have norm equal to 1. To prove the reverse inequality, let K be a
Hilbert space and C1, . . . ,Cm ∈ B(K) be contractions. By Halmos dilation theorem [12,
13], each C j has a unitary dilation Uj ∈ B(K ⊕ K) of the form

Uj =
⎡

⎢⎣
C j

(
I − C jC∗

j

) 1
2

(
I − C∗

j C j

) 1
2 −C∗

j

⎤

⎥⎦ .

The isometry V : K → K ⊕ K with V x = [x 0]t for all x ∈ K has the property that
C j = V ∗UjV for each j = 1, . . . ,m. Since I ⊗ V is an isometry, we have that

w

⎛

⎝
m∑

j=1

X j ⊗ C j

⎞

⎠ ≤ w

⎛

⎝
m∑

j=1

X j ⊗Uj

⎞

⎠ ≤ w(X1, . . . , Xm) = �.

Taking the supremum over all contractions in B(K) and over all Hilbert spaces K yields
ρ ≤ �. ��
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The spectral radius of X ∈ B(H) is defined as ρ(X) = sup{|λ| : λ ∈ σ(X)} where
σ(X) is the spectrum of X . It is known that the spectral radius is monotone on nonnegative
matrices, i.e., if A = [ai j ] and B = [bi j ] ∈ R

n×n with 0 ≤ ai j ≤ bi j for all i, j , then
ρ(A) ≤ ρ(B) [14, Theorem 8.1.18]. In [15], the authors showed that the classical numerical
radius is monotone on nonnegative matrices. Indeed, A and B having nonnegative entries
guarantees that w(A) = ρ(Re(A)) and w(B) = ρ(Re(B)) due to [16, Theorem 1]. Since

Re(A) and Re(B) have entries that satisfy 0 ≤ ai j + a ji

2
≤ bi j + b ji

2
for all i, j , it

follows that w(A) = ρ(Re(A)) ≤ ρ(Re(B)) = w(B). The authors of [15] attributes this
observation to Panayiotis Psarrakos, and it will be used to give another upper bound for the
free joint numerical radius in terms of the matrix of absolute values of X1, . . . , Xm .

Definition 3.6 For X = [xi j ] ∈ C
n×n , denote its matrix of absolute values as abs(X) :=

[|xi j |].
Proposition 3.7 Let X1, . . . , Xm ∈ C

n×n. Then

w(X1, . . . , Xm) ≤ w (abs(X1) + · · · + abs(Xm)) .

Proof Let K be a Hilbert space and let U1, . . . ,Um ∈ B(K) be unitary. If Xk = [x (k)
i j ] for

k = 1, . . . ,m, then
∑m

k=1
Xk ⊗Uk =

[∑m

k=1
x (k)
i j Uk

]
. By [17, Theorem 1.1(i)],

w

(
m∑

k=1

Xk ⊗Uk

)
≤ w

([∥∥∥∥∥

m∑

k=1

x (k)
i j Uk

∥∥∥∥∥

])
.

Now,
∥∥∥
∑m

k=1
x (k)
i j Uk

∥∥∥ ≤
∑

k=1
|x (k)

i j | ‖Uk‖ =
∑

k=1
|x (k)

i j | which is the (i, j)-entry of
∑m

k=1
abs(Xk). By the monotonicity of the numerical radius on nonnegative matrices, we

have

w

(
m∑

k=1

Xk ⊗Uk

)
≤ w

([∥∥∥∥∥

m∑

k=1

x (k)
i j Uk

∥∥∥∥∥

])
≤ w

(
m∑

k=1

abs(Xk)

)
.

Since the unitaries and K are arbitrary, the assertion holds. ��

4 The Free Joint Numerical Radius of Generalized Permutations

Definition 4.1 A matrix X ∈ C
n×n is an n-by-n generalized permutation if it has at most

one nonzero entry in each row and column.

If X ∈ C
n×n is a generalized permutation, then X = DP where P ∈ R

n×n is a permu-
tation matrix and D ∈ C

n×n is diagonal (see [18]). We do not require that D is nonsingular.
If X ∈ C

n×n is a generalized permutation, then so is X∗. Generalized permutations include
important classes ofmatrices like the permutationmatrices, diagonalmatrices, andweighted
shift matrices.

Suppose A ∈ C
n×n is a weighted shift whose entries along the first superdiagonal are

a1, . . . , an−1 and whose (n, 1) entry is an . Then [19, Lemma 2(2)] guarantees that A is
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unitarily similar to eiθabs(A) for some θ ∈ R. Hence, W (A) = eiθW (abs(A)), and so
w(A) = w(abs(A)). However, an arbitrary generalized permutation may not be unitarily
similar to a rotation of its absolute value matrix. For example, consider X = diag(−1, 1)
whereW (X) = [−1, 1] �= {eiθ } = eiθW (abs(X)) for any θ ∈ R. Despite this, the assertion
w(X) = w(abs(X)) still holds. We will show that this equality of numerical radii remains
true for the free joint numerical radii of a tuple of generalized permutations. We need the
following lemma.

Lemma 4.2 Let X ∈ C
n×n be a generalized permutation. There exists unitary U ∈ C

n×n

such that abs(X) is a principal submatrix of X ⊗U corresponding to the rows and columns
1, 2 + n, 3 + 2n, . . . , n + (n − 1)n.

Proof Let D = diag(x1, . . . , xn) and P = [pi j ] ∈ R
n×n a permutation matrix such that

X = DP . Define U = EP where E = diag(ei arg(x1), . . . , ei arg(xn)) (if z = 0, take
arg(z) = 0). Let V = [e1 e2+n · · · en+(n−1)n] ∈ C

n2×n where e j is the j th standard basis

vector in Cn2 . We show that V ∗(X ⊗U )V = abs(X). Indeed, note that

V ∗(D ⊗ E) = [|x1|e1 |x2|e2+n · · · |xn |en+(n−1)n]t .

On the other hand, there exists permutation τ of {1, . . . , n} such that the nonzero entries
of P are at row τ( j) for each column j . Let j = 1, . . . , n. Column j + ( j − 1)n of P ⊗ P
is from the block pi j P , and we know

pi j P =
{
P, i = τ( j)

0, otherwise.

Hence, the only nonzero entry of column j+( j−1)n of P⊗P is at row τ( j)+(τ ( j)−1)n.
It follows that (P ⊗ P)V = [eτ(1)+(τ (1)−1)n · · · eτ(n)+(τ (n)−1)n] and so

V ∗(X ⊗U )V = [V ∗(D ⊗ E)][(P ⊗ P)V ]

=

⎡

⎢⎢⎢⎣

|x1|et1|x2|et2+n
...

|xn |etn+(n−1)n

⎤

⎥⎥⎥⎦ [eτ(1)+(τ (1)−1)n · · · eτ(n)+(τ (n)−1)n]

= abs(X).

��
Wearenowready toprove an alternative formula forw(X1, . . . , Xm)when X1, . . . , Xm ∈

C
n×n are generalized permutations.

Theorem 4.3 Let X1, . . . , Xm ∈ C
n×n be generalized permutations. Then

w(X1, . . . , Xm) = w(abs(X1), . . . , abs(Xm)) = w (abs(X1) + · · · + abs(Xm)) .

Proof Since abs(X j ) is a generalized permutation, it suffices to prove w(X1, . . . , Xm)

= w (abs(X1) + . . . + abs(Xm)). Proposition 3.7 implies the inequalityw(X1, . . . , Xm) ≤
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w (abs(X1) + · · · + abs(Xm)). By Lemma 4.2, there exist unitaries U1, . . . ,Um ∈ C
n×n

such that abs(X1) + · · · + abs(Xm) is a principal submatrix of X1 ⊗U1 + · · · + Xm ⊗Um .
Then

w(abs(X1) + · · · + abs(Xm)) ≤ w(X1 ⊗U1 + · · · + Xm ⊗Um) ≤ w(X1, . . . , Xm).

��
When X is diagonal, abs(X) coincides with the standard definition of |X | for operators,

viz. |X | = (X∗X)
1
2 . We obtain the following consequence of Theorem 4.3.

Corollary 4.4 If {X1, . . . , Xm} ⊆ C
n×n is a commuting family of normal matrices, then

w(X1, . . . , Xm) = w(|X1|, . . . , |Xm |) = w (|X1| + · · · + |Xm |).
Proof By [14, Theorem 2.5.5], there exists unitary U ∈ C

n×n such that UX jU∗ = Dj

where Dj is diagonal for each j = 1, . . . ,m. Note that abs(Dj ) = |Dj | = U |X j |U∗. By
Proposition 3.3(i), w(X1, . . . , Xm) is equal to

w(UX1U
∗, . . . ,UXmU

∗) = w(D1, . . . , Dm) = w(abs(D1) + · · · + abs(Dm))

where the last equality is due to Theorem 4.3. Since U∗
[∑m

j=1
abs(Dj )

]
U =

∑m

j=1
U∗|Dj |U =

∑m

j=1
|X j |, we obtain

w(X1, . . . , Xm) = w(U∗ [abs(D1) + · · · + abs(Dm)]U ) = w(|X1| + · + |Xm |).

��
For the remainder of this section, we will prove Conjecture 1.4 for a tuple of n-by-

n generalized permutations. One preliminary step is to show that fX1,...,Xm (Z) remains
diagonal when evaluated at a diagonal matrix Z . As a consequence, the corresponding
recurrence (6) {Lk}k∈N is a sequence of diagonal matrices since the initial value L1 =
(m + 1)I is diagonal.

Lemma 4.5 If X1, . . . , Xm ∈ C
n×n are generalized permutations, then fX1,...,Xm (Z) is

diagonal for all diagonal Z ≥ 0.

Proof Let X ∈ C
n×n be a generalized permutation. Then X = DP and X∗ = EQ where

D, E ∈ C
n×n are diagonals and P, Q ∈ R

n×n are permutation matrices. Let Z ∈ C
n×n

be diagonal. Note that X∗Z X = P∗D∗ZDP = P∗Z |D|2P is diagonal since Z and D are
diagonals and P is a permutation matrix. Similarly, X ZX∗ = Q∗Z |E |2Q is diagonal. In

particular, if Z ≥ 0, then Z
1
2 X∗Z X Z

1
2 and Z

1
2 X j Z X∗

j Z
1
2 are diagonals.

Suppose X1, . . . , Xm ∈ C
n×n are generalized permutations and Z ≥ 0 is diago-

nal. Then Z
1
2 X∗

j Z X j Z
1
2 and Z

1
2 X j Z X∗

j Z
1
2 are diagonals for all j = 1, . . . ,m. Since

fX1,...,Xm (Z) is a sum of the identity and terms of the form
(
Z

1
2 X∗

j Z X j Z
1
2 + 1

4 I
) 1

2
and

(
Z

1
2 X j Z X∗

j Z
1
2 + 1

4 I
) 1

2
, the assertion follows. ��
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For a tuple of generalized permutations, we now prove Conjecture 1.4(i).

Theorem 4.6 Let X1, . . . , Xm ∈ C
n×n be generalized permutations. ThenConjecture 1.4(i)

holds, i.e., the recurrence (6) is monotonically increasing.

Proof By Lemma 4.5, the recurrence (6) is a sequence {Lk}k∈N of positive semidefinite
diagonal matrices where L1 ≤ L2 as observed before. Hence, it suffices to prove: if 0 ≤
Y ≤ Z where Y and Z are diagonals, then fX1,...,Xm (Y ) ≤ fX1,...,Xm (Z). Let j = 1, . . . ,m
and0 ≤ Y ≤ Z be diagonals. Then 0 ≤ X∗

j Y X j ≤ X∗
j Z X j are diagonals due toLemma4.5.

Since the matrices involved are positive semidefinite diagonals, we have

0 ≤ Y
1
2 (X∗

j Y X j )Y
1
2 = (X∗

j Y X j )Y ≤ (X∗
j Y X j )Z = Z

1
2 (X∗

j Z X j )Z
1
2 .

By operator monotonicity of t
1
2 on [0,∞) [20, Proposition V.1.8],

(
Y

1
2 X∗

j Y X jY
1
2 + 1

4
I

) 1
2 ≤

(
Z

1
2 X∗

j Z X j Z
1
2 + 1

4
I

) 1
2

.

Similarly,

(
Y

1
2 X jY X∗

j Y
1
2 + 1

4
I

) 1
2 ≤

(
Z

1
2 X j Z X

∗
j Z

1
2 + 1

4
I

) 1
2

.

Thus, fX1,...,Xm (Y ) ≤ fX1,...,Xm (Z). ��
Remark 4.7 The Proof of Theorem 4.6 shows that for a tuple of generalized permuta-
tions fX1,...,Xm is monotone on positive semidefinite diagonals, a stronger statement than
the monotonicity of the recurrence (6). Numerical experiments show that the analogous
statement for a tuple of general matrices is false, i.e., 0 ≤ Y ≤ Z does not imply
fX1,...,Xm (Y ) ≤ fX1,...,Xm (Z). However, numerical experiments suggest that (6) is always
monotonically increasing.

The inner product on C
m×n defined by 〈Y , Z〉 = trace(Z∗Y ) for all Y , Z ∈ C

m×n

induces the Frobenius norm ‖X‖2 = 〈X , X〉 1
2 = [trace(X∗X)] 1

2 . Consider the map vec :
C
m×n → C

mn defined by

vec(X) = [x11, . . . , xm1, x12, . . . , xm2, . . . , x1n, . . . , xmn]t , X = [xi j ] ∈ C
m×n .

Note that 〈Y , Z〉 = 〈vec(Y ), vec(Z)〉 for any Y , Z ∈ C
m×n , i.e., the vec map is an isometry

with respect to the Frobenius norm [21, Exercise on p. 244]. The trace norm of X ∈ C
m×n

is defined by ‖X‖1 = trace[(X∗X)
1
2 ]. Some straightforward properties of the trace norm

are listed in the following lemma.

Lemma 4.8 (i) If X , Y ≥ 0, then ‖X‖1 = trace(X) = ‖vec(X 1
2 )‖2 and ‖X + Y‖1 =

‖X‖1 + ‖Y‖1.
(ii) ‖(Y ∗Y )

1
2 ‖1 = ‖Y‖1.

(iii) If 0 ≤ X ≤ Y , then ‖X‖1 ≤ ‖Y‖1.
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We relate the trace norm and the free joint numerical radius.

Lemma 4.9 Let Z , X1, . . . , Xm ∈ C
n×n and Z ≥ 0. Then

m∑

j=1

‖Z 1
2 X j Z

1
2 ‖1 ≤ ‖Z‖1w(X1, . . . , Xm).

Proof The trace norm of X ∈ C
n×n has the following variational characterization [21,

Problem 4 on p.199]:

‖X‖1 = max{|〈X ,U 〉| : U ∈ C
n×n is unitary}.

Hence, there exist unitariesU1, . . . ,Um ∈ C
n×n such that ‖Z 1

2 X j Z
1
2 ‖1 = 〈Z 1

2 X j Z
1
2 ,Uj 〉

for each j = 1, . . . ,m.
Consider:

‖Z 1
2 X j Z

1
2 ‖1 = 〈Z 1

2 X j Z
1
2 ,Uj 〉 = 〈X j Z

1
2 , Z

1
2Uj 〉 = 〈vec(X j Z

1
2 ), vec(Z

1
2Uj )〉.

In general, vec(AXB) = (Bt ⊗A)vec(X) for any A ∈ C
m×n , B ∈ C

p×q , and X ∈ C
n×p

[21, Lemma 4.3.1]. We use this conversion formula to simplify

〈vec(X j Z
1
2 ), vec(Z

1
2Uj )〉 = 〈(I ⊗ X j )vec(Z

1
2 ), (Ut

j ⊗ I )vec(Z
1
2 )〉

= 〈(Uj ⊗ X j )vec(Z
1
2 ), vec(Z

1
2 )〉.

Hence,

m∑

j=1

‖Z 1
2 X j Z

1
2 ‖1 =

m∑

j=1

〈(Uj ⊗ X j )vec(Z
1
2 ), vec(Z

1
2 )〉

=
〈

m∑

j=1

(Uj ⊗ X j )vec(Z
1
2 ), vec(Z

1
2 )

〉

≤ w

⎛

⎝
m∑

j=1

Uj ⊗ X j

⎞

⎠ 〈vec(Z 1
2 ), vec(Z

1
2 )〉

= w

⎛

⎝
m∑

j=1

Uj ⊗ X j

⎞

⎠ ‖Z‖1.

by definition of the numerical radius and Lemma 4.8(i). Observe that
∑m

j=1
Uj ⊗ X j is

permutation similar to
∑m

j=1
X j ⊗ Uj due to [21, Corollary 4.3.10]. Since each Uj is

unitary,

m∑

j=1

‖Z 1
2 X j Z

1
2 ‖1 ≤ w

⎛

⎝
m∑

j=1

X j ⊗Uj

⎞

⎠ ‖Z‖1 ≤ w(X1, . . . , Xm)‖Z‖1



  114 Page 22 of 34 K. L. D. Rosa, H. J. Woerdeman

by definition of w(X1, . . . , Xm). ��
For any r ≥ 0 and X ∈ B(H) with X ≥ 0, (X + r I )

1
2 ≤ X

1
2 + √

r I due to

operator monotonicity of t
1
2 on [0,∞) [20, Proposition V.1.8]. Hence, for a given tuple

X1, . . . , Xm ∈ B(H), we get

0 < fX1,...,Xm (Z) ≤ (m + 1)I

+
m∑

j=1

[(
Z

1
2 X∗

j Z X j Z
1
2

) 1
2 +

(
Z

1
2 X j Z X

∗
j Z

1
2

) 1
2
]

(26)

for any Z ≥ 0.

Theorem 4.10 Let X1, . . . , Xm ∈ C
n×n. For R ≥ 0, let BR = {Z ∈ C

n×n : Z ≥
0 and ‖Z‖1 ≤ R}. If w(X1, . . . , Xm) < 1

2 , then fX1,...,Xm as defined in (4) satisfies
fX1,...,Xm (BR) ⊆ BR where R = n(m + 1) [1 − 2w(X1, . . . , Xm)]−1.

Proof Applying Lemma 4.8(i) and (iii) to (26), we get

‖ fX1,...,Xm (Z)‖1 ≤ (m + 1)n +
∥∥∥∥∥∥

m∑

j=1

[(
Z

1
2 X∗

j Z X j Z
1
2

) 1
2 +

(
Z

1
2 X j Z X

∗
j Z

1
2

) 1
2
]∥∥∥∥∥∥

1

= (m + 1)n +
m∑

j=1

[∥∥∥∥
(
Z

1
2 X∗

j Z X j Z
1
2

) 1
2

∥∥∥∥
1
+

∥∥∥∥
(
Z

1
2 X j Z X

∗
j Z

1
2

) 1
2

∥∥∥∥
1

]

Let j = 1, . . . ,m. Since
(
Z

1
2 X∗

j Z X j Z
1
2

) 1
2 =

[
(Z

1
2 X j Z

1
2 )∗(Z 1

2 X j Z
1
2 )
] 1
2

and
(
Z

1
2 X j Z X∗

j Z
1
2

) 1
2 =

[
(Z

1
2 X∗

j Z
1
2 )∗(Z 1

2 X∗
j Z

1
2 )
] 1
2
, Lemma 4.8(ii) implies

∥∥∥∥
(
Z

1
2 X∗

j Z X j Z
1
2

) 1
2

∥∥∥∥
1

= ‖Z 1
2 X j Z

1
2 ‖1 and

∥∥∥∥
(
Z

1
2 X j Z X∗

j Z
1
2

) 1
2

∥∥∥∥
1

= ‖Z 1
2 X∗

j Z
1
2 ‖1

= ‖Z 1
2 X j Z

1
2 ‖1. Due to Lemma 4.9,

‖ fX1,...,Xm (Z)‖1 ≤ (m + 1)n + 2
m∑

j=1

‖Z 1
2 X j Z

1
2 ‖1

≤ (m + 1)n + 2‖Z‖1w(X1, . . . , Xm).

Now it is easy to check that Z ∈ BR implies fX1,...,Xm (Z) ∈ BR . ��
Remark 4.11 By using Theorem 4.10 and Brouwer’s fixed point theorem, one gets an alter-
native proof of (ii)→(i) in Theorem 1.2. One key step in the Proof of Theorem 4.10 is when
Lemma 4.9 is used. In the proof of this lemma, we used vec(AXB) = (Bt ⊗ A)vec(X) for
any A ∈ C

m×n , B ∈ C
p×q , and X ∈ C

n×p . It is not immediately clear how to extend this
formula to the infinite dimensional case.

Corollary 4.12 Let X1, . . . , Xm ∈ C
n×n. If w(X1, . . . , Xm) < 1

2 , then the recurrence
{Lk}k∈N defined in (6) is bounded with respect to the trace-norm. In particular, {Lk}k∈N
has a convergent subsequence.
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Proof Let R and BR be as in Theorem 4.10. Note that ‖L1‖1 = n(m + 1) ≤ R. Hence,
L2 = fX1,...,Xm (L1) ∈ BR since fX1,...,Xm (BR) ⊆ BR . Inductively, ‖Lk‖1 ≤ R for all
k ∈ N. The remaining assertion follows from Bolzano-Weierstrass Theorem. ��

We are now ready to prove Conjecture 1.4(ii) for a tuple of generalized permutations.

Theorem 4.13 Let X1, . . . , Xm ∈ C
n×n be generalized permutations. Ifw(X1, . . . , Xm) <

1
2 , then Conjecture 1.4(ii) holds, i.e., the recurrence (6) converges.

Proof Let {Lk}k∈N be the recurrence (6). Theorem 4.6 guarantees that {Lk}k∈N is mono-
tonically increasing. By Corollary 4.12, {Lk}k∈N is bounded with respect to the trace-norm.
Since the dimension is finite, the recurrence {Lk}k∈N also converges. ��
Corollary 4.14 If {X1, . . . , Xm} ⊆ C

n×n is a commuting family of normal matrices, then
w(X1, . . . , Xm) = w(|X1|, . . . , |Xm |) = w (|X1| + · · · + |Xm |).
Proof By [14, Theorem 2.5.5], there exists unitary U ∈ C

n×n such that UX jU∗ = Dj

where Dj is diagonal for each j = 1, . . . ,m. For Z ≥ 0, note that fX1,...,Xm (Z) =
U∗ fD1,...,Dm (UZU∗)U . The assertions follow by applying Theorems 4.6 and 4.13 to
fD1,...,Dm . ��
Remark 4.15 It is worth noting that each Lk lies in the unital C∗-subalgebra of B(H), gen-
erated by general X1, . . . , Xm . The latter may be a useful observation, as the monotonicity
seems to require more than a simple operator monotonicity argument and it also depends
on the initial value. As noted in Remark 4.7, numerical experiments show that fX1,...,Xm is
not necessarily monotone on the cone of positive semidefinite operators.

Example 4.16 In the scalar case, it is easy to seewhy the convergenceworks sowell. Indeed,

fx1,...,xm (z) = 1 + 2

√
z2|x1|2 + 1

4
+ · · · + 2

√
z2|xm |2 + 1

4
≈ m + 1 + 2(|x1| + · · · + |xm |)z

as z → ∞. If |x1| + · · · + |xm | = w(x1, . . . , xm) < 1
2 , then f has a unique positive fixed

point as its graph intersects the half line y = x (x ≥ 0) in a single point. Next, one finds
for z > 0 that

0 < f ′(z) =
m∑

j=1

4|x j |2z√
4|x j |2z2 + 1

<

m∑

j=1

4|x j |2z
2|x j |z = 2(|x1| + · · · + |xm |) < 1.

Thus, the unique fixed point is a stable one, and the sequence is monotone.

5 Semidefinite Programming

Let X1, . . . , Xm ∈ B(H) be given. For Hermitian H1, . . . , Hm ∈ B(H), consider

�(H1, . . . , Hm) := �
(
H1, . . . , Hm,−

∑m

j=1
Hj

)
. Observe that

sH1,...,Hm := sup{λ : �(H1, . . . , Hm) − λI ≥ 0} ∈ (−∞, 0].
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Proposition 5.1 Let X1, . . . , Xm ∈ B(H). Then

w(X1, . . . , Xm) = −m + 1

2
sup{sH1,...,Hm }

where the supremum is taken over all Hermitian H1, . . . , Hm ∈ B(H).

Proof Let � be the left-hand side and ρ be the right hand side of the desired equality. If s

denotes the supremum in the formula, then s = − 2ρ

m + 1
.

Let ε > 0. By definition of the supremum, there exist Hermitian H1, . . . , Hm such that

sH1,...,Hm > s − 2ε

m + 1
= −2ρ + 2ε

m + 1
, and so �(H1, . . . , Hm) +

(
2ρ + 2ε

m + 1

)
I ≥ 0. The

diagonal blocks add up to (2ρ + 2ε)I . Thus, � = w(X1, . . . , Xm) ≤ 1

2
(2ρ + 2ε) = ρ + ε

due to Theorem 1.1. Taking ε → 0, we have � ≤ ρ.

For the reverse inequality, let ε > 0. Since w

(
X1

2� + 2ε
, . . . ,

Xm

2� + 2ε

)
= �

2� + 2ε
≤

1

2
, there exist A1, . . . , Am+1 ∈ B(H) with

∑m+1

j=1
A j = (2� + 2ε)I so that

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
X1

2�+2ε 0 · · · 0

X∗
1

2�+2ε A2
X2

2�+2ε

...

0
X∗
2

2�+2ε

. . .
. . . 0

...
. . . Am

Xm
2�+2ε

0 · · · 0 X∗
m

2�+2ε Am+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0

due to Theorem 1.1. Put Hj = A j − 1

m + 1
I for j = 1, . . . ,m. Then −

∑m

j=1
Hj =

Am+1 − 1

m + 1
I . By the positivity of the operator above,

s ≥ s(2�+2ε)H1,...,(2�+2ε)Hm ≥ −2� + 2ε

m + 1
.

Then ρ − ε = −m + 1

2
s − ε ≤ �. Taking ε → 0, we obtain ρ ≤ �. ��

Let X1, . . . , Xm ∈ C
n×n be given. As a consequence of Theorem 1.1 (see also [3,

Corollary 3.5]), we can numerically computew(X1, . . . , Xm) by considering the following
semidefinite program.
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Primal problem:

minimize ρ

subject to

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
X1
2 0 · · · 0

X∗
1
2 A2

X2
2

...

0
X∗
2
2

. . .
. . . 0

...
. . . Am

Xm
2

0 · · · 0 X∗
m
2 Am+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0

and A1 + · · · + Am+1 = ρ I .

To numerically solve the primal problem above, we used CVX, a package for solving
convex programs [22, 23].
Dual problem:

maximize −Re

⎡

⎣
m∑

j=1

trace
(
X j Z

∗
j, j+1

)
⎤

⎦

subject to Z = [Zi j ]m+1
i, j=1 ≥ 0

where Zi j ∈ C
n×n

Z11 = · · · = Zm+1,m+1

trace(Z11) = 1.

We claim that when m = 1, strong duality occurs, i.e., the dual optimal value is equal to
the primal optimal value. To see this, we identify the extreme points of the convex feasible

region of the dual problem. Suppose Z =
[
Z11 Z12

Z∗
12 Z11

]
≥ 0. By [14, Theorem 7.7.9], we

can write Z12 = Z
1
2
11GZ

1
2
11 for some contraction G. Since G is a square contraction, G

is a convex combination of unitaries Uj . Next, Uj = Vj
 j V ∗
j , where Vj is unitary and


 j = diag(eiθ
( j)
1 , . . . , eiθ

( j)
n ). Hence, Z is a convex combination of

⎡

⎣Z
1
2
11Vj 0

0 Z
1
2
11Vj

⎤

⎦
[

ek

e−iθ( j)
k ek

][
ek

e−iθ( j)
k ek

]∗ ⎡

⎣Z
1
2
11Vj 0

0 Z
1
2
11Vj

⎤

⎦
∗

where ek is the kth standard basis vector in C
n . Thus, the extreme points of{

Z =
[
Z11 Z12

Z∗
12 Z11

]
≥ 0 : trace(Z11) = 1

}
are rank one matrices of the form

[
u

e−iθu

] [
u

e−iθu

]∗

where u ∈ C
n is a unit vector.
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It is well known that the dual optimal value is a lower bound for the primal optimal value,
which in this case is w(X1). At the extreme points of the dual feasible region, the objective
function evaluates to

−Re
[
trace

(
eiθ X1uu

∗)] = Re
(
eit 〈X1u, u〉

)
.

Maximizing this over all t ∈ R and unit vectors u ∈ C
n , we see that the dual optimal value

is w(X1).

6 Limit FormulaWhenH is Separable and dim(H) = ∞
Theorem 6.1 Let H be separable with dim(H) = ∞ and T1, . . . , Tm ∈ B(H). If {h j }∞j=1

is an orthonormal basis ofH and T (n)
1 , . . . , T (n)

m are the corresponding compressions onto
Span{h j }nj=1 for each n ∈ N, then

w(T1, . . . , Tm) = lim
n→∞ w(T (n)

1 , . . . , T (n)
m ).

Proof Let X j be the matrix representation of Tj with respect to the basis {h j }∞j=1 for each

j = 1, . . . ,m. Write X j =
[
X ( j,n)
11 X ( j,n)

12

X ( j,n)
21 X ( j,n)

22

]
where X ( j,n)

11 is the n-by-n leading principal

submatrix of X j . By Proposition 3.1, it suffices to compute lim
n→∞ w(X (1,n)

11 , . . . , X (m,n)
11 ).

Let ε > 0 be given. Define M := 2 + 3
∑m

j=1
‖X j‖ > 0. By definition, there exist

unitaries U1, . . . ,Um ∈ B(K) for some Hilbert space K and unit z = [z1 z2 · · · ]t ∈
∞⊕

j=1

K

such that

w(T1, . . . , Tm) = w(X1, . . . , Xm) <
2ε

M
+

∣∣∣∣∣∣

〈⎛

⎝
m∑

j=1

X j ⊗Uj

⎞

⎠ z, z

〉∣∣∣∣∣∣
. (27)

Consider

m∑

j=1

X j ⊗Uj =

⎡

⎢⎢⎢⎢⎣

m∑

j=1

X ( j,n)
11 ⊗Uj

m∑

j=1

X ( j,n)
12 ⊗Uj

m∑

j=1

X ( j,n)
21 ⊗Uj

m∑

j=1

X ( j,n)
22 ⊗Uj

⎤

⎥⎥⎥⎥⎦
. (28)

Note that ‖X ( j,n)
ab ⊗ Uj‖ ≤ ‖X j‖, and hence

∥∥∥
∑m

j=1
X ( j,n)
ab ⊗Uj

∥∥∥ ≤
∑m

j=1
‖X j‖. For

each n ∈ N, let yn = [z1 · · · zn]t and ỹ = [zn+1 zn+2 · · · ]t . Observe that ‖yn‖, ‖ỹ‖ ≤ 1
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due to 1 = ‖z‖2 = ‖yn‖2+‖ỹ‖2. Since z ∈
∞⊕

j=1

K, there exists N for which n ≥ N implies

‖ỹ‖2 = ‖z‖2 − ‖yn‖2 = ‖z‖2 −
n∑

j=1

‖zk‖2 <
ε2

M2 . (29)

Using (28), (29), triangle inequality, and Cauchy-Schwarz, we obtain

∣∣∣∣∣∣

〈⎛

⎝
m∑

j=1

X j ⊗Uj

⎞

⎠ z, z

〉∣∣∣∣∣∣
≤ w

⎛

⎝
m∑

j=1

X ( j,n)
11 ⊗Uj

⎞

⎠ + 3ε

M

m∑

j=1

‖X j‖

≤ w(X (1,n)
11 , . . . , X (m,n)

11 ) + 3ε

M

m∑

j=1

‖X j‖. (30)

By Proposition 3.1 and combining (27) and (30), we get that for all n ≥ N

|w(T1, . . . , Tm) − w(T (n)
1 , . . . , T (n)

m )|

= w(X1, . . . , Xm) − w(X (1,n)
11 , . . . , X (m,n)

11 ) <
ε

M

⎛

⎝2 + 3
m∑

j=1

‖X j‖
⎞

⎠ = ε.

��
Definition 6.2 An infinite matrix X = [xi j ] is a generalized permutation on �2 if X has at
most one nonzero entry in each row and column.

Observe that any n-by-n leading principal submatrix of X is an n-by-n generalized
permutation.

Corollary 6.3 Let H be separable with dim(H) = ∞ and T1, . . . , Tm ∈ B(H) be simulta-
neously unitarily similar to X1, . . . , Xm which are all generalized permutations on �2. If
X ( j,n)
11 denotes the n-by-n leading principal submatrix of X j for each j = 1, . . . ,m, then

w(T1, . . . , Tm) = lim
n→∞ w

(
abs(X (1,n)

11 ) + · · · + abs(X (m,n)
11 )

)
.

In particular, if X1, . . . , Xm are diagonal, then

w(X1, . . . , Xm) = w(|X1|, . . . , |Xm |) = w(|X1| + · · · + |Xm |).

Proof The first part follows from Theorems 4.3 and 6.1. For the last part, let X1, . . . , Xm

be diagonal. Then the absolute value matrix abs(X ( j,n)
11 ) of the n-by-n leading principal

submatrix of X j coincides with the n-by-n leading principal submatrix of |X j |.
We now prove an infinite dimensional analogue of Corollary 4.4.
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Corollary 6.4 Let H be separable with dim(H) = ∞. If {X1, . . . , Xm} ⊂ B(H) is a
commuting family of normal operators, then w(X1, . . . , Xm) = w(|X1|, . . . , |Xm |) =
w(|X1| + · · · + |Xm |).
Proof Define M := max

1≤ j≤m
{‖X j‖} + 1 and let c >

√
M . Let 0 < ε < 3mc(c − √

M).

By Weyl-von Neumann-Berg theorem [24, Theorem 39.4], there exist unitary U , diagonal
operators D1, . . . , Dm , compact operators K1, . . . , Km with ‖K j‖ <

(
ε

3mc

)2 such that
U∗X jU = Dj + K j for all j = 1, . . . ,m. By Proposition 3.3(i), we may assume that
X j = Dj + K j for all j = 1, . . . ,m. By assumption on c, x2 + √

Mx < cx for all
x ∈ (0, c − √

M). In particular,

3m

(( ε

3mc

)2 + √
M

( ε

3mc

))
< 3m

(
c · ε

3mc

)
= ε. (31)

Note that for any operators S1, . . . , Sm, T1, . . . , Tm , Proposition 3.3 (ii)-(iii) imply

|w(S1, . . . , Sm) − w(T1, . . . , Tm)| ≤ w(S1 − T1, . . . , Sm − Tm) ≤
m∑

j=1

‖S j − Tj‖. (32)

In particular,

|w(X1, . . . , Xm) − w(D1, . . . , Dm)| ≤
m∑

j=1

‖K j‖ (33)

and

|w(|X1|, . . . , |Xm |) − w(|D1|, . . . , |Dm |)| ≤
m∑

j=1

‖|X j | − |X j − K j |‖. (34)

By [20, Theorem X.2.1], each term on the right hand side of (34) is bounded above by√
2‖2X j − K j‖ 1

2 ‖K j‖ 1
2 . Hence,

|w(|X1|, . . . , |Xm |) − w(|D1|, . . . , |Dm |)| ≤
m∑

j=1

(2‖X j‖ 1
2 ‖K j‖ 1

2 + √
2‖K j‖). (35)

By Corollary 6.3, w(D1, . . . , Dm) = w(|D1|, . . . , |Dm |) since D1, . . . , Dm are diagonal.
Thus, (31)-(35) guarantee

|w(X1, . . . , Xm) − w(|X1|, . . . , |Xm |)| ≤ |w(X1, . . . , Xm) − w(D1, . . . , Dm)|+
|w(|D1|, . . . , |Dm |) − w(|X1|, . . . , |Xm |)|

≤
m∑

j=1

(‖K j‖ + √
2‖K j‖ + 2‖X j‖ 1

2 ‖K j‖ 1
2 )

≤
m∑

j=1

(3‖K j‖ + 3‖X j‖ 1
2 ‖K j‖ 1

2 )

< 3m

(( ε

3mc

)2 + √
M

( ε

3mc

))
< ε.
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Note thatw(|D1|, . . . , |Dm |) = w(|D1|+· · ·+|Dm |) by Corollary 6.3, and so for the other
equality

|w(X1, . . . , Xm) − w(|X1| + · · · + |Xm |)| ≤ |w(X1, . . . , Xm) − w(D1, . . . , Dm)|+
|w

(∑m
j=1 |Dj |

)
− w

(∑m
j=1 |X j |

)
|.

Since (33) is still an upper bound, the argument in the first part still works if it can be
shown that

∣∣∣∣∣∣
w

⎛

⎝
m∑

j=1

|X j |
⎞

⎠ − w

⎛

⎝
m∑

j=1

|Dj |
⎞

⎠

∣∣∣∣∣∣
≤

m∑

j=1

‖|X j | − |X j − K j |‖.

Indeed, this follows from (32).

7 Factorization of Hermitian Pencils

One can relate the free joint numerical radius to a factorization of a certain Hermitian
pencil. Consider the operator-valued trigonometric polynomial Q(z1, . . . , zm) = I +∑m

j=1
z j X j +

∑m

j=1
z−1
j X∗

j , where X1, . . . , Xm ∈ B(H). We are interested in the ques-

tion when an affine operator-valued matrix polynomial P(z1, . . . , zm) = P0+
∑m

j=1
Pj z j

exists so that Q(z1,
z2
z1

, . . . , zm
zm−1

) = P(z1, . . . , zm)∗P(z1, . . . , zm), for all (z1, . . . , zm) ∈
T
m , where T = {z ∈ C : |z| = 1}. Here P0, . . . , Pm ∈ B(H,K) (= the Banach space of

bounded operators acting from Hilbert spaceH to Hilbert space K) for some Hilbert space
K. Clearly, we need that Q(z1, . . . , zn) ≥ 0 for all (z1, . . . , zm) ∈ T

m . The operator-valued
one variable Fejér-Riesz Theorem, due to [25] (see also [26]), states that the existence of P
is equivalent to Q(z1) ≥ 0, |z1| = 1, and in this case one can choose K = H and P(z1) to
be outer or co-outer. Recently, Dritschel [27] showed that also in two variables the condition
Q(z1, z2) ≥ 0, (z1, z2) ∈ T

2, is necessary and sufficient for the existence of P (in this case,
though, K is not necessarily equal toH as the example |z1 − 1|2 + |z2 − 1|2 easily shows).

Our result is the following.

Theorem 7.1 Let Q(z1, . . . , zm) = I+
∑m

j=1
z j X j+

∑m

j=1
z−1
j X∗

j , where X1, . . . , Xm ∈
B(H). The following are equivalent:

(i) w(X1, . . . , Xm) ≤ 1
2 .

(ii) For all Hilbert spaces K and for all unitaries U1, . . . ,Um ∈ B(K), we have

I ⊗ I +
m∑

j=1

X j ⊗Uj +
m∑

j=1

X∗
j ⊗U∗

j ≥ 0.

(iii) There exist A1, . . . , Am+1 ∈ B(H) so that
∑m+1

j=1
A j = I and �(A1, . . . , Am+1) ≥

0.



  114 Page 30 of 34 K. L. D. Rosa, H. J. Woerdeman

(iv) There exist Hilbert space K and affine matrix polynomial P(z1, . . . , zm) = P0 +∑m

j=1
Pj z j where Pj ∈ B(H,K) so that

Q

(
z1,

z2
z1

, . . . ,
zm
zm−1

)
= P(z1, . . . , zm)∗P(z1, . . . , zm) for all (z1, . . . , zm) ∈ T

m .

(36)

Remark 7.2 In the classical Fejér-Riesz factorization result (see [26] for the one variable
case; see [28] for the multivariable case), we only require positive semidefiniteness when
we plug scalars of modulus one as the variables. In Theorem 7.1(ii) above, one checks the
inequality for all unitaries. In the factorization, this translates into the requirement that P
is affine, as opposed to any analytic matrix polynomial.

Proof of Theorem 7.1 The equivalence of (i), (ii), and (iii) follow from the results in [3].
(iv) → (iii): Assuming (iv) we obtain that

m∑

j=0

P∗
j Pj = I , P∗

j−1Pj = X j , P∗
k Pj = 0, k �= j, j − 1.

Putting A j+1 = P∗
j Pj , j = 0, . . . ,m, we obtain that �(A1, . . . , Am+1) = G∗G, where

G = [
P0 · · · Pm

]
. Thus (iii) follows.

(iii)→ (iv): Assuming (iii), write �(A1, . . . , Am+1) = G∗G with G ∈ B(Hm+1,K) for
some Hilbert space K. Next decompose G = [

P0 · · · Pm
]
, with Pj ∈ B(H,K). With this

choice, (iv) follows. ��

The following example illustrates how the requirement that P is affine affects the exis-
tence of a solution.

Example 7.3 Let m = 2, X1 =
[
1 0
0 −1

]
, and X2 =

[
0 1
1 0

]
. Letting U1 = z1 and U2 = z2

be scalars, we obtain that

max|z1|=|z2|=1
w

([
z1 z2
z2 −z1

])
= max|λ|=1

w

([
1 λ

λ −1

])
= √

2,

where the maximum is achieved at λ = ±1. Since X1 and X2 are generalized permutations,
Theorem 4.3 guarantees that

w(X1, X2) = w(abs(X1) + abs(X2)) = w

([
1 1
1 1

])
= 2.

Thus, for r ≥ 2
√
2,

Qr (z1, z2) := r I +
2∑

j=1

z j X j +
2∑

j=1

z−1
j X∗

j ≥ 0, |z1| = |z2| = 1,
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but a factorization as in Theorem 7.1(iv) exists only for r ≥ 4. When r = 4, condition The-
orem 7.1(iii) is uniquely satisfied for A2 = 2I2, A1 = A3 = I2, leading to the factorization
Q4(z1,

z2
z1

) = P(z1, z2)∗P(z1, z2), |z1| = |z2| = 1, where

P(z1, z2) =

⎡

⎢⎢⎣

0 − 1
2

√
2

− 1
2

√
2 0

1
2

√
2 0

0 1
2

√
2

⎤

⎥⎥⎦ + z1

⎡

⎢⎢⎣

0 0
0 0√
2 0
0 −√

2

⎤

⎥⎥⎦ + z2

⎡

⎢⎢⎣

− 1
2

√
2 0

0 1
2

√
2

0 1
2

√
2

− 1
2

√
2 0

⎤

⎥⎥⎦ .

It follows from themain result in [27] that Q2
√
2 has a factorization P

∗P , where P is analytic

matrix polynomial degree of degree (1,1) with P(z1, z2) ∈ C
4×2. This factorization can be

computed by letting

K =
√
2

2
I8 +

⎡

⎢⎢⎣

0 1
2 X1

1
2 X2 0

1
2 X

∗
1 0 0 1

2 X2
1
2 X

∗
2 0 0 1

2 X1

0 1
2 X

∗
2

1
2 X

∗
1 0

⎤

⎥⎥⎦ = B∗B,

where

B = 4
√
2

⎡

⎢⎢⎣

0 0 0 − 1
2 − 1

2 0 − 1
2

√
2 0

− 1
2

√
2 0 − 1

2 0 0 − 1
2 0 0

0 − 1
2

√
2 0 1

2 − 1
2 0 0 0

0 0 1
2 0 0 − 1

2 0 1
2

√
2

⎤

⎥⎥⎦ .

Then K = B∗B ≥ 0 and for |z1| = |z2| = 1,

[
I2 z1 I2 z2 I2 z1z2 I2

]
B∗B

⎡

⎢⎢⎣

I2
z1 I2
z2 I2
z1z2 I2

⎤

⎥⎥⎦ = P(z1, z2)
∗P(z1, z2) = Q2

√
2(z1, z2),

where P(z1, z2) equals

4
√
2

⎛

⎜⎜⎝

⎡

⎢⎢⎣

0 0
− 1

2

√
2 0

0 − 1
2

√
2

0 0

⎤

⎥⎥⎦ + z1

⎡

⎢⎢⎣

0 − 1
2− 1

2 0
0 1

2
1
2 0

⎤

⎥⎥⎦ + z2

⎡

⎢⎢⎣

− 1
2 0
0 − 1

2− 1
2 0
0 − 1

2

⎤

⎥⎥⎦ + z1z2

⎡

⎢⎢⎣

− 1
2

√
2 0

0 0
0 0
0 1

2

√
2

⎤

⎥⎥⎦

⎞

⎟⎟⎠ .

8 Open Problems

Let X1, . . . , Xm ∈ B(H). In this paper, we related the free joint numerical radius
w(X1, . . . , Xm) to a fixed point problem involving the operator-valued function

fX1,...,Xm (Z) = I +
m∑

j=1

[(
Z

1
2 X∗

j Z X j Z
1
2 + 1

4
I

) 1
2 +

(
Z

1
2 X j Z X

∗
j Z

1
2 + 1

4
I

) 1
2
]

.
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In particular, we showed in the matrix case (Corollary 1.3) that the following are equivalent:

(i) fX1,...,Xm as defined in (4) has a positive definite fixed point, i.e., there exists positive
definite L ∈ B(H) for which

L = I +
m∑

j=1

[(
L

1
2 X∗

j L X j L
1
2 + 1

4
I

) 1
2 +

(
L

1
2 X j LX

∗
j L

1
2 + 1

4
I

) 1
2
]

.

(ii) w(X1, . . . , Xm) < 1
2 .

Theorem 1.2 guarantees that (i)→(ii) holds when dim(H) = ∞. Remarks 2.6 and 4.11
mention the difficulties encountered for (ii)→(i).

Example 8.1 To illustrate the existence of a fixed point in an infinite dimensional case, con-

siderH = L2([−π, π]) where 〈 f , g〉 :=
∫ π

−π

f (t)g(t)dt . Each x ∈ L∞([−π, π]) induces
a bounded operator Mx ∈ B(H) defined by the multiplication operator (Mx )(h(t)) =
x(t)h(t) for all h ∈ H. Note that multiplication operators are normal, and so w(Mx ) =
‖Mx‖ = ‖x‖∞. Let x ∈ L∞([−π, π]) be such that w(Mx ) < 1

2 . Let Mz where

z := 2

1 − 4|x |2 . Due to ‖x‖∞ = w(Mx ) < 1
2 , z ∈ L∞([−π, , π]) and Mz is positive

definite in B(H). The value of fMx (Mz) is the multiplication operator corresponding to

1+2
√
z2|x |2 + 1

4 which simplifies to z. Hence, Mz is a positive definite fixed point of fMx .

Open problem 1 Assume dim(H) = ∞. If w(X1, . . . , Xm) < 1
2 , show that fX1,...,Xm has

a positive definite fixed point, i.e., there exists positive definite L ∈ B(H) for which

L = I +
m∑

j=1

[(
L

1
2 X∗

j L X j L
1
2 + 1

4
I

) 1
2 +

(
L

1
2 X j LX

∗
j L

1
2 + 1

4
I

) 1
2
]

.

We also considered approximating such fixed point by defining the iteration

L1 = (m + 1)I and Lk+1 = fX1,...,Xm (Lk) for k ∈ N.

When each X j is a generalized permutation, Theorems 4.6 and 4.13 guarantee that the recur-
rence {Lk}k∈N ismonotonically increasing and convergent (providedw(X1, . . . , Xm) < 1

2 ).
For general X j ’s, the following remain open problems.

Open problem 2 Show in general that Lk ≤ Lk+1 for all k ∈ N.

Open problem 3 If w(X1, . . . , Xm) < 1
2 , show in general that {Lk}k∈N converges in the

weak operator topology to a fixed point L ∈ B(H) of fX1,...,Xm .
Note that a positive solution to Open problem 3 would imply that if X1, . . . , Xm were in

a C∗-algebra, then L and subsequently a solution A1, . . . , Am+1 (as constructed in Propo-
sition 2.5) would also lie in the same C∗-algebra.
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