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Caustics of Lagrangian homotopy spheres

with stably trivial Gauss map

DANIEL ALVAREZ-GAVELA* AND DAVID DARROW

For each positive integer n, we give a geometric description of the
stably trivial elements of the group 7,U,/O,. In particular, we
show that all such elements admit representatives whose tangen-
cies with respect to a fixed Lagrangian plane consist only of folds.
By the h-principle for the simplification of caustics, this has the
following consequence: if a Lagrangian distribution is stably triv-
ial from the viewpoint of a Lagrangian homotopy sphere, then by
an ambient Hamiltonian isotopy one may deform the Lagrangian
homotopy sphere so that its tangencies with respect to the La-
grangian distribution are only of fold type. Thus the stable trivial-
ity of the Lagrangian distribution, which is a necessary condition
for the simplification of caustics to be possible, is also sufficient.
We give applications of this result to the arborealization program
and to the study of nearby Lagrangian homotopy spheres.
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1. Introduction
1.1. Main result

Let (M, w) be a 2n-dimensional symplectic manifold, v C TM a Lagrangian
distribution and L C M a closed Lagrangian submanifold. In [AG18b] the
first author established the following h-principle: if + is homotopic to a La-
grangian distribution with respect to which L only has fold type tangencies,
then L is Hamiltonian isotopic to a Lagrangian submanifold which only has
fold type tangencies with respect to +.

This h-principle reduces the problem of eliminating higher tangencies
to the underlying homotopical problem. In the present article we solve this
homotopical problem in the case where L has the homotopy type of a sphere.
The central notion is that of stable triviality, which we now define.

Definition 1.1. We say that |z, is stably trivial if 7|7, © R is homotopic to
TL @ R as Lagrangian distributions in the symplectic vector bundle C**1 —
TM|,®C — L.

Our main result is the following, where we assume n > 1 (for n = 1 the
problem is trivial).

Theorem 1.2. Let L C M be a Lagrangian homotopy sphere in a symplec-
tic manifold (M,w) and v C TM a Lagrangian distribution. The tangencies
of L with respect to v can be simplified to consist of only folds via a Hamil-
tonian isotopy of L if and only if ~y|r, is stably trivial.

Remark 1.3. We observe:

(i) Since any homotopy sphere is stably parallelizable [KM63] and
Tn—1Up = Tn—1Up41 is an isomorphism, note that T'(T*L)|y ~ L x C"
as symplectic vector bundles. Hence we may think of the homotopy
class of 7|, as an element of 7, A,,, where A,, the Grassmannian of La-
grangian planes in C". From this viewpoint stable triviality is equiv-
alent to asking that this element is in the kernel of the stabilization
map mT,Ap = TlAni1.

(ii) The hypothesis that |z is stably trivial is automatically satisfied if
n is congruent to 0,4,6 or 7 modulo 8, since m,A,4+1 =0 for those
values of n. Full tables of the relevant homotopy groups can be found
in Section 3.1.1 below.
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(iii) The subgroup ker(m,A,, — m,Apt1) of T, A, is always cyclic, in fact it
is infinite cyclic for even n and cyclic of order 2 for odd n > 1. We will
exhibit an explicit generator in each dimension, see Remark 3.7.

The homotopical problem underlying Theorem 1.2, which by the h-
principle [AG18b] is equivalent to Theorem 1.2 itself, is to show that each
element in the kernel of the stabilization map w,A,, — m,An4+1 admits a
representative S™ — A,, which only has fold type tangencies with respect
to some fixed but arbitrary Lagrangian plane P C C". This is the problem
that is addressed in the present article. We formulate this precisely as The-
orem 2.12 below, after introducing the notion of a formal fold, which is a
special case of Entov’s notion of a chain of corank 1 Lagrangian singularities
[En97].

The Lagrangian Grassmannian A,, admits a description as the homo-
geneous quotient U, /O, where U, is the unitary group and O, the or-
thogonal group. Thus the homotopy groups of O,, U, and A,, are related
via the long exact sequence in homotopy associated to the Serre fibration
O, = U, — A,,. These homotopy groups were computed by Bott in the sta-
ble range [B59]. However, while 7, U, lies in the stable range, m,_10,, does
not, and neither does m,A,,.

In fact, m,_10,, and m,A, are the first nonstable homotopy groups of
O, and A,,, i.e. as soon as we stabilize them once we enter the stable range.
Moreover, the stabilization maps m,-10, — 7,—10p+1 and T Ay, = T Ay
are epimorphisms. These groups lie in the so-called metastable range, which
is somewhat more subtle than the stable range, but has also been studied in
the literature and exhibits a secondary form of 8-fold periodicity for n > 8. In
particular 7, A,, has been computed [K78], and this computation is essential
input for our approach.

When n is even the problem is simpler because w,U,, = 0, as was al-
ready observed in [AG18b]|. The main novelty of the present article is to
tackle the case of n odd. The special cases n = 3,7 are particularly subtle
due to the parallelizability of S™ and need to be addressed individually. We
tackle the special cases n = 3,7 by making explicit use of the geometry of
the quaternions and octonions respectively. The key homotopical input is the
well-known fact that multiplication by unit quaternions (resp. octonions),
thought of as an element of w30, (resp. 770g), maps under stabilization to
a generator of m30 (resp. m70). In the case n = 3 we also sketch an alter-
native argument using Entov’s technique of surgery of corank 1 Lagrangian
singularities.
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We will give some applications of Theorem 1.2 in Section 1.3 below, but
first we will briefly discuss what kind of results one might hope for in the
general case where the distribution 7|z, is not assumed to be stably trivial.

1.2. Homotopically essential caustics of Lagrangian spheres

In order to go beyond the results of the present article and achieve a full
classification of the homotopically essential caustics of Lagrangian spheres
with respect to an arbitrary Lagrangian distribution it will be necessary to
understand the geometry of the elements of m,A, coming from the gener-
ators of the stable groups m,U, ~ m,U, since these elements are in general
not stably trivial. The group m,U is of course well understood from Bott
periodicity: it is isomorphic to Z for n odd and it is trivial for n even.

While there exist explicit descriptions of the generators of the groups
mor—1U, for example see [PRO3| for simple formulas in mog_1Uss-1, these
formulas become quite complicated after de-stabilizing down to mor_1Usg_1.
In particular it is not clear what type of singularities of tangency one obtains,
or to what extent they can be simplified.

Problem 1.4. For each odd integer n, exhibit an explicit representative
for a generator of m,U, so that the corresponding element of m, A, has the
simplest possible tangencies with respect to a fixed but arbitrary Lagrangian
plane P C C".

For example, when n = 3 a generator of m3A3 ~ Z/4, which is the image
of a generator of m3Us since moO3 = 0, admits a representative which has
folds along a torus 7' C S® and pleats along a (1,1) curve on T, where we
embed the torus in S? as the boundary of a standard handlebody. See Figure
1.1, as well as Remark 4.7.

Figure 1.1: The chain of singularities for a generator of mwgAs.
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For n =5 it is not known to us how simple of a tangency locus one can
achieve for the image of a generator of m5Us in m5A5 ~ Z © Z/2.

Moreover, note that understanding the image of w,U, — m,A, would
not be by itself sufficient to achieve a full classification of the homotopically
essential caustics of Lagrangian spheres. As the simplest example consider
the case n = 2, where we have moUs = 0 but the subgroup of stably trivial
elements in m9A9 ~ Z has index 2. In this case the situation is not so bad: a
generator of moAs admits a representative with a circle of folds and a single
pleat at a point on the circle, see Figure 1.2. However in general it is not
clear to us what one should expect.

SZ

Figure 1.2: The chain of singularities for a generator of moAs.

The most optimistic hope is that it is always possible to find X2-
nonsingular representatives. While this seems unlikely, we do not know of a
counterexample. Hence we formulate the following:

Question 1.5. Do all elements of 7, A,, admit representatives whose inter-
section with a fixed Lagrangian plane P C C™ has dimension < 17

If we set X2 ={Q € A,:dim(PNQ)>2}CA, for a fixed but ar-
bitrary Lagrangian plane P C C™ whose choice is immaterial, then the
above question is equivalent to asking whether the inclusion (A, \ ¥?) C
A, induces a surjection 7, (A, \ ¥?) — m,A,. We note that the inclusion
(A, \ ¥?) C A, is far from being a homotopy equivalence, as can be easily
deduced from the cohomological calculations in the literature.

For example if n = 3, denote by D3 C R? the unit disk and let D3 — A3
be the Gauss map of a neighborhood of a generic isolated Lagrangian %2
singularity [AGVS85]. Then the resulting element in 73(A3, Az \ ¥?) can be
shown to be non-trivial by means of a characteristic class in H3(As3;Z/2)
which is Poincaré dual to the codimension 3 cycle X2 C A3, see [A67].
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In fact for any positive integer n the integral cohomology ring of A,
is generated by characteristic classes dual to similarly defined cycles [F68].
While these classes may be used to prove results establishing the necessity
of higher singularities, a different method will most likely be needed to prove
results in the opposite direction.

1.3. Applications

We present two applications of our main result Theorem 1.2, one to the
arborealization program and another to the study of nearby Lagrangian
homotopy spheres.

1.3.1. Arborealization program. As our first application we give a sim-
ple proof that polarized Weinstein manifolds which are obtained from the
standard Darboux ball by a single handle attachment admit arboreal skeleta.
This recovers a special case of the main theorem of [AGEN20b], where it
is shown more generally that any polarized Weinstein manifold admits an
arboreal skeleton. The argument used in [AGEN20D] is rather involved due
to the subtleties arising from the interaction of three or more strata, whereas
for the special class of polarized Weinstein manifolds obtained from a single
handle attachment one can give a rather simple argument. Namely, the proof
consists of a direct application of Theorem 1.2 together with Starkston’s lo-
cal model for the arborealization of a semi-cubical cusp [St18], which was
used in that paper to arborealize Weinstein manifolds of dimension four.

In addition to the simplicity of the argument, a novel feature of the
result we establish is that the arboreal skeleton we end up with has arboreal
singularities of a particularly simple type. This conclusion does not follow
directly from [AGEN20b].

Before we state the result, recall that arboreal singularities are modeled
on rooted trees equipped with a decoration of a sign +1 for each edge not
adjacent to a root [St18, AGEN20a]. By the height of a vertex we mean the
number of edges between that vertex and the root, by the height of a tree
we mean the maximal height among all vertices and by the height of an
arboreal singularity we mean the height of the corresponding signed rooted
tree.

Corollary 1.6. Let (W, \,¢) be a Weinstein manifold such that TW ad-
mits a global field of Lagrangian planes and such that the Morse Lyapunov
function ¢ only has two critical points. Then by a homotopy of the Weinstein
structure we can arrange it so that the skeleton of (W, X) becomes arboreal,
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and moreover so that the arboreal singularities which appear in the skeleton
have height < 2.

We briefly describe the proof, which follows the blueprint of [St18]. First
one blows up a Darboux ball around the origin into the cotangent bundle
of a Morse-Bott disk. The stable manifold of the other critical point then
lands on this Morse-Bott disk along a front projection. The singularities of
this front are a priori very complicated, but existence of a polarization is
precisely the homotopical input needed for Theorem 1.2 to apply. Hence
by a Legendrian isotopy of the attaching Legendrian, which can be realized
by a homotopy of the Weinstein structure, we may assume that the front
only has semi-cubical cusp singularities. Finally the cusps can be traded for
arboreal singularities as shown in [St18].

1.3.2. Nearby Lagrangian homotopy spheres. As our second appli-
cation we show that any nearby Lagrangian in the cotangent bundle of a
homotopy sphere can be deformed via a Hamiltonian isotopy so that it is
generated by a framed generalized Morse family on some bundle of tubes.
We briefly explain the terminology before formally stating the result.

Following Igusa [I87], a framed generalized Morse family, or framed func-
tion for short, on the total space of a fibre bundle W — M is a function
f: W — R such that the restriction of f to each fibre is Morse or gener-
alized Morse (i.e. we allow cubic birth/death of Morse critical points), and
moreover such that the negative eigenspaces of the fibrewise Hessian at the
fibrewise critical points are equipped with framings which vary continuously
over M and are suitably compatible at the birth death points.

Following Waldhausen [W82], tubes are codimension zero submanifolds
with boundary 7' C R™*! which up to a compactly supported isotopy are
given by the standard model for a smooth handle attachment on the bound-
ary of the half space {zp+1 < 0}. A tube bundle is a fibre bundle of tubes
T — W — M where we assume that all tubes are contained in a fixed Eu-
clidean space, i.e. W C M x R*™! and W — M is the restriction of the
obvious projection M x R*™1 — M.

We can now state:

Corollary 1.7. Let Xg,%1 be homotopy spheres and X1 C T*¥g a La-
grangian embedding. There exists a Hamiltonian isotopy ¢ of 31 such that
©1(21) is generated by a framed function on some tube bundle T — W — .

The starting point of the argument is the recent paper of Abouzaid,
Courte, Guillermou and Kragh [ACGK20], where they show that if ¥, 3
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are homotopy spheres and »; C T*Y is a Lagrangian embedding, then >
admits a generating function on some tube bundle over Y. In particular it
follows from their result that the stable Gauss map ¥; — U/O is trivial.

Unwinding the definition, this means that Theorem 1.2 applies to M =
T*%o, L = 31 and y = ker(dm) the vertical distribution, where 7 : T*¥y —
>0 is the cotangent bundle projection. Therefore, ¥; can be deformed by a
Hamiltonian isotopy ¢y so that ¢1(X1) only has fold tangencies with respect
to the vertical distribution.

One may then apply the existence theorem for generating functions
[ACGK20] once again to the deformed Lagrangian ¢;(31) to obtain a gen-
erating function f : W — R for ¢1(31) on some tube bundle W — ¥,. Note
that the restriction of f to each fibre only has Morse or Morse birth/death
critical points. Indeed, Morse critical points correspond to points where
©1(X1) and the vertical distribution are transverse and Morse birth/death
critical points correspond to fold type tangencies.

Finally, this function may not admit a framing but one can fix this by
further replacing W with a twisted stabilization of W using the fact that
the projection ¢1(X1) — Xg is a homotopy equivalence [A12].

Framed functions are the homotopically canonical way of studying fibre
bundles via parametrized Morse theory [I02]. It is our hope that Corollary
1.7 may be useful for the study of nearby Lagrangians via parametrized
Morse theory.

1.4. Structure of the article

In Section 2 we introduce the notion of a formal fold and translate the ge-
ometric problem into a homotopical problem. In Section 3 we perform the
homotopical calculation necessary to establish our main theorem in dimen-
sions not equal to 3 or 7. In Section 4 we tackle the special dimensions 3
and 7. In Section 5 we give the proofs of the applications stated above.
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2. Formal folds
2.1. Tangencies of fold type

2.1.1. Lagrangian tangencies. Let (M,w) be a 2n-dimensional sym-
plectic manifold, L C M a smooth Lagrangian submanifold and vy C TM a
Lagrangian distribution.

Definition 2.1. A tangency between L and ~ is a point z € L such that
T.L Ny #0.

If v = ker(dn) for a Lagrangian fibration 7 : M — B, then tangencies
of L with respect to v are the same as singular points of the restriction
m|r : L — B, i.e. points v € L at which the differential dr, : T, L — Ty B
fails to be an isomorphism. If L is exact then we may lift it to a Legendrian
L in the contactization M x R and the tangencies of L with respect to
can also be thought of as the singularities of the front L — B x R, which is
known as the caustic in the literature [A90].

A tangency point x € L is said to be of corank 1, or ¥%-nonsingular, if
dim(7T,.L N~,) = 1. The locus of corank 1 tangencies X! = {x € L : dim(L N
v) = 1} is C*°-generically a smooth hypersurface in L and £ = (T'L N )| is
a line field inside T'L|s:. We say that + is ¥2-nonsingular if all its tangencies
with L are Y2-nonsingular, so the tangency locus of L with v is equal to
»!, which in this case is C*°-generically a smooth, closed hypersurface in L
without boundary.

While C*°-generic Lagrangian tangencies are non-classifiable, the class of
Y2-nonsingular tangencies does admit a finite list of local models, at least in
the case where « is integrable [AGV85]. The simplest type of ¥2-nonsingular
tangency is called a fold. This is the only type of tangency we will need to
consider in the present article.

Definition 2.2. We say that a tangency point « € X! is of fold type if X1
is transversely cut out in a neighborhood of = and ¢, M T,X! inside T, L.

When 7 is integrable, a fold tangency is locally symplectomorphic to the
normal form

L={q= p2} xR c T*R x T*R" !, v = ker(T*R" — R").

Remark 2.3. We note that in the contactization, fold tangencies corre-
spond to semi-cubical cusps of the Legendrian front.
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L 04

Figure 2.1: A fold type tangency. Note that ¢ = ker(dr|) is transverse to
the singular locus ¥ C L.

2.1.2. The h-principle for the simplification of caustics. In order
to reduce Theorem 1.2 to a homotopical problem, we use the h-principle for
the simplification of caustics established by the first author in [AG18b]. It
states the following:

Theorem 2.4 ([AG18b]). Let (M,w) be a symplectic manifold, L C M
a Lagrangian submanifold and v C TM a Lagrangian distribution. Suppose
that v is homotopic through Lagrangian distributions to a Lagrangian distri-
bution with respect to which L only has fold tangencies. Then L is Hamil-
tonian isotopic to a Lagrangian submanifold which only has fold tangencies
with respect to 7.

Hence to prove Theorem 1.2 it suffices to show that under the stated
hypotheses v is homotopic to a Lagrangian distribution which only has fold
tangencies with L.

Remark 2.5. The hypothesis in Theorem 2.4 only cares about the restric-
tion of y to L, since any homotopy of |, can be extended to a homotopy of
~. Furthermore, by taking a Weinstein neighborhood of L we may immedi-
ately reduce to the case M = T*L, which is therefore the only case we will
consider in what follows.

2.2. Formal folds and their stable triviality
2.2.1. Formal folds. The homotopical object underlying a Lagrangian

distribution with only fold type tangencies is a formal fold, which is defined
as follows:
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Definition 2.6. A formal fold in a smooth manifold L consists of a pair
(3,v), where ¥ C L is a co-orientable smooth closed hypersurface in L and
v is a choice of co-orientation of X.

Figure 2.2: A formal fold on a surface consists of a disjoint union of co-
oriented simple closed curves.

Remark 2.7. Formal folds are the simplest version of the notion of a chain
of Lagrangian singularities as defined by Entov [En97], generalizing the no-
tion of a chain of singularities for smooth maps [E72]. We will not need this
more general notion in what follows and hence will not discuss it further,
with the exception of the non-essential Remark 4.7.

Let v C T(T*L)|r be a Lagrangian distribution which has only fold type
tangencies with respect to L. That is, the intersection v, N T, L C T,(T*L)
has dimension < 1 for any x € L, the subset ¥ ={x € L: v, NT,L # 0} C
L is a transversely cut out hypersurface and ¢ = |y, N T'L is a line field along
Y, which is transverse to X. To such a v we associate a formal fold (X, v) by
specifying v to be the Maslov co-orientation [A67, En97].

Conversely, if (X, v) is a formal fold on L, there is a homotopically unique
Lagrangian distribution (X, v) C T(T*L)|r which has only fold type tan-
gencies with respect to L and whose associated formal fold is (3,v). For
existence, let ¥ x [—1, 1] be a tubular neighborhood of ¥ in L such that the
coordinate t € [—1, 1] is compatible with the co-orientation, i.e. v = 9/0t.
On L\ (¥ x [=1,1]) we define v(X,v) to be the vertical distribution. On
Y x [—1,1] we define it to be the direct sum of the vertical distribution in
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T(T*S)|s and the line field £ € T(T*[~1,1])|[_1] defined by
t\ 0 t\ o0
¢; = span(sin <7;> 5g T o8 (g) &> C Ty(T*[-1,1])
where v is the momentum coordinate dual to ¢, see Figure 2.3.
Lt

RN /
k=-1\ +

R
Q

N

oy
P

Figure 2.3: The line field ¢;.

The fact that v(3, v) is homotopically unique is straightforward to verify
using the well-known fact that that the space of Lagrangian planes in C”
which are transverse to a fixed Lagrangian plane P is contractible; indeed
this space can be identified with the (convex) space of quadratic forms on
any Lagrangian plane () which is transverse to P.

Finally, we note that the homotopy class of v only depends on the formal
fold (X, v) up to ambient isotopy in L.

2.2.2. Stable triviality of formal folds. Let v C T(T*L)|; be a La-
grangian distribution defined along L. We say that ~ is trivial if it is homo-
topic through Lagrangian distributions to the vertical distribution, which is
defined to be v = ker(dn) for 7w : T*L — L the cotangent bundle projection.
More generally:

Definition 2.8. We say that v is stably trivial if v R and v @& R are
homotopic as Lagrangian distributions in T(T*L)|;, & C.

Remark 2.9. This notion of stable triviality is equivalent to the one given
in Definition 1.1 since T'L and v are homotopic Lagrangian distributions in
T(T*L)|r. For example, this can be seen by rotating one to the other via
a compatible almost complex structure J on T*L such that JT,L = v, in
T,(T*L) for all x € L.

Lemma 2.10. Let (X,v) be a formal fold in L. Assume L is simply con-
nected. Then v(X,v) is stably trivial.
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Proof. Consider the path py : [—1,1] — Us given by

n ei(t+1)/2 0
0 1

and the path ps : [—1,1] — Us given by

1 0
t 0 emi(t+1)/2

Post-composing p; and py with the projection Us — Ao (i.e. taking the
images p;(t)(R?) C C?) we obtain loops 11,72 : ([—1,1], {£1}) — (A2, R?),
i.e. n;(—1) = n;(1) = R? for i = 1,2. Since the isomorphism 1Ay ~ Z is in-
duced by det? : Ay — Uj and det? o = det? ong (both are equal to the func-
tion e”(t“)) it follows that n; and 7y are homotopic relative to {1}, as
can be verified explicitly.

At a point z € ¥ x [~1, 1] we may split T, L & C ~ T,,¥ @ C2. From the
above observation it follows that v(3,v) & R is homotopic to the distribu-
tion v @ £, where ¢ denotes the line field in L x C defined as iR outside of
¥ x [-1,1] and for (z,t) € ¥ x [—1, 1] given by

N . [(mt\ O mt\ O
= span< sin <2> 92 + cos <2> 6—y> c C.

But every map L — A; is null-homotopic when n > 1 since Ay ~ St and
L is simply connected. Hence ¢ is homotopic to the trivial distribution L x
R C 5™ x C and consequently v(X,v) @ R is homotopic to v @ R, which
was to be proved. O

Remark 2.11. The statement of Lemma 2.10 is false if L is not assumed
to be simply connected. For the simplest example take L = S' and let 2
consist of a single point. Of course the Lemma can be salvaged by adding
the assumption that the class in H'(L;Z) Poincaré dual to (X, v) is trivial,
but we won’t need this in what follows.

2.3. Reduction to homotopy theory

2.3.1. Formal folds in R™. Let (X, v) be a formal fold in R"™. We assume
> C R" to be compact, hence the corresponding Lagrangian distribution
v(E,v) C T(T*R")|r~ is vertical at infinity. In other words, (X, v) is equal
to the vertical distribution v = ker(dm) outside of a compact subset, where
m: T*R™ — R" is the standard projection.
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Since T(T*R"™)|g» ~ R™ x C" as symplectic vector bundles, there is a
one to one correspondence between homotopy classes of Lagrangian distri-
butions in T'(7*R")|r~ which are vertical at infinity and elements of m, A,
where A, is the Grassmannian of linear Lagrangian subspaces of C". Thus
to a formal fold (X, v) in R" is associated an element a(X,v) € m,A,,. Here
we think of the n-sphere as the one-point compactification of R™ with the
basepoint at infinity and we take the (vertical) imaginary plane iR"™ as the
basepoint of A,,.

By Lemma 2.10, every element of the form «(X,v) is in the kernel of
the stabilization map 7, A,, — 7, An+1 induced by the inclusion A,, — Apy1,
which we recall is given by

P—-PaRCC"®C, pPccC".
In Sections 3 and 4 below we will prove that the converse is also true:

Theorem 2.12. FEvery element of ker(mp, Ay, — mpApt1) admits a represen-
tative of the form a(X,v) for some formal fold (¥,v) in R™.

In the rest of the present section we will show how Theorem 2.12, to-
gether with the h-principle 2.4, imply our main result Theorem 1.2.

2.3.2. Formal folds in homotopy spheres. Let L be an n-dimensional
homotopy sphere and denote by C* — Ej — L the symplectic vector bun-
dle T(T*L)|r. Let A,, = A, — L denote the associated Grassmann bundle,
whose fibre over x € L is the Grassmannian of linear Lagrangian subspaces
of T,(T*L). Let f: D™ — L be a smooth embedding of the closed unit disk
D™ = {||z|| <1, x € R"}, which is unique up to isotopy (and precomposi-
tion with an orientation-reversing diffeomorphism).

After identifying the interior B” = {||z|| < 1, x € R"} of D™ with R",
the embedding f induces a map

fo Ay — ml(AL),

where I'(Az) denotes the space of sections of Ar. This is induced from a
pushforward at the level of spaces, i.e. from the space of maps (D", 0D™) —
(A, iR"™) to the section space I'(Ar). Explicitly, a Lagrangian distribution
in T(T*D"™)|p» which is vertical near 9D" is extended to T'(T*L)|r, as the
vertical distribution outside of f(D™). Note that at the level of spaces the
pushforward takes formal folds to formal folds, see Figure 2.4.

Lemma 2.13. f.m,A, = mol'(AL).
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Figure 2.4: Pushing forward a formal fold from D™ to L via f.

Proof. Any Lagrangian distribution v C T'(T*L)|r, may be deformed so that
it is equal to the vertical distribution on a neighborhood U of L\ f(B")
since L\ f(B™) is contractible. O

Denote by I'*(Ay) C T'(Ay) the subspace of stably trivial sections. It is
clear that f. ker(m,A, — TpAny1) C molSY(AL). Again we have surjectivity:

Lemma 2.14. f, ker(m,A, — mpAny1) = mol*4(Ap).

Proof. If a Lagrangian distribution v C T(T*L)|;, which is vertical in a
neighborhood U of L\ f(B) is stably trivial, then v ® R and v ® R are
homotopic in T(T*L)|r, & C, but the homotopy need not be fixed in U. So
we need to fix this.

We may assume that U itself is contractible, for example we can set U =
L\ f(3B") for 1B" = {||z|| < 1/2, x € R"}. Let 29 € U be a point outside
of f(D™). The restriction of the homotopy between v @& R and v & R to xg
determines an element of 1 A,11. Now, m A, = m A,y is an isomorphism
for any n > 1, hence after a suitable deformation of v we may assume that
this homotopy is through Lagrangian planes of the form ~;(xg) ® R, where
Y4(w0) € Ty (T*L)| .

We may then use the homotopy ~:(z¢) to further deform + so that it
is equal to the vertical distribution v at the point x¢ and so that v & R is
homotopic to v ® R through distributions which are equal to v ® R at the
point zg. Explicitly, trivialize a neighborhood V' ~ R" of x( contained in U
and in this neighborhood replace v(z) with v4(,)(z) C C" where ¢ : R" —
[0,1] is a compactly supported function such that ¢(zg) = 1.
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Finally, since U is contractible we may further deform  so that the same
property holds over all of U, i.e. y is vertical over U and v @ R is homotopic
to v @ R through distributions which are equal to v & R over U. This proves
the lemma. O

We are now ready to prove our main result.

Proof of Theorem 1.2 assuming Theorem 2.12. The necessity of stable triv-
iality follows from Lemma 2.10. The sufficiency of stable triviality follows
from Lemma 2.14 and Theorem 2.12, which show that the hypothesis needed
to apply the h-principle Theorem 2.4 is satisfied. U

It therefore remains for us to establish Theorem 2.12. This will be
achieved in Section 3 for those dimensions not equal to 3 or 7 and in Section 4
for the exceptional dimensions 3 and 7.

3. Homotopical computation
3.1. Homotopical background

We begin by reviewing some relevant background in homotopy theory, in
particular we review for future reference certain stable and nonstable homo-
topy groups of the unitary and orthogonal groups and of their homogeneous
quotient, the Lagrangian Grassmannian.

3.1.1. The classical groups. Recall that to a Serre fibration ¥ — E —
B is associated a long exact sequence in homotopy groups:

oo =B =2 F - B = 1, B = F— -

From the fibration U,, — U1 — S?"*! given by the standard action of
Upy1 on 52*1 one deduces that the stabilization map U,, — Un+1, which
is given by adding a row and a column with zeros everywhere except for
a 1 in the diagonal entry, induces isomorphisms on all m; for k < 2n and
an epimorphism on 7y,. Indeed, 7,5?"*! = 0 for k < 2n + 1. The homotopy
groups U := mU, in the stable range k < 2n exhibit 2-fold periodicity
and were computed by Bott [B59] as follows:

mod(k, 2) ‘ U
0
1 Z
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Similarly, from the fibration O,, = O,4+1 — S™ given by the standard
action of O, 41 on S™ one deduces that the analogous stabilization map O,, —
Op+1 induces isomorphisms on all 7 for ¥ < n — 1 and an epimorphism on
mn—1. The homotopy groups 7O := w0, in the stable range k <n —1
exhibit 8-fold periodicity and were also computed by Bott as follows:

mod(k,8) | mO
0 Z)2
1 Z/2
2 0
3 Z
4 0
) 0
6 0
7 Z

The Lagrangian Grassmannian A,, admits a transitive action of U, with
the stabilizer O,,, hence can be described as the homogeneous space U, /O,,.
By considering the long exact sequence in homotopy associated to the result-
ing fibration O,, — U, — A,, it follows from the above that the stabilization
map A,, — A, 1, which is given by taking the direct sum in C"*! = C"* @ C
of a linear Lagrangian subspace of C"™ and R C C, induces isomorphisms on
all m for £ < n and an epimorphism on .

The homotopy groups miA := 7 A, in the stable range k < n exhibit
8-fold periodicity and were also computed by Bott, in fact they are just a
shift of the stable homotopy groups 7O due to the homotopy equivalence
QA ~7Z x BO.

mod(k,8) | mA
0 0
1 Z
2 Z/2
3 Z)2
4 0
5) Z
6 0
7 0

For the purposes of this article we are interested not in the stable ho-
motopy groups of A, but in the unstable group m,A,. Via the long exact
sequence in homotopy of the fibration O,, — U, — A,, we may relate this
group to the homotopy groups 7, U, and 7,10, the first of which is in the
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stable range but the second of which is not. The groups m,A, and m,_10,
are the first nonstable homotopy groups of A,, and O,, respectively.

These homotopy groups, though nonstable, are also understood. Not
only do they surject onto the corresponding stable groups, but they exhibit
a secondary form of 8-fold periodicity, with three exceptions related to the
parallelizability of S', S3 and S7.

The computation of m,_10,, is mostly straightforward, see [S51], but the
non-parallelizability of S™ for n # 1, 3,7 [BM58, K58, M58] plays an essential
role. Here is the table for m,_10,,, where we remark that the indexing of .,
is by n — 1 instead of n for future convenience when analyzing the sequence
T Upn — Ay — mp—10,.

mod(n,8), n>8 | w10, (small n)
0 YASY/ 7T001:Z/2
1 Z/2®7Z/)2 m 09 =17
2 Z/Q@Z w903 = 0
3 Z/2 04, =Z B Z
4 YASY/ 7T405:Z/2
5 Z/2 w506 = Z
6 Z 7607 = 0
7 Z/2 708 =2Z B Z

Briefly, to relate this table with that of the stable groups m,-10 one
uses the fact that 7,10, — m,-10 is an epimorphism and ker(7,—10,, —
Tp10) = im(m,_ 18" 1 = 7,10, is generated by the class of the tangent
bundle T'S™, which has infinite order if n is even, has order 2 if n is odd and
not equal to 1,3,7, and is trivial if n = 1,3 or 7.

The groups m,A,, were computed by Kachi in [K78] and are given as
follows:

mod(n,8), n > 8 TnlAp (small n)
0 Z molAg =0
1 Z37Z)2 mh =7
2 7207 moly =7
3 Z/207Z)2 w33 =Z/4
4 Z TNy =7Z
5 Z37)2 msAs =Z S Z/2
6 Z 7T6A6:Z
7 Z)/2 Ny =7/2

Remark 3.1. Strictly speaking the computation in [K78] is for
T SU, /SOy, however this group is isomorphic to m,U, /O,, whenever n > 1.
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This follows immediately from the long exact sequences in homotopy associ-
ated to the determinant fibrations SU,, — U,, — U; and SO,, — O,, — O1.

Finally, ker(m,A,, — mpAn41) is given as follows:

mod(n,2), n>1 ‘ ker(mp,Ap — mpAni1)
0 Z
1 7/2

This table follows almost immediately from the previous ones and in
any case is a consequence of the computation below. In almost all cases the
subgroup ker(m, A, — m,Ap41) is a direct summand of 7, A,, (with the other
direct summand given by m,A,+1 ~ m,A), but there are some exceptions in
which it is given by:

(n=1) The trivial subgroup.
(n=2) The index 2 subgroup 2Z C Z ~ myAs.

(n=3) The cyclic subgroup of order 2 in m3A3 ~ Z/4.

Remark 3.2. Note that in all cases ker(m,A,, = T Any1) C Ay, is cyclic
and we will give an explicit generator.

3.2. A homotopical lemma

The following lemma is the main homotopical input needed to prove our
main theorem in the non-exceptional dimensions n # 1,3, 7.

Lemma 3.3. Let n#1,3,7. Then ker(m,A, — m,—10,) Nker(m,A,, —
7TnAn+1) =0.

Proof. Let S € ker(mp,Ay, = 7r—10y) Nker(mp Ay, — mpAny1). We proceed
by cases to show that g = 0.

3.2.1. The case n = 0 mod (2). If n is even then m,U, = 0, hence the
map m, A, = T,—10,, is a monomorphism and so 8 € ker(m,A,, = m,—10y,)
is necessarily zero.
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3.2.2. The case n = 7 mod (8), n > 15. In this case the map 7, 0,, —
7 Uy 1s an epimorphism by commutativity of the diagram

TnOn > mpnUn

L

71,0 —— 1, U
Indeed, for n =7 mod (8), n > 15, we note:
(i) 1,0y, — m,O an epimorphism as shown by Kervaire [K60],
(ii) m,0 — m,U is an isomorphism since mgg4gA = mgpr7A =0,
(iii) m,U, — m,U is also an isomorphism since 7, U, is in the stable range,
from which the conclusion follows. Hence m,U, — m,A,, is the zero map, so

Tpl\yy — 710y, is a monomorphism and we can argue as in the previous
case.

3.2.3. The case n = 1,5 mod (8). In this case m,0n 41 — TUpt1 is
the zero map since 7,041 is isomorphic to 0 or Z/2 for n congruent to 1 or
5 respectively while 7,Uy+1 is isomorphic to Z. Hence the map 7,Up41 —
TpAp+1 is @ monomorphism. We can therefore argue as follows.

Let B € ker(mp Ay — Tr—105) Nker(mp Ay, — T Apg1). Since
l/{\er(ﬂnAn — Tp—10y) = im(m,U,, = m,A;,) we can lift 5 to an element
B € m,U,. By commutativity of the diagram

7TnUn — 7TnUn+1

L

Ty —— 7TnAn+1

it follows that the image 8(3) of E under the stabilization map w,U, —
TpUp+1 is in the kernel of the map TnUnt1 — TpApt1, Since m,Up11 —
TpAp+1 is & monomorphism, this impli/e\s s(B) =0. But m,U,, = mpUpy1 18
an isomorphism, so we must also have = 0 and hence we conclude 5 = 0.

3.2.4. The case n = 3 mod (8), n > 11. In this case we have
Tl =Z/2BZ)2, 7mMNpy1=2Z/2, 7,10, =7Z/2, 710,41 =0.

Hence m,Up+1 — mpApy1 is the unique nontrivial map Z — Z/2 with the
kernel 27Z C Z.
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Let g € ker(mp Ay, = mp—10y) Nker(mp Ay, — T Apt1). As in the previ-
ous case, we may choose E € m, Uy, alift of B, and the image s(3) of § under
the stabilization map m,U,, — m,Up+1 is in the kernel of 7,U,+1 — T Api1.
It follows that s(j) is divisible by 2 in 7 Up1. ~

Since m,U,, = m,Up+1 is an isomorphism, we deduce that 3 is also divis-
ible by 2, hence the same is true of 5. But m,A, is 2-torsion, so we conclude
8 =0.

Having exhausted all cases, the proof is complete. O

3.3. Proof of the main theorem for n #1,3,7
Assume n > 1 in what follows.

3.3.1. An Euler number computation. Recall that a formal fold (X, v)
in R™ determines an element «(X, v) in ker(m,A;, = 7 Apy1). The image of
a(X,v) in 7,10, lies in the kernel of the map m,_10, — m,—10p41 by
commutativity of the diagram

TNy —— 7TnAnJrl

| |

Tn—10n > 7"'n710n+1

This is just a diagram chasing way of saying that since a(3,v) is a sta-
bly trivial Lagrangian distribution, in particular the underlying real vector
bundle is stably trivial. It turns out that all stably trivial real vector bundles
arise in this way:

Lemma 3.4. The images of the elements a(3,v) in m,—10,, generate the
subgroup ker(mp—10y, — Tp—10p41).

Proof. Consider first the case where n is even. The subgroup ker(m,-10, —
Tn—-10p+1) = im(m, S™ — 7,-10,,) is infinite cyclic and generated by T'S™,
so it is enough to show that the Euler numbers of the real vector bundles
underlying the distributions a(X%, v) can realize any even integer. Let Q C R"
be a compact domain with smooth boundary. Set ¥ = 9¢) and let v be the
outward normal to €2. A straightforward application of the Poincaré-Hopf
index theorem will show that the Euler number of (X, v) is equal to £2x(€2).

To this end, first note that as a real vector bundle, (X, v) is the result
of gluing trivial bundles on €2 and on its complement via the isomorphism
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of ¥ x R" ~ T3 @ Ruw given by
ide (-1): TY¥® Rv — TX @ Rw.

Let us compute the Euler number of «(X,v), presented in this way,
using a section ¢ which is constant and non-zero outside of a large ball
B C R" containing ) and which restricts inside €2 to an outwards pointing
vector field. Thus the zeros of o inside €2 yield a total index of x(€2) by
Poincaré-Hopf. Note that in light of the above gluing, ¢ restricts on the
complement of € to a vector field which is also outwards pointing along 0f).
Therefore, also by Poincaré-Hopf, inside B\ €2 the zeros of ¢ yield a total of
X(B\ ) — 1. The summand —1 comes from the fact that o does not point
outwards pointing along 0B (it is constant), but can be arranged to do so
after the introduction of a source-type zero, which has index 1.

Next, note that x(B\ Q) — 1= x(B) — x(©) — 1 = x(2). Finally, in the
above index computation we have used the canonical orientation of R™ on
each of the regions  and B\ Q. To count the total index of o we must
use a global orientation of «(X,v), which means we must switch one of the
orientations on either £ or B\  to account for the fold along ¥ (in other
words, the gluing map id @ (—1) is orientation reversing). Thus we obtain
an Euler number of £2x(€2) for a(3,v). This completes the Euler number
calculation.

It now suffices to observe that since n > 1, we can arrange for x(f2) to
take any integer value, which completes the proof in the case where n is
even.

Consider next the case where n is odd. For n = 1, 3,7 the group m,_10,
is trivial so there is nothing to prove. For n # 1, 3, 7 the group 7,_10,, has a
single stably trivial element, which is the class of T'S™. By direct inspection
this element is equal to the image of a(S" !, np») in m,_10,, where npa is
the outward normal to the unit disk D™ = {||z|]| <1: z € R"}. O

Corollary  3.5. For n#1,3,7 the map ker(m,Ay, — mpApt1) —
ker(m,—10y — mp—10p41) is an isomorphism.

Proof. Injectivity is given by Lemma 3.3 while surjectivity is given by
Lemma 3.4. O

Remark 3.6. When n = 3 we have ker(msAs — m3Ay) ~2-Z/4 CZ/4 ~
m3A3 while m903 = 0. When n = 7 we have ker(m;A7 — 77Ag) = m7A7 ~ Z/2
while 7r607 = 0.
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3.3.2. Conclusion of the proof. We are now ready to prove Theo-
rem 2.12 in the non-exceptional dimensions, which we recall states that
every element of ker(m,A, — m,An+1) admits a representative of the form
a(X,v) for some formal fold (¥, v) in R™.

Proof of Theorem 2.12 forn # 1,3,7. Let  ~ € ker(m,Ayy, = Apt1). By
Lemma 3.4 there exists a formal fold (¥, v) such that the images of v and
a(X,v) in m,—10,, are equal. But Corollary 3.5 implies that v and a(X,v)
are in fact equal in m,A,. O

Remark 3.7. It follows that for any n # 1,3,7 the subgroup ker(m,A,, —
Tnlny1) is cyclic with a generator given by a(S™ ! np.), where npn is
the outward normal the unit disk D" = {||z]| <1: z € R"}. As we will
see below the same is true for the exceptional dimensions n =1,3,7. The
element a(S™" !, npn) is 2-torsion for n odd. For n even it is not and we can
obtain representatives for its multiples as follows. Given k£ > 0, the element
of m,A,, given by k times a(S™" !, np=) is equal to (9, ng, ), where Q
is the disjoint union of k disks in R™ and ngq, is the outward normal. More
generally, if  C R™ is any domain of Euler characteristic & then (9, ng)
is a representative for ka(S™ ! npn), where nq is the outward normal to
€. Similarly, one can obtain a representative for —ka(S™" !, npn») by taking
a(09Q,ng), where Q C R" is any domain with Euler characteristic —k and
ng is the outward normal to €.

4. The exceptional cases
4.1. Complex trivializations

To tackle the exceptional dimensions n = 3,7 we will make use of an explicit
complex trivialization of T(T%*S™)|s» together with a certain property of
stable triviality satisfied by the trivialization. This trivialization is defined
for all n > 1, but for n = 3,7 we will further examine its interaction with the
trivializations coming from quaternionic and octonionic geometry (which are
not stably trivial), leading to a proof of Theorem 2.12 in those dimensions.

4.1.1. The isomorphism T'(T*S")|s» ~ §™ x C™ . We construct an
explicit isomorphism of symplectic vector bundles between T'(7*S™)|g» and
S™ x C™ as follows. It will be useful to keep in mind that there is a canonical
symplectic bundle isomorphism T'(T*S™)|g» ~ T'S™ & T*S".

Let e be the first unit vector in R"*!, and let § = 0(g) measure the angle
of a vector g € S™ away from e; importantly, cos@ = (e, g). Each level set
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6 = 6y (other than §p = 0, 7) is isometric to the scaled sphere sin(f) S"~! by
the mapping g — g — cos(6p)e. For any point ¢ in the level set § = 6y and
each non-zero vector v € {e}+ C R"*!, define the coordinate 6, = 6,(g) to
be the angle between g — cos(f)e and v. These coordinates are well-defined
except at the poles *e. In particular, fix an orthonormal basis eq, ..., e, of
{e}*, and define 0; = 6,,.

Now define the (discontinuous) vector fields X = —dy and X, = —0p,,
and write X; = —0p,; note that X, depends only on the normalized vector
v/||v]|. Writing J for the standard® almost complex structure on T(T*S™)|gn,
we define a complex trivialization of T(7*S™)|s» by

(1) E; = —cos(6;)e’? X + sin(6;) X;.
Convenient formulas for X; and FE; are given as

@) X; = csc(6;)e; — cot(0;)0r,
E; = cos(6;) cos(0)0y + J cos(0;) sin(0)dg + e; — cos(6;)0r.
It is clear from these formulas that F; is everywhere continuous—indeed,
cos(6;) = 0 when 6 is 0 or m, which are the two discontinuities of Jy, and the
latter two terms in the above formula are smooth. In fact, the same analysis
shows that Fj; is smooth away from the two poles § =0 and 0 = 7.

Definition 4.1. For any n > 1, define the bundle map F : T'(T*S™)
S™ x C™ to be the one taking E;|, to (g,e;) at each point g € S™.

Sn —

Lemma 4.2. Foranyn > 1, the map F : T(T*S™)
plex vector bundle isomorphism.

g» — S x C™ is a com-

Proof. The lemma boils down to showing that the maps F|, : To(T*S™) —
{g} x C™ are linear isomorphisms and vary continuously with g € S™; in
turn, this follows from showing that {F;} is a continuous complex frame.

It is clear from the expressions (1) that the sections E; are continuous
and well-defined, so it remains to be seen that they are complex-linearly
independent.

Let a,b € {e}* C R""! and set v =a+/—1b=> (a/ +/—1b)e; €
C". We show that the complex linear combination Y (a’ + Jb?) E; results in

!That is, J is compatible with the round metric and the canonical symplectic
structure.
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E, := E, + JEy, where we define
E, = |al (— cos(0,)e’? X + sin(GQ)Xa>
and similarly for Ej. Indeed, for any g € S,

Z(ai + IV B, = — [Z(ai + Jb) cos(@i)} e’ X
+ Z(ai + Jb?) sin(6;) X;.
= —[{a,9) + J{a, 9)] e’ X
+) (a4 Jb') sin(6;) X;.
—[llall cos(8a) + J|1b]| cos(6r)] e’ X
+ Z(ai + Jb') sin(6;) X;.

To deal with the second term above, rewrite

Xaly = (sin6,) " <u — cos(fy) - g_sgfe()e)e) .

Then we find

Z(ai + Jb') sin(6;) X; = Z(ai + Jb) (ei — cos(6;) - ;1:1(289()0) )
=t 0= () + T L
= a+ Jb— (|| cos(8a) + J||b|| cos(8y)) - Sl(:(se()e)e
= ||a|| sin(0q) Xq + J|b]| sin(0p) Xp.
Putting these two elements together implies
> (@' +JV)E;=Ey+ JE, = E

Since E, is nonzero for v nonzero, this proves our result. O

Remark 4.3. Consider the Lagrangian distribution v C T'(7%S™)|s» which
is the preimage by F of S™ x ¢{R"™; that is, the distribution spanned by
JE;|4 at each g € S™. From the equations 2, it is clear that v has fold
type tangencies with S™ along the equator S"~! = {zg =0} NS™ and is
transverse to S” everywhere else.
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4.1.2. Stable triviality of the frame. We will also need the fact that
the frame defined above is stably trivial, in the following sense. By stabilizing
once, the vector bundle isomorphism F : T(T*S")[gn — S™ x C™ extends
to an isomorphism F : T(T*S™)|g» x C — S™ x C"*! Identifying the extra
factor of C as the complexification of the normal direction to the sphere and
using the trivialization T(T*R"*1)|g. ~ S™ x C™*! we may rewrite this as
a map

F 8" xCrtl 5 gn oy gttt

which is a lift of the identity map S™ — S™ by fibrewise linear isomorphisms
Ccrtl 5 ontl,

In fact, these are unitary transformations, as can be verified using the
explicit formulas provided by Definition 4.1.

Lemma 4.4. The map F : S" x C"1 — §7 x C"*1 s trivial as an ele-
ment of mpUpny1.

Remark 4.5. We note:

(i) As a basepoint of S™ we take the point e where the frame (E;); agrees
with the frame e;, and as a basepoint of U, we take the identity
matrix.

(ii) It is sufficient to prove the triviality of F as an clement of 1, GL(C™H1)
since the inclusion Uy, 11 C GL(C"™!) is a homotopy equivalence.

Proof. We continue in the language of the proof of Lemma 4.2.

By stabilizing, we introduce a new vector field Ey to our frame, every-
where orthogonal to E;q. We can view this as an outward normal field to
S™. In short, Ey = Ogr, where R is the outward radial coordinate (the norm
in R"™). In this setting, F' takes the form

F:SmxCl 5 8nx ™l B, e (g,e),

with {e = eg, €1, ..., ¢, } an orthonormal basis of C"*!. Our lemma thus boils
down to the following claim: the frame { F;} is homotopic to the trivial frame
{ei} through maps S™ — GL(C"™"!). Indeed, if this is the case, then we can
pre-compose the map F FE; — e; with this homotopy to perturb F itself
continuously to the identity map e; — e;.

We prove this by supplying a sequence of homotopies bringing F; to e;;
it of course is crucial (and we will prove this along the way) that the images
of the frames are complex-linearly independent at each point in time.
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To begin, we apply two continuous homotopies from E; = E!(0) to E.(1).

El(t) = E; + tcos(6;) sin(0)Og,
E)(t) = e 7" Ey + tsin(9) X,

where we let ¢ go from 0 to 1 (and we exclude 0 from the index 7). We can
extend these homotopies to general E,, where v =a ++/—1b =Y, (a’e; +
V—1b%e;), a,b € {e}*+ C R"*! using the formula

El(t) = E, + t (||al| cos(04) + J||b]| cos(6y)) sin(#)Og.

The resulting transformation E, — E! is a complex-linear isomorphism, as
we see from the following calculation:

> (@E@) +vIE[®) ], = (a'Ei+ biJE-)
+ tz a cos(;) + b'J cos(b; )) sin(#)0r,
=B, + tz a' +b'J)(z, e;)) sin(0)g,
= E, +t((g,a) + J{g, b>) sin(6)0r,
= Ey +t([lal| cos(ba) + J]|b]| cos(0)) sin(6) g,

In particular, this means that if E{(¢) were in the span of {E.(t)}, then we
would have E{(t) = E)(t) for some nonzero v. We can see that this would
require t = 1 and sin § = £1; otherwise, the projection of E{ to T'(T*S5™)|gn
has norm strictly larger than the projection of Efj to span(dgr), while the
opposite is true of E.

Next, note that the projection of E{(t) to span(dr) is real; to obtain
E{(t)|g = E,(t)|4, we thus also require ||b|| = 0. Following the same argument
as in the preceding paragraph, this implies that cos(,) = £1. Knowing this,
we have

=—Jor+ X, E, =FJX + 0.

These are indeed independent; within the complex subspace spanned by X
and Jg, these two vectors give a complex determinant of +2 = 0.
Finally, we make the two homotopies

E!(s) = E/(1) + sJ cos(6;) sin(0) X,
Ej(s) = E{(1) + sJ sin(0)0g,
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which extend as before to E! for general v € {e}* C C"*!. For clarity, here

are the closed-form expressions of Ef and E!, for u € {e}* c R*L.

B (s) = ||ul| [sin(fu) Xy — cos(8y) cos(8) X + cos(6y,) sin(0)Or
+ (s — 1)J cos(6,) sin(9) X|,
E{(s) = cos(0)0r + sin(0) X + (s — 1)J sin(0)0g.

Since v+ E!/(s) is complex-linear, the vector fields {E((s), E/(s)}i; can
again only be linearly dependent if E(s) = E!/(s) for some v # 0. Suppose
v=a++/—1b, for a,b e {e}l C R™"!. From the above expressions, we can
only satisfy E((s) = E,(s)+ JE}(s) at points g € S where the compo-
nents along X, and X; vanish; this requires sin(f,) = sin(6) = 0, further
implying that cos(6,), cos(0,) = £1, that a is a multiple of b, and thus that
E!/(s) = BE!(s) for some nonzero € C. In this case, the determinant of
E{(s), El/(s) within the subspace span(X, dr) is

sin 6 Fcosf+t(s—1)Jsinb
BHUH det (COS(9+(571)JSin9 =+ sin(6) )

= +8[v]| (1+ (s — 1)2sin” 0) # 0.

Thus, the frame remains linearly independent over the full homotopy. Fi-
nally, it is clear from the above expressions that E;/ (1) = v and E{j(1) = e,
which proves the lemma. O

4.2. Proof of the main theorem in the exceptional cases

It remains to prove Theorem 2.12 in the cases n = 1,3,7. The case n =1 is
trivial and will not be discussed further.

4.2.1. The case n = 3. Identify S® C R* ~ H with the set of unit
quaternions, giving it the structure of a Lie group. As such, we can re-
cover an orthonormal trivialization Eq, Fo, F3 of left-invariant vector fields
in T'S3 by extending the basis {i, j, k} of T1.53.

This gives rise to a complex trivialization of T'(7%5%)|gs (equipped with
the unique almost complex structure compatible with the symplectic form
and the round metric) and thus an isomorphism

G:T(T*S%)|gs == 8% x C3

distinct from the isomorphism F' considered in Lemma 4.2.
Thus we obtain an element 8 :=iF o G~! € w3Us.
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Lemma 4.6. The image o of 3 in m3A3 is equal to the element a(S?, nps).

Proof. We argue as follows. On the one hand, G~! maps S x R? to T'S3
and S? x iR? to the vertical distribution v of T(T*5%)|gs, by construction.
On the other hand, i F(T'S?) is transverse to S% x R? everywhere away from
the equator {1 € H}* N .S3, but has fold tangencies with S® x R? along that
equator. Thus, « has folds along that same equator, but no other singularities
anywhere else. O

=92

Figure 4.1: The element a(S%,npgs) € m3A3.

Next, consider the element 7 € w304 given by left-quaternion
multiplication—that is, for g € > ¢ H and h € R* ~ H, we have 1(g) - h =
gh € R*. We claim that the image of 7 in m3Uy ~ Z is equal to twice a gen-
erator, which can be seen as follows. It is well known that the image of
in m30 is a generator [AH61]. In particular, its image in the stable group
w305 must be a generator. Consider the map w305 — w3Us in the following
diagram:

(4) w305 m3Us w35 1305

|

m304 — m3U4

Since m3A5 ~ Z/2 and w05 ~ 0, the map w305 — w3Us, which is Z — Z,
sends a generator to twice a generator. Since w3Uy — w3Us is an isomor-
phism, it follows that the image of 1 in m3Uy is equal to twice a generator,
as claimed.
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Proof of Theorem 2.12 in the case n = 3. Recall that mw3A3 ~Z/4 and
m3Ay ~ Z /2, hence the stabilization map m3A3 — m3A4 is the unique epi-
morphism Z/4 — Z/2 whose kernel is the single non-zero element 2 € Z/4
corresponding to twice a generator.

Hence in view of Lemma 4.6 it suffices to prove that a € w3Ag is equal
to twice a generator. Since the map w3Us — w3Ag sends a generator to a
generator, it also suffices to prove that 5 € m3Us is equal to twice a generator.
Finally, since m3Us — mw3U, is an isomorphism and we know the image of the
element 1 under the map w304 — m3Uy to equal twice a generator, it suffices
to show that the images of 8 and 7 in m3Uy are identical.

In stabilizing § to an element § € m3Uy, consider the additional 4*" unit
vector field Ejy as the complexification of the outward unit normal to the
sphere. Considering S3 x C* as a restriction of the tangent bundle of the
complexified Lie group H ® C, note that Ej is also left-invariant (similar
to El,EQ,Eg). Extend F andAG to comEIeX vector bundle isomorphisms
F,G: 83 xC*— 53 x Ctby F(Eyl|,) = G(Eoly) = (g, €0). Since Ey is left-
invariant in the sense mentioned above, G1is simply the complexified
quaternion multiplication map, i.e. the image of 7 in w3Uy.

_ That iF s homotopic to the identity follows from Lemma 4.4; thus,
8= iFoG1is equal to the image of i in w3Uy, and we are done. (]

Remark 4.7. We note that in the case n = 3 one may alternatively argue
in the following way. By chasing the diagram

m3Up —— m3U3

L

m3Ag —— m3A3

it follows that a generator of w3As is given by the stabilization of the image
under m3Usy — m3Ao of a generator of m3Us. But from the determinant fibra-
tion SUs — Uy — U; we see that a generator of m3Us is given by the image
of a generator of m3S5Us, which we can take to be the identity map under
the standard identification S ~ SU, given by

z —w
(z,w)»—>[w z]’ (z,w) € 83 C C2.
One may explicitly compute the tangencies of the resulting map S% — A
with a suitable Lagrangian plane to be ¥?-nonsingular, and more precisely

to consist of a X! locus on a torus which is the boundary of a standard genus
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1 handlebody in R3, with 310 pleats on a (1,1) curve on the torus and no
¥ 10 points, see Figure 1.1.

It is then an entertaining exercise in Entov’s surgery of singularities
[En97] to show that the disjoint union of two copies of this chain of sin-
gularities can be surgered into a sphere of £!0 folds, i.e. into the element
a(S% nps). Hence the generator of ker(mgAs — m3A4), which is equal to
twice a generator of m3As, is represented by a(S?,nps). We know of no
analogous explicit argument in the case n = 7, which we discuss next.

4.2.2. The case n = 7. Just as in the quaternionic case earlier, we
identify ST Cc R® ~ O with the set of unit octonions. Let e =1 € O be
the first unit vector, and—for any unit octonion g € S”—define the left-
multiplication map

Ly :T.S"T = T,S",  (e,v)+ (9,9 ),

where we view v € T,S” ~ {x € R® ~ O | (x,¢e) = 0} as an octonion itself.
This yields a trivialization Ej, ..., By of T'S7, where E;|. = e; is the ith unit
vector in R® O 7,57 and Eilg = LyEie.

This gives rise to a complex trivialization of T'(T*S7)|s7 (equipped with
the unique almost complex structure compatible with the symplectic form
and the round metric), and thus an isomorphism

G:T(T*ST)|gr = 87 x C7

distinct from the isomorphism F' considered in Lemma 4.2.
Thus we obtain an element 8 :=iF o G~ € 7;Us.

Lemma 4.8. The image a of B in w7 A7 is equal to the element a(S®, npr).

Proof. On the one hand, G~! maps S x R7 to T'S™ and S” x iR to the ver-
tical distribution v of T(T*S7)|s7, by construction. On the other, iF'(T'S7)
is transverse to S” x R7 everywhere away from the equator {e}* N S”, and
has fold tangencies with S” x R” along that equator. Thus, « has folds along
that same equator, but no other singularities anywhere else. O

Next, consider the element 7 € n170g given by left-octonion
multiplication—that is, for g € ST~ 0;(0) and h € R® ~ O, we have
n(g) - h = gh € R® We claim that the image of 1 in 77;Us is a generator,
which can be seen as follows. It is well known that that the image of
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n generates w70 [AH61]; in particular, it generates m7Og. Consider the
diagram

(5) 770y 77Uy 77

|

w708 — m7Ug

From the fact that m7Ag = 0, we see that 7709 — 77Uy is an isomorphism
Z — Z. Since m;Ug — 77Uy is an isomorphism, it follows that the image of
1 in m7Ug must be a generator, which establishes the claim.

Proof of Theorem 2.12 in the case n = 7. Recall that m;A7 ~ Z/2 has only
one nonzero element; it is stably trivial because m7Ag = 0.

In view of Lemma 4.8 we need to prove that « € m7A7 is this unique
non-zero element. Since the map n;U7 — m7A7 is the unique non-zero map
Z — 7/2, it suffices to show that 8 € w7Uy is a generator. Finally, since the
image of  under the map m;0g — w;Ug is a generator and 7m;U; — m;Ug is
an isomorphism, it suffices to show that the images of # and n in m;Us are
identical. R

In stabilizing 8 to an element 3 € 77Uy, consider the additional 8 unit
vector field Ej as the outward unit normal to the sphere. The multiplication
map L, is diagonal along the radial coordinate, so we have Ey|y = LgEp|e,
just as with F, ..., Fr. R

Extend F' and G to_ (vector bundle) isomorphisms F,G : ST x C?¥ —
S7 x C¥ by F\(Eo|g) = @(Eolg) = (g,e0). We can see that G~! is simply
the complexified octonion multiplication map, i.e. the image of 1 in 77 Us.
Indeed, suppose v = >_ ve;, and calculate

é_l(gw) = Zvi@_l(% e;) = ZviEi]g = ZviLgei = Lgv.

That iF is homotopic to the identity follows from Lemma 4.4; thus, B =
il o G~ is equal to the image of 7 in 77Uy, and the theorem is proved. [

5. Applications
5.1. Arborealization of Weinstein manifolds with a single handle

We begin by briefly recalling some basic definitions of symplectic topology.
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Definition 5.1. A Liouville domain (W, \) consists of a compact manifold
with boundary equipped with an exact symplectic form w = d\ together
with a choice of primitive A such that the vector field Z which is w-dual to
A is outwards pointing along OW.

Definition 5.2. A Weinstein domain (W, \, ¢) consists of a Liouville do-
main (W, \) together with a Morse function ¢ : W — R which is Lyapunov
for Z.

The Lyapunov condition means that Z is gradient-like for ¢. The skele-
ton of a Weinstein domain (W, A, ¢) is the union of the stable manifolds of
the critical points of ¢, hence is a union of isotropic submanifolds. The skele-
ton is in general a quite singular object, but there is a particularly simple
class of Lagrangian singularities introduced by Nadler in [N13, N15] and fur-
ther developed in [St18, AGEN20a] called arboreal singularities. That four
dimensional Weinstein manifolds admit skeleta with arboreal singularities
was proved in [St18].

In arbitrary dimensions, it was proved in [AGEN20b] that if TW admits
a global field of Lagrangian planes, then the Weinstein structure of (W, A, ¢)
can be deformed so that the skeleton has arboreal singularities. The proof
relies on the ridgification theorem [AGEN19], which builds on the h-principle
for the simplification of caustics [AG18b] but is somewhat more subtle and
has a greater range of applicability.

As a corollary of our main result Theorem 1.2 we will now show that
for the class of polarized Weinstein domains admitting a Lyapunov func-
tion with only two critical points it is possible to apply the h-principle for
the simplification of caustics directly, following the approach of [St18], and
thus avoiding the more complicated treatment of [AGEN20b]|, which is only
necessary when one needs to control the interaction of three or more strata
in the skeleton. Moreover, for this special class of Weinstein domains we
show that the skeleton can be arranged to have arboreal singularities of a
particularly simple type, which does not directly follow from [AGEN20b].

Remark 5.3. We claim no originality in the arborealization strategy, which
simply follows the blueprint of [St18], all we do is verify that the neces-
sary homotopical hypotheses are satisfied, which is a consequence of Theo-
rem 2.12.

We recall that arboreal singularities are classified by finite rooted trees
equipped with a decoration of signs 4+1 on each edge not adjacent to the
root. The height of a vertex is defined to be the minimal number of edges in
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a path between that vertex and the root. The height of a tree is defined to be
the maximal height among all vertices. The height of an arboreal singularity
is defined to be the height of the corresponding signed rooted tree.

Corollary 5.4. Let (W, \, ¢) be a Weinstein manifold such that TW ad-
mits a global field of Lagrangian planes and such that the Morse Lyapunov
function ¢ only has two critical points. Then by a homotopy of the Wein-
stein structure we can arrange it so that the skeleton of (W, \) is arboreal,
and moreover so that the arboreal singularities which appear in the skeleton
have height < 2.

Proof. One of the critical points of ¢ is a minimum zg. Let us assume that
the other critical point x,, has the maximal index n, the subcritical case
being easier and left as an exercise for the reader. A neighborhood of xg
is exact symplectomorphic to the standard Darboux ball (B*", pdq — qdp)
and the stable manifold W*(z,,) of z,, intersects 9B** = $?"~1in an (n — 1)-
dimensional sphere A which is Legendrian for the standard contact structure.

Following Starkston [St18] we may deform the Weinstein structure
of (W,\,¢) in a neighborhood of xy from the standard Darboux model
(B?" pdq — qdp) to the standard cotangent model (U*D", pdq), where
U*D™ ={(q,p) € T*D", ||p|| < 1}. Moreover, we may arrange it so that the
global Lagrangian distribution n C T'W agrees with the vertical distribution
of U*D™ at its center point xg, and hence after a homotopy of n we may
assume that it agrees with the vertical distribution on all of U*D™.

Next, observe that 0D™ C 9(U*D"™) corresponds to a Legendrian unknot
in (0B?", £4q) which by a general position argument may be assumed to be
disjoint from A. Hence we may now think of A as a Legendrian subma-
nifold in S*D™ = {(p,q) € T*D", ||p|| = 1} C d(U*D™). The singularities of
the restriction 7|p : A — D™ of the front projection 7 : S*D™ — D™ are the
same as the tangencies of A with respect to the distribution v C T'(S*D")
tangent to the fibres of 7. Theorem 1.2 says that it will be possible to deform
A by a Legendrian isotopy so that these singularities consist only of semi-
cubical cusps as soon as we know that vy is stably trivial as an element
of mp—1A,—_1. We remind the reader that here we are implicitly using the
trivialization induced by a Weinstein neighborhood and the isomorphism of
symplectic vector bundles T(T*A)[y ~ A x C*~1.

Now, the image of v|s under the stabilization map m,—1A,—1 — 1A,
can be identified with the direct sum of v|y with the Liouville direction,
which is the vertical distribution of U*D" restricted to A. By construc-
tion, on U*D™ this vertical distribution agrees with our globally defined
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Lagrangian field n C TW. In particular we see that the stabilization of vy
extends to the n-disk given by the stable manifold W*#(x,,), which implies
that the stabilization of v|, is trivial as an element of 7,_1A,. This is pre-
cisely what we needed to show.

Therefore by Theorem 1.2 we may find a Legendrian isotopy A; of A = Ag
in S*D" such that 7|z, : Ay — D™ has singularities consisting only of semi-
cubical cusps, and this Legendrian isotopy can be realized by a homotopy
of the ambient Weinstein structure. The new skeleton is arboreal outside of
the cusp locus, with arboreal singularities of height < 1. To conclude the
proof it remains to arborealize the semi-cubical cusps. To do this one may
directly invoke [St18], hence the proof is complete.

For the benefit of the reader let us briefly explain how this works. First,
one introduces an explicit local model near the cusps to replace them with
arboreal singularities, which are of height 2. The model propagates new
arboreal singularities in the Liouville direction, so this modification is not
local near the cusps. To fix this, one can insert a wall along A1 on which
the propagated singularities land. After a generic perturbation this results in
new arboreal singularities of height 2 where before there were fold tangencies
of A1 with respect to v. O

mA

—

Figure 5.1: The skeleton after the application of the h-principle but before
trading the cusps for arboreal singularities of height 2.

5.2. Nearby Lagrangian homotopy spheres admit framed
generating functions

Let ¥¢ be an n-dimensional homotopy sphere and let >, C T*3y be a La-
grangian embedding of another homotopy sphere ;. In [ACGK20] it is
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proved that the stable Gauss map X1 — U/O is trivial, which is equivalent
to the statement that the vertical distribution of T*Xg is stably trivial as
a Lagrangian distribution defined along 1. Therefore, Theorem 1.2 implies
the following result.

Corollary 5.5. There exists a compactly supported Hamiltonian isotopy oy
of T*%g such that ¢1(X1) C T*Xy only has fold tangencies with respect to
the vertical distribution.

This result has the following consequence. In [ACGK20], the triviality
of the stable Gauss map X1 — U/O is deduced as a consequence of an exis-
tence theorem for generating functions. This theorem states that ¥; can be
presented as the Cerf diagram of a function f: W — R, where W — ¥ is
a bundle of tubes in the sense of Waldhausen [W82]. We briefly recall the
relevant definitions, and refer the reader to [ACGK20] for futher details.

Let E be a k-dimensional linear subspace of R™. Consider the codimen-
sion zero submanifold T € RV*! obtained by attaching to the half-space
{zn+1 <0} a standard (N + 1)-dimensional index & handle along the unit
sphere of E C {xn4+1 = 0}. We call Ty a rigid tube. We call a tube any codi-
mension zero submanifold 7'C RN*! which is the image of a rigid tube
under a smooth isotopy fixed outside of a compact set.

A =0

A
Figure 5.2: A tube.

Definition 5.6. Let M be a closed manifold. A tube bundle W — M is
a smooth fibre bundle of manifolds whose fibres are tubes T RY¥*1 in a
fixed Euclidean space.

Let T c RN be a tube. We consider functions ¢ : T'— R such that:
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(1) OT is a regular level set of g.

(2) g = xn41 outside of a compact set.

Let W — M be a tube bundle. We consider functions f : W — R such
that the restriction of f to each fibre is a function satisfying (1) & (2) and
such that:

(3) the fibrewise Euclidean gradient V7 f : W — RYN*! has 0 as a regular
value.

We denote by f, : T, — R the restriction of f to the fibre over m € M.

Definition 5.7. Let W — M be a tube bundle. The Cerf di-
agram of a function f:W — R is the subset {(m,z)e M xR:
z is a crticial value of f,,} C M x R.

Recall that J'M = T*M x R is equipped with the canonical contact
form o = dz — pdq for pdq the Liouville form on T*M. A Legendrian sub-
manifold A C J'M is a smooth submanifold of the same dimension as M
such that a|y = 0. The front projection of a Legendrian A C J'M is its
image under the map J'M — J°M, where we recall J°M = M x R.

Definition 5.8. Let W — M be a tube bundle, A C J'M a Legendrian
submanifold and f: W — R a function satisfying (1), (2) & (3). We say

that f is a generating function for A if the symplectic reduction defines an
embedding {0rf = 0} — J'M with image A.

Remark 5.9. In particular, note the front projection of A is the Cerf dia-
gram of f.

We can now state the existence theorem for generating functions:

Theorem 5.10 ([ACGK20]). Let ¥1 C T*%q be a Lagrangian homotopy
sphere. Then there exists a tube bundle W — 31 and a function f: W — R
such that f generates Aq.

Work in progress of the first author with K. Igusa aims to study such
Lagrangian homotopy spheres via the the parametrized Morse theory of
the generating function f: W — R, thought of as a family of functions on
the fibres f, : W, — R, z € ¥j. However, theorem [ACGK20] provides no
a priori control over the singularities of this family. In particular, there is
no guarantee that each f, is Morse or generalized Morse, nor can this be
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arranged by a generic perturbation. Here by generalized Morse we mean
cubic, i.e. the normal form for Morse birth/death, so that at the moment of
bifurcation f, takes the normal form given by z2 direct sum with the Morse
normal form in the other coordinates.

While existing h-principles in the literature [I87], [EM12] ensure that the
function f: W — R may be deformed by a homotopy f; : W — R so that
the restriction of f; : W — R to each fibre is Morse or generalized Morse, in
general such a homotopy will generate a Lagrangian cobordism rather than
a Lagrangian isotopy, and moreover will introduce self-intersection points so
that in particular the end result is an immersed rather than embedded exact
Lagrangian submanifold. One may overcome this issue by using Corollary 5.5
instead.

Corollary 5.11. There exists a compactly supported Hamiltonian isotopy
ot of T*Xq such that ¢1(X1) C T*Xq is generated by a function f: W — R
on a tube bundle W — Yo with the property that the restriction f, : W, - R
to each fibre is Morse or generalized Morse.

Proof. This follows from an application of Corollary 5.5 followed by an appli-
cation of Theorem 5.10. Indeed, if a function generates a Lagrangian whose
tangencies with the vertical distribution consist only of folds, then the func-
tion has Morse birth/death singularities along the tangency locus and is
Morse elsewhere. (]

\Z /Ng

Figure 5.3: A birth/death of Morse critical points corresponds to a semi-
cubical cusp in the front projection and to a fold type tangency in the
Lagrangian projection.

Finally, we prove that in the situation under consideration it is moreover
possible to find a generating function f: W — R which is framed, i.e. the
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restriction f, of f to each fibre is Morse or generalized morse and further-
more the negative eigenspaces to the Hessian of f, at the critical points are
equipped with framings that vary continuously with x € ¥y and are suitably
compatible at the birth/death points. Framed functions are useful because
they are homotopically canonical [I87], [EM12], and can be used to compute
higher K-theoretic invariants of the bundle they are defined over purely in
terms of the associated family of Thom-Smale complexes [102].

Intuitively, near a birth/death point the negative eigenspaces of the two
critical points which come to be born or die differ by the 1-dimensional
subspace in which the function is cubic, which is canonically framed by the
direction in which the function is increasing. The compatibility requirement
is that the framing for the negative eigenspace of the critical point of greater
index is obtained from the framing of the negative eigenspace of the critical
point of smaller index by adding the canonical framing of the cubic direction.

An equivalent formulation (up to stabilization of f) is the following:
for a function f: W — R whose restriction to each fibre f, : W — R only
has Morse or generalized Morse critical points, the negative eigenspaces to
the Hessian of f, can be suitably stabilized depending on the index and
assembled into a real vector bundle over the fibrewise critical locus of W,
whose class in reduced topological K-theory is called the stable bundle. Then
the condition that f admits a framing is, up to stabilization, equivalent to
the condition that the stable bundle is trivial, see [I87] or [EM12] for details.

Corollary 5.12. There exists a compactly supported Hamiltonian isotopy
or of T*Xg such that p1(X1) C T*%g is generated by a framed function f :
W — R on a tube bundle W — %.

Proof. The function f: W — R produced by Corollary 5.12 need not admit
a framing, however we may easily correct this. Let £ — ¢1(31) be the stable
bundle of f as explained above. It is known that the projection X7 — X
is a homotopy equivalence [A12], hence ¢1(X1) — Xg is also a homotopy
equivalence, hence we may find a real vector bundle F' — ¥ such that the
direct sum of E with the pullback 7*F of F' by ¢1(X1) — X is trivial.

We may use F' to perform a twisted stabilization of W to obtain a new
tube bundle Wgr — ¥, namely this is the result of ‘folding down’ the ex-
tra dimensions on the function f + Qr, where Qr : R*™ — R is a family of
quadratic forms parametrized by ¥ whose negative eigenspaces form a real
vector bundle isomorphic to F'. By construction, the new tube bundle Wg
has the property that there exists a function g : Wr — R generating ¢1(X;)
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which near its critical points coincides with f + Q. Hence the new gener-
ating function g has stable bundle EF & 7* F', which is trivial. This completes

the proof.
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