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Geometry and Combinatorics via
Right-Angled Artin Groups

Thomas Koberda

Abstract We survey the relationship between the combinatorics and geometry of
graphs and the algebraic structure of right-angled Artin groups. We concentrate
on the defining graph of the right-angled Artin group and on the extension graph
associated to the right-angled Artin group. Additionally, we discuss connections
with geometric group theory and complexity theory.
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15.1 Introduction

In this paper, we survey the interplay between the algebraic structure of right-angled
Artin groups, the combinatorics of graphs, and geometry. Throughout the paper, let
� be a finite simplicial graph, and we write V (�) and E(�) for the set of vertices
and edges of �, respectively. The right-angled Artin group on �, denoted by A(�),
is the group defined by

A(�) = 〈V (�) | [v,w] = 1 if and only if {v,w} ∈ E(�)〉.
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15.1.1 Scope of This Survey

Right-angled Artin groups interpolate between free groups and abelian groups,
and they exhibit a wide range of complex phenomena. Moreover, they are simple
enough that their structure is relatively tractable, and hence one can come to
understand these groups fairly well. They are prototypical examples of CAT(0)
groups, and they serve as toy examples that mirror many important properties of and
inform conjectures about more complicated groups, such as mapping class groups.
Some well-known and difficult conjectures about mapping class groups, such as
the characterization of convex cocompact subgroups, admit complete, tractable
analogues in the case of right-angled Artin groups; see [88] for a detailed discussion.

In this article, we will concentrate on some specific aspects of right-angled Artin
groups, which we will outline in the remainder of this section. For a survey of the
general properties of right-angled Artin groups, the reader is directed to [36].

Some of the basic questions we will discuss are as follows.

Question 15.1.1 What is the exact relationship between the group theoretic struc-
ture of the group A(�) and the combinatorial structure of �?

The reader will find that there are two answers to Question 15.1.1, the trivial one
and the nontrivial one. The trivial one will be a consequence of Theorem 15.2.6
below, which shows that � is completely determined by the cohomology algebra
of A(�), and in fact by the degree one and two parts together with the cup product
pairing. Thus, one can in principle recover � from A(�), so that any combinatorial
properties of � is automatically determined by the algebraic structure of A(�).
Conversely, the algebraic structure of A(�) is, in a sense that is so general as to
render it almost meaningless, “known” by the graph �.

There is a more interesting approach to Question 15.1.1 that seeks to find a dictio-
nary between the combinatorics of � and the algebra of A(�), by passing between
specific graph-theoretic and group-theoretic properties that are analogous. This line
of inquiry yields some otherwise nonobvious insights that have applications outside
of geometric group theory, such as in cryptography and complexity theory. Some
sample results we will discuss in the sequel are the following:

Theorem 15.1.2 ([51]) Let � be a finite simplicial graph. Then � admits a
nontrivial automorphism if and only if the outer automorphism group Out(A(�))

contains a finite nonabelian group.

Theorem 15.1.3 ([54]) Let � be a finite simplicial graph with n vertices. Then �

admits a k-coloring if and only if A(�) surjects to a product

Fn1 × · · · × Fnk ,

where Fni is a free group of rank ni , and

k∑

i=1

ni = n.
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Theorem 15.1.4 ([55]) Let � be a finite simplicial graph. Then � admits a
Hamiltonian cycle if and only if the cohomology algebra of A(�) is a Hamiltonian
vector space.

In Theorem 15.1.4, Hamiltonicity of a vector space means that there is a
bilinear form satisfying certain “connectivity” conditions. We direct the reader to
Sect. 15.3.3 for precise definitions.

Whereas the graph � is evidently intimately related to the structure of A(�), the
graph � is not always ideally suited for the study of the internal structure of A(�),
since there is no natural interesting action of A(�) on �. However, one can augment
� in the “smallest way possible” in order to get a graph on which A(�) acts. The key
idea is to conflate a vertex v of � with an element of A(�). One can then consider
the set

V (�e) = {vg | v ∈ V (�), g ∈ A(�)} ⊂ A(�)

of all conjugates of vertices of �, where here we write vg = g−1vg. It is true though
largely irrelevant that V (�e) is not canonically defined as a subset of A(�), since
automorphisms of A(�) need not preserve the set of conjugates of given vertex
generators of A(�).

We build a graph �e, called the extension graph of � (cf. [78]), by putting an
edge {vg,wh} between vertices in V (�e) whenever [vg,wh] = 1 in A(�). The
group A(�) now acts in a canonical way on �e, i.e. by conjugation.

Question 15.1.5 What is the relationship between the structure of A(�) and the
structure of �e? What is the geometry of the action of A(�) on �e?

The graph �e, though algebraically defined, is very closely related to Hagen’s
contact graph [63], which encodes the intersection pattern between hyperplanes in
a natural CAT(0) cube complex on which A(�) acts. This, together with an analogy
between the extension graph and the curve graph associated to a hyperbolic surface
of finite type, is an entry point into the theory of hierarchically hyperbolic spaces
(HHSs) and hierarchically hyperbolic groups (HHGs) (see [15, 16], for instance).
We will largely avoid discussing that aspect of the theory in this paper.

The extension graph carries a large amount of data about the subgroup structure
of A(�). A sample result we will discuss is the following:

Theorem 15.1.6 ([78]) Suppose� has no triangles, and let� be an arbitrary finite
simplicial graph. Then A(�) occurs as a subgroup of A(�) if and only if � occurs
as a subgraph of �e.

The action of A(�) on �e by conjugation, though perhaps simple at first glance,
serves to unify the group theory of A(�), the geometry of �e, and the intrinsic
CAT(0) geometry of A(�). We state the following result that we will discuss in
some detail, and we will defer definitions of the terminology until then.
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Theorem 15.1.7 ([79]) The action of A(�) on �e is acylindrical. Moreover, the
following are equivalent.

(1) The element g ∈ A(�) acts loxodromically on �e.
(2) The element g ∈ A(�) acts as a rank one isometry of the universal cover of the

Salvetti complex of �.
(3) The element g ∈ A(�) is not conjugate into a join subgroup of A(�).

We will not give detailed proofs of most of the results in this survey. We will give
proof sketches where it is feasible, and we will strive to give complete references.
As already suggested above, we will omit large parts of the theory and neglect
various viewpoints. The specific topics discussed herein undoubtedly reflect the
idiosyncratic tastes of the author.

15.1.2 Notation and Terminology

Most of the notation and terminology used in this survey is standard or nearly
standard. All graphs will be undirected and simplicial unless otherwise noted, so
that in particular there are no double edges nor edges that start and end at a single
vertex. The complement of a graph � is the complement of � in the complete graph
on the vertices of �; that is, complete all the missing edges of � and then delete the
edges that were present in �. Two vertices are therefore connected by an edge in the
complement of � if and only if they are not connected by an edge in �.

A graph � is a join if its complement graph is disconnected. The join of graphs
�1 and �2 is written �1 ∗ �2, and every vertex of �1 is adjacent to every vertex of
�2. The join of two graphs mimics the geometric join in topology: if A and B are
topological spaces, then the join A ∗ B is the quotient of A × B × I that collapses
A × B × {0} to A and A × B × {1} to B. For us, a subgraph � of a graph � is
always full, which is to say � contains all edges that are present in �. A clique is
a complete graph, and a k-clique is a complete graph on k vertices. The set V (�),
viewed as a subset of A(�), is called the set of vertex generators of A(�). The link
of a vertex v ∈ V (�) is written Lk(v) and consists of the vertices that are adjacent
to v. If ∅ �= S ⊂ V (�) then

Lk(S) =
⋂

s∈S

Lk(s).

The star of v is given by St(v) = Lk(v) ∪ {v}. The degree of a vertex v is given by
| Lk(v)|. A vertex v is isolated if Lk(v) is empty. A graph is totally disconnected if
every vertex is isolated. A path in � is a tuple of vertices p = (v1, . . . , vk) in V (�)

such that {vi, vi+1} ∈ E(�) for all suitable indices. The parameter k is arbitrary, and
the length of the path p is k − 1. A cycle or circuit is a path for which v1 = vk and
for which vi �= vi+2 for all suitable indices. A graph is connected if for all pairs of
vertices v,w ∈ V (�), there is a path in � such that v = v1 and w = vk .
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The rank of a linear map is the dimension of its image, and the rank of a group
is the minimal number of generators of the group. The identity element of a group
is denoted 1 with an exception in the case of additive abelian groups when it is
written 0.

Let � be a (possibly infinite) graph. We build a graph �k , called the clique graph
of � as follows. We start with the vertices and edges of �. For every complete
subgraph K ⊂ V (�) with at least two vertices, we add a new vertex vK to V (�k).
If K1 and K2 are cliques such that V (K1) ∪ V (K2) also spans a complete subgraph
of �, then we add an edge {vK1, vK2} to E(�k). Finally, we add an edge between
each vertex of the form vK and the vertices making up K . The resulting graph is
the clique graph. It is helpful to illustrate the clique graph with an example: if �

is a graph without triangles then the only cliques with two or more vertices are the
edges of �. In this case, the clique graph of � is just � with an extra vertex ve for
each edge e ∈ E(�), and two edges connecting ve to the two vertices of � spanning
e. Thus, �k is just a copy of � with a “fin” hanging off each edge.

15.1.3 A Remark About Generators

When we specify a right-angled Artin group, we will write A(�). Since A(�) as an
abstract group determines � up to isomorphism, the specification of � (viewed as
an abstract graph) does not constitute a choice of generators for A(�). However,
once we speak of particular generators of A(�), we have implicitly chosen an
identification of V (�) with a set of generators for A(�). The author has taken pains
to avoid ambiguities that could cause confusion for the reader.

15.2 The Cohomology Ring of a Right-Angled Artin Group

A central role in the dictionary between algebra and combinatorics is played by the
cohomology of a right-angled Artin group. Recall that the cohomology of a group
G is defined to be the cohomology of a K(G, 1), which is unique up to homotopy
equivalence (see [64], for instance). A right-angled Artin group has a very easy to
describe K(G, 1), and a large number of natural retractions allows for an efficient
calculation of the cohomology algebra. For the entirety of this section, R will denote
a commutative ring with a unit, unless otherwise noted.

15.2.1 The Topology of the Salvetti Complex

We will write S(�) for the Salvetti complex of �, and we construct it as follows
(cf. [36]). Let � be a graph with n = |V (�)|. We fix a bijection between V (�)
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and {1, . . . , n}. Consider now the unit cube [0, 1]n ⊂ R
n. We build a certain subset

S ⊂ [0, 1]n, cube by cube. For 1 ≤ i ≤ n, we write Ji for the unit segment in the ith

coordinate direction, emanating from the origin. We include Ji in S for all i. Now, if
K ⊂ {1, . . . , n} consists of a collection of vertices which span a complete subgraph
of �, then we include the subcube of [0, 1]n spanned by {Ji}i∈K in S.

Once S has been constructed in this way, we set S(�) to be the image of S in
R

n/Zn, where Zn acts on R
n by usual integer translations. Thus, the complex S(�)

is realized as a subcomplex of an n-dimensional torus.

Proposition 15.2.1 The following are properties of S(�).

1. The fundamental group ofS(�) is isomorphic to A(�).
2. The universal cover ofS(�) is contractible.

That the fundamental group of S(�) is isomorphic to A(�) is a straightforward
calculation using Van Kampen’s Theorem. That the universal cover of S(�) is
contractible is much less obvious, and follows from the fact that S(�) admits the
structure of a locally CAT(0) cube complex. To delve into the details would take
us far afield, and we shall content ourselves to direct the reader to some references,
such as [29, 62, 119]. The crucial point here is that the homology and cohomology
of S(�) are in fact a invariants of A(�), since S(�) is a K(G, 1) for G = A(�).

The homology of S(�) is easily calculated by a standard Mayer–Vietoris
argument. In our construction of S(�) above, we obtain a distinguished k-subtorus
of S(�) for every k-subclique of �. When two such distinguished subtori (corre-
sponding to subcliques K1 and K2 of �) meet, they meet along the distinguished
subtorus corresponding to the intersection K1 ∩ K2 (which is just the basepoint in
case this intersection is empty). Thus, we see that:

Proposition 15.2.2 Let R be a ring. Then Hk(A(�),R) ∼= RNk , where Nk denotes
the number of k-cliques in �.

Here and throughout, we always assume that the A(�) action on the ring of
coefficients is trivial, so that our homology and cohomology groups are always un-
twisted. Computation of the twisted groups is much more complicated; cf. [40, 73].
In particular, the rank of the abelianization of A(�) is the number of vertices of �,
and the dimension of the second homology coincides with the number of edges.

The cohomology groups of A(�) have the same ranks as the homology groups,
and the formal structure of A(�) (or of S(�)) allows one to give a satisfactory
description of the cohomology algebra of A(�). For this, we let Tk denote the k-
dimensional torus. As is standard, the cohomology algebra of Tk with coefficients
in R is

∧
(Rk), the exterior algebra of Rk .

Proposition 15.2.3 Let � ⊂ � be a subgraph. Then the map A(�) −→ A(�)

defined by the identity for vertices λ ∈ V (�) and by v �→ 1 otherwise is a retraction
of groups.

Of course, the fact that Salvetti complexes are classifying spaces for right-angled
Artin groups means that Proposition 15.2.3 admits a dual statement for spaces. That
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is, there are natural retractions S(�) −→ S(�) which induce the corresponding
maps on fundamental groups whenever � ⊂ � is a subgraph.

Specializing to the case where K ⊂ � is a k-clique, we get a natural surjective
map

A(�) −→ A(K) ∼= Z
k,

and thus an induced injective map on cohomology
∧

(Rk) −→ H ∗(A(�),R).
Suppose we have a decomposition of graphs � = �1 ∪ �2 and � = �1 ∩ �2.
For technical reasons, we suppose that every edge between �1 and �2 is realized
by an edge between �i and � for i ∈ {1, 2}. We obtain a natural commutative
diagram of retractions.

1)

2

Replacing the retractions by inclusions of groups, A(�) acquires the structure
of a graph of groups with vertex groups A(�1) and A(�2) and edge group A(�)

(cf. [105]). Without the assumption that every edge between �1 and �2 be realized
by �, this previous assertion would no longer be true.

Dualizing, we get a commutative diagram on cohomology.

In category theory language, H ∗(A(�),R) is the pushout of the corresponding
diagram. Again, the technical hypothesis on the decomposition of � is hidden in
this last assertion, since the assertion follows from the Mayer–Vietoris sequence
and would be false without this hypothesis (cf. for example when � is a complete
graph and �1 and �2 are both proper subgraphs).

These considerations show that one can describe the cohomology algebra of
A(�) entirely in terms of exterior algebras by inductively building up � from its
cliques. In particular, one can take an appropriate exterior algebra for each maximal
clique in �, and identify exterior subalgebras corresponding to intersections of
maximal cliques. The simplest cliques are the 1-cliques, and a retraction

A(�) −→ 〈v〉 ∼= Z

for v ∈ V (�) allows us to identify preferred generators {v∗ | v ∈ V (�)} for
H 1(A(�),R), which we will refer to as the dual 1-classes to the vertex generators.
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These dual 1-classes can be interpreted as dual to certain natural subspaces of S(�),
though we will not require this point of view here.

We clearly have that H ∗(A(�),R) is generated by its degree one part. Now let
v,w ∈ V (�) and let v∗ and w∗ be the corresponding dual 1-classes. There is a
retraction A(�) −→ 〈v,w〉, and the target group is either Z2 or F2, corresponding
to the cases where {v,w} ∈ E(�) and where {v,w} /∈ E(�) respectively. In the first
case, the cup product v∗ � w∗ is nontrivial and in the second case, the cup product
vanishes.

The most important consequence of the previous discussion for us in the sequel
is the following, which characterizes the degree one and degree two parts of the
cohomology of A(�) together with the cup product pairing:

Proposition 15.2.4 Let � be a finite simplicial graph with V (�) = {v1, . . . , vn}
and let E(�) = {e1, . . . , em}. Then there are bases {v∗

1 , . . . , v∗
n} and {e∗

1, . . . , e
∗
m}

for H 1(A(�),R) and H 2(A(�),R) respectively, such that:

(1) v∗
i � v∗

j = 0 if {vi, vj } /∈ E(�).
(2) v∗

i � v∗
j = ±e∗

� if {vi, vj } = e�.

The description of H 1(A(�),R) and H 2(A(�),R) furnished by Proposi-
tion 15.2.4 will be essential in describing many of the correspondences between the
group theoretic structure of A(�) and the combinatorics of �.

15.2.2 Vector Spaces with a Vector-Space Valued Pairing

In the sequel, it is sometimes convenient to consider vector spaces equipped with
a bilinear vector-space valued pairing. We will write q : V × V −→ W for such
a pairing, where V and W are both finite dimensional vector spaces over the same
field F . The pairing q is intended to generalize the cup product pairing

� : H 1(A(�), F ) × H 1(A(�), F ) −→ H 2(A(�), F ),

and so we will always adopt the assumption that q is either symmetric or anti-
symmetric unless otherwise noted. This assumption on q is mostly for convenience,
since relaxing some sort of symmetry assumption only adds unnecessary layers of
complication that do not enrich the underlying theory in a meaningful way.

We will say that the triple (V ,W, q) is pairing-connected, if for all nontrivial
direct sum decompositions V ∼= V0 ⊕ V1, there are vectors v0 ∈ V0 and v1 ∈ V1
such that q(v0, v1) �= 0. With this terminology, we can formulate and prove an entry
in the algebra-combinatorics dictionary.

Proposition 15.2.5 (See [53]) Let � be a finite simplicial graph, let

V = H 1(A(�), F ), W = H 2(A(�), F ),
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and let q be the cup product pairing. Then � is connected if and only if (V ,W, q) is
pairing-connected.

Connectedness of � has another, simpler characterization in terms of A(�), as we
shall indicated below; namely, � is connected if and only if A(�) is freely indecom-
posable; see Theorem 15.3.2. The (mostly complete) proof of Proposition 15.2.5
will illustrate the principle that many results that related the algebra of A(�) with
the combinatorics of � have an easy direction and a less easy direction.

Proof of Proposition 15.2.5 Suppose first that (V ,W, q) is pairing-connected, and
let � = �0 ∪ �1 be a purported separation of �. Let Vi denote the span of the
vertices {v∗

j | vj ∈ V (�i)} for i ∈ {0, 1}. Pairing connectedness implies that
there are vectors wi ∈ Vi such that q(w0, w1) �= 0. Writing w0 and w1 in terms
of the preferred basis vectors, we see that there are vertices xi ∈ V (�i) such
that q(x∗

0 , x∗
1 ) �= 0, which implies that {x0, x1} ∈ E(�) by Proposition 15.2.4,

a contradiction.
Suppose conversely that � is connected, and let V ∼= V0⊕V1 be a nontrivial direct

sum decomposition that witnesses the failure of (V ,W, q) to be pairing-connected.
Let {x1, . . . , xm} be a sequence of vertices of � such that every vertex of � appears
on this list, and such that for all suitable i we have {xi, xi+1} ∈ E(�). We allow this
list to have repeats.

Let

w0 =
n∑

i=1

αiv
∗
i ∈ V0, w1 =

n∑

i=1

βiv
∗
i ∈ V1

be expressions for nonzero vectors with respect to the standard dual basis for V . If
{vi, vj } ∈ E(�) then the expression q(w0, w1) = 0 implies that αiβj = αjβi . The
two sides of this last equation are either both zero or both nonzero, and in the latter
case we have that the pairs (αi , αj ) and (βi, βj ) are proportional. In this case, since
{v∗

1 , . . . , v∗
n} is a basis for V , we may perturb w0 or w1 within the respective vector

spaces V0 and V1 in order to obtain vectors for which the coefficients corresponding
to v∗

i and v∗
j are not proportional. Thus, the condition q(w0, w1) implies that

αiβj = αjβi = 0.

With these observations, we can complete the proof. Let w0 be as above.
Relabeling if necessary, we have v1 = x1 and v2 = x2. Without loss of generality,
we may assume that α1 �= 0. Now let w1 ∈ V1 be expressed as above. If β2 �= 0
then α1β2 �= 0, a conclusion that was ruled out by the considerations in the previous
paragraph. Thus, β2 = 0, and since w1 was arbitrary, the coefficient of x∗

2 vanishes
for all vectors in V1. Then, we may find a vector in V0 whose coefficient α2 is
nonzero, and arguing symmetrically, we see that the coefficient β1 is zero for all
vectors in V1. By induction on m and using the fact every vertex of � occurs
on the list {x1, . . . , xm}, we see that V1 must be the zero vector space. This is a
contradiction. ��
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15.2.3 The Cohomology Ring of A(�) Determines �

We are now ready to state and prove a central fact about the cohomology of A(�),
namely that it determines the isomorphism type of �.

Theorem 15.2.6 Let � be a finite simplicial graph, let V = H 1(A(�), F ), let
W = H 2(A(�), F ), and let q be the cup product pairing. Then the triple (V ,W, q)

determines � up to isomorphism.

One essential point in Theorem 15.2.6 is that the triple (V ,W, q) is considered
abstractly, without any further data such as bases. Before giving a proof of
Theorem 15.2.6, we can make several observations about special instances of the
result. First, the dimension of V = H 1(A(�), F ) coincides with |V (�)|, and the
dimension of W = H 2(A(�), F ) coincides with |E(�)|, as is immediate from
Proposition 15.2.4. Moreover, the first and second cohomology of A(�) together
with the cup product pairing identify complete graphs. To see this, it is convenient
to introduce a map V −→ Hom(V ,W), defined by v �→ fv , and where fv(v

′) =
v � v′. The graph � is complete if and only if for all v ∈ H 1(A(�), F ), the rank of
the image of fv is dim H 1(A(�), F )− 1. We leave the verification of this last claim
as a straightforward exercise for the reader.

The fact that A(�) determines the graph � uniquely is well-known. See [44, 85,
102] for several perspectives. The proof offered here that gives uniqueness of � via
the cohomology algebra of A(�) fits into the theory of cohomological uniqueness. In
the context of cohomological uniqueness, one is often concerned with the question
of whether or not a particular space (often decorated with adjectives such as p–
completeness, where p is a prime) is determined up to homotopy equivalence by its
cohomology (with various groups of coefficients). In our setting, Theorem 15.2.6
implies that among Salvetti complexes associated to finite simplicial graphs, the
integral (or rational) cohomology of the space determines the space up to homotopy
equivalence, and its defining graph up to isomorphism. Moreover, only the ring
structure on the cohomology algebra is required, and only in degrees one and two.
The reader is directed to [42, 101, 115, 116] for a more detailed discussion of
cohomological uniqueness.

Another perspective on the cup product pairing determining A(�) and � uniquely
is given by the theory of 1-formality in the sense of D. Sullivan, a property which is
shared notably with Kähler groups, and into which we will not delve in deeply. The
reader is directed to Chapter 3 of [4], for instance.

Proof of Theorem 15.2.6 We will actually prove a stronger statement. Suppose
� −→ � is obtained by deleting vertices (so that � is a subgraph of �), with an
induced retraction A(�) −→ A(�) defined by sending the vertices V (�) \V (�) to
the identity. Thus, we obtain triples (V�,W�, q�) and (V�,W�, q�) corresponding
to the cohomologies of these groups, and a map of triples

i�,� : (V�,W�, q�) −→ (V�,W�, q�),
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which is injective on the level of vector spaces, and q� is extended by q� .

Claim The triple

{(V�,W�, q�), (V�,W�, q�), i�,�}

uniquely determines graphs � and �, together with an injection of graphs � −→ �.
The theorem will then follow from the special case where V (�) = ∅.

We proceed by induction on (|V (�)|, |V (�)|), ordered lexicographically, the
cases where |V (�)| ∈ {1, 2} being easy consequences of the remarks preceding
the proof. We now suppose the claim has been established for all graphs with at
most n vertices, and we suppose that � has n+1 vertices. We consider the (possibly
trivial) subspace

V0 ⊂ V = H 1(A(�), F )

spanned by vectors for which fv has rank zero. It is immediate from Proposi-
tion 15.2.4 that a vector w ∈ V0 is in the span on vectors dual to vertices of degree
zero in �. The quotient V/V0 is isomorphic to H 1(A(�′), F ), where �′ is the result
of deleting all the vertices of � that have degree zero.

The natural map A(�) −→ A(�′) given by sending isolated vertices to the
identity induces a map H 1(A(�′, F ) −→ H 1(A(�), F ), which identifies V/V0
with a subspace of V . The cup product on H 1(A(�), F ) restricts to

q : H 1(A(�′), F ) × H 1(A(�′), F ) −→ W.

Thus, if V0 �= 0 then �′ satisfies the conclusion of the claim by induction, and �

is obtained from �′ by adding dim V0 many isolated vertices. We may therefore
assume that � has no isolated vertices.

We now consider a vector v ∈ V such that the rank of fv is minimized.

Case 1 Suppose first that the linear span U of v coincides with the span of a vector
dual to a vertex x of �, as furnished by Proposition 15.2.4. Then V/U coincides
with the first cohomology of A(�′), where �′ is obtained from � by deleting x. The
map V −→ V/U is induced by the inclusion �′ −→ � and the corresponding
injection A(�′) −→ A(�).

Writing Z for the image of fv , we have that W/Z coincides with the second
cohomology of A(�′), and the cup product pairing descends to a bilinear map

q : V/U × V/U −→ W/Z,

which coincides with the cup product pairing on the cohomology of A(�′). By
induction, the triple (V /U,W/Z, q) determines �′ uniquely.

Let N ⊂ V be the kernel of fv . Then N is spanned by the dual vector v

associated to the vertex x and the duals of the vertices which are not adjacent of
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x. If N = U then � is the join of x and �′. If not, then we pass to the quotient
V/N , which coincides with H 1(A(Lk(x)), F ). Again, the map V −→ V/N is
induced by the inclusion of A(Lk(x)) −→ A(�). Passing to a suitable quotient
W/Y of W as above, we can recover the cup product pairing on the cohomology of
A(Lk(x)), and thus recover Lk(x), by induction. Finally, we use the full strength of
the induction hypothesis to obtain an injection ix : Lk(x) −→ �′. The graph � is
now reconstructed by attaching x to each vertex in the image of ix .

To complete the induction, let

{(V�,W�, q�), (V�,W�, q�), i�,�}
be a triple satisfying the hypotheses of the claim. We quotient out the degree one
part of the cohomology V� and V� by U , and the map i�,� descends to the quotients
by hypothesis. By induction, we obtain an injection of graphs �′ −→ �′, where the
primed graphs are obtained by deleting the vertex x. The links of x in �′ and �′ can
be determined as above, whence we can reconstruct �.

Case 2 Suppose that v ∈ V is arbitrary such that the rank k of fv is minimized, and
suppose that v is supported on the duals of two or more vertices, so that

v =
m∑

i=1

αix
∗
i ,

where all indices have nonzero coefficients and m ≥ 2. It is clear that for all i, the
degree of xi must coincide with k, by an easy application of Proposition 15.2.4.
Consider the vertices x1 and x2. Observe that Proposition 15.2.4 again implies that
there cannot be a vertex that is distinct from both x1 and x2 and that is adjacent to
x1 but not to x2. Thus, every vertex that is adjacent to x1 and distinct from x2 is also
adjacent to x2. By symmetry, the same statement holds after switching the roles of
x1 and x2. The argument now bifurcates into two subcases, according to whether x1
and x2 are adjacent or not.

Subcase 1 Suppose first that x1 and x2 are adjacent, and suppose that m ≥ 3.
Suppose that x3 is not adjacent to x1. Then since the degrees of x2 and x3 are the
same and coincide with the rank k of fv , we have that

| Lk(x2) ∪ Lk(x3)| ≥ k + 1.

This violates the minimality of the choice of v, since then Proposition 15.2.4 implies
that the rank of fv is at least k + 1. It follows that x1 and x3 are adjacent, and
by symmetry we have that x2 and x3 are adjacent. By a straightforward induction,
we have that {x1, . . . , xm} form a clique, and for all i, a vertex y /∈ {x1, . . . , xm}
adjacent to xi is adjacent to all the vertices {x1, . . . , xm}. Observe that if

v′ =
m∑

i=1

βix
∗
i
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is another linear combination of dual vectors, then nonzero linear combinations w

of v and v′ also satisfy that the rank of fw is equal to k. We set Vmin to be a maximal
vector subspace of V that contains v and such that for all 0 �= w ∈ Vmin, the rank of
fw is equal to k.

It is straightforward now to show that Vmin is generated by {x∗
1 , . . . , x∗

� }, where
{x1, . . . , x�} form an �-clique such that

Lk(xi) \ {xj } = Lk(xj ) \ {xi}
for all i and j .

We may now proceed as in Case 1 above, treating {x1, . . . , x�} as a single vertex,
and replacing the subspace U by the subspace Vmin.

Subcase 2 We now have that x1 and x2 are not adjacent. If m ≥ 3, then the
argument in Subcase 1 above implies that x3 is adjacent to neither x1 nor x2. We
thus conclude that {x1, . . . , xm} form a totally disconnected subgraph of �, and
Lk(xi) = Lk(xj ) for all i and j . We construct a vector space Vmin as in Subcase 1
and conclude that it is generated by {x∗

1 , . . . , x∗
� }, where {x1, . . . , x�} form a totally

disconnected graph and such that the links of any two vertices on this list coincide.
We again reduce to Case 1.

��
Some remarks about Theorem 15.2.6 are in order. For one, one need only

consider the degree one and degree two parts of the cohomology and not the full
cohomology algebra, and this is not surprising since a graph is determined by its
vertices and its edges, and a graph determines the corresponding right-angled Artin
group. Second, in Case 2 of the proof, the vertices {x1, . . . , x�} are indistinguishable
from each other, in the sense of graph automorphisms. That is, every permutation of
{x1, . . . , x�} is realized by a graph automorphism of �, and therefore it is reasonable
that one can treat this collection of vertices as a single vertex. Moreover, in the
two subcases, {x1, . . . , x�} generates either an abelian or a free subgroup of A(�).
The full group of automorphisms of Z� or of F� embeds in the group Aut(A(�))

(cf. Sect. 15.3.5 below). Finally, in the proofs of Subcases 1 and 2, we obtain
a vector space Vmin, which either comes from a clique or a totally disconnected
subgraph. These two cases can be checked linear algebraically by whether the cup
product pairing is trivial or not on Vmin.

15.3 Translating Between Group Theory and Combinatorics

In this section, we will describe some of the results and ideas that go into translation
between the algebraic structure of A(�) and the combinatorics of �. As we have
remarked already, the abstract structure of A(�) determines completely the nature
of �, passing perhaps through cohomology (Theorem 15.2.6). We will seek clean,
definitive results characterizing aspects of the combinatorial structure of � in terms
of the algebra of A(�). In the process, we will gain insight into both structures.
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15.3.1 Elementary Properties

We begin with some of the first properties of graphs, and how these properties are
reflected in A(�). In Proposition 15.2.5, we have that pairing-connectedness of the
triple (V ,W, q) characterizes the connectedness of �. One can characterize the
connectedness of � and its complement directly from the group theory of A(�),
without reference to the cohomology algebra, as follows.

Theorem 15.3.1 ([106]) The groupA(�) splits as a nontrivial direct product if and
only if � splits as a nontrivial join.

Recall that a graph � splits as a nontrivial join if and only if the complement of
� is disconnected. Dually, we have the following fact:

Theorem 15.3.2 ([26]) The group A(�) splits as a nontrivial free product if and
only if � is disconnected.

Both Theorems 15.3.1 and 15.3.2 are easy in one direction. If � is disconnected,
then A(�) admits a presentation of the form

A(�) = 〈V (�1) ∪ V (�2) | R1 ∪ R2〉,

where �1 and �2 are nonempty and disjoint subgraphs of �, and where Ri only
contains generators from �i for i ∈ {1, 2}. It follows then immediately that A(�) ∼=
A(�1) ∗ A(�2).

If � splits as a join �1 ∗ �2, then every vertex of �1 is adjacent to every vertex
of �2. We have that A(�1) and A(�2) are subgroups of A(�), and together generate
the whole group. Moreover, they normalize each other and have trivial intersection
(this last point is not completely trivial and requires some argument if one wishes to
be pedantic, but we shall sweep it under the rug). It follows that A(�1) and A(�2)

generate a direct product.
The converse directions are more complicated, and we outline the main ideas for

the convenience of the reader.

Sketch of Proof of Theorem 15.3.2 We use the characterization of free products
that follows from the work of Stallings [109, 110]. Let G be a finitely generated
group with Cayley graph X. Recall that the set of ends of G is the inverse limit
of π0(X \ K), where K ranges over all compact subgraphs of X. A group has
zero, one, two, or infinitely many ends. As right-angled Artin groups are torsion-
free (as follows from Proposition 15.2.1 for instance), we have that a right-angled
Artin group A(�) splits as a nontrivial free product if and only if it has infinitely
many ends. It thus suffices to argue that a connected graph � yields a group with
finitely many ends. For a graph with a single vertex, we have A(�) is Z and hence
has two ends. A straightforward argument shows that if G and H are both infinite
groups then G × H has one end. Thus, we have that all nontrivial joins of graphs
yield right-angled Artin groups with one end, and by induction we suppose that all
connected graphs with at most n vertices yield groups with at most two ends. Let
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v ∈ V (�). Then there is a proper subgraph � of � such that

� = � ∪Lk(v) St(v).

We have that Lk(v) is not empty since � is connected. Thus, we have that

A(�) = A(�) ∗A(Lk(v)) A(St(v)).

If � is connected then A(�) is an amalgamated product of two finite-ended groups
over an infinite subgroup (cf. [105]), whence one can prove directly that A(�) is
one-ended. If � is disconnected, then one can argue component-by-component of
� to obtain the same conclusion. ��

For Theorem 15.3.1, we require a basic result about the structure of centralizers
of elements in A(�). Let w be a word in the vertices of � and their inverses. We say
that w is reduced if w cannot be shortened by applications of free reductions and
moves of the form [v±1

1 , v±1
2 ] for {v1, v2} ∈ E(�). We say that w is cyclically

reduced if it remains reduced after allowing cyclic permutations of the letters
occurring in w. It is true but not trivial that the moves of free reduction and
commutation solve the word problem in right-angled Artin groups, and that cyclic
reduction solves the conjugacy problem (see especially [39], cf. [31, 65, 114, 120]).

The support of w is written supp(w) and is defined to be the set of vertices which
are required (possibly inverted) to express w. It is not completely trivial but true that
the support of w is well-defined in the sense that for reduced words, w1 = w2 in
A(�) implies that supp(w1) = supp(w2).

Theorem 15.3.3 ([106]) Let 1 �= w ∈ A(�) be cyclically reduced. Then the
centralizer of w lies in 〈supp(w) ∪ Lk(supp(w))〉. If the centralizer of w is not
cyclic then either Lk(supp(w)) is nonempty, or supp(w) decomposes as a nontrivial
join.

Armed with Theorem 15.3.3, we can illustrate the other direction of Theo-
rem 15.3.1.

Proof of Theorem 15.3.1 Suppose that A(�) ∼= G×H for nontrivial groups G and
H . Then since A(�) is torsion-free, we have that every nontrivial element of A(�)

contains a copy of Z
2 in its centralizer. Writing V (�) = {v1, . . . , vn}, we have

that w = v1 · · · vn is cyclically reduced and has noncyclic centralizer. Moreover,
Lk(supp(w)) = ∅, so that Theorem 15.3.3 implies that supp(w) = � splits as a
nontrivial join. ��

Theorem 15.3.3 has several other important consequences that relate the alge-
braic structure of A(�) to the combinatorics of �. First, we have the following.

Theorem 15.3.4 The cohomological dimension of A(�) coincides with the size of
the maximal clique in �.
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Theorem 15.3.4 follows from standard ideas about cohomological dimension
(cf. [30]), using the description of the Salvetti complex as a union of tori together
with the fact that it is aspherical by Proposition 15.2.1. We have that the maximal
dimensional cells in S(�) have the same dimension as the maximal size of a
clique in �, say k. Moreover, this k-cell is the top dimensional cell in a subtorus
of dimension k, which has nontrivial cohomology in degree k. Finally, the retraction
S(�) −→ (S1)k implies that the degree k cohomology of S(�) is also nontrivial.
It follows that k is also the cohomological dimension of A(�).

The cohomological dimension and maximal clique size also describe the rank of
a maximal abelian subgroup.

Theorem 15.3.5 The maximal clique size of � coincides with the rank of a maximal
abelian subgroup of A(�).

Theorem 15.3.5 is also a consequence of general facts about cohomological
dimension. Clearly, if the maximal clique size of � is k then A(�) contains a
copy of Zk . Since S(�) is k-dimensional and aspherical, it follows that no cover
of S(�) can have fundamental group Z

k+1, so there are no abelian subgroups of
rank exceeding k.

For another perspective, suppose � is connected and G < A(�) is an abelian
subgroup of rank k ≥ 2. Conjugating if necessary, at least one nontrivial element of
G is cyclically reduced, so that Theorem 15.3.3 implies that all nontrivial elements
of G are supported on a subgraph J of � that splits as a nontrivial join. Writing
A(J ) ∼= A(J1) × A(J2), we may restrict the projections A(J ) −→ A(Ji) for each i

to G.
Now, suppose first that � has no triangles (i.e. 3-cliques). Then J1 and J2 cannot

have any edges, since otherwise � would have a triangle. It follows then that A(Ji)

is free for i ∈ {1, 2}, and so the image of G in A(Ji) is cyclic for each i. It follows
that G has rank at most two. Thus, we may assume by induction that if the maximal
clique size of � is at most k ≥ 2 then the maximal abelian subgroup has rank at most
k. Supposing � has maximal clique size k + 1, then J1 and J2 have maximal clique
sizes k1 > 0 and k2 > 0, which satisfy k1 + k2 ≤ k + 1. It follows by induction that
the ranks of the images of G in A(J1) and A(J2) are at most k1 and k2, so that G

has rank at most k + 1. This gives an alternate proof of Theorem 15.3.5.
The final elementary combinatorial property of graphs we will discuss is the

maximal degree of a vertex. This property is essential in the theory of expander
graphs, which will be discussed below. In the sequel we will use a different
characterization of the maximal degree that is understood through cohomology,
though the following is a significantly cleaner statement.

Proposition 15.3.6 Let � be a graph and let d denote the maximum valence of a
vertex of �. Then the rank of the centralizer of a nontrivial element of A(�) is at
most d + 1. Conversely, if for all elements 1 �= g ∈ A(�) the centralizer of g has
rank at most d + 1, then the maximum degree of a vertex of � is at most d .

The proof of Proposition 15.3.6 is a fairly straightforward application of Theo-
rem 15.3.3, and we leave it as an exercise for the reader.
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15.3.2 k-Colorability

From the point of computational complexity, one of the most basic and difficult
questions one can pose about a graph � is about its colorability. A (vertex) coloring
of a graph � is a function κ : V (�) −→ X, where X is a finite set of colors, and
where {v,w} ∈ E(�) implies that κ(v) �= κ(w). A classical result of Brooks [43]
says that the minimal size of X is at most the maximal degree of a vertex of � plus
one. If � is not an odd length cycle or a clique then the bound can be improved to the
maximal degree of a vertex. The minimal size of X is called the chromatic number
of �, and we say that � is |X|-colorable.

A graph that is 2-colorable is called bipartite. Determining if a graph is bipartite
is easy from a computational point of view, and can be accomplished by a sorting
algorithm that runs in a period of time that is bounded by a polynomial in the size
of the set of vertices. However, the problem of determining if a graph is 3-colorable
is extremely difficult from a computational standpoint, and is NP-complete (see
Sect. 15.3.7 below).

We remark that there is a related notion of edge coloring, which is a function
ε : E(�) −→ X such that if v ∈ V (�) is incident to both e1 and e2, then ε(e1) �=
ε(e2). It is clear that the minimal size of X for a valid edge coloring is bounded
below by the maximal degree of a vertex of �. A result of Vizing [43] shows that
� admits an edge coloring with |X| the maximal degree of a vertex of � plus one.
Thus, giving sharp or almost sharp estimates on edge colorability of a graph is an
essentially local problem, whereas determining vertex colorability is an essentially
global problem.

Let � be a k-colorable graph. Choose a k-coloring of �, and add an edge to � for
every pair of vertices with different colors, naming the result �. Observe that the
vertices of � are partitioned as

V (�) = V1 ∪ · · · ∪ Vk,

where there are no edges between vertices in Vi for each i, and where for i �= j ,
each vertex of Vi is adjacent to each vertex of Vj . It follows that A(�) is a product of
free groups, and that A(�) is a quotient of A(�). It turns out that these elementary
considerations characterize k-colorable graphs.

Theorem 15.3.7 Let � be a finite graph with N vertices. Then � is k-colorable if
and only if there is a surjective map

A(�) −→
k∏

i=1

Fni ,

where for each i the group Fni is free of rank ni , and where

k∑

i=1

ni = N.
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We have already established the “only if” direction, which is easy. The reverse
direction is somewhat more substantial, owing to the fact that the surjective
homomorphism need not send vertex generators of � to a free factor of one of the
free groups occurring on the right hand side.

Sketch of Proof of Theorem 15.3.7 We identify the product of free groups
with A(�), where � is a k-fold join of completely disconnected graphs, say
{�1, . . . ,�k}. If g ∈ A(�), then g can be written uniquely as a product of
g1 · · ·gk , where gi ∈ A(�i). One then shows that if g = g1 · · · gk and h = h1 · · ·hk

are elements of A(�) that commute, then for each i, the images of gi and hi in the
abelianization of A(�i) are rational multiples of each other.

Now, the surjective map A(�) −→ A(�) induces an isomorphism

φ : H1(A(�),Q) −→ H1(A(�),Q),

which can be expressed as a matrix A with respect to the vertex generators of both
graphs. We will view the rows of A as expressions for φ(v) for v ∈ V (�), in terms
of the vertex generators of �. We arrange the columns so that the first |V (�1)|
columns correspond to vertices of �1, followed by the vertices of �2, and so on.

Write A = (A1 | · · · | Ak), where the columns of Ai correspond to the vertices
of �i , and therefore the column space of Ai has dimension |V (�i)|. Note that since
A is invertible, the row space of A1 has dimension |V (�1)| = n1.

It is an exercise in linear algebra to show that there is an n1 × n1 minor B1 of A1
and a (N − n1) × (N − n1) minor C of (A2 | · · · | Ak) such that both B1 and C are
invertible.

By induction, one permutes the rows of A to obtain a block matrix B = (B1 |
· · · | Bk) such that the diagonal ni × ni blocks {C1, . . . , Ck} of B are invertible.
This row permutation is simply a permutation of the vertices of �. One defines a
coloring of the vertices by setting κ(vi) = j if in the matrix expression B of φ, we
have that the row φ(vi) meets the block Cj . That is, the vertices corresponding to
the first n1 rows are assigned color 1, the next n2 are assigned color 2, and so on.

To check that this is a valid coloring, suppose v and w are adjacent in �. Then
[v,w] = 1 in A(�). For each block Bi , we may consider the restriction of the rows
φ(v) and φ(w) to the columns in Bi . In Bi , these two rows are rational multiples
of each other. If v and w were assigned the same color then in some block Bi , the
rows both meet Bi in the diagonal sub-block Ci . Since Ci is invertible, this is a
contradiction. Thus, we see that adjacent vertices of � are assigned different colors,
and so the coloring of � is valid. ��

Unpacking the final check that κ is a valid coloring in the proof of Theo-
rem 15.3.7, it is not difficult to see that in fact one can relax the condition that the
homomorphism A(�) −→ A(�) be surjective, and replace it with the condition that
it be surjective on the level of rational homology. From a practical point of view, this
is a useful observation. Indeed, checking that a linear map is surjective is relatively
easy, but maps to direct products of free groups are much less well-behaved, since
the subgroup structure of the latter is very complicated [97].
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15.3.3 Hamiltonicity

In addition to computing the chromatic number of a finite graph, a classical NP-
complete problem in graph theory is deciding whether a given connected graph
admits a Hamiltonian cycle. Here, a Hamiltonian cycle is a circuit in � that visits
every vertex of � exactly once. A graph that admits a Hamiltonian cycle is simply
called Hamiltonian. Much like vertex colorability versus edge colorability, there is
a notion of a circuit in � that traverses every edge exactly once, called an Eulerian
cycle. It is a standard fact that a connected graph admits an Eulerian cycle if and
only if each vertex has even degree. Thus, determining whether a graph admits an
Eulerian cycle is a purely local question, and the existence of a Hamiltonian cycle
is a global question, impervious to local methods. We direct the reader to [43] for
background on Eulerian and Hamiltonian paths and cycles in graphs.

Let (x0, . . . , xn) denote a Hamiltonian cycle in �, and let

{x∗
0 , . . . , x∗

n} ⊂ V = H 1(A(�), F )

denote the corresponding dual classes. Proposition 15.2.4 implies that

x∗
i � x∗

i+1 �= 0

for all i, where the indices are considered cyclically modulo n. This is the
fundamental observation when it comes to characterizing Hamiltonicity of � in
terms of the intrinsic algebra of A(�).

Let (V ,W, q) be a triple consisting of a vector space V equipped with a vector-
space-valued (i.e. W -valued) (anti)-symmetric bilinear pairing. We will assume that
V is finite dimensional. We say that (V ,W, q) is Hamiltonian if for all bases
{v0, . . . , vn} of V , there is a permutation σ ∈ Sn+1 such that for all i, we have
q(vσ(i), vσ(i+1)) �= 0.

Setting

V = H 1(A(�), F ), W = H 2(A(�), F ), q =�,

suppose that (V ,W, q) is Hamiltonian. Then there is a basis {x∗
0 , . . . , x∗

n} consisting
of classes dual to the vertices of �. The Hamiltonicity of the triple immediately
implies the existence of a permutation σ such that

x∗
σ(i) � x∗

σ(i+1) �= 0

for all relevant indices, which immediately implies that � admits a Hamiltonian
cycle.

Theorem 15.3.8 (See [55]) Let � and (V ,W, q) be as above. Then � admits a
Hamiltonian cycle if and only if (V ,W, q) is Hamiltonian.
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The reader may check as an easy exercise that the Hamiltonicity of a triple
(V ,W, q) implies that the triple is in fact pairing-connected, so that if (V ,W, q)

is Hamiltonian then � is automatically connected by Proposition 15.2.5.
Establishing Theorem 15.3.8 is tricky, and requires significantly more insight

than Theorem 15.3.7, for instance. We will attempt to briefly convey the main ideas
to the reader in the remainder of this subsection. The reader is directed to [55] for
a full account.

In order to establish Theorem 15.3.8, it is clearly sufficient to show that if �

is Hamiltonian then the triple (V ,W, q) is also Hamiltonian. One may begin with
the standard dual basis {x∗

0 , . . . , x∗
n} for V and hope to bootstrap it to show that

(V ,W, q) is Hamiltonian. One can begin with a change of basis matrix A, which
transforms {x∗

0 , . . . , x∗
n} to a given basis {v0, . . . , vn} for V . We write A = (a

j
i ),

where the subscript refers to the row and the superscript refers to the column of a
given entry.

We leave it as an easy exercise for the reader to show the following:

Lemma 15.3.9 The triple (V ,W, q) is Hamiltonian if for all A ∈ GLn+1(A), there
is a permutation σ ∈ Sn+1 such that for all 0 ≤ i ≤ n, there exists a 0 ≤ j ≤ n

such that

A
j
i =

(
a

j

σ(i)
a

j+1
σ(i)

a
j

σ (i+1) a
j+1
σ(i+1)

)

is invertible, where all indices are considered cyclically.

Lemma 15.3.9 gives rise to a natural definition that one can associate to matrices
(which need not be invertible, or even square). The two-row graph G(A) of a matrix
A is a graph whose vertices are the rows {r0, . . . , rn} of A, and whose columns are
given by the relation {ri, rj } ∈ E(G(A)) if the matrix

Ak
i,j =

(
ak
i ak+1

i

ak
j ak+1

j

)

is invertible for some k.
It is clear from Lemma 15.3.9 that (V ,W, q) is Hamiltonian provided that G(A)

is itself Hamiltonian for all suitable matrices A. To get a feel for G(A), the reader is
encouraged to prove directly that G(A) is connected whenever A is invertible. The
heart of the proof of Theorem 15.3.8 is the following:

Lemma 15.3.10 Let A be an invertible matrix. Then G(A) is Hamiltonian.

Lemma 15.3.10 is a curious fact in its own right, and its proof is fairly involved.
Producing a Hamiltonian cycle directly in G(A) appears to be a difficult problem
itself, and which has the feel of an NP-complete problem (though this is by no means
a theorem). Thus, one needs to use more indirect methods to find a Hamiltonian
cycle in G(A).



15 Geometry and Combinatorics via Right-Angled Artin Groups 495

The key idea is to analyze block submatrices of a matrix A which consist of
nonzero entries with one-dimensional row spaces. One can consider maximal such
blocks, which give rise to a partition of the products of entries of A which contribute
to the determinant of A, according to the standard Leibniz formula. Using certain
symmetries, one can then argue that if no Hamiltonian cycle exists in G(A) then all
summands in the determinant of A cancel in pairs, and hence the determinant of A

is zero.

15.3.4 Graph Expanders

In this subsection, we leave behind individual graphs, and concentrate on families
of graphs known as graph expanders. Graph expanders are sequences of connected
graphs that are uniformly sparse and uniformly difficult to separate. Expander
families find applications in a myriad of different fields, such as knot theory, spectral
graph theory and spectral geometry, probabilistic computation, and network theory.
We direct the reader to [3, 23, 24, 67, 89, 92–94] for references relevant to this
section.

A sequence of finite graphs {�i}i∈N is called a graph expander family if the
following conditions are satisfied:

(1) There is a d such that for all i, the maximum degree of a vertex of �i is at most
d .

(2) We have |V (�i)| −→ ∞.
(3) The Cheeger constant of �i is uniformly bounded away from zero, indepen-

dently of i.

Here, the Cheeger constant of a graph � is defined by considering subsets A ⊂
V (�) such that |A| ≤ |V (�)|/2, and by looking at ∂A, which is defined to be the set
of vertices of V (�)\A that are adjacent to a vertex of A. The isoperimetric constant
of A is defined to be

cA = |∂A|
|A| ,

and the Cheeger constant c is the minimum of cA as A ranges over all admissible
subsets of V (�). From this point of view, it is clear why the Cheeger constant
measures the difficulty in separating �: in order to completely cut a set A ⊂ V (�)

out of �, one has to sever at least c · |A| edges. The reader may check that if {�i}i∈N
forms a graph expander family then the Cheeger constant inequality implies that
each graph in the family is connected.

By associating the standard cohomology triple

Vi = H 1(A(�i), F ), Wi = H 2(A(�i), F ), qi =�,
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some of the defining properties of graph expanders translate almost immediately.
Namely, we have |V (�i)| −→ ∞ if and only if dim Vi −→ ∞, and �i is connected
if and only if (Vi,Wi, qi) is qi-pairing-connected.

The remaining conditions for defining graph expanders require some new
ideas. The degree of a vertex is already characterized in terms of centralizers
via Proposition 15.3.6 above. Since centralizers of elements are less transparently
cohomological objects, we first translate this notion of degree into linear algebra.
Let (V ,W, q) be a vector space with a vector-space-valued bilinear pairing. If
∅ �= S ⊂ V and B is a basis for V , we write

dB(S) = max
s∈S

|{b ∈ B | q(s, b) �= 0}|.

To get rid of the dependence on B, we set d(S) to be the minimum of dB(S), taken
over all possible bases. To get rid of the dependence on S, we set d(V ) to be the
minimum of d(S), taken over all S which span V . The quantity d(V ) is called the
q-valence of V .

A reader who has understood the ideas in the proof of Theorem 15.2.6 will have
no trouble proving the following fact:

Proposition 15.3.11 Let (V ,W, q) be the usual cohomological triple associated to
A(�), and let d be the maximum degree of a vertex of �. Then d(V ) = d .

It remains to properly define the Cheeger constant of the triple (V ,W, q). Again,
a reader who has absorbed the ideas in the proof of Theorem 15.2.6 could probably
guess the definition. Let Z ⊂ V be a vector space with 0 �= dim Z ≤ (dim V )/2.
We will write C for the orthogonal complement of Z, which is to say the set of
vectors v ∈ V such that q(v, z) = 0 for all z ∈ Z. The isoperimetric constant of Z

is defined to be

cZ = dim V − dim Z − dim C + dim(C ∩ Z)

dim Z
.

The Cheeger constant cV of the triple (V ,W, q) is taken to be the infimum of cZ as
Z varies over all nonzero subspaces of V of dimension at most half of that of V .

Let {x1, . . . , xn} denote the vertices of � and {x∗
1 , . . . , x∗

n} be the dual generators
of H 1(A(�), F ). If B ⊂ {x1, . . . , xn}, write B∗ for the corresponding subset of
{x∗

1 , . . . , x∗
n}. The following is an exercise for the reader:

Proposition 15.3.12 Let ∅ �= B ⊂ V , and let Z ⊂ V be generated by B∗. Then

cZ = |∂B|
|B| .

Thus, the Cheeger constant of � is bounded below by cV . A priori, there are
many more subspaces of V than there are subgraphs of �, so that in principle cV

could be strictly smaller than the Cheeger constant of �.
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Theorem 15.3.13 (See [53]) Let {�i}i∈N be a sequence of graphs, and let

{(Vi,Wi, qi)}i∈N
be the corresponding cohomological triples. We have that {�i}i∈N forms a family of
expanders if and only if:

(1) There is a d such that the qi-valence of Vi is bounded above by d .
(2) We have dim Vi −→ ∞.
(3) There is an ε > 0 such that for all i, we have cVi ≥ ε.

As in the case of graph expander families, pairing-connectedness in the sequence
of cohomological triples may be assumed but is actually redundant since it is
a consequence of the Cheeger constant bound. An abstract sequence of triples
{(Vi,Wi, qi)}i∈N is called a family of vector space expanders (not to be confused
with dimensional expanders, cf. [23, 24, 93]). In light of the preceding discussion, in
order to establish Theorem 15.3.13, it suffices to show that for each i, the Cheeger
constant cVi coincides with the Cheeger constant of �i . Unfortunately, the author
does not know a conceptually simple proof of this fact. The proof given in [53]
involves a rather technical sorting argument, and so we will not comment on it any
further.

15.3.5 Graph Automorphisms

One of the most basic questions one can ask about a graph (and indeed about
a relation) is how symmetric it is. Symmetry is measured by the richness of the
automorphism group, and the smaller the size of the automorphism group, however
it is measured, the less symmetric the object.

The automorphisms of graphs are of great interest in graph theory [17, 43, 58],
and in complexity theory as well [7]. Many finite graphs are highly symmetric.
For instance, the automorphism group of a k-clique is the full symmetric group
on k letters. Many other graphs have no nontrivial automorphisms. For instance,
take a path of length five, with vertices labeled linearly as {a, b, c, d, e, f }, and add
another vertex g which is adjacent only to d . The resulting graph � has no nontrivial
automorphisms, as is readily verified by an exhaustive check. See Fig. 15.1.

Observe that a nontrivial automorphism of a graph � gives rise to a non-inner
automorphism of A(�). Moreover, if v ∈ V (�), then the function v �→ v−1 extends
to a non-inner automorphism of A(�) via the identity on the remaining vertices. It

Fig. 15.1 A graph that has
no nontrivial automorphisms



498 T. Koberda

is easy to see that the group Aut(A(�)), and in fact Out(A(�)), contains a subgroup
isomorphic to

Aut(�) � (Z/2Z)|V (�)|.

Thus, if � admits a nontrivial automorphism, then Out(A(�)) contains a nonabelian
finite subgroup.

Theorem 15.3.14 (See [51]) Let � be a finite simplicial graph. We have that
� admits a nontrivial automorphism if and only if Out(A(�)) contains a finite
nonabelian subgroup.

The “only if” direction follows from the discussion preceding Theorem 15.3.14.
The converse is significantly harder and requires a more careful analysis of
Out(A(�)).

A result of M. Laurence ([90], cf. [106]) says that Aut(A(�)) is generated by
automorphisms of the following type.

(1) Vertex inversions.
(2) Graph automorphisms.
(3) Partial conjugations.
(4) Dominated transvections.

Graph automorphisms have already been discussed, and vertex inversions have
been mentioned above as arising from the map v �→ v−1 for some v ∈ V (�). A
partial conjugation is given by considering a vertex v ∈ V (�) whose star St(v)

separates �. The automorphism acts by conjugation by v on one component of � \
St(v) and by the identity on the remaining components of �.

To define dominated transvections, we say that a vertex v ∈ V (�) dominates
a vertex w ∈ V (�) if Lk(w) ⊂ St(v). Then, the map w �→ wv extends to an
automorphism of A(�) via the identity on the remaining vertices. Domination is
clearly a relation on vertices of � that can be determined from the combinatorics of
�.

Sketch of Proof of Theorem 15.3.14 We suppose that � admits no nontrivial au-
tomorphisms. A theorem of Toinet [113] implies that if φ ∈ Aut(A(�)) has
finite order then φ acts nontrivially on H1(A(�),Z) ∼= Z

|V (�)|. Thus, it suffices
to consider the action of automorphisms on H1(A(�),Z), and the effect of partial
conjugations is then trivial.

Next, one shows that if there is a cycle {v1, v2, . . . , vk, v1}k≥2 where vi

dominates vi+1 (with the indices considered cyclically), then � admits a nontrivial
automorphism, specifically an automorphism that exchanges two vertices of �. It
follows that no such cycles exist. We may therefore order the vertices of � in
such a way that if vi < vj then vj cannot dominate vi . If we then write the
image of Out(A(�)) in GLn(Z) with respect to the corresponding ordered basis for
H1(A(�),Z), the result is a group of upper triangular integer matrices. Such a group
has only abelian finite subgroups (coming from diagonal matrices with entries ±1).
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Thus, if � has no automorphisms then Out(A(�)) has only abelian finite subgroups.
��

We remark that in the proof of Theorem 15.3.14, one of the key observations
is that a graph with a domination cycle admits a nontrivial automorphism. The
converse of this statement is false. The 5-cycle C5 admits many automorphisms,
but no two vertices dominate each other.

15.3.6 Some Further Entries in the Combinatorics–Algebra
Dictionary

There are a number of other results relating the combinatorics of graphs to the
algebraic structure of groups which we will not discuss in detail for the sake of
space. We briefly mention two results appearing in [66]. Recall that a group G is
poly-free if there is a finite length subnormal filtration of G by subgroups such
that successive quotients are free. Hermiller–Šunić proved that a right-angled Artin
group is always poly-free, and that the length of the poly-free filtration is bounded
above by the chromatic number of the defining graph. In the same paper, they
established that A(�) is a semidirect product of two finitely generated free groups
if and only if � is a tree or a complete bipartite graph, which is to say a join of
two completely disconnected graphs. Moreover, for a connected graph � with at
least two vertices, the poly-free length of A(�) is exactly two if and only if there
is a subset D ⊂ V (�) such that no pair of elements of D spans an edge, and every
circuit in � meets D in at least two vertices. It is an interesting direction for future
research to investigate the relationship between the normal structure of A(�) and
the combinatorics of �, and it appears that this subject is largely unexplored.

15.3.7 Usefulness Beyond Group Theory and Combinatorics

The various correspondences between combinatorics of graphs and algebraic
structures of groups have theoretical and practical applications beyond the structural
framework of Question 15.1.1 and its refinements. Here, we record some specific
examples.

15.3.7.1 Complexity of Problems in Combinatorial Group Theory

One of the main applications of the foregoing discussion is in the domain of
complexity theory, which is hardly surprising in light of the fact that many
computationally difficult problems (i.e. NP-complete problems, cf. [6, 56, 98]) are
formulated in a finitistic way, with reference to only combinatorial structures.

Consider a right-angled Artin group A(�), and a homomorphism
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φ : A(�) −→ Fn1 × Fn2 × Fn3 ,

where Fni denotes a free group of rank ni , and where

n1 + n2 + n3 = |V (�)|.
If � is specified (e.g. by a list of vertices and pairs of adjacent vertices) and φ is
specified in terms of the image of each vertex of � with respect to a fixed free basis
of each of the free group factors in the target of φ, then it is easy to check if φ is a
homomorphism that is surjective on the level of first rational homology. Indeed, it
suffices to check first that φ is well-defined, meaning that adjacent vertices in � are
sent to commuting elements of Fn1 ×Fn2 ×Fn3 , which can be performed efficiently.
The latter claim results from the fact that centralizers of elements in Fn1 × Fn2 ×
Fn3 are straightforward to describe, and because the word problem is efficiently
solvable. Then, one must check that φ is surjective on the level of first rational
homology, which is an easy linear algebra problem. In light of Theorem 15.3.7, the
data specifying the homomorphism φ forms a (short) certificate of the fact that � is
3-colorable. Since the 3-colorability of � and the existence of this homomorphism
are equivalent, the problem of deciding whether such a homomorphism exists is
NP-complete. To state this conclusion formally:

Proposition 15.3.15 Let � be a finite graph with |V (�)| = N , and let

{Fn1, . . . , Fnk }
be free groups such that

k∑

i=1

ni = N.

Write G = ∏
i Fni .

(1) If k = 2 then the problem of deciding whether or not there exists a homomor-
phism A(�) −→ G that is surjective on first rational homology is in P.

(2) If k = 3 then the problem of deciding whether or not there exists a homomor-
phismA(�) −→ G that is surjective on first rational homology is NP-complete.

(3) The problem of finding the minimal k for which there exist free groups
{Fn1 , . . . , Fnk } as above and a homomorphism A(�) −→ G that is surjective
on first rational homology is NP-complete.

Finding explicit examples of NP-complete problems is always of interest in com-
plexity theory, and given the profusion of them in graph theory, Proposition 15.3.15
is just a taste of the richness of the available theory arising in the context of groups.
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15.3.7.2 Hamiltonicity Testing

Continuing in the theme of NP-complete problems, it is well-known that deciding
if a finite graph admits a Hamiltonian path or Hamiltonian cycle is NP-complete,
as we have mentioned above. The ideas surrounding Theorem 15.3.8 can be used to
certify that certain graphs are not Hamiltonian, in a purely finitistic linear algebraic
way.

To expand on this a bit, first note that the field over which cohomology is
considered is arbitrary. In particular, we may assume that the underlying field is just
the field with two elements. Under this assumption, all the relevant vector spaces
become finite sets, and are hence amenable to combinatorial techniques.

Consider then the standard cohomological triple (V ,W, q) for a right-angled
Artin group A(�). In order to show that � is not Hamiltonian, it suffices to find
a single basis for V which witnesses the claim that (V ,W, q) is not Hamiltonian.
Thus, such a basis can be used as a short certificate that a graph contains no
Hamiltonian circuit.

15.3.7.3 Linear Algebraic Detection of Graph Expanders

Considering cohomology with coefficients in a field with two elements allows a
finitary and algebraic way to check if a sequence of graphs is a family of expanders.
Moreover, it is shown in [53] that there are families of vector space expanders that
do not arise from the cohomology of families of graph expanders. Thus, the theory
of vector space expanders is a priori richer than the theory of graph expanders.
Some practical applications of expanders can be found in [35, 59], for instance.

15.3.7.4 Interactive Proof Systems

Many interactive proof systems function as a way for a prover to demonstrate a
proposition to a skeptical verifier. Using an unbiased random bit sent by the verifier,
the prover sends a response that is conditioned on the value of the random bit. In
this way, the verifier’s ignorance of the prover’s private information is balanced by
the prover’s ignorance of the value of the bit that will be sent by verifier, and this
balance can be used to communicate the existence of knowledge without revealing
its content. This is, for instance, the idea behind zero-knowledge proof protocols,
in which the prover holds a certificate for an instance of an NP-complete problem,
and convinces the verifier of the fact that she is in possession of a valid certificate
without revealing the certificate itself. Any NP-complete problem can be used as a
platform. Thus, linear algebraic versions of Hamiltonicity as in Theorem 15.3.8 and
Proposition 15.3.15 are suitable for formulating a zero-knowledge proof protocol.
A detailed explanation of a platform using Theorem 15.3.8 is given in [55]. For
general background on interactive proofs and zero-knowledge proof protocols, we
refer the reader to [6, 8, 22, 60, 100].
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15.3.7.5 Group-Based Cryptosystems

Many cryptosystems rely on computational problems that are difficult to solve
directly, which is why many modern cryptographic protocols assume P �= NP .
The theme of this section has been the translation of combinatorial properties of
graphs, and especially computationally interesting ones, into algebraic language.
This immediately suggests numerous potential group-based cryptosystems, a topic
which has been developing rapidly in recent decades. Explicit cryptosystems using
right-angled Artin groups as a platform have been proposed in [50], for example.
Translating the graph homomorphism problem (which is NP-complete) into an
instance of the subgroup homomorphism problem for right-angled Artin groups, one
can formulate a secure authentication scheme, for instance. For further discussion of
specific cryptosystems and for a biased sample of the literature, we direct the reader
to [49, 51, 52, 75, 84, 99].

15.4 The Extension Graph and Its Properties

We now leave the world of the finite graph � and its relationship with A(�), and
turn to the (usually) infinite extension graph �e. We recall that �e is a development
of � into a graph on which A(�) acts by conjugation. So, we fix an identification of
the vertices of � with generators for A(�), set the vertices of �e to be the collection
of all conjugates of V (�) by elements of A(�), and set the edge relation to be
commutation inside of A(�). The reader will find that the ideas here, though still
fundamentally relating combinatorics to algebra, are quite different from those in
Sect. 15.3.

15.4.1 Basic Properties of the Extension Graph

Some properties of the extension graph are easy to prove. For instance:

Proposition 15.4.1 The extension graph �e is finite if and only if � is complete.

Others are somewhat less obvious. We note some which will be useful in the
sequel, and which otherwise will give the reader a better idea of how the extension
graph functions.

Proposition 15.4.2 (See [78]) The extension graph �e enjoys the following prop-
erties:

(1) The graph �e is connected if and only if � is connected.
(2) The graph �e is connected and of infinite diameter if and only if � is connected,

has at least two vertices, and is not a join.
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(3) The size of a maximal clique in � and �e coincide.
(4) If � is a subgraph of � then �e is a subgraph of �e.
(5) The graph �e is k-colorable if and only if � is k-colorable.

The proof of item (2) of Proposition 15.4.2 we will provide probably illustrates
the diversity of methods that can be used in investigating right-angled Artin groups.

Sketch of Proof of Proposition 15.4.2, (2) Consider a collection of disjoint com-
pact annuli {Av | v ∈ V (�)}, one for each vertex of �. Glue two such annuli Av

and Aw together along a disk if the vertices v and w are not adjacent in �. We
do this in such a way that the result is an orientable surface � with boundary. A
key observation is that since � is not a join, its complement graph X is connected.
Therefore, � is a connected surface. Since � was built out of at least two annuli, an
easy Euler characteristic computation shows that � is of hyperbolic type (i.e. admits
a complete hyperbolic metric of finite volume). We will name the core curves of the
annuli in the construction {γ1, . . . , γn}.

The (isotopy class of the) homeomorphism of � given by cutting � open along
γi and re-gluing with a full right-handed twist is called a (right-handed) Dehn twist
about γi , and is denoted by Ti . Recall that the group of isotopy classes of (orientation
preserving) homeomorphisms of � is called the mapping class group of �, and is
written Mod(�) [47]. A result of the author [85] shows that there is an N > 0
such that for all k ≥ N , the subgroup of Mod(�) generated by {T k

1 , . . . , T k
n } is

isomorphic to A(�).
The surface � has an associated curve graph C(�), which is of infinite diameter.

This curve graph consists of isotopy classes of embedded, essential, nonperipheral
loops on �, with the edge relation being disjoint realization. There are certain
mapping classes ψ which have the property that for any vertex c of C(�), the graph
distance between c and ψk(c) tends to infinity as k tends to infinity [112]. These
mapping classes are called pseudo-Anosov, and are typical inside of Mod(�).

In particular, realizing A(�) < Mod(�) as above, there is an element g ∈ A(�)

whose realization as a mapping class is pseudo-Anosov. Moreover, the realization
A(�) < Mod(�) is compatible with a realization of �e ⊂ C(�). Specifically, if
v ∈ V (�) is associated to a Dehn twist about γi and if h ∈ A(�) corresponds to the
mapping class group ψh, then the vertex vh is sent to ψh(γi).

Now, since we have a map �e −→ C(�) which respects the edge relation, gen-
eral facts about graph homomorphisms imply that it cannot be distance increasing.
Thus, if dC(�)(γi, ψ

k
h(γi)) tends to infinity then d�e(v, vhk

) also tends to infinity.
The conclusion now follows. ��

It turns out that mapping class groups of surfaces are extremely useful tools for
probing right-angled Artin groups, and that many of their properties can be paired
analogously. This is a theme that will recur in this section, and we will comment
more on it below.
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15.4.2 The Extension Graph and Subgroups

One useful property of the extension graph, and for which it was developed in the
first place, is that the extension graph classifies right-angled Artin subgroups of a
right-angled Artin group. Classically, we know that subgroups of finitely generated
free abelian groups are again free abelian (by the classification of finitely generated
modules over a principal ideal domain) and subgroups of free groups are always
free (by the Nielsen–Schreier Theorem). Since right-angled Artin groups interpolate
between these two extremes, it is therefore a natural question whether (finitely
generated) subgroups of right-angled Artin groups are again right-angled Artin
groups, and if so what sorts of right-angled Artin groups they are.

It is not true that subgroups of right-angled Artin groups are again right-angled
Artin groups. There are many different subgroups of right-angled Artin groups,
ranging from surface groups [38, 107] to hyperbolic 3-manifold groups [1, 2, 117–
119] to many arithmetic lattices in rank one Lie groups [18], all the way to groups
with various exotic finiteness properties [19]. It is in fact known that every finitely
generated subgroup of A(�) is again a right-angled Artin group if and only if �

has no subgraph isomorphic to a square or to a path of length three, by a result of
Droms [45].

It is difficult to characterize all subgroups of right-angled Artin groups, even
finitely presented ones (see [28]). Some general known facts are that every
nonabelian subgroup of a right-angled Artin group contains a nonabelian free group
by a result of Baudisch [10], and in fact any such subgroup surjects to a nonabelian
free group by a result of Antolín–Minasyan [5]. A nonabelian subgroup of a right-
angled Artin group must surject to Z

2 [46, 87]. Solvable subgroups of right-angled
Artin groups are automatically finitely generated and free abelian, by the Flat Torus
Theorem [29].

Given the difficulty of understanding general subgroups of right-angled Artin
groups, it is therefore interesting and natural to wonder which subgroups of A(�)

are of the form A(�), and what sorts of graphs � can occur. To the author’s
knowledge, there is no clean, complete answer available, though the partial answers
are satisfying and useful for many applications.

Theorem 15.4.3 Let � < �e be a finite subgraph. Then there is an injective
homomorphism A(�) −→ A(�).

The injection in Theorem 15.4.3 is quite explicit; one simply views vertices of
� as elements in A(�) and passes to a sufficiently high power. Theorem 15.4.3
first appeared in a paper of Kim and the author [78], though apparently this fact
was already known to experts in combinatorial group theory. One approach to
proving Theorem 15.4.3 does not require ideas beyond those that go into item (2)
of Proposition 15.4.2. Once the extension graph has been embedded in the curve
graph in a way that preserves both adjacency and non-adjacency, the author’s result
from [85] about powers of mapping classes applies and gives the desired result.
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Fig. 15.2 The square

Unfortunately, Theorem 15.4.3 does not admit an easy converse. The first
examples disproving the obvious naïve converse appeared in the work of Casals-
Ruiz–Duncan–Kazachkov [33], and a large class of examples was produced by
Kim and the author [81]. With some further assumptions on �, one can formulate a
converse to Theorem 15.4.3.

Theorem 15.4.4 (See [78]) Suppose � has no 3-cliques, and suppose that A(�) <

A(�). Then � is a subgraph of �e.

Theorem 15.4.4 is a corollary of a more general result, which is the most general
converse to Theorem 15.4.3 that is known to the author.

Theorem 15.4.5 (See [78]) Suppose that A(�) < A(�). Then � is a subgraph of
the clique graph (�e)k.

The basic idea behind Theorem 15.4.5 is again to use mapping class groups,
though it is significantly more complicated than Theorem 15.4.3 and Proposi-
tion 15.4.2. One builds certain “partial” pseudo-Anosov mapping classes in the
image of A(�) and builds an embedding of a larger graph X into �e, which contains
� in its clique graph. Incidentally, Theorem 15.4.5 has a natural analogue for
mapping class groups: if a right-angled Artin group A(�) embeds in a mapping
class group Mod(�), then � embeds as a subgraph of C(�)k , the clique graph of
the curve graph ([80], cf. [82]). We will avoid giving further details here.

Theorem 15.4.5 admits several other corollaries that can serve as converses to
Theorem 15.4.3, and also allows one to prove many results that relate the combi-
natorics of � to the structure of A(�). Given the conclusion of Theorem 15.4.5,
we leave the following result (originally due to Kambites [76], who offered a
combinatorial argument that is very different in flavor from the ideas expounded
here) as an exercise for the reader:

Proposition 15.4.6 Let � be a finite graph. Then � contains a square if and only if
F2 × F2 < A(�).

Here, by square we mean a graph with four vertices and a cyclic adjacency
relation (Fig. 15.2).

15.4.3 A Characterization of Cographs via Right-Angled Artin
Groups and the Geometry of the Extension Graph

An important class of graphs that occurs naturally in graph theory is the class
of cographs, or P4-free graphs (see [74, 103, 111] for some early references
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Fig. 15.3 The graph P4

Fig. 15.4 The graph X6

introducing cographs). These are simply the graphs that do not have the path P4
of length three as a subgraph (Fig. 15.3).

Right-angled Artin groups on cographs can be characterized algebraically, and
right-angled Artin groups provide a perspective on cographs that insight into one of
their most fundamental properties, i.e. recursive definition.

Theorem 15.4.7 ([78]) Let � be a finite connected graph. The following are
equivalent:

(1) The graph � has no (full) subgraph isomorphic to P4.
(2) The graph �e has no (full) subgraph isomorphic to P4.
(3) The graph � is either a single vertex or splits as a nontrivial join.

Corollary 15.4.8 The graph � is a cograph if and only if A(�) does not contain a
copy of A(P4).

In particular, Theorem 15.4.7 shows that a right-angled Artin group cannot
contain “hidden” copies of A(P4). If A(�) contains A(P4) then one can decide
simply from looking at the graph �. This is in contrast to other classes of graphs.
For instance, A(P4) contains a copy of A(P5), where P5 denotes the path of length
four. Thus, there can be hidden copies of A(P5). For a more striking example,
one may consider X6, the complement graph of the hexagon, also known as the
triangular prism. This graph contains no cycle C5 of length 5, though Kim proved
that A(C5) < A(X6) [77]; also, C5 is a subgraph of the extension graph Xe

6, and so
Kim’s result follows from Theorem 15.4.3 (Fig. 15.4).

We leave the proofs of Theorem 15.4.7 and Corollary 15.4.8 as an exercise for the
reader, as they follow from Proposition 15.4.2 and some elementary combinatorial
group theory considerations.

Let � be a connected graph such that �e has finite diameter. By Theorem 15.4.7
(or even just by Proposition 15.4.2), the graph � splits as a nontrivial join. If � is a
cograph and � is a join factor of �, then � must also be a cograph and hence �e

also has finite diameter, whence it follows that � must also split as a nontrivial join.
Let K0 denote a singleton vertex. For i > 0, we set K2i−1 to be the collection

of all finite graphs obtained as (possibly trivial) joins of elements of K2i−2. We set
K2i to be the collection of all finite graphs obtained as disjoint unions of elements
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of K2i−1. Clearly for i ≤ j we have Ki ⊂ Kj , and we set

K =
⋃

i≥0

Ki .

Clearly, if � ∈ K then � is a cograph. Conversely, the preceding remarks and an
easy induction on |V (�)| show that if � is a cograph then � ∈ K. This coincides
with the recursive description of cographs.

Since K is built up recursively, we can give the following characterization of
A(�) for � ∈ K, which results immediately from the preceding discussion:

Corollary 15.4.9 We have � ∈ K if and only if A(�) is an element of the smallest
class of groups that:

(1) Contains Z;
(2) Is closed under finite direct products;
(3) Is closed under finite free products.

For example, note that � ∈ K0 if and only if A(�) ∼= Z. We have � ∈ K1 if
and only if A(�) ∼= Z

n for some n. We have � ∈ K2 if and only if A(�) is a free
product of free abelian groups. A graph � lies in K3 if and only if A(�) is a direct
product of free products of free abelian groups. The following characterizes Ki for
i ≤ 3:

Proposition 15.4.10 (See [83]) A graph � lies in Ki for i ≤ 3 if and only if A(�)

has no subgroup isomorphic to (F2 × Z) ∗ Z.

As an aside, we note that the hierarchy K and the associated right-angled Artin
groups is closely related to the theory of right-angled Artin group actions on the
interval and on the circle. It turns out that A(P4) does not act faithfully by C2

diffeomorphisms on I or S1 [9], so any right-angled Artin group admitting such an
action must have its underlying graph in K. By a result of Kim and the author [83],
a right-angled Artin group A(�) admits a faithful C2 action on I or S1 if and only
if it admits a faithful C∞ such action, if and only if � ∈ K3.

15.4.4 More on the Geometry of the Extension Graph

As we have suggested in this section, and in particular in the discussion about
Proposition 15.4.2, the extension graph of � plays a role analogous to that of the
curve graph C(�) of a surface, with the role of the mapping class group in the latter
context played by the group A(�) in the former context.

The graph C(�) is very complicated in both its local and its global structure.
One of the most important foundational results about the global structure of C(�)

is a result of Masur and Minsky which asserts that C(�) is δ-hyperbolic [96], see
also [57, 61]. That is, there is a δ ≥ 0 so that in any geodesic triangle in C(�), a
δ-neighborhood of two of the sides of the triangle contains the third.
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Perhaps the easiest example of an infinite diameter δ-hyperbolic metric space is
an infinite diameter tree, which is 0-hyperbolic. There are many other examples of
δ-hyperbolic spaces that are not trees, such the usual hyperbolic spaces. For most
surfaces, the curve graph C(�) is far from being a tree; it has one end, whereas for
example a locally finite tree that admits a proper and cocompact action by an infinite
group will have at least two ends, as follows from Bass–Serre Theory [105].

The geometry of the extension graph is something in between the curve graph
and a tree. To state a precise result, we need the notion of a quasi-isometry. Let
f : X −→ Y be a function between metric spaces. Then we say that f is a quasi-
isometry if there are constants λ ≥ 1 and C ≥ 0 such that for all x, z ∈ X, we
have

1

λ
· dX(x, z) − C ≤ dY (f (x), f (z)) ≤ λ · dX(x, z) + C,

and where for all y ∈ Y there exists an x ∈ X such that

dY (f (x), y) ≤ C.

Here, the distance functions are all interpreted in the relevant spaces. A quasi-
isometry can be thought of a function that is bi-Lipschitz on a large scale. For
instance, the integers equipped with the metric induced from the real line are
quasi-isometric to the real line, and any two finite-diameter metric spaces are quasi-
isometric to each other, but an infinite-diameter metric space is not quasi-isometric
to a finite-diameter metric space.

The relation induced by quasi-isometry is an equivalence relation on metric
spaces, and so one often speaks of the quasi-isometry class of a metric space. The
quasi-isometry class of a finitely generated group is the quasi-isometry class of
its Cayley graph, equipped with the graph metric; see [41] for more details, for
example.

In coarse geometry, one often searches for properties of metric spaces that are
invariant under quasi-isometry. Examples of such properties include δ-hyperbolicity
and the number of ends.

A metric space is called a quasi-tree if it contains a 0-hyperbolic metric space
in its quasi-isometry class. Whereas simplicial trees are 0-hyperbolic, the converse
is not quite true: a geodesic metric space is 0-hyperbolic if and only if it is an R-
tree. We will not discuss R-trees any further, since they are not necessary for our
discussion. We specialize the definition of a quasi-tree slightly: if � is a graph
equipped with the graph metric, we call it a quasi-tree if it contains a simplicial
tree in its quasi-isometry class.

Theorem 15.4.11 (See [78]) Let � be a connected graph. Then �e is a quasi-tree,
and is in particular δ-hyperbolic. More precisely:

(1) If � splits as a nontrivial join, then �e has finite diameter and is hence quasi-
isometric to a point.
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(2) If � does not split as a nontrivial join then �e is quasi-isometric to a regular
simplicial tree of countable degree.

More interesting than the mere description of the quasi-isometry type of the
extension graph is the interaction between group elements in A(�) and �e. Here,
the analogy between the mapping class group and A(�) develops further, with the
natural isometric action of A(�) on �e mirroring many of the properties of the
natural isometric action of Mod(�) on C(�).

The classical Nielsen–Thurston classification [47, 112] says that a mapping class
is either finite order, reducible (i.e. some power fixes the homotopy class of an
essential nonperipheral loop on the surface �), or pseudo-Anosov. As discussed
around Proposition 15.4.2, this lattermost type of mapping class is characterized
by the fact that every orbit of its action on C(�) is unbounded. Finite order and
reducible mapping classes are characterized by every orbit in C(�) being bounded
(and in fact having a periodic point in C(�)). Algebraically, a reducible mapping
class has a copy of Z2 in its centralizer [21], whereas a pseudo-Anosov mapping
classes have virtually cyclic centralizers [48].

Further insight into the action of Mod(�) is provided by a result of Bowditch
[25], which says that the action of Mod(�) on C(�) is acylindrical. Acylindricity
is a notion of proper discontinuity for group actions on non-proper metric spaces
which are not properly discontinuous. Following Bowditch (cf. [86, 104]) we say
that an action of a group G on a metric space X is acylindrical if for all r > 0 there
exist constants R and N such that for all pairs of points x, y ∈ X with d(x, y) ≥ R,
we have

|{g ∈ G | d(gx, x), d(gy, y) ≤ r}| ≤ N.

In other words, the r-quasi-stabilizer of R-separated points is uniformly finite.
Bowditch showed that if X is a δ-hyperbolic graph and G acts isometrically and
acylindrically on X then each g ∈ G is either elliptic or loxodromic. The former
of these means that some (equivalently every) orbit of G on X is bounded. A
loxodromic element is characterized by having a positive asymptotic translation dis-
tance in X. Moreover, the asymptotic translation length is bounded away from zero
by a constant that depends only on the hyperbolicity and acylindricity constants.
The Nielsen–Thurston classification can be thus recast in terms of acylindricity: a
mapping class is pseudo-Anosov if and only if it is loxodromic as an isometry of
C(�).

For extension graphs, one has a picture that is analogous to curve graphs.

Theorem 15.4.12 (See [79]) Let � be a connected graph with at least two vertices.
The action of A(�) on �e is acylindrical. An element 1 �= g ∈ A(�) is elliptic if
and only if g is conjugate into a subgroup A(J ), where J is a subgraph of � that
is a nontrivial join. Equivalently, g is elliptic if and only if its centralizer in A(�) is
noncyclic.
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An element 1 �= g ∈ A(�) is loxodromic if and only if its centralizer is cyclic.
An element g is cyclically reduced and loxodromic if and only if supp(g) is not
contained in a subgraph of � that splits as a nontrivial join.

The join/non-join dichotomy for graphs and their associated right-angled Artin
groups runs deep, and analogies between A(�) and �e with Mod(�) and C(�) are
extensive. Many (but not all; see [88]) of the instances of these analogies can be and
have been incorporated into the theory of hierarchically hyperbolic groups.

A further equivalence in Theorem 15.4.12 is given by a result of Behrstock–
Charney [11], which asserts that a nontrivial element of A(�) is loxodromic if and
only if, when viewed as a deck transformation of the universal cover of the Salvetti
complex S(�), it acts as a rank one isometry. That is, the corresponding deck group
element has an axis that does not bound a half-plane (cf. [29]).

15.4.5 The Extension Graph as a Quasi-Isometry and
Commensurability Invariant

A basic problem in geometric group theory is to sort groups into quasi-isometry
classes. For right-angled Artin groups, the natural question is to decide when two
right-angled Artin groups A(�) and A(�) are quasi-isometric. Much progress on
understanding the quasi-isometric classification of right-angled Artin groups has
been made, for instance by Behrstock–Neumann [12], Behrstock–Januszkiewicz–
Neumann [13], Bestvina–Kleiner–Sageev [20], Huang [70], and Margolis [95] (see
also [32, 71]). Thus, we can consider the following equivalence relation on finite
graphs: � is equivalent to � if A(�) and A(�) are quasi-isometric to each other.
Other than the cases we have cited, understanding this equivalence relation in full is
still unresolved.

Certainly two right-angled Artin groups that are isomorphic to each other will be
quasi-isometric to each other, and from Theorem 15.2.6, we know that if A(�) and
A(�) are isomorphic to each other then � and � are isomorphic as graphs. There
is yet another equivalence relation on finite graphs that is coarser than isomorphism
and yet finer than quasi-isometry.

If H < G are groups with G finitely generated and [G : H ] < ∞, then with
respect to any finite generating sets for G and H , the inclusion of H into G is
a quasi-isometry on the level of Cayley graphs, as is readily verified. It follows
that if G and H are finitely generated groups, and both G and H contain a finite
index subgroup isomorphic to K , then G and H are quasi-isometric. In this case,
we say that G and H are commensurable. Like quasi-isometry, commensurability
is an equivalence relation on groups. It is well known that commensurability of
groups is a strictly finer equivalence relation than quasi-isometry. For instance, one
can take closed hyperbolic 3-manifolds whose volumes are not rational multiples of
each other. Then, the corresponding fundamental groups are both quasi-isometric to
hyperbolic space, but are not commensurable [57]. Even among right-angled Artin
groups, commensurability is a strictly finer equivalence relation (see [34, 70]).
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It is easy to produce pairs of non-isomorphic graphs which give rise to com-
mensurable right-angled Artin groups. For instance, consider a graph � and v ∈
V (�). There is a surjective homomorphism A(�) −→ Z/2Z that sends v to the
nontrivial element in Z/2Z and sends the remaining vertices to the identity. It is
an exercise in combinatorial group theory for the reader to prove that the kernel
of this homomorphism is isomorphic to A(�), where � is obtained by taking two
copies of � and identifying them along St(v). If v is not central in A(�) then it
is easy to see that � and � fail to be isomorphic graphs, but A(�) and A(�) are
clearly commensurable. This construction can be repeated ad infinitum, generally
producing infinite families of non-isomorphic graphs whose associated right-angled
Artin groups are all commensurable.

There are pairs of graphs which give rise to commensurable right-angled Artin
groups, but for which a commensuration between them is less obvious. The reader
is challenged to prove for themself that the groups A(P4) and A(P5) are commen-
surable, where as before P4 and P5 denote the paths of length three and length
four respectively (cf. [34]). The fact that A(P4) and A(P5) are commensurable
also shows that the extension graph is hopeless as a complete commensurability
invariant. Again, the reader is encouraged to convince themself that the extension
graphs of P4 and P5 are not isomorphic to each other. It turns out that in both cases,
the corresponding extension graphs are trees, and what distinguishes them in their
isomorphism type is the location of degree one vertices.

So, let us consider a connected graph � with no degree one vertices. In order
to identify the extension graph algebraically and in an unambiguous way, it would
help to be able to identify vertices and their conjugates, up to powers. For this, it
helps to assume that � is connected, has no triangles, and has no squares. Under
these assumptions, if v is a vertex of � then v contains a nonabelian free group in
its centralizer. Conversely, suppose that g ∈ A(�) has a nonabelian free group in
its centralizer. Then, since � has no triangles and no squares, every nontrivial join
in � is merely the star of a vertex of �, and the structure of such a star is the join
of a single vertex and a completely disconnected graph. It follows that if g has a
nonabelian free group in its centralizer, then g is conjugate to a nonzero power of
a vertex generator of �. It follows that maximal cyclic subgroups of A(�) whose
centralizers contain nonabelian free groups are in bijection with conjugates of vertex
generators of A(�). Since the adjacency relation in �e is just commutation in A(�),
we immediately obtain:

Theorem 15.4.13 (See [79]) Let � be a finite connected graph with no degree
one vertices, no triangles, and no squares. Then the extension graph �e is a
commensurability invariant for A(�). That is, if A(�) is commensurable with A(�)

then �e ∼= �e.

Incidentally, the analogy between right-angled Artin groups and mapping class
groups persists here as well, since the curve graph can be obtained from the mapping
class group in the same way that the extension graph is obtained from A(�).
Specifically, let T be a Dehn twist about a simple closed curve on �. Then T is
centralized by two maximal rank torsion-free abelian subgroups of Mod(�) which
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intersect in a copy of Z. This can be used to algebraically characterize a (nonzero
power of a) Dehn twist as an element of Mod(�). A Dehn twist unambiguously
identifies the homotopy class of a simple closed curve on �, and the adjacency
relation in C(�) coincides with commutation of Dehn twists in Mod(�). Thus, the
curve graph can be recovered algebraically from Mod(�). It follows in particular
that automorphisms of Mod(�) induce automorphisms of C(�), a fact which can
be used to prove various rigidity results (see [27, 72, 91], for instance).

As we have seen, we can have commensurable right-angled Artin groups with
non-isomorphic extension graphs. It is also possible to have two right-angled Artin
groups whose extension graphs are isomorphic and yet the groups are not quasi-
isometric to each other (see Example 5.22 in [68]). So, there is similarly no hope that
extension graphs form a complete quasi-isometry invariant for right-angled Artin
groups.

Recall from Sect. 15.3.5 that a full set of generators for Aut(A(�)) is known, and
from the description of these generators, it is immediate that Out(A(�)) is finite if
and only if Aut(A(�)) admits no nontrivial partial conjugations and no dominated
transvections. Graphs for which Out(A(�)) is finite can thus be identified through a
finitary combinatorial analysis, since it suffices to check that there are no separating
stars of vertices and no pairs of vertices where one dominates the other (see [37] for
a discussion of the genericity of this phenomenon).

The following result was established by Huang [69]:

Theorem 15.4.14 Suppose � is a graph for which Out(A(�)) is finite. The
following are equivalent:

(1) The group A(�) is quasi-isometric to A(�).
(2) The group A(�) is isomorphic to a finite index subgroup of A(�).
(3) The graphs �e and �e are isomorphic.

Thus, in the case of finite groups of outer automorphisms, quasi-isometry,
commensurability, and isomorphism of extension graphs are equivalent conditions
to place on a right-angled Artin group. Here again, the analogy with mapping
class groups persists. If two mapping class groups of surfaces are quasi-isometric,
then except for some sporadic cases, the resulting mapping class groups are in
fact isomorphic to each other [14]. Thus again excluding some sporadic cases,
quasi-isometry, commensurability, and isomorphism of mapping class groups are
equivalent. Finally, aside from some sporadic cases, isomorphism of curve graphs
is equivalent to isomorphism of mapping class groups [108].

15.5 Further Directions

Much remains to be understood in the relationship between combinatorics and
algebra via the lens of right-angled Artin groups. As the reader has certainly come
to understand, it is not just some property of groups that one seeks to analogize a
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property of graphs; one wants it to be a clean and natural statement about groups
that reflects the particular flavor of the property in question. Therefore, it is not likely
one could produce a satisfactory omnibus result, since some subjective notions of
beauty and philosophical considerations enter into the picture.

With these musings, we close by giving some particular open questions of
interest. Some are well-known open problems, and we make no claim to having
been the first to pose them.

Question 15.5.1 What is the full quasi-isometric classification of right-angled
Artin groups? What about the commensurability classification of right-angled Artin
groups? What sorts of combinatorial objects serve as complete invariants for these
equivalence relations?

Some specific natural combinatorial properties we have not discussed are of
interest in graph theory.

Question 15.5.2 What algebraic property of A(�) is equivalent to the planarity of
�?

Closely related to Question 15.5.2 is the problem of determining whether a graph
� is a subdivision of a graph � by examining the relationship between the groups
A(�) and A(�), which to the knowledge of the author is also open.

A graph is self-complementary if it is isomorphic to its complement graph. A
singleton vertex is self-complementary, as are the path P4 of length three and the
cycle C5 of length five. A question that is a particular favorite of the author is the
following:

Question 15.5.3 What algebraic property of A(�) is equivalent to the statement
that � is self-complementary?

Following the remarks in Sect. 15.3.6 above and the results of [66], we have the
following.

Question 15.5.4 What is the relationship between the normal subgroup structure
of A(�) and the combinatorics of �?

Finally, we have the following more open-ended question.

Question 15.5.5 Is there a synthesis between the ideas in Sect. 15.3 and algebraic
graph theory?How can one formulate spectral graph theory in terms of right-angled
Artin groups?

Some of the discussion in this survey is a step towards an answer to Ques-
tion 15.5.5. For one, the Cheeger constant c of a graph can be viewed as a spectral
invariant of a graph, as it controls the spectral gap of the graph via the Cheeger
inequality due to Dodziuk and Alon–Milman (see [89] for a detailed discussion): if
λ2 is the second largest eigenvalue of a d–regular connected graph � then

1

2
(d − λ2) ≤ c ≤ √

2d(d − λ2).
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The content of Theorem 15.3.13 is that the Cheeger constant of a graph � can be
read off from the cohomology algebra of A(�). It is natural to ask how one might
recover more information about the eigenvalues of the adjacency matrix of � from
the group theory of A(�).

We hope that this survey will encourage further investigations in these directions.
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