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Abstract

We present a C interior penalty finite element method for
the sixth-order phase field crystal equation. We demon-
strate that the numerical scheme is uniquely solvable,
unconditionally energy stable, and convergent. We remark
that the novelty of this paper lies in the fact that this is the
first C° interior penalty finite element method developed
for the phase field crystal equation. Additionally, the error
analysis presented develops a detailed methodology for
analyzing time dependent problems utilizing the C® interior
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Hmbers penalty method. We furthermore benchmark our method

against numerical experiments previously established in the
literature.
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1 | INTRODUCTION

Phase field crystal (PFC) methodology is emerging as a popular means of modeling many important
phenomena observed in materials science. Examples include grain growth, dendritic and eutectic solid-
ification, epitaxial growth, and more. We refer the interested reader to the review paper [1] for more
details including references to the examples above. Due to the growing number of applications of the
PFC model and its variations, there is an interest in developing accurate and stable numerical schemes.
Indeed, much progress has already been accomplished within the finite difference and Fourier spectral
framework. The goal of this paper, however, is to present a finite element approach to the PFC model
which is unconditionally energy stable, uniquely solvable, and convergent.

2510 © 2022 Wiley Periodicals LLC.  wileyonlinelibrary.com/journal/num  Numer Methods Partial Differential Eq. 2023;39:2510-2537.
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Let Q@ ¢ R? be an open polygonal domain and consider the dimensionless energy of the form [2].
1 1- 1
B = [ {30+ 1550 - V0P + Ja07 ) ax. (1.1
Q

where ¢ is the density field, and € < 1 is a constant. Following [2], we consider conserved gradient
dynamics. The resulting equation is known as the PFC equation,

0p =V - (M(P)Vp), (1.2)
where M(¢) > 0 is a mobility, u is the chemical potential defined as
pi=8sE = + (1 —€)p +2A¢ + A%, (1.3)

with 64 E denoting the variational derivative of E with respect to ¢, and where either the natural bound-
ary conditions d,¢ = 0,A¢ = d,u = 0 or periodic boundary conditions are assumed. In the remainder
of the paper, we only consider the special case for which the mobility is held constant M(¢p) = M
and natural boundary conditions are assumed. Therefore, the system of equations which is considered
herein is:

0p=V-MVp), (1.4a)
u=¢ + (1 —e)p+2A¢ + A%, (1.4b)
Ontp = 0yAp = O = 0. (1.4¢)

As stated above, many papers focusing on finite difference and spectral methods for the PFC equation
exist in the literature [2—8]. We summarize a few of the most relevant references here. Wise et al.
[2] present an energy stable and convergent finite difference scheme for the PFC equation. They use
a first order in time convex-splitting scheme for time discretization and show a detailed analysis of
the energy stability resulting from the proposed time stepping approach. Additionally, they are able to
show unique solvability and local-in-time error estimates which ensure the convergence of the scheme.
Dong et al. [4] present a convergence analysis and numerical implementation of the second-order in
time scheme originally considered in [6] where again spacial discretization is achieved via a finite
difference method.

Numerical schemes employing the finite element framework for the PFC model is lacking in the
literature. One of the most challenging aspects of the PFC model with respect to a finite element dis-
cretization has to do with the fourth order term residing in the chemical potential (1.4b). However,
we refer the reader to two papers in the literature which present different methods for handling the
fourth order term. Backofen et al. [3] introduce a mixed formulation composed of three second-order
equations. For time discretization, they employ a first order in time finite element method which
essentially follows a backward Euler scheme but where the nonlinear term in the chemical potential
is linearized. A brief comparison of the time stepping scheme utilized in the Backofen paper to the
time stepping scheme employed in [2] is presented in the latter paper. We point out here that, due to
their chosen mixed formulation, the resulting system to be solved is non-symmetric and indeterminant
possibly resulting in large computational costs. Hoppe and Linsenmann [5] introduce a C° interior
penalty finite element method for a sixth order Cahn-Hilliard equation which models microemulsi-
fication processes and is closely related to the PFC model. However, they are only able to establish
semi-optimal convergence results and are not able to show their numerical scheme preserves energy
stability. Additionally, the work in [5] tends to deviate from the framework established in the below
mentioned literature on C° interior penalty methods.
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In this paper, we employ the C? interior penalty (C°-IP) method for spacial discretization and the
convex-splitting time discretization proposed in [2] to the PFC model (1.4a)—(1.4c). The C°-IP method
is characterized by the use of C° Lagrange finite elements where the C! continuity requirement inherent
to standard conforming finite element methods has been replaced with interior penalty techniques
and was first introduced by Engel et al. [9] and revisited and analyzed by Brenner and co-workers
[10-20] also see [21] and [22-24]. These works include a priori and a posteriori error analyses as well
as multigrid and domain decomposition solvers for the plate bending problem. While C°-IP methods
have been around for almost two decades, its application to time dependent nonlinear problems with
Cahn—Hilliard type boundary conditions is relatively recent and the authors are aware of only two such
papers: the Hoppe and Linsenmann paper mentioned above and the paper [22] by Gudi and Gupta on
a C? interior penalty method for the extended Fisher—Kolmogorov fourth order equation.

In contrast to the work done by Hoppe and Linsenmann [5], this paper presents a C°-IP method
for the PFC equation which is energy stable. Additionally, we are able to prove unique solvability and,
most importantly, establish a framework for the convergence of C° interior penalty methods which
follows in the framework of most of the existing literature regarding these methods. In contrast to
the work completed by Gudi and Gupta [22], we are able to establish convergence results for the
sixth order problem and in the case in which solutions to the weak form of the PDE are not elements
of the finite element space. Furthermore, we present two numerical experiments which demonstrate
the effectiveness of our method. Finally, we note that the convex-splitting time stepping strategy was
chosen due to the nice properties regarding energy stability and unique solvability for H~! gradient
flow problems. However, we emphasize that the novelty of this paper lies in the fact that this is the
first C° interior penalty finite element method developed for the PFC equation and the error analysis
presented develops a detailed methodology for analyzing time dependent problems utilizing the C°
interior penalty method. It is likely that a different time-stepping strategy would lead to higher-order
convergence with respect to time (see, e.g., [25, 26]), and different strategies will be considered in
future works.

The development of the C°-IP method relies on a weak formulation of (1.4a)—(1.4c). To this end, we
introduce the function space Z := {z € H*(Q)n-Vz=0o0n ag} and remark that we use the standard
Sobolev space and norm notation throughout the paper. In particular, we let || - || ;2 denote the standard
L? norm over the region Q but specify the notation || - || 2(s) as the L? norm over a general region S C R?
which is not Q. A weak formulation of (1.4a)—(1.4c) may then be written as follows [27]: find (¢, u)
such that

¢ €L¥0,T;2)nL* (0,T; H(Q)), (1.5a)
o¢ € L* (0,T; Hy'(Q)) , (1.5b)
ueLl*(0,T;H (), (1.5¢)

and there hold for almost all ¢ € (0, T)

(0, V) + (MVu,Vv) =0 Vv e H(Q) (1.6a)

(@ +d =), w) =2V, Vy) + al,w) — (u,w) =0 Yy €Z (1.6b)
with the compatible initial data

$(0) = o € H*(Q) such thatn - Vb = 0 and n - VAg, = 0, (1.7)
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and where (u, v) is the L?(Q) inner product of # and v and a(u, v) = (Vzu : Vzv) is the inner product
of the Hessian matrices of # and v. Additionally, we use the notations H;,l(Q) to indicate the dual
space of H'(Q) and (-,-) to indicate a duality pairing. Throughout the paper, we use the notation
d(1) := D(-, 1) € X, which views a spatiotemporal function as a map from the time interval [0, 7] into
an appropriate Banach space, X. The system (1.6) is mass conservative: for almost every ¢ € [0, T,
(¢(t) — o, 1) = 0. This property may be observed by setting v = 1 in (1.6a).

The paper proceeds as follows. Section 2 develops the fully discrete C° interior penalty finite
element method for the PFC model. Section 3 establishes unconditional unique solvability and uncon-
ditional stability. Section 4 presents the error analysis. Section 5 demonstrates the effectiveness of our
method through two numerical experiments and we conclude in Section 6.

2 | AC'INTERIOR PENALTY FINITE ELEMENT METHOD

In this section, we develop a fully discrete C°-IP method for the PFC equation (1.4a)—(1.4c). Through-
out the remainder of the paper we consider only the case with M = 1 but note that the results will hold
for any M > 0. Let 7, be a geometrically conforming, locally quasi-uniform simplicial triangulation
of Q. We introduce the following notation:

hx = diameter of triangle K (h = maxkeg, hk),
vk = restriction of the function v to the triangle K,
|K| = area of the triangle K,
&), = the set of the edges of the triangles in 7,
e = the edge of a triangle,
|e| = the length of the edge,
= {v € C(Q)|lvk € PI(K)VK € T h} the standard finite element space associated with 77,
of degree 1,
o 7= {v € C(Q)|vk € PA(K)VK € I h} the standard Lagrange finite element spaces associated
with 7, of degree 2.

Let M be a positive integer such that ¢, = 1,1 + 7 for 1 <m < M where typ = 0, fy; = tp with

7 = tpM. A fully discrete C° interior penalty method for (1.6) is: given ¢"~! € Z,, find ¢, u* €
Zy, XV}, such that

(8:00vi) + (Vup', V) = 0,Vv, €V, (2.1a)

aif (@) + ((65) + A= wi ) =2 (V07 Vun) = (4 wi) = 0¥ €21, (2.1b)

with initial data taken to be (,{)2 = Pppo = Ppp(0) where P, : Z — Z; is a Ritz projection operator
(reminiscent of the projection defined in [28, p. 887]) such that

al Prp— &)+ (L —e)(Pup— &) =0 VEEZ, (Pup—¢,1)=0, (22)

and where §,¢" := W%’m_l The bilinear form a/’'(-, -) is defined by

A= ,;,/ werwa 3 [ [5]
= /{{ }} ”ane”d“ e§| | ”an” Hane”d& 23)
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with @ > 1 known as a penalty parameter. The jumps and averages that appear in (2.3) are defined as
follows. For an interior edge e shared by two triangles K, where n, points from K_ to K, we define
on the edge e

ov 0%y 1 (0*>v_ 0%
”dngﬂ =n,-(Vvy —Vv_) and {{ pw }} =5 < o + an’; , (2.4)
where % =1n,- (Vzu) n. and where v, = v|g . For a boundary edge e which is an edge of the triangle

K € T, we take n, to be the unit normal pointing toward the outside of Q and define on the edge e

2
”aa:e” =—-n, - Vvg and {{ gn‘é }} =n,- (Vzv) ne. 2.5)

Remark 2.1  Note that the definitions (2.4) and (2.5) are independent of the choice of
K., or equivalently, independent of the choice of n, [10].

3 | UNIQUE SOLVABILITY AND STABILITY

In this section, we show that the C°-IP method for the PFC equation outlined in the previous section
admits a unique solution and that the system follows an energy law similar to (1.1). In order to show the
existence of a unique solution and unconditional energy stability, we will need the following definitions
and lemma. First, we define the following mesh dependent norm

2

2 2 a 0vh
il = 3 Wl + 30 H aneﬂ - .1
€T, e€E), L?(e)
The next lemma guarantees the boundedness of ai’ (-, -).
Lemma 3.1 (Boundedness of aiX(-,-)). There exists positive constants Ceont and Ceoer
such that for choices of the penalty parameter a large enough we have
ay Wi vi) < Ceont 1Walloy alloy  YWhvi € Z, (3.2)
CeoerllWallzp < aff Whwa)  Ywy, € Za, (3.3)
where the constants Ceon and Ceoer depend only on the shape regularity of T .
Proof.  The proof of the Lemma may be found in [10]. (]
Additionally, we define the spaces L3(Q) := {ve&L*Q)|(v,1)=0} JH'(Q) = H'(Q) N

L%(Q),Hj(,‘(ﬂ) = {v € Hy'(Q)|(v, 1) = O} V= Vin L3(Q), and Zn=2ZyN L3(Q). The operator
T: H;,l(Q) — H'(Q) is often referred to as the “inverse Laplacian” and is defined via the following
variational problem: given { € H;,l(Q), find T € H'(Q) such that

(VI V) =(¢x)  VyeH'(Q. (34

The well posedness of the operator T is well known, see for example [29], and an induced negative
norm may be defined such that ||v]l = (VTv, VTW'? = (v, Tv)!? = (Tv,v)'2. We furthermore



DIEGEL AND SHARMA W 2515
ILEY

define a discrete analog of the inverse Laplacian, T, : Zn — Zp, via the variational problem: given
(e Zh, find T, { € 2;, such that

(VT Vo) = G 1) Y € Za. (3.5)

Again, the well posedness of the operator T}, is well known and an induced discrete negative norm on
7y, is defined as Vil = (VT VT2 = i, Tivw)'? = (Thvp, vi) 2.

3.1 | Unconditional unique solvability

In this section, we demonstrate that the scheme (2.1a) and (2.1b) is uniquely solvable for any mesh
parameters 7 and % and for any of the model parameters such that € < 1.

Lemma 3.2 The scheme (2.1) satisfies the discrete conservation property (qﬁf, 1) =
(¢31) = (Pugpo, 1) = (¢o, 1) for any 1 <m < M.

Proof.  The result can be clearly observed by setting v, = 1 in (2.1a). (]

Remark 3.1 The quantity ﬁ (o, 1) is referred to as the average of ¢y over Q and

is denoted by ¢,. Due to the discrete conservation property, it follows that (¢ZI, 1) =

(#).1) = Q] ¢y

Lemma 3.3  Suppose Q is a bounded polygonal domain. For all w, € Z,,v € H'(Q),
y > 0, and a large enough,

| (Vwi, V) | < V(1 +7) [wallon V]2 (3.6)
Proof.  We begin with the integration by part formula:

/th-Vvdx=/ %vds—/Awhvdx.
K ok on K

Summing over all triangles in 5, and noting that the sum involving the integral over the
boundary of each triangle can be written as a sum over the edges in £, we have

Z /Kth.Vvdxz Z/e”?::” vds — Z /KAwhvdx.

KeT, eEE), KeT,

Using the Young’s inequality and a standard trace inequality [30, 31] we have
2

2
1 Z1f o
<z / vW,,-mx> s<1+><2|e|‘ 2] ><Z|e|||v||i2@>
keg, /K Y =rh e Il || 20 e€E),

+ (1 +)/)< Z |Wh|[2.12(1()>< Z ”v“iz(l()>
KeT, KeT,

2 o112
<@+ plwallzplivilze

for a large enough. n
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Lemma 3.4 Let ]~ Le 7, be given. For all ¢, € Zn, define the nonlinear functional

2
@h_(l’h
T

G (@n) =

—
+ 2% (@n: @) + — ”(Ph+¢o L

-1Lh

- R .
+ Tg”qoh+¢0 L =2(Ve T Ve). (3.7)

The functional Gy, is strictly convex and coercive on the linear subspace Z;,. Consequently,
Gy, has a unique minimizer, call it @' € Zy,. Moreover, @} € Z, is the unique minimizer
of Gy, if and only if it is the unique solution to

aif (o) + (o +G0) i) + (1 =) (@ +bo,wn) = (stovn) =2 (Vo™ Vus)  3.8)

forall y;, € Zh, where ,u,’l’f* € \O/h is the unique solution to

m m—1

(Vus, Vvi) = <‘p” @i
T

, Vh> Vv, € ‘O/h. 3.9

The proof of Lemma 3.4 follows from a convexity argument similar to the proof of existence and
uniqueness for the solution to the finite difference method developed by Wise et al. [2] and for a
convex-splitting finite element method for the Cahn—Hilliard—Darcy—Stokes system found in [29]. We
have included the details in Appendix A for the interested reader.

The next theorem demonstrates the unconditional unique solvability of our scheme.

Theorem 3.1  The scheme (3.8) and (3.9) is uniquely solvable for any mesh parameters
T and h and for any € < 1. Furthermore, the scheme (3.8) and (3.9) is equivalent to the
scheme (2.1a) and (2.1b). Thus, the scheme (2.1a) and (2.1b) is uniquely solvable for any
mesh parameters T and h and for any € < 1.

Proof.  Suppose ((p”‘ ! 1) = 0. It is clear that a necessary condition for solvability of
(3.8)—(3.9) is that
(@i 1) = (@' 1) =0, (3.10)

as can be found by taking v, = 1 in (3.9). Now, let @}, ', € Z; X V), be a solution of
(3.8) and (3.9). Set

1

= (o +90) " + (=) (a4 ) 1) = o

12| (((Ph +¢o) ; >+(1—s)$o, (3.11)

and define ' = ', + ﬁ There is a one-to-one correspondence of the respective
solution sets: @}, ', € Zp X V), is a solution to (3.8) and (3.9) if and only if @', u;' €
Zy X Vy, is a solution to (2.1a) and (2.1b), where

i =@+ bor  H = His F Hy (3.12)

But (3.8) and (3.9) admits a unique solution, which proves that (2.1a) and (2.1b) is
uniquely solvable. .

3.2 | Unconditional stability

Energy stability follows as a direct result of the convex decomposition represented in the scheme. First,
we define a discrete energy closely related to (1.1),
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— IVoIIZ. + af,P(d) é). (3.13)

F@) = 7llf +

Lemma 3.5 Let (¢}, u)') € Zy X Vj be a solution of (2.1a) and (2.1b). Then the
following energy law holds for any h,t > 0:

1—
P+ S + e % { 5+ s

m=1

||¢m§ ¢h ”LZ + laip (57¢Zn,6r¢h’")} =F (¢2) s (3.14)

5T(¢Z’)

foralll1 <¢ <M.

Proof.  Setting v, = ' in (2.1a) and y;, = 6,¢)' in (2.1b), we have
(890, mit) + (Vi Vuy') =0,
() + Q=00 ) + il (11 6.08) =2 (Vo5 Vo) = (i 6:7) = 0

Note that (¢')" = [(th )2 (g =) + () (o + ! )]. Adding the two
equations together and using the polarization identity, we obtain

vl + 5 (o - o ) N e
+ 4 (n«m 12 - | o[}, ) + S5 ool
21 (o) = ol (8 05) + Sl (5.7 5.7)
-2 (1ot - ||v¢ L) +elvadr s, <o
Applying erm gives the desired result. n

The discrete energy law implies the following uniform a priori estimates for ¢}’ and p;".

Lemma 3.6 Let (d)f, yh’”) € Z, X V), be the unique solution of (2.1a) and (2.1b). Sup-

pose that F ((1)2) < C independent of h and that e < 1 + UCou=L Then the following
estimates hold for any t,h > 0: .
max (|7 + 6715 + el + 19715,] < €. (3.15)
¢
Y ||Vuyz < C. (3.16)
m=1
¢
23 {Ive.ap | +Igro.apl + oo, ) <. (3.17)
m=1

for some constant C that is independent of h,t,and T.



2518 DIEGEL AND SHARMA
58 | \WILEY

. . 2
Proof.  First, note that since (a2 — 1) > 0, then we have

1 1 Q
Sl > 2z, - 1 G.18)

for any u € L*(Q) N L*(Q). Thus, as a result of Lemma 3.5 and Equation (3.3), we have
forany0 <m <M

1 2 | 1-—¢ m |12 coer 7
el = T S il = 1Vl + =5 1015
1 m 1- 1 m
< el + ==l = IVl + aif (¢ 9) < F(4) <C.

Rearranging a few terms and invoking Lemma 3.3 and Young’s inequality, we have
m C er m ug
I+ =5 1901 < €+ 1915
<C+VA+D 872 187 2

2- . 1+
C2NIE: + 5= 7 1

<C+

The last term in estimate (3.15) follows as long as

(I+y) or £<1+(1_7)Ccoer_1.
(2 - 8) Ccoer

The remainder of the proof follows as a result of Lemma 3.5. (]

Ccoer >

Remark 3.2 Following [10], we note that C.; can be chosen to be close to 1 as long
as the penalty parameter « is large enough. In this case, y could also be chosen close to 0
and (3.15) will hold as long as € < 1.

4 | ERROR ESTIMATES

In this section, we provide a rigorous convergence analysis for the semi-discrete method in the
appropriate energy norms. We shall assume that the weak solutions have the additional regularities

¢ €L (0,T;H Q) nL* (0, T; H(Q)),

o € L* (0,T; H(Q) nL* (0,T; Hy' (Q))

oup € L* (0, T; L*(Q)),

u €L (0,T;H (Q)),

o € L* (0,T; L*(Q) . 4.1)

The interior penalty method (2.1a) and (2.1b) is not well-defined for solutions to (1.6) since Z, & Z.

Therefore, we define W), C Z to be the Hsieh—-Clough—Tocher micro finite element space associated

with 7, as in [11]. We furthermore define the linear map E;, : Z;, - W, N Z as in [11] which allows
us to consider the following problem: find (¢, 4) € Z x H'() such that

(ald)a Vh) + (Vﬂ’ V\/h) = 0’ VVh € Vh, (423)

P (o) + (@) + (1= e)p.yi) —2(Ve, V) — (4, wi)
= ay (b, wn — Evn) + (@) + (1 — )b, v — Eny)
- 2(Vo,Vyy, — VE ) — (u, wn — Epyy), Yy, € Z. (4.2b)
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Note that solutions of (4.2) are consistent with solutions of (1.6) since aflP (p, Ery) = a (¢, Epy) for
all y € 7.

Remark 4.1 One of the primary challenges in the error analysis to follow arises due to
insufficient global regularity possessed by solutions to (1.6) in the space Z;. To remedy
this, we rely on considering the Hsieh—Clough—Tocher micro finite element space asso-
ciated with 7, with the help of the enriching operator E;, : Z, — W, NZ asin [11]. This
new weak formulation is well defined on the finite element spaces and additionally illus-
trates the error which is encountered by utilizing a non-conforming method such as the
CY interior penalty method.
Additionally, we introduce the following notation:

e’ = el +ef”, eb" =" — Py, ef™ =Py — @),

e’ =ei" +e", e = u" —Ryd", e, =Ryd" — ),
where ¢ := ¢ (t,,) and R;, : H'(Q) — V,, is a Ritz projection operator such that
(VRup—p), Ve =0 VE€V,, Ruyu—p1)=0. (4.3)
Using this notation and subtracting (2.1) from (4.2), we have for all v, € V}, and v, € Z,

(8.7, vi) + (Ve V) = (6:¢" — 09", vi)

aif (e, un) + (@ = (7)) + ((1 = P, y) =2 (Ve V) = (@, yn)

==2(Vg" = V", V) +aif (" wi — Enyn) + (") + (1 — )™ wi, — Eqyny)
= 2(V¢", Vyy, — VEwuy) — (", wi — Epyy) .

Invoking the properties of the Ritz projection operators, we have for all v, € V;, and all y;, € Z,

(e ) + (Ve Vi) = o™ = 9", ) — (38" w1 4.4)

a;’ (ef‘m,u/h> + ((1 - e)ef"”,u/h) -2 (Vez)’m_l,Vu/h> — (el™, wn)
=2(Vel"" V) + (" un) = (@™ = @™ wn) =2 (Vo' = Vg™, Vi)

+ af (" wi — Epyn) + (™) + (1 — €)¢™, wi — Epny)
- 2(V@",Vyy, — VEuu) — (", win — Egyyy) . (4.5)

Setting vj, = ¢/ and y;, = 6.¢?”" and adding and subtracting 4 (e,‘f"", 5,ef’m), we arrive at the key

error equation
umi2 1w _¢m ,m ¢.m m _ ,m M
Ve, " |2 + an (eh ,6.€), >+4<eh ,6.€), )+ ((1 ee;", 5.ef >
= 2 (Ve Voe") = (64" - 90" el - <5Tef§’m,®2”m) + (el seep™)
+2(Vgr - Vgt vael) +4 (e 5ef ") - (@) - @) beef”)

+2 <Vej§’""‘, Vé,eh’m> +dlf (¢m,5feh”" - Eha,eh"”)



2520 DIEGEL AND SHARMA
=20 | \WILEY

+ (@ + (- 56" — Eysel”) =2 (V" Vool - VE5.ef" )
_ (ﬂm, 5oed" — Ehéfeh’m> . (4.6)

The next lemma relates the discrete negative norm of §,e; " to the L? norm of Ve, and is critical to
the proof of the main theorem of the paper which is stated below.

Lemma 4.1 Let (¢™, u™) be a weak solution to (1.6), with the additional regularities
(4.1). Then for any h,t > 0 and any 0 < m < M, we have

C

T

. 2 - by by
5.e <4||Vel |7+ Ct [ 1105b(s)]22ds + ll0,b(s) — Prosh(s)I13,ds,
—Lh fs ft

where the constant C may depend upon a Poincaré constant but does not depend on the
spacial step size h or the time step size t.

Proof.  The proof is similar to that of Lemma 3.5 in [29]. Details of the proof can be
found in Appendix B. n

The following lemma will bound many of the terms on the right hand side of (4.6) by oscillations
in the chemical potential 4 which is considered data. The procedure is known as a medius analysis and
has been utilized in much of the literature found on the C°-IP method and details can be found in [10].
However, its application to time dependent problems is new. We provide the key aspects of the proof
below but reserve several of the more rigorous details for Appendix C.

Lemma 4.2 Suppose (¢, ™) is a weak solution to (1.6), with the additional regular-
ities (4.1). Then for any h,r > 0and any0 <m < M,

aiP <¢m, ezﬁ,m _ Eheh,m> + <(¢m)3 +( - £)¢m, @f,m - Ehe;f’m>
= 2(ven v (el - Erel™)) - (u el — Erel™)

Ccoer
4p

R o Rt

and
aizP <6T¢m,@f’m_1 _ Ehef,m—l) + (51' ((¢m)3 +(1- g)d)m) ,@f’m_l _ E}[@Zﬁ,m—l)

= 2(6:v¢"V (ef" — Erel" ™)) = (5en. e — Erel )

< close; @u ] + e[, + et [, (438)

for t° € (ty, tns1) wWhere the arbitrary constant f > 0 and where Osc;j(v) is referred to as
the oscillation of v (of order j) defined by

1

Oscj(v) = < > kv - V||§2(K)) (4.9)

KeT,

and where V is the L* orthogonal projection of v on P;(Q, ), the space of piecewise
polynomial functions of degree less than or equal to j, that is,

/(V—T/)u/dx=0 Yy € Pi(Q,5)).
Q
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Proof.  The definition of the Ritz projection (2.2) leads to,
P (g @@ _ g b my\3 1— m o @®M _ g a®m
a, (9", e, ne, )+ (@) + (1 —e)d”, e e,
_ m ¢m m ¢.m Jm
2<V¢) .V (eh Ee;, )) <ﬂ e, — Eye, )
= ah <¢m Pro", @f’m - Eheh’m) + aﬁlp (Ph(i)m, @f’m - Eheh’m>
my\3 _ mN\3 mo_ m m\3 qS,m_ \1m
+ | (@™) Pre™) > €@ Eh@h + | (Prd™) > @) Eh@h
+ (- (¢m L Eheh""> +(1—¢) (Phqu, el — E,,eh"”)
) (V (" = Pyd™)., V (ef”” - E;,eh’m)) —2 (V Pyd™) .V (ef”" - E,,eh"”>)
<y el — Eheh’m>
e (qb - Phqb’”,Eheh’m) +al (Phqb’" om _ Eheh’m>
+ (@ =@y e = i) + (Pr™) el "~ Eiel" )
— (1=e) (¢ = Pi" Evel” ) + (1 - &) (Pug", el — Erel” )
-2 (V (" — Pyd™), V (e;'}’" - Eh@h’m>> —2 (V (Pyd™),V <e;”’” - Ehef’m>)
- (;4’", el — Eheh’m>
_ IP m _$.m ¢.m my\3 m _¢pm ,m
=alf (Pug. e — Evel” ) + ((Pa™) + (1= )Py, e — Ereff” )

—2<V(Ph¢m),V(ef’m—Eheh’m» (M @f'"—Eheh’m)

? (Enef” OPyP"
V2 (Ppd — ") 1 V2 <E m d / N s
+ ) /K (Phg™ — ™) : ey x+2 pw o

KeT, e€g),

— (1-0)(¢" —Pi" Eiel" )

+ <(¢'")3 — Py, el — Eheh’m) _2 (v @" = Pud™), V (e,‘f”" - Eheh’m>> . @4.10)

Furthermore, the following equivalent formulation of the bilinear form a{f (-,-) for
functions satisfying w € H* (Q, 7)) N H'(Q) and v € H*>(Q, T },) n H(Q):

P o 2 ow
alP(w,v) = K;J / (A%w vdx+e§ {{ e }} ” ane”ds
WA I v R B = ket | £ )
- — + — ds,
eee, on, on? oan, on.ot. || ot, el | on. on,




2522 DIEGEL AND SHARMA
2 | \WILEY

where H* (Q,T,) = {v e *(Q)|vk e H'(KIVK € I h} and where ¢, denotes the unit
counterclockwise tangent vector, yields the following

3 (P”d’m’@f’m - Eh@h’m> =2 / (A%Pyg™) (ef’m - E;,eh'm> dx
K

KeT,

-

0% (ef’m - Eheh’"’>
oP, " OAPP™ ( dm m )
3 das — —E das
+ Z on? ” on, + on, ” Ch "®h

L

- 3

b.m . ¢.m m
2p m 0 (@h - Epe; ) 2p gm0 (eh - Eye; )
B z 0°Puop H s — || 9Fnd H das

3

cez, on? on, on,ot, ot,
a7 [0 (ef’m - wa"")
ta) 1 / Py ds. @.11)
= lel J. || one on,

Combining Equations (4.10) and (4.11), we have
af (@7, ef" = Eue™ ) + (@ + (1 - )", ef " = Eyefl”)
-2 (V(j)’”, \% <ef’m - Eheh’m>) - (/4’”, el — Eheh’m)

= / (A2Py@" + (Pug™) + (1 — )Pyg™ + 2APy¢" — ™) (e;f*’" - Eheh’m> dx
K

KeT,

dPhqu dAP;,qS'" ¢,m M
eegl/({{ o }}H on, ”+[| on, H(‘Bh - Epe; >>dS

-

¢.m ,m ¢.m Jm
2 m 0 <®h —Eheh ) 2 m ( e, —Eheh )
/”aPmﬁH +H5Ph¢ﬂ ds
e€g,

on2 on, on,ot, ot,

d (e — E,e?™
1 oP,¢™ ( h Woh )
”Zu/e” on, H on, “

e€eE), €

+ Y /KV2 (Pad™ — ¢™) & V2 (Eheh’m) dx—(1—¢) <¢'" - Phqb’”,Eheh"">

KET,
+ (@ = i el — Bl ) =2 (V@ = Pug™). V (el = Eel™) ).

Following the medius analysis presented in [10] (details may be found in Appendix C),
all but the last three terms on the right-hand side can be bounded by:
2 12
Lz(t’))

”a Py — ¢>’”)”

on,

<[Oscj (,u’")] Z @™ — Prd™ |H2(K) + Z

KeT, eeé‘h
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The last three terms on the right-hand side are bounded as follows:

(=) (o7~ P Eiet”)

12
< C( Z |¢" — Ph¢m|iz(1()> Hef’mHM

KeT,

12

scl X" =Pl | [l

< <Z |¢ W |12k €y )
KeT,

p.m Jm
e, —Epe;

< @™ - @igmy

L2 L2

(@ = uay e~ Ere”)
< C|@"7 + " P + Pa"|| N6 = P s
< (@), +[|arm?| . ) 1967 = Pl
< C (19" I3 + IPAg" 136) 167 = Pac”lze | = Evel” |
< C (19" + IPs" 1) 1™ = Pl e = Enet™

< C (19" 150) 1" = Pat" s e = Enell™

12
2 :
< C< Z |¢™ — Phd’m|H2(K)> HemeZh

KeT,

¢.m mH
e, —Ee
h ey 2

. m”
e, —Ee
h h®p 24

2,h

¢d.m
h

bl

2,h

12
‘2 (V@ —Pigm. v (e - Ehe,;’"))‘ < C< Y1 - Ph¢m|%m<>> E
KeT,

where we have assumed that the Ritz projection (2.2) is stable with respect to the H' norm
and that ¢ € L® (0, T; H3(Q)) giving that ||¢"||;n < C for any 0 < m < M and where
we have used the Cauchy—Schwarz and Holder’s inequalities.

Thus, we have

aif (@7, el = Eel” ) + (@™ + (1 = g, ef " — Epel™)
~2 (qu’", v <e;‘,”’" - Eheh’m>) - (um, el — Eheh’m)

2 m o om 1

< C<[OSCj (u )] + Z |¢™ — Ppep |12L12(K) + Z Tel

KeT, e€g,

”a(w’" - w”

on,

2 12
L2(€)>

¢d.m
x “eh ”2 h

< € ([0se, )] + 197 = Pag"la) et .-

Equation (4.7) follows from an application of Young’s inequality. Finally, a similar
strategy along with an application of the Mean Value Theorem yields (4.8). (]

We are now in position to prove the main theorem in this section.

Theorem 4.1 Suppose (¢™, u™) is a weak solution to (1.6), with the additional regu-
larities (4.1). Then forany 7,h > 0, blue & < min {1 + 0 g g M} and

coer coer
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any0 <7 <M,

|

4
eh

l2h

14
+ CT22 [
m=1

where C* may depend on the oscillations of y and d;4 and the final stopping time T but
does not depend upon the spacial step size & or the time step size 7.

3
vt | +ce X ver
m=1

m“i +||vael i <C (R +7). (4.12)

h nz,h

Proof.  Starting with the first five terms on the right hand side of (4.6) and using
Young’s and Holder’s inequalities, Poincaré’s inequality, Taylor’s theorem, and proper-
ties (B1) and (B2), we have

(8:" = 0" €} ™) < [|3:f; — 9" 2 [lef " I

1,
'm 1 m
< Co [ 10upolds + Vel *.13)
Tyt

(- ei™) < [Joet”| . et

I 2 1 m
ot allver I7:
g K _ 2 i umy 2
1PiOH) = 0 + 5 Vel
/ 105 (s) — Py ¢(S)||zhd5+ ||V ”m”Lz’ 4.14)
(e oeet™) < Vel + e]loeet ™|, (4.15)
2 <v¢m v, va,eh*’”) -2 <m5,¢'", 519,;’”)
<2eVAS¢" - |6 ef”"” .
/ 1105p() |22 ds ’"” 4.16)
and )
(et <t ot

For the nonlinear term, we use properties (B1) and (B2) along with Lemma 3.6 and
Young’s, Holder’s, and Poincaré inequalities and the higher-regularities (4.1) to obtain,

(- et < [ (o= )] oot
= [3@mever - 3(o0)'vor et .,
=3 H (" + &) Vet + (¢) Vet .

o
Th th

edm edm

<3 ([0 + s 194" s +lnll v

)

| oot
LS L,h
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5, b

2,h> h ||—l,h

"”"” (4.18)

et ot

1

<cJvet

< C“@}f

+ ”V@h’m
12 12

+ C” el

-,

For the remaining terms, we note that the following discrete product rules hold for any
bilinear form and remark that these discrete product rules are key to recovering the

predicted error estimates:

m—lw —1 m pmy _ ( m—=1 pm—=1\] _ M m
() e ()

T
=0, (am’ bm) - (5Tam’ bm) 5

and

m __ j,m—1 m _ o m—1
<am’ b b > 1 [(a b — ( m— l’bm—l)] _ <a a ’bm—1>
T T T
=6, (a",b™) — (6:a",b"").
Thus, we have the following bound

2 (Ve?}"’“, Véeel") =25, (Ve;‘j”", vel”) -2 (Vé,e}f’m, Veh’m>

m||2 +CH®¢,m 2
2 B l2n

<25, (Veb”, vel”)

C fm m||?
<26, <vegm’v@h’m) += / [10s6b(s) — Prds(s)II3 s + c”e;ﬁ* ”M
b g

(4.19)

Additionally invoking Lemma 4.2 yields,
al? (¢m, Sl — Eha‘,eh”") + ((¢>’")3 +(1— )", .60 — Ehafeh”)
= 2(Vgr. Vorel" — VES.ef" ) = (w".6.el" — Eideef”)
= 6.d! <¢'" - Eheh’m) <(¢m) +(1— )", e — Eheh’m)
- 26, <V¢’” ( " — Eqe; )) (/4 e —Eheh’m>
)= (6 (@ + A= 0)g") e — Eref")
+2 <6TV¢’", v (e;’j””‘l - Ehef””“)) + (5 RS Ehef’m_l>
< 6.al (qu om_ Eheh’m) +6. <(¢m)3 +(1— )" el — Eheh’m)
= 25, (Vg V (e — Enel™) ) = b (el — Enel”)

+ C[Osc; (Au (t*))]2+C” || +CH gd! “M (4.20)

- daf (5,(,2’)’” efm ' E @fm !

Now applying the polarization property to the appropriate terms on the left-hand side of
(4.6) and combining the resulting inequality with Equations (4.13)—(4.20), we have
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1
Vel |5 + 5oeai” (b ef) + Zai” (56t 5eef")

2
5-¢) 2 G-e)r
+ 72 o = + 72

< 6. (Ve Vel ) +25. (Vep”, Vel ) + 2 |[Vel |+

2 2
o+ CIVeR |+ cllet][,, + close; @)’

d.m
e

2 2
¢.m Jm
5.ef ”Lz + r”V&,eh .

2
¢,m
o-e),

—1,h
2
-1
+C||@f"” ” +C”e}’f”"
2,h

- CT/ "’ [110:¢)172 + 1955()I72] ds + g/ T10,(5) — Prosh(o)l135ds

m—1

+ Sl (¢ e = Eref™) + 5. (@) + (1 - " e = Eyefl”)
26, <V¢’", v (ef”" - Eheh’m)> 6 (;ﬂ”, el — Eheh’m> .

Invoking Lemma 4.1, we have

1
||Voz=;:’m||i2 + Eéfazp <®,‘f’m,ef’m> + %aff <6,ef’m,5feh’m>

2 +(5—e)r

@f‘m
L2 2

+

o

Gk
2

5.6’ Vs, e[’
@), L2+T @ »

<5, <Vef’m, Veh’m> + 26, (Ve;‘j””, Veh’m) + %||Ve;:’m||iz + C”ef’m”;
+ Cllep! ||zh +C|| Vel |12, + c||e£*’"(|ih + C[Osc; (@ ()]
voef 10O + Moo ds + € / 10000 - Pud(ONEds
+ Sl (@7 e = Eref™) + 5. (@) + (1 - " el = Eyef")

- 26, (V(]S’”, \Y (ef’m - Eheh’m>) -6 <,um, e,‘f’m - Eh@h’m> .

¢
Combining like terms, applying 27 ), using the fact that @f’o = 0, invoking

m=1
equation (3.18) and Lemma 3.3, and applying Holder’s inequality, we obtain

3
df (e el )+ 5 -l + 2 Vel
m=1

14
+ 2y [a{f’ <5Tef”", 5,9,,””) +(5-¢)
m=1

2 2
st +2fwset

2

<2/ -7)|

s
€y

L £
o, + 4V =net

’Lz )LZ

¢

(/32 b,m

Ch “2’}1+C1'21”®h '
—

2,h
4 ) ) 2
+Cry, [”V@ﬁ’mllg + ||e}’3’m|(2h + [Osc; (9 ()] ]
m=1 ’

+ o / 10O % + 10ud()I1%] ds + € / “119:(s) = Padsb(s) 13l

0
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+ 2 [ah (d)f —E e;ﬁ’f) + <(¢f)3 +(1- £)¢”’,®f’f - Ehef’f)
=2 (Ver v (ef = Eel? ) ) - (u”ef’ — Eiel” )|
Applying Young’s and Holder’s inequalities and Lemma 4.2 yields,
s ¢
Y 4 ¥ m)|2
aif (ef"ep ) + s —o)|e]| .+ X IVl
m=1

4

s 2y [a{{’ (5T@f~’", 5Tef”") +(5- .s)||5feh~’”||iz + zﬂv(sfeh”"H;]

m=1
14
2 — 2 2 2
S R e g R CU Ry
Zﬁ 2.h Ccner L2 2,h ~ 2,h

3
v e [iwei i+ ot + oss me |
m=1 ’

+ e / 101 + 10w ()%] ds + C / N0sb(s) — Pros(s)|13,ds
I )

+2 [C[Oscj (W) + c“#"’”ih + C4°—;er||e¢f

2
o Alonl”

for t* € (¢—1, t,n). Invoking Lemma 3.1 and combining like terms, we have

oot I, [ -0 - 24222 et |+ e B

2
12

+ Cﬂz [Ccoer”é e “2 +5- £)||5T®h,m||; + “V5r®hm

<CTZH®f ” +C” ” ’h+C[Oscj(;/)]2

d 2
v Co 3 Ive I + e, + [osr oy |
m=1 ’

+ e / 101 + 10ub()]1%] ds + C / N10sb(s) — Prosp()|13 uds.
N )

Requiring g > 1 ands<min{1 +(1_y2¢,1 +4—%},wehave
aillet |, + et + cfz||v@ 2,
+MZFHMH-meW%w+W%W]

<cr ot} + ol [:, + clos )F
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4
+Cry [”V@Z’mlliz + ”e}’?"”nzh + [Osc; (i (t*))]Z]
‘ :

m=

o / [IOIE + 10, IE] ds + € / 10,(5) — Puos(s) I s

14
<GSt e el 6
m=1 ? ?

4
+ ey [Chzlul?ﬁ(g) + e, + [0scs O (f*))]z]
m=1 ’

+ C7? / [l10s()II7> + 195s()II72] ds + C / [105p(s) — Pudsp(s)II3 s,

where we have used well-known properties of the Ritz projection operator (4.3) in the
last step. Combining like terms and considering the higher regularities (4.1) and the fact
that Osc;(f) < Ch? for some function f € L*(Q), we have

14
2 2
2+ et ] + e Zveiti
=
14
+C?)) [ccoer
m=1

-1
<zl
C1 - C2Tm:1

Iy
+C / 19,¢(s) — Prosp()1134ds + C(T + D> + C72.
fy

5797}””2’/1 +(5-¢) 5,eh””“i2 + Hv(s,eh’m

2
12

2

14
2 2
£ ,
2.h 2,h 1 2,h
m=

Allowing for 0 < 7 < 7y such that 7y := % noting the higher regularities (4.1), and using
2
the Ritz projection properties from Appendix D, we have

2
L,

Yk 4 )2
e HL2+CTZ:1”V®"’ I
e

14
+Cc? Y [Ccoer
m=1

< cgf:g”ef”"“ih +C((T+ DI +77),

5,e,‘ff|’ih +(5—¢) 5Teh”"“; + |[Vorel™

2
12

where none of the constants above depend on the mesh size & or the time step size 7.
Applying a discrete Gronwall’s concludes the proof. (]

Remark 4.2  Again following [10], we note that C..e; can be chosen to be close to 1 as
long as the penalty parameter «a is large enough. In this case, y could also be chosen close
to 0 and (4.12) will hold as long as € < 1.
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5 | NUMERICAL EXPERIMENTS

In this section, we present two numerical experiments demonstrating the effectiveness of our method.
All numerical experiments are completed using the FEniCS project [32]. In the first experiment, we
show that our method converges with first order accuracy with regard to both time and space. We
furthermore show that the discrete energy (3.13) dissipates over time and we benchmark our results
against those found in the paper by Hu et al. [6]. Therefore, following [6], we set the initial conditions
to be

32

10) z(y+3) .o (4rx\ . o [ 4n(y—06)
02 2(7”(” ) 2(ZUE)) g1 (7) =0
+ 0.02cos 2 cos D 0.01sin D) sin )

¢(x,y) =0.07 - 0.02 co%%) sin<2ﬂ(y_1)>

and solve on the domain Q = (0, 32) X (0, 32) to a final stopping time of 7 = 10. We solve using the
mesh sizes shown in the table below and scale the time step size with the mesh size via z = 0.054. We
set € = 0.025 and the penalty parameter & = 20. We point out that Neumann boundary conditions are
implemented and the finite element spaces are the P,, P; Lagrange finite element spaces, respectively.
To show first order convergence in the energy norm, we assign the solution from a mesh size of 7 =
32/s1» with 7 = 0.05h and T = 10 as the “exact” solution, exac- We then define Errory = ¢, — Pexacts
where ¢, indicates the solution on the mesh size & with ¢ = 0.054 and T = 10. We use a similar
strategy to compute the errors with respect to u. Table 1 shows the errors and rates of convergence
given the parameters noted in the text above.

In Figure 1, the time evolution of the scaled total energy F/3,2 is shown using the initial conditions
stated above, a mesh size of 7 = 32/55¢ and a time step size of ¢ = 0.05h with all other parameters
defined above. We note that the scaled total energy shown here almost exactly matches that shown in
figure 1 of [6] where a second-order in time finite difference scheme was used to approximate solu-
tions to the PFC equation considering all the same parameter values and the chosen initial conditions.
Figure 2 displays the initial conditions specified above with a mesh size of 1 = 32/s5¢ on the left
and the solution at the final stopping time of 7 = 10. Again, comparing these figures to those found
in figure 1 of [6], we see that our method produces the expected results. We remark that the chosen
mesh sizes are fairly coarse due to the chosen size of the domain and the fact that finer mesh sizes
would require large computational costs. However, the domain was chosen as in [6] in order to bench-
mark our method. Finer mesh sizes will be considered as part of future work on building an efficient
solver.

The purpose of the second numerical experiment is to demonstrate that our method accurately
captures grain growth of a polycrystal in a supercooled liquid. For the initial conditions, we define

TABLE 1  Errors and convergence rates of the C°-IP method

h |Errory|, 2 Rate |Error,|| . Rate
32/ 0.08412 N/A 0.00522 N/A
2/16 0.05896 0.71329 0.00242 1.07627
2/ 0.03466 0.85058 0.00157 0.76970
324 0.01568 1.10514 0.00103 0.76082
32/108 0.00601 1.30482 0.00041 1.25840
2456 0.00255 1.17707 0.00016 1.27362

Note: Parameters and initial conditions are given in the text.
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three crystallites with different orientations as in [33]. The computational domain for this example is
Q =[0,201],e = 0.25,7 = 1,h = 0.5, and a = 20. Snapshots of the numerical solution are shown at
different times in Figure 3. We observe the growth of distinct crystallites and remark that well-defined
crystal-liquid interfaces are clearly observed. Similar results were observed in [6, 33].

As a final numerical experiment, we present the total scaled energy evolution for time step sizes
T = h, 5h,10h with h = 32/5¢ in Figure 4. The large time step sizes have been chosen to emphasize
unconditional stability. As observed in Figure 1, the energy curves decay for all time step sizes thereby

demonstrating the unconditional stability of the scheme.

2.620 1

2.615 1

2.610 4

2.605 1

Scaled Total Energy

2.600 1

2.5951

FIGURE1 The time evolution of the scaled total energy . The mesh size is & = 32/,56 and the time step size is 7 = 0.05h. All
other parameters are defined in the text

time =0 time = 10

0.10 0.10
30 4 30 4

0.09 0.09
251 254

0.08 0.08
20 20

0.07 0.07
15 | 15

10 1

0.06 104 . 0.06
0.05 5 ' 0.05

0.04 0 T T T T . T 0.04
0 5 10 15 20 25 30

FIGURE 2 Density plots in which the white regions indicate ¢ = 0.0685, the red region indicates ¢ = 0.097, and the blue
region indicates ¢ = 0.04. The initial configuration is shown on the left and the solution at time 7" = 10 is shown on the right.
The mesh size is h = 32/,56 and the time step size is 7 = 0.05h. All other parameters are defined in the text
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FIGURE 3  Snapshots of grain growth at times 7 = 100,1000,2000,3000,4000,5000 are shown above. The mesh size is
h = 201/45, and the time step size is 7 = 1. All other parameters are defined in the text
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FIGURE4 Unconditional stability demonstrated through the time evolution of the scaled total energy /3,2 for time step sizes
7 = 10h, 5h, h with the spacial step size h = 32556 on the (left) and a zoomed image on the (right). All other parameters are
defined in the text

6 | CONCLUSION

In this paper, we have developed a C° interior penalty finite element method to solve a special case
of the PFC Equation (1.2). We were able to demonstrate that our method is uniquely solvable, uncon-
ditionally energy stable, and unconditionally convergent. We were also able to demonstrate that our
method benchmarks well against numerical experiments established in the existing literature. Future
work includes the extension of the C° interior penalty method developed in Section 2 to the case
in which a non-constant mobility is considered and the case in which periodic boundary conditions
are considered. Regarding the case in which a non-constant mobility is considered, it is believed that
unconditional solvability and stability could be achieved as seen in [6] with the biggest outstand-
ing question centered around the error analysis. Additionally, application of the method to related
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models such as the modified PFC equation and building efficient solvers for these methods remains
of interest.
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APPENDIX A: PROOF OF LEMMA 3.4

Proof. We begin by showing Gy, is strictly convex. To do so, we consider the second derivative of
Gy, (o + syy,) with respect to s and set s = 0. Hence,

T

Gy (@n +syp) = =

1
5 + ~alf (@n + swi, on + W)

2

2
o+ sy — @ ‘
T

—1,h
4 1-—
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Taking the derivative with respect to s, we have

1 _
G (@ +sww) = — (@n+ sy = @i )y, + il (@n+ sy, vn)

+ (Wh (@n + sy + bo) - (@1 + swi +$o)2> + (1 — &) (@n + sy, wi)

= 2 (Ve V) . (AD)
where (§, &)_1 == (§, T;§). Taking the second derivative with respect to s, we have
Gl (on+ 5w = Ll s+l oy +3 (0 + s+ 80) w7 ) + (1= &)l
Setting s = 0 and using the coercivity of a(-, -), we have
Gy @) = 1+ 3 ((on+ B0) w2 ) + (1= o)l + i (i) > 0

forall e < 1 and @, € 2;,.

To show G, is coercive, we need to show that there exists constants y > 0, > 0 such that
Gu(on) 2 v ll@nlly,, — B for all ¢, € Zn. Using the Cauchy Schwarz inequality, Young’s inequality,
and a Poincaré type inequality [20, 34], we have

| .
G (pn) 2 Ea{f (@non) =2 (Vo™ V)

> o3, —2||vep |, 19 el

> Co iy, - Co [ Vo Nenll

> St 2, - CC—” o e T
> Sl 1, - S |vor |

where C,,., depends on the coercivity of the a{ZP (+, ) inner product and Cp depends on the Poincaré
type inequality. Therefore,

G (@) 2 7ll@nll3, — B.

Cioe C, —1112 . L.
where y = =2« and f = - [Vey~t||;> do not depend on ¢;. Hence, Gj, has a unique minimizer,

@ € Z;, which solves

1 . _
G (o)) = - (o =@ owm)_y, +ail (o wn) + ((co;”f + ¢o)3,wh)
+ (L= (@ + o wn) — (Vi ™", V) =0,

for all y;, € 2h where we have set s = 0 in (A1). Therefore, @} € 2;, is the unique minimizer of Gy, if
and only if it is the unique solution to

(uireewn) = il (o) = (7 +B0) own ) = (1 =) (@} + Bo.wn) +2 (V™' Vi) = 0

for all y;, € Z,, where My € f/h is the unique solution to

m—1

m - o
(V”ZI*’ VVh) = - <(ph(ph’ Vh) vvh E Vh. u
’ T
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APPENDIX B: PROOF OF LEMMA 4.1

Proof. First, we note that for all y € Z, and all { € 2;1 [29],

1C 01 S MEH=1all Vol
and similarly for all g € Z and all { € 2/1,

WILEY— 2%

1€ DI < NEM-14lIVEll 2 (B2)

Setting v, = Théref’m in (4.4), using properties (B1) and (B2) above, Taylor’s theorem, and Young’s
and Holder’s inequalities, we have

where we note that the inequality ”51 e P’m”

2
s =~ (v@g”“, VThé,ef"”) + (5,¢’" - a,qsm,T,laTe,;’”) - (5,9%’”1,157@},””)
< [[Vel|ls [|VTbeel™ |, +16:0" — 0™l [Tuseel™ |, + |-t , |Tosee”| .
< [[Vel|l: [|VTsbeel™ |, + C 6™ = 9"z |V Tibeef” |
+ C|locep”| . [vTisee”|..
< ||vel|, + 35,2 + C||6:9™ — 0,¢™|17> + C||5.e5" ?
hS woll T |9 |y, s t 12 ©r |2

< |[vep .+ 3

2 T
5T@h,m”_] Lt CT/ [10ssp(s) 11 7-dls

t

m—1

c [
+ / [|05p(s) — 05 Prp(s)II3 s,
-1

m

2 _Coqty 2 .
b < ?ftmfl 10sp(s) — OsPd(s)5, ds can be shown using

Taylor’s theorem with integral remainder term and an application of the Cauchy-Schwarz and Poincaré
inequalities as follows

2 tm 2
5."||, = Hi / (0 ((s) — Prgp(s))) ds
Lyt 12
N WAG ’
=2 / (05p(s) — OsPugp(s)) ds
Lot 12

IA

1 0 1Y) 0 15\ 2
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The result immediately follows. m
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APPENDIX C: DETAILS FROM THE PROOF OF LEMMA 4.2

Following the medius analysis presented in [10] (see pages 101-106), we proceed by bounding all but
the last three terms on the right-hand side:

D / (A2Py™ + (Pug™ + (1 — ©)Pyp™ + 2APy ™ — ™) <e;f”" - Eheh’m> dx
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APPENDIX D: RITZ PROJECTION PROPERTIES

o (P — ¢™)
on,

LemmaD.1 Let e < 1 and u € H3(Q) solve the model problem

Au+(1—eu=f in Q

@:@:0 on 0Q,
on on

where f € L>(Q) and define the following norm on the space H> (Q, 7))
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Then the Ritz projection (2.2) satisfies the following:
lu = Ppully, < Chllullme)-

Proof. Note that on the finite element space Z;, the two norms || - |2, and ||| - |||, are equivalent.
Additionally, following [10], it can be shown that there exists constants C; and C, such that

Cilllulll? < af (u, uyforallu € H> (Q, T)

and
ayf (u,w) < Colllullln|Iwlllxforallu, w € H* (Q, T 1) .

Thus, using the definition of the Ritz projection (2.2), letting v, € Z;, and using the Cauchy-Schwarz
and Young’s inequalities, we have
1Phe = ullly + (1 = )Py = ullz> < Coay)” (Pyie = u, Pt = w)
+ (1 —¢€)(Pyu—u, Phu—u)
= Coayl (P — u, vy — u) + (1 — €) (Ppu — u, vy — u)
< GGl 1Py = ullly | lve = ullly

+ (1 = &) [|Ppu — ull 2y lIvie — ull 20
1 %
< 5' |1Pree — ulll;, +

2
1-¢
+ (72)”Phu - l/l”iz(g) +

2
[lva — ulll;

d-9

2
) [lvi — u”LZ(Q)'

Combining like terms and multiplying by 2, we have
1Pwu = ullli + (1 = e)llPyu = ulif < CEClIve = ullli + (1 = ©)llvi = ull 20 Yvh € Zi.

Let IT, : C(Q) — Z, be the Lagrange nodal interpolation operator. Then choosing v, = IT,u and
following [10], we have
1Py = ulll} < CR|lull -

Noting that |v]|3, < |||[v|||} for any v € H*(Q) concludes the proof. "
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