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Abstract

Ando’s classical characterization of the unit ball in the numerical radius norm was
generalized by Farenick, Kavruk, and Paulsen using the free joint numerical radius
of a tuple of Hilbert space operators (X1, ..., X;;,). In particular, the characterization
leads to a positive definite completion problem. In this paper, we study various aspects
of Ando’s result in this generalized setting. Among other things, this leads to the study
of finding a positive definite solution L to the equation

1

m % . % 1 2 % . % 1 2
L=1+)Y |(L2XxiLX,L +3l) H(LXGLXTL o)
j=1

which may be viewed as a fixed point equation. Once such a fixed point is identified,
the desired positive definite completion is easily obtained. Along the way we derive
other related results including basic properties of the free joint numerical radius and
an easy way to determine the free joint numerical radius of a tuple of generalized
permutations. Finally, we present some open problems.
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1 Introduction
For a bounded Hilbert space operator X € B(H), the numerical radius is defined by
w(X) = sup{[(Xh, h)| - h e H, ||h]| =1}

The numerical radius corresponds to the radius of the smallest circle centered at O that
contains the numerical range

W(X)={Xh,h): heH, ||h] =1}

Ando’s [1] well known characterization of operators whose numerical radius is at
most 1 states that w(X) < 1if and only if there exists Z = Z* € B(H) so that

1-7Z X =0
Xt I1+zZ|="

where T > 0 is shorthand for 7 being a positive semidefinite operator. Equivalently,
w(X) < 1 if and only if there exist A1, Ay € B(H) with A; + A> = I so that

A %
* > 0. 1
[X 2= (1)
One way to prove Ando’s result is to observe that w(X) < 1 if and only if
0%y =1 —Re(e?X) > 0, forall 6 € [0, 27],

and subsequently use Fejér-Riesz factorization

X _x* .
[ =25 =775 =0@) =P+ P (R + P12), lz] = 1.

Now p(;ﬂpo + P1*Pl = [ and P(;"Pl = —% and thus

Py L
0= [—Pf‘] [Po =] = [X— A

where Ay = Pj Py and Ay = P[Py satisfy A| + Ay = 1.
There are different ways to find A; and A3 so that (1) holds. In finite dimensions,
one can find A and A, numerically by using semidefinite programming, as a block
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matrix (1) is in the intersection of the cone of positive semidefinite matrices and the

affine space
1% -Z0
2 . _ 7%
(L 6]+ (2] =}

Semidefinite programming is exactly designed to handle such a situation.
An alternative process to arrive at (1), which was used by Ando in his original
paper, is to consider Z; = Z; defined via

X
I 70y h
X* : hi hy

(Zih, h) = inf < 7 ! s >
hi,..., k o X : :
0 .§§ | Lh

Then Zj; converges decreasingly to Z, say; and we obtain

-z %
* 2| >
R @
yielding representation (1). In fact, this process yields the maximal Z in (2) (and gives

a co-outer factorization of Q(z)). In the case when w(X) < 1, this leads to the iterative
scheme

X__ X*
lelmmzﬁizl—EZ;LFﬂHkEN

which monotonically decreases; see Algorithm 4.1 in [2].
In [3], Ando’s result was generalized to the multivariable setting as follows.

Theorem 1.1 [3, Theorem 3.4] Let Xy, ..., X,;, € B(H). The following are equiva-
lent:

(i) w(Xi, ..., Xm) < 1.

. m+1

(i1) There exist Ay, ..., Ap+1 € B(H) so that E - Aj=1and
j=

A X; O -+ O
XT Ay Xo :
(AL, ..o, Amt) == | X; 0 > 0. 3)

[0 -+ 0 XX Ay
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In (3), T > 0 is shorthand for T being a positive definite operator. Condition (i)
in Theorem 1.1 concerns the free joint numerical radius of a tuple of m Hilbert space
operators X1, ..., X;;, € B(H), defined as

w(Xlw-me):Sup{w(Xl@Ul+"'+Xm®Um)}»

where the supremum is taken over every Hilbert space K, every choice of m unitaries
Ui,..., U, € B(K), and the tensor product is spatial, which can be defined as
follows. Consider an inner product on the algebraic tensor of H and KC by letting
(h1 @ k1, ho @ ka) := (hy1, ha)y - (ki, ko) forall hy, hy € H, ki, kp € KC, and then
extending linearly. Denote by H ® K the resulting Hilbert space after completion. For
R € B(H)and S € B(K), consider definingamap (R® S)(h®k) := (Rh) ® (Sk) for
allh € Hand k € K, and then extending linearly. The resulting operator R ® S has the
property that |[R ® S|| = ||R] - ||S]|. Hence, the algebraic tensor of B(H) and B(K)
naturally inherits a norm (called the spatial tensor norm) as a subset of B(H ® K).
Taking the closure with respect to the spatial tensor norm yields a C*-subalgebra of
B(H ® K).

The free joint numerical radius coincides with the classical numerical radius when
there is only one operator (m = 1), and Theorem 1.1 reduces to Ando’s classical result.
The objective of this paper is to pursue the different aspects of Ando’s result in this
more general setting. This includes (i) finding a solution using semidefinite program-
ming; (ii) finding a solution via an iterative scheme (which may have the potential to
generalize to the infinite dimensional case); and (iii) exploring the connection with
factorization. As we will see, along the way we derive other related results including
basic properties of the free joint numerical radius and an easy way to determine the
free joint numerical radius of a tuple of generalized permutations.

Our approach to solve for Ay, ..., Ay+1 in (3) will be different than Ando’s. We
will show, in finite dimensions, that a solution Ay, ..., A;,4+1 in (3) exists exactly
when the function fx, . x, defined below has a positive definite fixed point. For a
given tuple Xy, ..., X;;, € B(H) and for any Z > 0, define

m =
1 11 \?
fxrxn(Z) =14 [<szjfzxj22 + ZI)
j=1
1
1 P
+(22X2X727 + 1) | 4

.....

Theorem 1.2 Let Xy, ..., X, € B(H). Consider the following statements:

(1) fx,....x, as defined in (4) has a positive definite fixed point, i.e., there exists
positive definite L € B(H) for which

a I R 1 NN 2
L=1+) LIXJLXL? + o1 )+ (LIXGLXGL2 + 1) | ()
j=1
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(i) w(X1, ..., Xpn) < 5.
Then (i)—(ii). If dim(H) < oo, then (ii)—(i).

Corollary 1.3 Let X1, ..., X, € B(H) with dim(H) < oo. Then (i) and (ii) in Theo-
rem 1.2 are equivalent.

We prove Theorem 1.2 using matrix completion techniques (Sect. 2). A discussion
of difficulties encountered in generalizing (ii) — (i) to the infinite dimensional case is
presented in Remarks 2.6 and 4.11. Once a positive definite fixed point for fx,, . x,, is
identified, there is an easy construction for the unknowns Ay, ..., A+ in (3) (which
works in all dimensions); see Proposition 2.5.

In order to find a solution L to (5), one can use well known iterative schemes to find
such a fixed point, with the iterative scheme L1 = fx,,...,x,, (L) being the standard
choice. The choice of a starting point is of course important, and we have found that
the choice L1 = (m + 1)I (which is the fixed point when X| = - - - = X,, = 0) works
perfectly numerically, and in fact we find that the corresponding sequence { L }ien 1S
monotonically nondecreasing in the Loewner partial ordering. Recall that the Loewner
partial ordering on Hermitian operators is given by R < S if and only if S — R > 0.
This leads to the following conjecture.

Conjecture 1.4 Let X1, ..., X,y € B(H). Consider the recurrence
Li=@m+1)Iand Ly = th..-,xm (Ly) fork € N, (6)
where fx,, . x,, is defined in (4). Then

(1) Ly < Lg4q forallk € N.
) fwXy,...,Xm) < % then {Li}keN converges in the weak operator topology
to a fixed point L € B(H) of fx,... x,-

In general, L1 = (m + 1)I < f(L1) = L,. We will prove Conjecture 1.4 in the
case when X1, ..., X, are generalized permutations, i.e., each X ; is the product of a
permutation matrix and a diagonal matrix; see Theorems 4.6 and 4.13. It is worthwhile
to observe that our iterative scheme has a different origin than the iterative scheme
from Ando’s work. Indeed, in Ando’s approach one maximizes A, in (1) (in the
Loewner partial order) while our approach is based on maximizing the determinant
of (1). Even though our approach is based on finite dimensional considerations, the
iteration scheme can also be defined in infinite dimensional settings. It is our hope that
a convergence proof for that case can be obtained in the future.

Aside from the results mentioned above, we will also cover the following. In Sect. 3,
we will show some basic properties of the free joint numerical radius. In Sect. 4,
we will prove a closed formula for the free joint numerical radius of a tuple of n-
by-n generalized permutations. In Sect. 5, we will describe how to use semidefinite
programming to numerically compute w(X1, ..., X;) for a tuple of n-by-n matrices.
In Sect. 6, we will prove a limit formula for the free joint numerical radius of a tuple of
generalized permutations on infinite dimensional separable Hilbert spaces. In Sect. 7,
we will discuss the connection with factorization of Hermitian pencils, and in the final
section we will highlight some open problems.
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2 Existence of a Fixed Point Using Matrix Completions

When dim(H) < oo, we will show first thatif a solution Ay, ..., A4 exists such that
+1
Zm | Aj=TandI'(Ay, ..., Aps1) > 0in(3), then there is a unique one that max-
j=

imizes the determinant among all positive definite completions. This unique maximal
determinant solution has the property that the diagonal blocks in I'(A. ..., A,41)~!
are all the same. This diagonal block in the inverse is the L that appears in Conjec-
ture 1.4(i1).

Proposition 2.1 Given are X1, ..., X;, € B(H) with dim(H) < oo. Suppose that
+1
A1, ..., Ap+1 exist so that Zm . Aj=1andl(Ay,..., Auy1) > 0as defined in
j:

(3). Then there exist unique solution Ay, ..., Apy+1 with the additional property that
L x x
P(AL o Aps) ™ = |
* sk L

This unique solution may be found by maximizing the determinant of I' (A1, ..., Apm+1)

m+1
among all possible Ay, ..., Apy41 with Z 1 Aj=1andT'(Ay, ..., Aps1) > 0.
]:

Proof Let n = dim(H) and consider I'(Aq, ..., A;;+1) as a Hermitian matrix of size
(m + 1)n. Let Sgn+1)n denote the real vector space of Hermitian matrices of size
(m + 1)n, with the inner product (Y, Z) = trace(ZY). Let VW be the subspace of
S(m+1)n consisting of block diagonal Hermitian matrices defined by

m+1
W= Wi @@ Wypi €Spnti)n - ZW/ =0
j=1

Adopting the setup of [4], we are now interested in the positive definite elements in
the affine space I'(7, 0, ..., 0) + W. By the main result in [4], since the subspace W
contains no nonzero positive semidefinite matrix, among all positive definite elements
in the affine space I'(Z, O, ..., 0)+ W, there is a unique one with maximal determinant
(call it I'g), and the optimality conditions yield I'y e Wi, Since

wt = {[ij]ﬁil € Sontyn Y11 =+ = Yirtmt1}),
the result follows. O

Proposition 2.1 suggests we look at operator matrices with block tridiagonal
inverses. Let us start with the 3-by-3 case. First, we recall some useful facts about

2-by-2 invertible operator matrices. If A is invertible, then [é g] is invertible if and
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onlyif D — C A~!B is invertible. In that case,

8] = (a0 o) 047

_[1-A"'B][AT! 0 I 0
—lo 1 0 (D-—cA 'B)1||-cA 1

A"+ A 'B(D-CcA'B)"ICA™! —A7'B(D - CcA™!'B)"!
- —(D—-CA™'B)"IcA! (D—CA~'B)”!

In particular, if A is positive definite, then |:A B

c D:| is positive definite if and only if

D — CA™! B is positive definite.

Now let P = [P; j]z'3 i be an operator matrix with P, and Pu Pra invertible.
J= Py Py
Then
I PPy 010 0 R I 0 0
P=[0 I 0[|0PnO||P,'PylP, Py (7)
0PuP, IS 0T 0 0 I

where Q := Pj; — PIZPQEI P>, R := P53 — P12P2721 Py, S := P31 — P32P231 P>y, and
T := P33 — P3 P{ZI P»3. By assumption, Q is invertible. Because of their structure,
the first and third factor on the right-hand side of (7) are also invertible. Hence, P is

invertible if and only if |}5‘2 ?] is invertible, or equivalently, 7 — S Q™! R is invertible.

Suppose P is invertible. By (7),

I 0 0 0 0 R I —P;pPy,' 0
Pl =| Py Py T —Py'Py||0 P20 o I 0. (®
0 0 1 S 0T 0—P3nP,, I

The middle factor simplifies to

0 '+ Q7 'R(T—SO"'R)~1SQ~! 0 —Q 'R(T —SQ~'R)"!
0 Py 0 C)
—(T —SO~'R)"'sQ! 0 (T —SO'R)~!

Assume further that P~! is block tridiagonal. By (8)—(9), the (1, 3) entry of P lis0
implies 0 = R = P13 — P12P2_21 P>3, equivalently, Pj3 = P12P2_21 P>3. Similarly, the
(3, 1) entry of P “liso implies § = 0, equivalently, P31 = P3; P2_21P21. Moreover,

Py, P

T —SQ~'R =T = P33 — P Py, Py is invertible, and thus
P3y P33

:| is invertible.
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We also obtain the following decomposition of P! from (8)-(9):

1 o~! —Q7 PiaPy, 0
-1 _ -1 —1 pl - 1, pipp— 1, p=l _p=lp o—
P = | -prytrio7! P P07 P ryt + Pt P Py Pt Pyt eyt pys T

0 1= Py ppt 71

Py Pl ' 0 0 00 0 0 0]
=Py Pa| O|+|0[PopPs]'|-|0P, 0] (10)

00 0 0 | P P33 0 0 0]
C — -1 _ —1 [Py P .
onversely, suppose P13 = P12P,, P23 and P31 = Py Pyy Py If Py Pys is

invertible, then T is invertible and so is [ st = loT

invertible. The operator P! satisfies (8)—(9), and hence P! is block tridiagonal.
Similar assertions about a matrix with a banded inverse have been considered in [5]
Py P12:|
Py P |

]. In particular, P is also

for the matrix case and in [6] for the block matrix case. Furthermore, if P>, [

Py Pr3
P3 P33
to the (m + 1)-by-(m + 1) case.

] > 0, then (8)—(9) implies that P > (. The above 3-by-3 case generalizes

Theorem 2.2 Consider an operator matrix P = [Pl-j]r-”+l

i, j=1 Withm = 2. Assume that
the following are invertible:

(i) Pjjfori=2,...,mand

(i I:P-Pii Piiv1 ]fori =1,...,m.

i1, Pit1it1

Then P is invertible and P~ is block tridiagonal if and only if

Pij = Pi,i+1P,;11,,-+1Pi+1,j and Pj; = j,i+1P,~:_11’,~+1Pi+1,i for j >i+2. (11)

In that case, P~ equals

[P11P12}71~-~0 (URSE 00 0 .- 0

Py Py S .. .om .
k| o — :EBPJ;.‘: . (12)
—1 —
0--- |: Pinm Pm,m+l i| j=2

00 0 0 0. Pm+1,m Pm+1,m+1 0 0

Moreover, if the operators in assumption (ii) are positive definite, then so is P.

Proof The m = 2 case, which corresponds to the 3-by-3 case, follows from the
calculations before the theorem.
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Consider the (m + 1)-by-(m + 1) case viewed as a 3-by-3:

Py Py Pz -+ Py
Py Py Py oo Py
Py P3 P33 oo P3gpg . (13)

Pt 1,1 | P12 | P13 -+ P l,m+1

Suppose the statement is true for operator matrices of size at most .
Assume P is invertible and P~! is block tridiagonal. By applying the 3-by-3 case
to (13), we get

[Pi3 -+ Prmyt] = PPy [P23 - Pomt]

and

Py P3;
: = : P3Py

P11 P12

In particular, (11) holds when i = 1. By the 3-by-3 case, [ P; j]f'f;rzlz is invertible and
its inverse is block tridiagonal due to (10). '

Py Py
are invertible. The induction hypothesis applies to [ P; j];’" =2 and so it is invertible
whose inverse is block tridiagonal. The 3-by-3 case guarantees that the conditions
P = P12P2_21 Pyjand Pj1 = P P2_21P21 for j > 3 are equivalent to the assertion
that P is invertible and P~! is block tridiagonal conformal to the partitioning in (13).
Also, the 3-by-3 case gives

Conversely, assume the expressionsin (11) hold. By assumption, P>, and |:P] ! Plz]

+1

| P PR] 0 0 0 0 010
P =11Py Pn| 0|+ [0 (P! )_1} —|0P;, 0. (14)
00 0 Vi, j=2 000

By (14) and the induction hypothesis, P! is block tridiagonal conformal to the orig-
inal partitioning of P as [P; j]?flel and that (12) holds. If the operators in assumption
(ii) are positive definite, then the 3-by-3 case and the induction hypothesis guarantees

that P is also positive definite. O
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Given X1,..., X, € B(H), let us now consider the operator matrix completion
problem
F?2 X1 0 --- 0]
P2 2 T xr o ox
7 . ? =lo x5 .0 | (15)
? ? Pm+l,m+l : ? Xm
| 0 - 0 X 7 |

where we would like the completion to be positive definite. Let us fill in the unknowns

in (15) with symbols P;; fori # jand Ay, ..., Ajyqgq:
(A X1 0 -+ 0 ]
Xt Ay X» :
([Pij]?flel)q: 0X;5. . 0 |- (16)
: L Am X
L0 - 0 X} At |

Due to the right-hand side being block tridiagonal, Theorem 2.2 guarantees that
—1

(1P172))  can be written in the form (12). Combining (16) with (12) leads to

the following 2-by-2 operator matrix completion problem fori =1, ..., m:

_
Pi 2 7 X,

= , 17
|:? Pi+1,i+lj| |:X,* ?] 17

where we would like the completion to be positive definite. The matrix version of this
completion problem has been considered in [7] where the prescribed blocks are not
necessarily square matrices.

We will show in Theorem 2.4 that there is a unique positive definite completion in
(17). We need the following result.

1 -1 1
Lemma2.3 IfS € B(H), then s [(5*s+ }11)2 + ;1} s* 4+ hr= (SS* + %1)2 .

Proof Since both sides are positive semidefinite, it suffices to show equality when we
square both sides. Squaring the left hand side gives

1I-i—S S*S+1I %—}-11_
4 4 2
1 -1 1 -1
+ S*S—f-ll 2+1I S*S S*S-{-ll 2+11 S*
4 2 4 2
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which simplifies to
. _
1I—‘r—S S*S%—II 74—11
4 4 2
1 2 1 -1
S*S+11 2—+—11 S*S+11 2—f—ll S*—ll—i-SS*
4 2 4 2 4 '

O

Theorem 2.4 Let P, Q, X € B(H) be given such that P, Q are positive definite. If

-1
A

has a positive definite completion, then it is unique. In particular, if we set
1 1 1 i 1 -
W = —PX [Q—z (Q?X*PXQ? +%1)2 03 +%Q‘1} : (19)

P wl!
then |:W* Q:| is positive definite and is equal to

P 3(P2XQX*P? + 1P 3 4 1P~ b'e
X 0 1(QIX*PXQ +int0 s 41071
(20)

Conversely, (19) and (20) define a positive definite completion of (18).

Proof Suppose

-1
V% Y X
o) =[x .

In particular, (21) implies QZ+W*X = [ and X*P+ZW* = 0.Hence, ZQZ—Z =
Z(QZ —1I)=—ZW*X = X*PX. Moreover,

(0izot - %1)2 = 0ix*PXQ} + 11, (22)

070" —1=0Q1(QZ - 1)Q? =—Q TW*XQ?.
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Now, YW + X QO = 0 follows from (21), and so

ST

01707 — 1 =—Q IW (-YWQ )0 = 0T IWYWQ T = 0.

Hence, Q% ZQ 1 3 L is the unique positive semidefinite square root of the right-hand
side of (22). Solvmg for Z, we obtain

zZ=0" (Q%X*PXQ% - 11)% 0t +1iot
- 4 2

Since PX + WZ = 0 from (21), we have W = —P X Z~! and (19) holds. To see that
the formula for Y in (20) holds, we apply the argument above to the permutation of (21)

w P XY
~ ~ 2
(21) is positive definite. In particular, Z satisfies (22), and so (Q% Z Q% — %I ) =

k 1 * ~ o~ o~
|:Q W i| = |:Z X i| For the uniqueness, suppose there exist W, Y, Z for which

QIX*PXQi4ir= (Q%ZQ% - 11)2 Since 0270?11 > 0, weobtain Z = Z
due to the uniqueness of the posmve semidefinite square root. Similarly, Y =Y, and
W=-PXZ'=-PXz'=w.

Conversely, suppose Y and Z are the (1, 1) and (2, 2) entries in (20) and W is
defined as (19). Direct computation reveals that (21) holds. Hence, Y — XZ “lyx =
P~!, which by assumption is positive definite. Since Z is also positive definite, the
completion defined by (19) and (20) is positive definite. O

Foreachi = 1, ..., m, the unique positive definite completion of (17) is given by
(20) where we take P = P;;, O = P;41,i+1,and X = X; in Theorem 2.4. Thus, (12)
and (20) imply that the unknowns Ay, ..., A,+1 in (16) can be taken to be

1
1/ [ U e
Al:P112<P121X1P22XTP121+11> P112+§P111

I * % 1 % 2
Aj:P (PJJXJ 1Pj—1~,j—1XJ'—1ij+ZI) P..

1
1 \3
+P. (P X P]_H ]+1XJP +41> i ,forj_2 ,m, and
1

1 1 1,
Am""l Pm+1 m+1 (Pnz-&-l,m—&-lX* PmmeP m+1,m+1 + 4I> P +1 m—+1 + 2Pm+1 m+1-
(23)

If for some L > 0, we insist Piy = -+ = Py4i1m+1 = L in the considerations

+1
above and Zm A j = [ (like the setting in Proposition 2.1), then adding (23) gives
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Conversely, if there exists L > 0 such that fx,, . x, (L) = L, then setting Pj; =---
Prt+1,m+1 = L in (23) suggests the following formula for Ay, ..., A,41.

Proposition 2.5 Given are X1, ..., X, € B(H). Suppose fx,
fixed point L € B(H). Let

x,, has a positive definite

.....

4
_1f 1 1 \Z2 1
+L 2<L2XjLXjL24—fI) L™2, forj=2,...,m, and
1
_1 Loy (U B | _1
Aps1=L"2 L2XmLXmL2+ZI + -1 |L 2.

+1
Then Z":l Aj=TandT(A,, ..., Ayy1) > 0 as defined in (3).

,,,,,

L.Foreachi =1, ..., m, Theorem 2.4 guarantees that there exists P; ;- givenby (19) such
that [ P;*i:_] Pill:lrl} solves the positive definite completion problem (17). If we define
P;j as iI{ (11), then Theorem 2.2 implies that P := [P; ]]l'"j'zl | is positive definite and p-1
is block tridiagonal. In particular, P! satisfies (12) and hence (A1, ..., Am+1) = p-!
is positive definite. O

We now prove Theorem 1.2.

Proof of Theorem 1.2 The first statement is Proposition 2.5 in conjunction with Theorem 1.1.
The second statement follows from Proposition 2.1 and Theorem 1.1. O

Remark 2.6 The finite dimensionality of the underlying Hilbert space is used in Proposi-
tion 2.1. In particular, the argument to prove the main result in [4] uses the compactness of
the closed unit ball. This guarantees the existence of a maximizer for the determinant. In the
following example, H is not necessarily finite dimensional but we show that if a completion
exists satisfying analogous assumptions in Proposition 2.1, then it has to be unique. What
is left to show then is the existence of a completion with the desired properties.

Example 2.7 Let R be a C*-algebra with faithful normal tracial state . Consider the analo-

gous problem of Proposition 2.1 in M1 (R), i.e., if (A1, ..., Apmy1) € Myt (’R)j_l for
. m+1 1

some Ay, ..., Apy1 € Ry with Zj:] Aj=1I,canwefind Ay, ..., Ay € Ry sat-

isfying the same properties and such that I'(Ay, ..., A,+1)~" has the same block diagonal

entries? (Here, A;l denotes the positive and invertible elements of a C*-algebra .A.)
To show uniqueness, we first prove a generalization of Fiedler’s inequality [8]:

t[(A — B)?]

A—BYB '—AH]>
rlA = B N VTHT

forall A, B € R}
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Indeed, the argument is similar to the one in [8]. First, observe that for any X, Y € R,
T(XYY*X*) < | X|>z(YY™). (24)

Now, write A = X*X and B = Y*Y for some invertible X, ¥ € R. Note that || A|| = || X*||
and || B|| = ||Y*||?. Then

t[(A-B)B ' —AH]=1[(A-B)B~'(A—B)A™"]
=1[(A=B)Y 'Y *(A - B)X'X7¥
=1 X *(A—B)Y 'Y *(A-B)X
_TlAa— B)Y~'Y™*(A — B)]
- X2

by taking X1 = X* and Y] = X *(A — B)Y ! in (24). Rewriting the last expression in the
inequality and using X» = Y* and Y, = Y™*(A — B) in (24), we obtain

— 2y -1 2 2
r[(A—B)(B*—A*‘)]zt[Y (A-B)7Y] ZT[(A—B)]:T[(A—B)].
Al AL - 172 Al 1B

Going back to the uniqueness assertion, suppose I‘(Agk), ey Afﬁl) € My+1 (R);l
+1
whose inverse has the same diagonal entry equal to Ly and Zm . A(ik) =1[fork=1,2.
J: J
~ +1 .
By using the faithful normal trace 7 ([x;;]) = #H Zm . 7(x;j)on My +1(R)and Fiedler’s
]:

inequality, we see that for some s > 0

2
- 0 0 @ @
rHr(A1 AN = TR, }

m—+1 m+1
<57 ZAEI)—ZA?) (Ly— L))} =0.
j=1 j=1

Since T is faithful, F(A(]]), AU A;B_l) = F(Aiz), AU AS_)H), i.e., the completion with

equal diagonal blocks is unique.

3 Basic Properties of the Free Joint Numerical Radius

Recall that an isometry is a distance-preserving map between two metric spaces. By [9,
Proposition 5.2], a linear isometry between Hilbert spaces can be characterized as follows:
for Hilbert spaces H and K, alinearmap V : H — Kisanisometryifandonlyif V*V = I.
From now on, whenever we mention isometry, we assume it is a linear isometry between
Hilbert spaces. A surjective linear isometry U : H — K is called unitary. Equivalently, U
is unitary if and only if both U*U = I}y and UU* = Ik hold.

The following proposition is well-known and can be verified easily.



Completing an Operator Matrix... Page150f34 114

Proposition3.1 Let V : H — K be anisometry and T € B(K). Then W(V*TV) C W(T)
and w(V*TV) < w(T). In particular, if V is unitary, then equality holds in both assertions.

Suppose H and K are Hilbert spaces. If H has an orthonormal basis {e; }jcp With A C N,

then H ® K and @ KC are isomorphic as Hilbert spaces. In particular, we can take the
ieA
i—1

. . . K-Jb\ .
unitary extension of the mapping defined by ¢; ® k — [0 --- 0 k0 ---] foralli € A and
k € IC (here we write elements of @ K as column vectors and the superscript “¢” indicates

ieA

transpose).

Proposition 3.2 Suppose H and K are Hilbert spaces such that H is separable. If X = [x;;]
is the matrix representation of R € B(H) with respect to a countable orthonormal basis
{ei}iea of Hand S € B(K), then there exists unitary U such that U(R® S)U* = [x;;S] =:
X®Sand |X® S| =[R-SI
i—1
——
Proof There exists a unitary U defined by the mapping ¢; @k +> [0 --- 0 kO ---]’ for all
ieAandk € K.Leth = Z‘eAhjej € Handk € K. Then U(h ® k) = [h1k hok ---]'.
J
Since [U(R® S)U*1(U(h ® k)) = U(Rh ® Sk), note that

URh®@Sk)=U | Y hjRe; @Sk | =U DY Y hjxije; ® Sk

jeA JeEA e
=U Zei(X)Z/’ljxijSk :ZU ei®zhjxf./Sk
ieA jeA ieA JEA

= [x;; SIU(h ® k)).
Thus, [X Q@ S| = [lUR HU*| =R S| = [IR]l - [|S]I. |

For X € B(H), the invariance w(X) = w(UXU?*) for any unitary U and the basic
inequality %H X| < w(X) < || X| have analogues in the free joint numerical radius context,
as stated in Proposition 3.3. The first assertion below follows from the fact that the numerical
radius is unchanged under conjugation by a unitary (in particular, U ® I') while the second
one can be deduced from the subadditivity of the numerical radius, the definition of the free
joint numerical radius, and the fact that w(X ® U) = w(X) for any unitary U € B(H) [10,
Proposition 2.4].

Proposition 3.3 Ler X1, ..., X,, € B(H).
1O wXy,...,Xn) =wUX U, ..., UX,,U*) for any unitary U.
o1 m m m
(ii) 5HZHX,” < w(ijlxj) < Wi Xe) 2 D0 w(X)) =
m
2 Xl
m

(iii) The free joint numerical radius is a norm on @ B(H).
j=1
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LetX,Y € B(H).Notethat A = X®/I and B = I ® Y doubly commute,i.e.,AB = BA
and AB* = B*A. By [11, Theorem 3.4],

w(X ®Y) = w(AB) < min{w(A)| B, [Allw(B)}
= min{w(X) [V, [ X[[w(¥)}. (25)

Hence, ifay,...,a, € Cand Uy, ..., U, € B(K) are unitary, then

m m
w Zain(@Uj =w|X® Za_;@Uj
=1 =1

wX) | Y a0 | <wX) > lajl,

j=1 j=1

IA

and so w(a1 X, ...,aX) < Zjl:] |aj|lw(X). Equality holds by letting the unitaries be
ela2@) for j =1,...,m (if a; = 0, take arg(a;) = 0).
Proposition3.4 Let X € B(H) and ay,...,ay, € C. Then w(a1X,...,anX) =
Z';:] lajlw(X).

Recall that C € B(H) is called a contraction if |C|| < 1.
Proposition3.5 If X1, ..., X,y € B(H), then

w(Xi, ..., Xm) =sup{w (X1 ® C1 + - + X ® C)}

where the supremum is taken over every Hilbert space K, every choice of m contractions
Ci,...,Cy € B(K), and the tensor product is spatial.

Proof Let ¢ be the left-hand side and p be the right hand side of the desired equality. Note
that £ < p since unitaries have norm equal to 1. To prove the reverse inequality, let IC be a
Hilbert space and C1, ..., Cy,, € B(K) be contractions. By Halmos dilation theorem [12,
13], each C; has a unitary dilation U; € B(K @ K) of the form

C; (1—c,-c;f)%

1
2

UJ' =
(1-cic))" -c;

The isometry V : K — K & K with Vx = [x 0]’ for all x € K has the property that
Cj=V*U;V foreach j =1,...,m.Since I ® V is an isometry, we have that

m m
w Y X;0C | <w|d X;0U; | cwXi,....Xn) =L
j=1 j=1

Taking the supremum over all contractions in B(K) and over all Hilbert spaces C yields
p <. m]
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The spectral radius of X € B(H) is defined as p(X) = sup{|A| : A € o(X)} where
o (X) is the spectrum of X. It is known that the spectral radius is monotone on nonnegative
matrices, i.e., if A = [g;;] and B = [b;;] € R"*" with 0 < g;; < b;; for all i, j, then
p(A) < p(B)[14, Theorem 8.1.18]. In [15], the authors showed that the classical numerical
radius is monotone on nonnegative matrices. Indeed, A and B having nonnegative entries
guarantees that w(A) = p(Re(A)) and w(B) = p(Re(B)) due to [16, Theorem 1]. Since
. . aij +aji bij + bj; S
Re(A) and Re(B) have entries that satisfy 0 < 5 < for all i, j, it
follows that w(A) = p(Re(A)) < p(Re(B)) = w(B). The authors of [15] attributes this
observation to Panayiotis Psarrakos, and it will be used to give another upper bound for the
free joint numerical radius in terms of the matrix of absolute values of X1, ..., X,.

Definition 3.6 For X = [x;;] € C"*", denote its matrix of absolute values as abs(X) :=

[1xij 1.
Proposition3.7 Let Xy, ..., X,, € C"*". Then

WX, ..y Xim) < w(abs(Xy) + -+ + abs(Xp)) .

Proof Let K be a Hilbert space and let Uy, ..., U, € B(K) be unitary. If X; = [xi(j].()] for
k=1 then > X, ®U —[Zm (k)U] By [17, Th 1.16G)]
=1,....mthen ) = X k= iy %ij Uk |- By [17, Theorem L.1(1)],

“fgzmen) == ([Zrl])

m k k k . . ..
Y P H <> Pl = Y 1) which is the (G, j)-entry of

m
Zk—l abs(Xy). By the monotonicity of the numerical radius on nonnegative matrices, we

m

S o

k=1

Now, ’

have
m m m
w (Z X ® Uk> <w ([ le.(JI.‘)Uk :|) <w (Zabs(X;J) .
k=1 k=1 k=1
Since the unitaries and /C are arbitrary, the assertion holds. O

4 The Free Joint Numerical Radius of Generalized Permutations

Definition 4.1 A matrix X € C"*" is an n-by-n generalized permutation if it has at most
one nonzero entry in each row and column.

If X € C"*" is a generalized permutation, then X = D P where P € R"*" is a permu-
tation matrix and D € C™"*" is diagonal (see [18]). We do not require that D is nonsingular.
If X € C"*" is a generalized permutation, then so is X*. Generalized permutations include
important classes of matrices like the permutation matrices, diagonal matrices, and weighted
shift matrices.

Suppose A € C"*" is a weighted shift whose entries along the first superdiagonal are
ai, ...,ay—1 and whose (n, 1) entry is a,. Then [19, Lemma 2(2)] guarantees that A is
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unitarily similar to e'%abs(A) for some 6 € R. Hence, W(A) = ¢'? W (abs(A)), and so
w(A) = w(abs(A)). However, an arbitrary generalized permutation may not be unitarily
similar to a rotation of its absolute value matrix. For example, consider X = diag(—1, 1)
where W(X) = [—1,1] # {eie} = ¢! W (abs(X)) for any 6 € R. Despite this, the assertion
w(X) = w(abs(X)) still holds. We will show that this equality of numerical radii remains
true for the free joint numerical radii of a tuple of generalized permutations. We need the
following lemma.

Lemma4.2 Let X € C™" be a generalized permutation. There exists unitary U € C"*"
such that abs(X) is a principal submatrix of X ® U corresponding to the rows and columns
1,24+n,34+2n,...,n+ (n—n.

Proof Let D = diag(xi, ..., x,) and P = [p;;] € R"*" a permutation matrix such that
X = DP. Define U = EP where E = diag(e' argx) - ptargta)y (if 7 = 0, take
arg(z) =0). Let V =[e1 ea4n -+ €ny—1n] € C"**" where ej is the j*™ standard basis

vector in C"*. We show that V*(X ® U)V = abs(X). Indeed, note that
VXD ® E) = [|x1ler |x2le2tn -+ [xnlentm—1ynl"-
On the other hand, there exists permutation t of {1, ..., n} such that the nonzero entries

of P are at row t(j) for each column j.Let j =1,...,n.Column j 4 (j —1)nof PQ P
is from the block p;; P, and we know

P, i=1(j)

P =
Pij 0, otherwise.

Hence, the only nonzero entry of column j+ (j —1)n of P® P isatrow 7(j)+(z(j)— Dn.
It follows that (P ® P)V = [er(1)+@()~n =+ €r(m)+(zm—1)n] and so

VX ®U)V =[VYD®E)(P®P)V]

|x1 e}
|x2|etZ+n
= lez(y+@—Dn =+ exm)+m—nl
l‘xnle;-f-(n—l)n
= abs(X).
[m}
We are now ready to prove an alternative formula for w(Xy, ..., X;;) when Xy, ..., X, €
C"*" are generalized permutations.
Theorem 4.3 Let X1, ..., X, € C"*" be generalized permutations. Then
w(Xq, ..., Xm) = w(@bs(Xy),...,abs(X,,)) = w (abs(Xy) + - - - + abs(X,;,)) .
Proof Since abs(X;) is a generalized permutation, it suffices to prove w(Xy,..., X,)

= w (abs(X1) + ...+ abs(X,,)). Proposition 3.7 implies the inequality w(X1, ..., X;;) <
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w (abs(X1) + - - - + abs(X,,)). By Lemma 4.2, there exist unitaries Uy, ..., U, € C"*"
such that abs(X 1) + - - - + abs(X,) is a principal submatrix of X1 @ Uy + - - - + X,;, ® Upy,.
Then

w(abs(X1)+---+abs(Xm)) = w(Xl QU+ -+ Xy ®Um) = w(X17~--7th)-

[}

When X is diagonal, abs(X) coincides with the standard definition of | X | for operators,
viz. | X| = (X*X )% . We obtain the following consequence of Theorem 4.3.

Corollary 4.4 If {X1,..., X} € C"™" is a commuting family of normal matrices, then
WX, .. X)) = w(Xal - 1 XD = w (X 4+ 4 [ XD

Proof By [14, Theorem 2.5.5], there exists unitary U € C"*" such that UX;U* = D;
where D; is diagonal for each j = 1, ..., m. Note that abs(D;) = |D;| = U|X;|U*. By
Proposition 3.3(i), w(X7q, ..., X;) is equal to

wUXU*, ..., UXnU") =w(Di,..., Dy) = w(abs(D;) + - - - + abs(Dp,))

where the last equality is due to Theorem 4.3. Since U* [Z":l abs( Dj)] U =
m U* D U _ m X b . =
Zj:l | J| _Zj:1| j|,W60 tain
w(X1, ..., Xn) =wU*[abs(D1) + - - - +abs(D,)1U) = w(X1| + - + | Xn)).
]

For the remainder of this section, we will prove Conjecture 1.4 for a tuple of n-by-
n generalized permutations. One preliminary step is to show that fx, . x, (Z) remains
diagonal when evaluated at a diagonal matrix Z. As a consequence, the corresponding
recurrence (6) {Ly}ren is a sequence of diagonal matrices since the initial value Ly =
(m + 1)1 is diagonal.

Lemma4.5 If Xy, ..., X,, € C"" are generalized permutations, then fx, . x, (Z) is
diagonal for all diagonal Z > 0.

Proof Let X € C"*" be a generalized permutation. Then X = DP and X* = E Q where
D, E € C"*" are diagonals and P, Q € R"™*" are permutation matrices. Let Z € C"*"
be diagonal. Note that X*ZX = P*D*ZDP = P*Z|D|*P is diagonal since Z and D are
diagonals and P is a permutation matrix. Similarly, X ZX* = Q*Z|E|*>Q is diagonal. In
particular, if Z > 0, then Z% X*ZXZ% and Z% X; ZX;Z% are diagonals.

Suppose Xi,..., X, € C™" are generalized permutations and Z > 0 is diago-
nal. Then Z%X}fZXjZ% and Z%XjZXjfZ% are diagonals for all j = 1,...,m. Since

1

fx1,...x,,(Z) is a sum of the identity and terms of the form (Z%X}?ZXJ-Z% + %I) * and
1

(Z%XJ-ZX;fZ% + }TI)E, the assertion follows. O
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For a tuple of generalized permutations, we now prove Conjecture 1.4(i).

Theorem 4.6 Let Xy, ..., X, € C"*" be generalized permutations. Then Conjecture 1.4(i)
holds, i.e., the recurrence (6) is monotonically increasing.

Proof By Lemma 4.5, the recurrence (6) is a sequence {Ly}ren of positive semidefinite
diagonal matrices where L < L, as observed before. Hence, it suffices to prove: if 0 <
Y < Z where Y and Z are diagonals, then fx,  x, (Y) < fx,. .. x,(Z).Letj=1,....,m
and0 < Y < Zbediagonals. Then0 < XjYXj < XjZXj are diagonals due to Lemma4.5.
Since the matrices involved are positive semidefinite diagonals, we have

0<YI(XYX)Y? = (XTYX)Y < (XIYX))Z = Z}(X3ZX))Z?.

By operator monotonicity of t% on [0, 0o) [20, Proposition V.1.8],

1 1

2 . 11
<(z2xjzx;22 + 41

LTy X v
Y2XGYX;Y2 + o1

Similarly,

1 1

1 I % 1 PSS Y
VIX;YXiY2 4ol ) < (23X,2X520 4 (1)
Thus, fx,..x,¥) =< fx,. .. x.(2). |

,,,,, X,, 1S monotone on positive semidefinite diagonals, a stronger statement than
the monotonicity of the recurrence (6). Numerical experiments show that the analogous
statement for a tuple of general matrices is false, i.e., 0 < Y < Z does not imply
Ix1,.%, (Y) < fx,,...x,,(Z). However, numerical experiments suggest that (6) is always
monotonically increasing.

The inner product on C"*" defined by (Y, Z) = trace(Z*Y) forall Y, Z € C™*"

induces the Frobenius norm || X |2 = (X, X)%
Cmxm — C™" defined by

race(X*X)]%. Consider the map vec :

t
vee(X) = [X11, «-vy Xmls X125 vvs Xm2s «ovs Xlny «ovs Xmnl', X = [x3;]1 € C™

Note that (Y, Z) = (vec(Y), vec(Z)) forany Y, Z € C"*" i.e., the vec map is an isometry
with respect to the Frobenius norm [21, Exercise on p. 244]. The trace norm of X € C"*"

is defined by || X||; = trace[(X*X )%]. Some straightforward properties of the trace norm
are listed in the following lemma.

Lemma4.8 () If X,Y > 0, then | X|l; = trace(X) = |[vec(X )| and | X + Y| =
X0+ 1Y 1.

i) 1Y)z =Y.

(iii) If0 < X <Y, then | X|1 < Y.
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We relate the trace norm and the free joint numerical radius.

Lemmad.9 Let Z, Xy,...,X,, e C"" and Z > 0. Then
i 1 1
DNZ2X;Z2 0 < 1 ZIhw (X X,
j=1

Proof The trace norm of X € C"*" has the following variational characterization [21,
Problem 4 on p.199]:

1X |1 = max{|(X, U)| : U e C"" is unitary}.

Hence, there exist unitaries Uy, . .., U,, € C"*" such that ||Z%XjZ% I = (Z%XjZ%, Uj)
foreach j =1,...,m.
Consider:

1Z2X;Z2|) = (Z1X;Z2,U;j) = (X;2%, Z1U;) = (vec(XZ2), vec(Z2U,)).
In general, vec(AX B) = (B’ ® A)vec(X) forany A € C"*", B € CP*4,and X € C"*P
[21, Lemma 4.3.1]. We use this conversion formula to simplify
(vee(X;Z3), vee(Z2U))) = (I ® Xj)vee(Z2), (U ® Dvee(Z2))
= ((T; ® Xj)vec(Z7), vec(Z7)).
Hence,

" 1 1 " 1 1
DIZIX;Z3 | =) (U) ® Xj)vec(Z?), vee(Z?))
j=1 j=1

<Z(Uj ® X )vee(Z1), vec(zi)>
=1

{

m
w (Y T X, |1zl
j=1

3

IA

U, @ X; | (vee(Z7), vee(Z1))
1

by definition of the numerical radius and Lemma 4.8(i). Observe that Zm 1 7, ® X is
j=1

permutation similar to Zm . X;® 7, due to [21, Corollary 4.3.10]. Since each 7, is
= ; .

unitary,

m m

1 1 —
Yozix;zzh =w (Y X;@U; | 1Z1h < wX1. ... Xw)IZIh
j=1 j=1
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by definition of w(X1y, ..., X;;). O

For any r > 0 and X € B(H) with X > 0, (X +rI)? < X2 + /rI due to
operator monotonicity of 72 on [0, 00) [20, Proposition V.1.8]. Hence, for a given tuple
X1,..., X;m € B(H), we get

0 < fxy,..x,(Z) = (m+ DI
1

4-%[(25)(72)(,»25)é +(Z%ijsz%)1 (26)
=1

forany Z > 0.

Theorem4.10 Let Xi,...,X,, € C" For R > 0, let B = {Z ¢ C"" . Z >
0and || Z]|1 < R}. If w(X1,...,Xn) < %, then fx,. .. x, as defined in (4) satisfies
fx,...x,,(BR) € Bg where R = n(m + 1) [1 —2w(Xy, ..., X;)] "\

Proof Applying Lemma 4.8(i) and (iii) to (26), we get

m

/X1 X (DI < m 4+ D | [(Z%ijsz%)f

j=1

+
VaunS
N
e
N
>

*
N
SN—"

=(m+Dn+y. [H (Z%X}‘ZXjZ%)%

1

m
J=

1
1

1 1
Let j = L...m since (z0x32x,28)° = [@ix;zhzbx;zh)] and
1 1
(Z%ijx;%z%)z - [(Z%X;Z%)*(Z%ij%)]z,Lemma4.8(ii) implies
1

1 1N2
H (z2x32x,7%)

1
= Z2X;Z|; and H(Z%ijxjfz%y
1

= Z2 X322,
1
= ||Z%XA,Z% |I1. Due to Lemma 4.9,

j=1
< (m+ Dn+ 2| Z|[1w(X1, ..., Xn).

Now it is easy to check that Z € By implies fx, . x,(Z) € Bg. O

.....

Remark 4.11 By using Theorem 4.10 and Brouwer’s fixed point theorem, one gets an alter-
native proof of (ii)— (i) in Theorem 1.2. One key step in the Proof of Theorem 4.10 is when
Lemma 4.9 is used. In the proof of this lemma, we used vec(AX B) = (B! ® A)vec(X) for
any A € C"*", B € CP*4, and X € C"*P. It is not immediately clear how to extend this
formula to the infinite dimensional case.

Corollary4.12 Let Xy,...,X,, € CP". If w(Xy, ..., Xm) < % then the recurrence
{Li}ren defined in (6) is bounded with respect to the trace-norm. In particular, {Lj}reN
has a convergent subsequence.
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Proof Let R and By be as in Theorem 4.10. Note that ||L{||; = n(m + 1) < R. Hence,
Ly = fx,,..x,,(L1) € Bg since fx,, . x,(Br) € Bg.Inductively, ||[Li|l; < R for all
k € N. The remaining assertion follows from Bolzano-Weierstrass Theorem. O

We are now ready to prove Conjecture 1.4(ii) for a tuple of generalized permutations.

Theorem 4.13 Let X1, ..., X,;, € C"*" be generalized permutations. If w(X1, ..., Xpn) <
%, then Conjecture 1.4(ii) holds, i.e., the recurrence (6) converges.

Proof Let {Lj}ren be the recurrence (6). Theorem 4.6 guarantees that {Lj}¢cn iS mono-
tonically increasing. By Corollary 4.12, {L; };cn is bounded with respect to the trace-norm.

Since the dimension is finite, the recurrence { Ly }xen also converges. O
Corollary4.14 If {Xy, ..., X;u} € C™" is a commuting family of normal matrices, then
w(Xy, .., X)) = w( X1, - X)) = w (X + -+ [ X D-

Proof By [14, Theorem 2.5.5], there exists unitary U € C"*" such that UX;U* = D;
where D; is diagonal for each j = 1,...,m. For Z > 0, note that fx, . x,(Z) =
U*fp,...p,(UZU*)U. The assertions follow by applying Theorems 4.6 and 4.13 to
SDy...Dy- o

Remark 4.15 1t is worth noting that each Ly lies in the unital C*-subalgebra of B(H), gen-
erated by general X1, ..., X;,;. The latter may be a useful observation, as the monotonicity
seems to require more than a simple operator monotonicity argument and it also depends
on the initial value. As noted in Remark 4.7, numerical experiments show that fx, . x,, is
not necessarily monotone on the cone of positive semidefinite operators.

Example 4.16 1In the scalar case, it is easy to see why the convergence works so well. Indeed,

~mA 142+ + xmDz

asz — oo. If |xg |+ -+ [xml = wxy, ..., xm) < %, then f has a unique positive fixed
point as its graph intersects the half line y = x (x > 0) in a single point. Next, one finds
for z > O that

m 2 m 2
4|xil°z 4ixi|°z
0<f=3Y il SN o < 1.

perpZITERCI S B g A

Thus, the unique fixed point is a stable one, and the sequence is monotone.

5 Semidefinite Programming

Let Xi,..., X,y € B(H) be given. For Hermitian Hi,..., H, € B(H), consider
m
®(Hy, ..., Hy) =T (Hl, .\ Hy, _Z,-=1 Hj). Observe that

SHy,...H, ‘= sup{A : ®(Hy, ..., Hy) — Al > 0} € (—o0, 0].
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Proposition 5.1 Ler X1, ..., X,, € B(H). Then
m+1
w(Xp, ..., Xp) =— > sup{su,...H,}
where the supremum is taken over all Hermitian Hy, . .., H, € B(H).

Proof Let £ be the left-hand side and p be the right hand side of the desired equality. If s
2p
. mtl
Let ¢ > 0. By definition of the supremum, there exist Hermitian Hy, ..., H,, such that
2¢e 2p + 2¢ 20 +2¢
= — ,and so ®(Hy, ..., Hy) + I > 0. The
m+1 m+1 m+1

denotes the supremum in the formula, then s = —

SHI ----- Hp > 8=

1
diagonal blocks add up to (2p + 2¢)I. Thus, £ = w(X1q, ..., Xpm) < 5(2,0 +28)=p+e¢

due to Theorem 1.1. Taking ¢ — 0, we have £ < p.

. . . X1 Xm l
For the reverse inequality, let ¢ > 0. Since w e, = <
20 + 2¢ 20 + 2¢ 20 + 2¢
1 . . m+1
5 there exist Ay, ..., Ap41 € B(H) with Z 1 Aj = (20 + 2¢)1 so that
j=1
— X —
A 2z+]28 0 T 0
Xt X
2z+125 Az zzfzs
X3 - .. >
0 55 .0 | =0
XITI
‘?{i’l 20+42¢
L0 0 g A

1
due to Theorem 1.1. Put H; = A; — ﬁl forj=1,....,m. Then—znf lHj =
Toom j=

1
Apy1 — T_HI . By the positivity of the operator above,

20 4 2¢

S = SQ20+26)Hi,...,(20+2e)Hy = — .
( )l’ s( )m m_"_l

m+1

Then p — e = — s —¢& < (. Taking ¢ — 0, we obtain p < ¢£. O

Let X1,..., X, € C"" be given. As a consequence of Theorem 1.1 (see also [3,
Corollary 3.5]), we can numerically compute w(X1, ..., X,,) by considering the following
semidefinite program.
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Primal problem:

minimize p

[AL S0 - 0]
X*
N
subjectto | XT; o0 |=o0
”'i'*" X,
L0 - 0 T Ay

and A+ .-+ Apy1 =pl.

To numerically solve the primal problem above, we used CVX, a package for solving
convex programs [22, 23].
Dual problem:

m
maximize —Re E trace (X] Zj,j+1>

Jj=1

subjectto Z = [Z,~j]m'H >0

ij=12=
where Z;; € C™"
Zi1 = =Znt1,m+1
trace(Z11) = 1.

We claim that when m = 1, strong duality occurs, i.e., the dual optimal value is equal to
the primal optimal value. To see this, we identify the extreme points of the convex feasible

Z1 lei| > 0. By [14, Theorem 7.7.9], we

region of the dual problem. Suppose Z = | .
Zi, Zn

1 1
can write Zjp = Z lzlGle1 for some contraction G. Since G is a square contraction, G
is a convex combination of unitaries U;. Next, U; = V;A; V]Tk, where V; is unitary and

. () () . .
Aj = dlag(e“gl ,...,e"%") Hence, Z is a convex combination of

1 * 1
ZZVi 0 [ ex } [ ex } ZZV; 0
1 71'9(]) 71-9(/) 1
0 zjvijLe Fealle 0 Z,V;

where ¢y, is the k' h standard basis vector in C". Thus, the extreme points of

Zn Z .
{Z = [ Ll 12} > 0: trace(Zq1) = 1} are rank one matrices of the form
Zi Zn

*

where u € C" is a unit vector.
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Itis well known that the dual optimal value is a lower bound for the primal optimal value,
which in this case is w(X). At the extreme points of the dual feasible region, the objective
function evaluates to

—Re [trace (eigXluu*)] =Re (ei’(Xlu, u)) )

Maximizing this over all # € R and unit vectors u € C", we see that the dual optimal value
is w(Xyp).

6 Limit Formula When H is Separable and dim(H) = oo

Theorem 6.1 Let H be separable with dim(H) = co and Ty, ..., T, € B(H). If{hj}?';l

is an orthonormal basis of H and Tl(”) s T,,(l") are the corresponding compressions onto
Span{hj}’}zlfor eachn € N, then

w(Ti, ..o, Tp) = lim w(T, . T),

Proof Let X j be the matrix representation of 7; with respect to the basis {h;}72, for each
X(’ 1) X( jsm)

Xé_/l ,1) X(/ 1)
submatrix of X ;. By Proposition 3.1, it suffices to compute lim w(Xill’”), el XYl"’")).
n—-oo

j=1,...,m Write X; = |: i| where ngl"") is the n-by-n leading principal

Let ¢ > 0 be given. Define M := 2 + 3 Zm . IX;ll > 0.By definition, there exist
j:

o0
unitaries Uy, ..., U, € B(K) for some Hilbert space K and unitz = [z 22 ---]' € @ K

such that

w(Ty, ..., Ty) = w(Xi, ..., m)<+< Zx ®U; z,z>. (27)

Consider
i ZX(J .n) ®U; ZX(J )
Z X;@U;= . (28)
j=1 ZX(/ 1) ®U; ZXU )
Note that ||X(J " & Ujll < IX;ll, and hence Hzm 1 X(j’”) ®U; H < Il For
. j=

eachn € N, let y, = [z1 --- 2]  and ¥ = [2441 Znt2 - - - ]'. Observe that ||)’n|| Iyl <1
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oo
dueto 1 = [|z]|> = [|ya[|*+ 171 Since z € @) K., there exists N for whichn > N implies
j=1

n 2

~ £

1712 = el = lynl® = el = D" llzel® < 5 (29)
j=1

Using (28), (29), triangle inequality, and Cauchy-Schwarz, we obtain

m m m
- Gm oy | 4 38 .
< ZX_,(X)U‘, z,z> <w ZX“ U, +MZ”XJ||
]:l j=1 j=1
36 —
1, ,
<wxm L xtn ”>)+MZ||Xj||. (30)
j=1

By Proposition 3.1 and combining (27) and (30), we get that for alln > N
lw(Ty, ..., Ty) — w(Tl(n), L Tf’}(’l’l))|

m
1, s €
=w(xl,...,xm)—w(X{l”),...,x§’}’"))<M 2433 X501 | =
=1

]

Definition 6.2 An infinite matrix X = [x;;] is a generalized permutation on 22 if X has at
most one nonzero entry in each row and column.

Observe that any n-by-n leading principal submatrix of X is an n-by-n generalized
permutation.

Corollary 6.3 Let H be separable with dim(H) = co and Ty, ..., T,y € B(H) be simulta-
neously unitarily similar to X1, ..., X,, which are all generalized permutations on €>. If

X%ji’n) denotes the n-by-n leading principal submatrix of X ; for each j =1, ..., m, then

w(Ty, ..., Ty) = lim w (abs(Xgll’")) 4+ -+ abs(XYln’") ) .
n—00

In particular, if X1, ..., X,, are diagonal, then
WX, X)) = w( X0, [ X ) = w( X |+ -+ [ XD
Proof The first part follows from Theorems 4.3 and 6.1. For the last part, let Xy, ..., X,

be diagonal. Then the absolute value matrix abs(X g.{,n)) of the n-by-n leading principal

submatrix of X ; coincides with the n-by-n leading principal submatrix of | X ;|.

We now prove an infinite dimensional analogue of Corollary 4.4.
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Corollary 6.4 Let H be separable with dim(H) = oo. If {X1,..., Xy} C B(H) is a
commuting family of normal operators, then w(Xy, ..., X)) = w(Xql,..., | Xnl) =
w( X1+ -+ [Xm).

Proof Define M := 1m'ax {IIX;ll} +1and letc > VM. Let 0 < & < 3mc(c — vVM).
=j=m

By Weyl-von Neumann-Berg theorem [24, Theorem 39.4], there exist unitary U, diagonal
operators D1, ..., D;,, compact operators K1, ..., K;; with [[K;|| < (ﬁ)2 such that
U*X;jU = D; + K forall j = 1,...,m. By Proposition 3.3(i), we may assume that
X; = Dj + Kj forall j = 1,...,m. By assumption on ¢, x> + v/Mx < cx for all
x € (0,c— M ). In particular,

3m <<31§Tc>2 + \/M(;TC)) <3m (c . ﬁ) =e. a3

Note that for any operators Sy, ..., Sy, T1, ..., Ty, Proposition 3.3 (ii)-(iii) imply

m
w1, ..., S) —w(Tr, ..., T <w(S1 —T1, ..., 8 —Ty) < Z”Sj —T;ll. (32)

j=1
In particular,
m
[w(X1..... Xm) —w(Dr..... D) < Y IIK| (33)
j=1
and
m
[w( X1l 1 XmD) = w(Dil, .. DDl < D IX = 1X; = Kjlll. - (34)

j=1
By [20, Theorem X.2.1], each term on the right hand side of (34) is bounded above by
VZI2X; — K;| 21K ;|| ?. Hence,

" 1 1
[w( X1l 1 Xm) = w(Dil, .. DD < D QIXGIZIK; 12 + V2K, (35)
J=1

By Corollary 6.3, w(Dy, ..., Dy) = w(|D1l, ..., |Dpl) since Dy, ..., Dy, are diagonal.
Thus, (31)-(35) guarantee

lw(X1, ..., Xm) —w(X1|, ..., [XnD] = [w(X1, ..., Xm) —w(D1, ..., Dn)l+
lw(ID1l, ..., |Dpl) —w( X1l ..., [XmDI
m

1 1
< UK+ V2K + 21X 12 1K)

~

=

1 1
= 2 _GUK;II+ 31X, 1K;112)

1

(o) # v (55)) <

A
W o~
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Note that w(| D1, ..., |Dnl) = w(|D1|+---+|Dyl) by Corollary 6.3, and so for the other
equality
WX, ..., Xm) —w(Xal+ -+ XDl < wX1, ..., Xm) —w(D1, ..., D)+

fw (72 1051) = w (S5 1X1) 1

Since (33) is still an upper bound, the argument in the first part still works if it can be
shown that

m m m
w Y IX1 | =w [ YD =YX - 1X; = K.
j=1 j=1 Jj=1

Indeed, this follows from (32).

7 Factorization of Hermitian Pencils

One can relate the free joint numerical radius to a factorization of a certain Hermitian
pencil. Consider the operator-valued trigonometric polynomial Q(z1,...,zn) = I +

m m S . K
E ) 1szj+ E 1% X7, where Xy, ..., Xy € B(H). We are interested in the ques-
Jj= Jj= :

tion when an affine operator-valued matrix polynomial P(zy, ..., zn) = Po+ Zm . Piz;
j=

exists so that Q(z1, 2, ..., 22) = P(z1, ... 2m)* P21, ..., zm), forall (z1, ..., zm) €
T™, where T = {z € C: |z| = 1}. Here Py, ..., P, € B(H, K) (= the Banach space of
bounded operators acting from Hilbert space H to Hilbert space K) for some Hilbert space
K. Clearly, we need that Q(z1, ..., z,) > Oforall (z1, ..., z,) € T™. The operator-valued
one variable Fejér-Riesz Theorem, due to [25] (see also [26]), states that the existence of P
is equivalent to Q(z1) > 0, |z1| = 1, and in this case one can choose I = H and P(z;) to
be outer or co-outer. Recently, Dritschel [27] showed that also in two variables the condition
0(z1,22) > 0, (21, z2) € T2, is necessary and sufficient for the existence of P (in this case,
though, K is not necessarily equal to  as the example |z; — 1|? + |22 — 1| easily shows).
Our result is the following.

_ m ) ) m —1 %
Theorem 7.1 Let Q(z1, ..., 2m) = IJij:1 sz]—i—Zj:lzj X5, where X1, ..., Xp €
B(H). The following are equivalent:

(1) w(le AR Xm) f %-
(i) For all Hilbert spaces K and for all unitaries Uy, . .., U, € B(K), we have

m m
I9I+) X;®Uj+» Xi®U;=>0.
j=1 j=1

. m+1
(iii) There exist A1, ..., Am+1 € B(H) so that ijl Aj=TandT'(Ay,..., Apy1) >
0.
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(iv) There exist Hilbert space K and affine matrix polynomial P(zy,...,zm) = Py +
m

Z~ Pjzj where P;j € B(H, K) so that
j=1

0 (Zl, 2. L ) = P@1e e zm) Ptz forall (2, 2p) € T™.

<1 Im—1
(36)
Remark 7.2 In the classical Fejér-Riesz factorization result (see [26] for the one variable
case; see [28] for the multivariable case), we only require positive semidefiniteness when
we plug scalars of modulus one as the variables. In Theorem 7.1(ii) above, one checks the

inequality for all unitaries. In the factorization, this translates into the requirement that P
is affine, as opposed to any analytic matrix polynomial.

Proof of Theorem 7.1 The equivalence of (i), (ii), and (iii) follow from the results in [3].
(iv) — (iii): Assuming (iv) we obtain that

m
S PrPi=1. P; Pi=X; PfPj=0k#j.j—1
j=0

Putting Aj 4| = P;P~, j =0,...,m, we obtain that T (A, ..., A1) = G*G, where
G =[Py -+ Py]. Thus (iii) follows.

(iii) — (iv): Assuming (iii), write [ (A1, ..., Apy1) = G*G with G € B(H"*!, K) for
some Hilbert space K. Next decompose G = [Py - -+ P ], with P; € B(H, K). With this
choice, (iv) follows. O

The following example illustrates how the requirement that P is affine affects the exis-
tence of a solution.

Example7.3 Letm =2, X| = [(1) _01] and X, = [(1) (1)] .Letting Uy = z1and Uy = 22

be scalars, we obtain that

max w 22 )=maxw I >=«/§,
lz11=lz21=1 22 —21 [A|=1 A —1

where the maximum is achieved at A = =£1. Since X and X, are generalized permutations,
Theorem 4.3 guarantees that

w(X1, X2) = w(abs(X;) + abs(X2)) = w ([i {|> =2

Thus, for r > 2+/2,

2 2
Orzi,z) =rl+ ) 2iX;+ Y z7'X5 =0, lal =zl =1,
j=1 j=1
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but a factorization as in Theorem 7.1(iv) exists only for » > 4. When r = 4, condition The-
orem 7.1(iii) is uniquely satisfied for A, = 21>, A] = A3z = I, leading to the factorization
Qu(z1, ) = P(z1,22)* P (21, 22), 21| = |z2| = 1, where

0 —3v2 0 o —3¥v2 0
-1/2 0 0 0 0 12
P =72 2 )
(z1, 22) %\/5 0 + 21 V2 0 + 2 0 %ﬁ
0o 12 0 —v2 —3v2 0

It follows from the main resultin [27] that O, N has a factorization P* P, where P is analytic
matrix polynomial degree of degree (1,1) with P(z1, 22) € C**2. This factorization can be
computed by letting

0 3X13X> 0
V2 Ixr 0 0 ix
K=""1I ! = B*B
2 8 g)q 0 0 §x1 ’
0 Ix3ixy o
where
o o0 o-1-lo-ly2o0
-1/2 0 -Lo -3 0 0
B=4Y2|"2 2 2
V2% 2o F-Lo o o
o o L o o0o-1 o L

Then K = B*B > 0 and for |z1| = |z22] = 1,

I
S 211
[ 11 22k 7172 1] B*B Z;,j = P(z1.22)"P(21.22) = 0, 55(21. 22),
212212
where P (z1, z2) equals
0 0 0 —1 -30 -iV2 0
4 -2 0 -10 ~1 0 0
2 2 2 2
V2 0 L3 TH 0 L |TEll g [ tael o o
1 1 1
0 0 5 0 0 —3 0 3v2
8 Open Problems
Let Xy,...,X,, € B(H). In this paper, we related the free joint numerical radius
w(X1, ..., X;) to a fixed point problem involving the operator-valued function

“ 1o 11 2 1 el 1 3
fxi...., x,,,(Z)=I+Z ZZX-’ZXjZZ+ZI + zzszszz+11 )
j=1
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In particular, we showed in the matrix case (Corollary 1.3) that the following are equivalent:

(i) fx,,...x, asdefined in (4) has a positive definite fixed point, i.e., there exists positive
definite L € B(H) for which

m 1 |
_ — 1 1 2 1 el 1 2
j=1

(i) w(X1,..., Xm) < 5.

Theorem 1.2 guarantees that (i)— (ii) holds when dim(H) = oco. Remarks 2.6 and 4.11
mention the difficulties encountered for (ii)— (i).

Example 8.1 To illustrate the existence of a fixed point in an infinite dimensional case, con-
T

sider H = L2([—m, ]) where (f, g) := / f(H)g()dt. Each x € L®([—m, 7]) induces

—TT
a bounded operator M, € B(H) defined by the multiplication operator (M,)(h(t))
x(®)h(t) for all h € H. Note that multiplication operators are normal, and so w(My) =
IMc]l = |Ixllco. Let x € L*®([—m,m]) be such that w(M,) < % Let M, where

z = Due to [[x|lcc = wW(My) < %, z € L®([—m,,]) and M is positive

2
1 —4]x|?’
definite in B(#). The value of fu, (M) is the multiplication operator corresponding to

142,/22|x |2 + % which simplifies to z. Hence, M is a positive definite fixed point of fs, .

Open problem 1 Assume dim(H) = oo. If w(X1, ..., X,) < %, show that fx, . x,, has
a positive definite fixed point, i.e., there exists positive definite L € B(H) for which

3 Ix* 3 1 : i xyt 1 :
L=1+) |(L2X5LX,L +g0) + (XL +or) |
j=1
We also considered approximating such fixed point by defining the iteration

Ly =@m+ DI and Ly = fx,,..x,, (L) fork € N.

.....

When each X ; is a generalized permutation, Theorems 4.6 and 4.13 guarantee that the recur-
rence { L }xen is monotonically increasing and convergent (provided w (X1, ..., X;) < %).
For general X ;’s, the following remain open problems.

Open problem 2 Show in general that Ly < Ly forall k € N.

Openproblem 3 If w(Xy,..., X,;;) < %, show in general that {L};en converges in the
weak operator topology to a fixed point L € B(H) of fx, ... x,,-

Note that a positive solution to Open problem 3 would imply that if X1, ..., X,, werein
a C*-algebra, then L and subsequently a solution Ay, ..., A;+1 (as constructed in Propo-
sition 2.5) would also lie in the same C*-algebra.
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