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Modeling Community Dynamics Through
Environmental Effects, Species Interactions

and Movement

Becky Tang , James S. Clark, Peter P. Marra, and Alan E. Gelfand

Understanding how communities respond to environmental change is frustrated by the

fact that both species interactions and movement affect biodiversity in unseen ways. To

evaluate the contributions of species interactions on community growth, dynamic models

that can capture nonlinear responses to the environment and the redistribution of species

across a spatial range are required. We develop a time-series framework that models the

effects of environment–species interactions as well as species–species interactions on

population growth within a community. Novel aspects of our model include allowing for

species redistribution across a spatial region, and addressing the issue of zero inflation. We

adopt a hierarchical Bayesian approach, enabling probabilistic uncertainty quantification

in the model parameters. To evaluate the impacts of interactions and movement on popula-

tion growth, we apply our model using data from eBird, a global citizen science database.

To do so, we also present a novel method of aggregating the spatially biased eBird data

collected at point-level. Using an illustrative region in North Carolina, we model com-

munities of six bird species. The results provide evidence of nonlinear responses to

interactions with the environment and other species and demonstrate a pattern of strong

intraspecific competition coupled with many weak interspecific species interactions.

Supplementary materials accompanying this paper appear online.

Key Words: Competition; Dispersal; eBird; Interaction strength; Markov chain Monte

Carlo.

1. INTRODUCTION

Understanding the role of species interactions is challenged by the fact that they are

constantly shifting—models assume fixed effects of one species on another, while movement
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assures that influences are dynamic (Paine et al. 1998). Quantifying species interactions is

further complicated by environment–species interactions, the fact that species responding to

the environment are, at the same time, responding to other species that are also responding to

the environment (Clark et al. 2021). A framework that enables learning about environment–

species interactions has to allow that they occur when species encounter one another, which

varies in space and time. In this paper, we develop a framework that leverages dynamic data

to determine the potential to learn about environment–species interactions with movement.

Simulation studies confirm that both interactions and movement can be estimated from

spatio-temporal data. Application to eBird data (eBird, 2017), a citizen-science compilation

of bird observations, provides evidence that the relatively few strong competitive interactions

are predominantly intraspecific.

We use the term environment–species interaction (ESI) to combine the biotic and abiotic

effects of environment that both depend on population sizes of interacting species (Clark

et al. 2020). Competing species can be positively correlated in observations, because similar

environmental responses bring them into direct conflict, or negatively correlated, because

they tend to displace one another (Clark 2010). To clarify and quantify the effects of ESI, it

requires dynamic data. Further, dynamic abundance data enable learning about the effect of

species abundances on the growth rates of others in the context of a variable environment.

Dynamic models incorporating species–species interactions provide important insights (e.g.,

Ives et al. 2003; Schliep et al. 2018), including ESI (Clark et al. 2021), but they have not

been combined with movement.

To evaluate environment–species interactions, we allow for redistribution across spatial

regions over time. The absence from an area occurs when the habitat is unsuitable or when

excluded by competitors or natural enemies that share habitat requirements. Populations

respond to these ESI not just through births and deaths, but, more commonly through

redistribution. Models for movement include diffusion processes (Wikle 2003), cellular

automata (Engler and Guisan 2009), and integrating particle systems (Smolik et al. 2010).

We implement a combination of dispersal scales within a framework that admits flexible

assumptions about movement.

We apply our model to eBird data, a global citizen science database dedicated to avifauna

observation. We evaluate the model in a 450 km2 region around the Research Triangle in

North Carolina. Our application addresses two data challenges. Like many ecological data

sets, eBird data are dominated by zeros. However, rather than a typical zero-inflated model,

we are interested in learning about interactions in addition to species abundances. Therefore,

observed zeros are accommodated in order to better isolate the relationships between species

and their environment. Second, eBird data pose the added challenge of spatial bias; certain

areas are sampled heavily, while other areas may not be visited at all (Tang et al. 2021).

Our approach allows for aggregating point-level eBird data within spatial or areal units in

order to obtain counts per area (CPA) abundances. Results from the application show that

there is strong ESI with forested land cover, while species interactions reveal few strong

intraspecific ones and mostly weak interspecific ones. This pattern aligns with studies that

explore how species interactions impact community stability.
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2. STUDY AREA, SPECIES, AND DATA

2.1. EBIRD

Citizen scientists using eBird report the type and number of bird species detected as

a checklist. We use only “complete” checklists that report all individuals identified. Each

checklist contains starting location, date, unique observer ID, and unique checklist ID.

Optional information includes the duration and start time of the observation. Data were

further filtered for quality control: checklists missing duration and/or time were removed.

Additionally, checklists that recorded a duration length longer than 8 h were removed. eBird

data were cleaned using the auk package in R (Strimas-Mackey et al. 2018), and all analyses

were conducted using R (Version 3.6.1) (R Core Team 2013). While eBird data arise at point

level, our proposed model operates on abundances observed within areal units, e.g., counts

per area. As we discuss later in Sect. 6.1, we discretize the selected study region of the

Research Triangle in North Carolina into areal units based on sampling effort and land

cover. In this region, fractions of land cover types of agriculture, developed, forest, and

water are (0.011, 0.454, 0.483, 0.052).

Our analysis incorporates both seasonal migrants as well as non-migrant species, so we

focus on data from breeding-season observations. Migrant species that winter in Central

and South America are absent from our region only in winter months (November to March).

Checklists recorded during May and June can be used to model change in species that have

migrated or remained as residents. We focus on data from 2011 to 2019 in the Research

Triangle, retaining 5571 complete checklists from the Research Triangle. Sampling effort

increases over time and is spatially aggregated near preferred observation areas (Fig. 2).

To compare effects across potential competitors of both migrant and non-migrant species,

we fitted our model to three resident species [tufted titmouse (Baeolophus bicolor), car-

olina chickadee (Poecile carolinensis), carolina wren (Thryothorus ludovicianus)] and three

migrant species [gray catbird (Dumetella carolinensis), chipping sparrow (Spizella passe-

rina), and eastern towhee (Pipilo erythrophthalmus)]. These species are abundant and have

the potential to interact through shared resources, as they are predominantly insectivores

and omnivores at this time of year.

2.2. SPATIAL COVARIATES

Associated with each areal unit are the categorical variable of (dominant) land cover

(National Land Cover Database 2016; see Table S6 for land cover aggregations) (Dewitz

2019) and the continuous variable Enhanced Vegetation Index (EVI), a measure of vegetation

greenness (Vermote et al. 2016). Our region is dominated by two land cover types, forest

and developed, that are constant across the years. EVI is taken as the average for the areal

unit and year.

3. MODEL DESCRIPTION

Consider a community of bird species that co-occur in the same area and may interact

through trophic and spatial relationships. We assume births occur during the breeding season,
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Figure 1. Unique visited locations in the Research Triangle by year. Symbol size corresponds to total number of

visits during May and June.

individuals interact through competition for resources and/or nesting sites, and there is

overwintering prior to the next breeding season. Species differ in migration status (migrants

vs. year-round residents), the extent to which they move between breeding seasons (even

residents move), their habitat affinities (simplified here to landcover type and EVI), and the

extent to which they interact with others of the same and other species (intra- and inter-

specific interaction, respectively). There are environment–species interactions (ESI), in the

sense that the effects of species on each other are context-dependent (Clark et al. 2020).

Dynamics are described by an expanded multi-species Lotka–Volterra (LV) model

(Takeuchi 1996) for the effects of density-independent growth potential, environment, and

other species. To allow model fitting, the LV system of differential equations is discretized

(annual time step) and stochasticized (process, observation, and parameter error), adapted
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Figure 2. Visual representation of our modeling framework, from time t to time t + 1.

from Clark et al. (2020). The principal innovation here implements temporal dynamics

across a landscape of varying cover types, where movement can be local, simple diffusion,

or long-distance, depending on species. The following summarizes the spatial domain in

terms of subregions and the notion of local absence. We then discuss model structure, the

redistribution process, and model fitting.

3.1. OVERVIEW

Assume that we have a spatial region of interest that is divided into n areal units. These

units may be grid cells or more general units of uneven shape and area. Let i denote the

i-th areal unit, j ∈ (1, . . . , J ) the j-th species, and let t ∈ (1, . . . , T ) index time. Our data

yi j t ∈ [0,∞) are comprised of counts per area of species j in the i-th areal unit at time t .

For every (i, j, t), we consider the observed data as arising jointly driven by a corresponding

latent true w̃i j t . Our goal is to estimate these w̃i j t and learn about the associated parameters

that impact the growth of a species over time.

We present the framework visually in (Fig. 1). At a high level, our framework models

abundances that iterate between growth and redistribution of populations, with the data yi j t

being observed after redistribution and before growth. Because simultaneously modeling

redistribution and growth within the same process would lead to difficulties in computation,

we choose to split the two processes into separate steps. Specifically at time t , population

dynamics/growth are regulated by environment–species interactions (ESI) locally within

each areal unit. We model growth using a discretized extension of the Lotka–Volterra (LV)

model that incorporates uncertainty. After population growth, the individuals in each cell

redistribute across the spatial region. This is represented using a species-specific redistribu-

tion matrix. In our framework, we assume that redistribution is independent across species.
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Table 1. Model variables and parameters, with t indexing time

Name Dimension Definitions

Process

Yt n × J Observed abundances [y1t y2t · · · yJ t ]

W̃t n × J Latent species abundances before growth [w̃1t w̃2t · · · w̃J t ]

W∗
t n × J Latent species abundances after growth [w∗

1t w∗
2t · · · w∗

J t
]

W̃
∗
t n × J Left-censored latent species abundances after growth

[w̃∗
1t w̃∗

2t · · · w̃∗
J t ] with element w̃∗

i j t
= max(0, w∗

i j t
)

H j n × n Redistribution matrix for species j ; forms n J × n J H = diag(H j )

Xt n × px Design matrix for growth; first column holds 1s

Ut U × n i-th column w̃i t ⊗ w̃i t Containing all unique combinations w̃i j t · w̃i j ′t

Vt px J × n i-th column w̃i t ⊗ x̃i t Containing all combinations w̃i j t · x̃i t

σ 2
η, j

– Process error for species j

σ 2
γ, j

– Observation error for species j

P px J × J ρ Reorganized for model fitting; multiplies Vt

A U × J α Reorganized for model fitting; multiplies Ut

Structural zero

Qt n × pq Design matrix for zeros due to unsuitability

δ pq × J Coefficients for zeros due to unsuitability [δ1 · · · δ J ]; multiplies Qt

β 2 × J Coefficients for zeros due to chance [β1 · · ·β J ]; β j multiplies (1, w̃i j t )

n—number of areal units; J—number of species; U—number of unique pairwise species combinations; px —

number of environmental predictors for ESI, plus one for intercept; pq —number of predictors for zeros due to

unsuitability plus one

Once individuals settle, we have the post-redistribution abundances at time t + 1, and we

assume observation takes place following redistribution.

We model the population growth and redistribution processes as operating on the latent

wi j t . In our framework, these values are restricted to be non-negative to ensure proper

behavior in both the growth model and the redistribution process, as we elaborate upon in

Sect. 4.1. In the following sections, we use tildes and stars on the wi j t to clearly denote

each stage of the framework (i.e., growth, redistribution, or observation; see Table 1). We

note that an observed yi j t = 0 can arise due to one of two reasons: (1) the species j is truly

absent or (2) the species present is but unobserved. More details are provided in Sect. 4.3.

4. EXPLICIT MODELING DETAILS

Our model extends the dynamic Generalized Joint Attribute Modeling (Clark et al. 2020)

framework by embedding ESI and species–species interactions into a dynamic framework

that incorporates dispersal across a landscape. The dynamic process is constructed using a

multivariate first-order autoregressive model (MAR (1)) (Ives et al. 2003; Schliep et al. 2018;

Ovaskainen et al. 1855). In univariate autoregressive (1) models, the growth-rate parameter

ρ links the population abundance w̃i j t of species j in cell i at time t to the abundance at time

t + 1, w̃i j,t+1. Ives et al. (2003) extended the AR(1) model to whole communities using the

MAR(1) model as an approximation to the nonlinear ecological process. In particular, the

MAR(1) process assumes that the effect of interactions on the growth rates of each species

is linear. See (Fig. 1) for a graphic visualization of our modeling framework.
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4.1. GROWTH MODEL

The traditional LV model of community ecology describes how the abundance of one

species in the community affects the growth rates of another species. Thus, the population

growth component of our model framework is the LV model, which is then extended to

incorporate the effects of ESI on population growth rates. Specifically, the dynamics of

species j is described by two terms: (1) the autoregressive density-independent growth

rate ρ j and (2) the impact from interactions with the other species that depends on their

abundances α j j ′ . We parameterize the LV model to enable learning about both types of

terms through the following system of J equations for each cell i :

dw̃i t

dt
= diag(w̃i t )

[

ρ + αw̃i t

]

, (1)

where w̃i t is a J -vector of species abundances, ρ are the density-independent growth coef-

ficients, and α is the J × J species interaction matrix with coefficients α j j ′ , i.e.,

α =

⎡

⎢

⎢

⎢

⎢

⎣

α11 α12 · · · α1J

α21 α22 · · · α2J

...
...

. . .
...

αJ1 αJ2 · · · αJ J

⎤

⎥

⎥

⎥

⎥

⎦

The α j j ′ describe the effect of the abundance of species j ′ on the growth rate of species

j . In particular, in the context of competition, α j j ′ < 0. We expect asymmetry (α j j ′ �=

α j ′ j ) as it is highly unlikely that two species have the same exact effect on each other.

The interpretation of the LV model requires the w̃i j t ≥ 0. Interactions involving negative

abundances do not have an ecological interpretation. Additionally, the signs of the species–

species interaction coefficients α j j have specific interpretations, and allowing for negative

w̃i j t would inhibit the interpretation of these relationships.

We extend the LV model by introducing ESI through the density-independent coefficients

ρ. Typically, ρ is the J -vector (ρ1, . . . , ρJ ). In our model, the abiotic environment can have

effects on population growth rates. Thus assuming we have px environmental variables of

interest, ρ is a J × px matrix of density-independent growth coefficients. The first column

holds the intercepts for density-independent growth, and the remaining columns hold the

coefficients for ESI:

ρ =

⎡

⎢

⎢

⎢

⎢

⎣

ρ10 ρ11 ρ12 · · · ρ1,px −1

ρ20 ρ21 ρ22 · · · ρ2,px −1

...
...

. . .
...

ρJ0 ρJ1 ρJ2 . . . ρJ,px −1

⎤

⎥

⎥

⎥

⎥

⎦

Due to mismatch in dimensions, we cannot use α and ρ directly in the model. Therefore,

we re-organize the matrices into sparse matrices A and P that maintain the linear relationship

between the ESI and growth. In the case of J = 2, this looks like:
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A =

⎡

⎢

⎣

α11 0

α12 α21

0 α22

⎤

⎥

⎦
, P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ρ10 0
...

...

ρ1,px −1 0

0 ρ20

...
...

0 ρ2,px −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

P is the matrix of coefficients for the ESI terms vi t , which are defined as the interactions

between the abundances w̃i t and the environmental variables plus intercept xi t . For J =

2 species, vi t = (w̃i1t , w̃i1t xi t,1, . . . , w̃i1t xi t,px , w̃i2t , w̃i2t xi t,1, . . . , w̃i2t xi t,px )
′. The re-

ordered A matrix operates on the unique species–species interaction pairs ui t , i.e., w̃i t ⊗ w̃i t

minus replicates. For J = 2, ui t = (w̃i1t w̃i1t , w̃i1t w̃i2t , w̃i2t w̃i2t )
′. Using this notation,

the discrete-time version of Eq. 1 incorporating ESI is:

w̃i,t+1 = w̃i t + P′vi t + A′ui t (2)

Thus, the growth of each species j within a given areal unit is impacted by both species–

species interactions as well as ESI. For our framework, we interpret the quantity on the left

of Eq. 2 to be the abundances post-growth at time t , as opposed to the abundances at time

t + 1. For clarity, we replace the left-hand side of Eq. 2 with w∗
i t to clearly show that growth

operates within the same time t .

Lastly, we introduce uncertainty into population growth via species-specific growth error

σ 2
γ, j . Then, the overall model for growth for all species across all areal units at time t is:

W∗
t ∼ MV Nn×J (W̃t + V′

t P + U′
t A, In,�), (3)

where MV Nn×J refers to the matrix-variate Normal distribution of dimension n × J .

� = diag(σ 2
γ,1, . . . , σ

2
γ,J ) specifies independent process error across species, and the n-

dimensional identity matrix In specifies that population growth is independent across the

areal units (local growth). We remark that (3) can result in negative w∗
i j t . In order to prevent

redistributing negative abundances in the next stage, which would lead to unexplained loss,

we left-censor to obtain w̃∗
i j t = max(0, w∗

i j t ). Thus after growth and censoring, we have the

matrix W̃
∗

t of latent species abundance at time t .

4.2. REDISTRIBUTION

After growth, we assume that populations move and redistribute across the spatial region.

That is, some birds that were located in cell i at time t are likely to be in a different cell i ′

at time t + 1. For each species, we have an n × n redistribution matrix H j that specifies the

behavior of grid-based dispersal across the map. The value in the i-th row and i ′-th column,

H j,[i,i ′], represents the dispersal of the population into cell i from cell i ′. The columns of H j

are normalized to sum to one, as we want to conserve the total abundance of each species.

Then, we simply redistribute the post-growth abundances W̃
∗

t+1 to obtain the abundances at
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time t + 1 (less some nuances addressed in the next subsection): W̃ j,t+1 = H j W̃
∗

j,t+1. As

mentioned in the Introduction, there are several ways that dispersal can be defined, such as

diffusion, local dispersal kernels, and long-distance movement. Our notation here is general

so any suitable choice of grid-based dispersal can be easily adopted.

4.3. DATA MODEL

The observations yi j t are related to the latent w̃i j t through an appropriate data model.

Focusing first on the observed positive abundances yi j t > 0, we use the following model to

link the observations to the latent abundances: log(yi j t ) ∼ N (log(w̃i j t ), σ
2
η, j ). The obser-

vation errors σ 2
η, j are independent and species-specific.

An observed yi j t = 0 may occur due to one of two reasons: (1) the true latent abundance

associated with that observation is truly zero, or (2) the species was present but not observed.

In the first case, the associated w̃i j t = 0. The marginal probability πi j t = P(w̃i j t = 0)

is induced by the model and not available is closed-form, but can be estimated during

model fitting. The conditional probability of an observed zero given true presence, qi j t =

P(yi j t = 0|w̃i j t > 0), can also be estimated. We model this conditional probability using

a probit link: q̂i j t = �(δ0 j + δ1 j w̃i j t ). It follows that the observation model for yi j t > 0

given w̃i j t > 0 has total mass 1 − qi j t , and the marginal probability of an observed zero is

P(yi j t = 0) = πi j t + (1 − πi j t )qi j t .

5. MODEL FITTING DETAILS

5.1. PRIOR CHOICE AND MODEL ASSESSMENT

Due to the large number of parameters associated with the species–species interactions

and ESI, model inference focuses on the most important interactions. We can only hope

to identify those that have consequential effects, so it is important to exploit ecological

understanding. In order to introduce sparsity, pairs of species that are suspected to not directly

interact have their corresponding interaction coefficients set to zero a priori in A (Kissling

et al. 2012; Ives et al. 2003). Often, the type of interaction (e.g., competition, predation) is

known a priori, which can be incorporated by setting the sign of the corresponding coefficient

to be positive or negative, as suggested by Ives et al. (2003). This can be achieved using

priors with bounds [−c j j ′ , 0] or [0, c j j ′ ] (Clark et al. 2020). Experiences with model fitting

reveal difficulty in capturing the intercepts for density-independent growth in P (ρ) when

using uninformative priors. Therefore, we suggest informative priors for these parameters.

For the latent w∗
i j t , we use uniform priors with liberal bounds. Lastly, we take inverse gamma

priors for the error parameters σ 2
η, j and σ 2

γ, j , and diffuse, normal priors for δ and β.

Our model is fitted with a Metropolis–Hastings within Gibbs sampler to estimate the

coefficients and latent abundances of interest. We provide the closed-form full conditionals

for the growth interaction coefficients in Appendix A.1 and present the remaining sampling

steps in Supplement S1. In the case of simulated data, we can assess our model’s performance

by examining parameter recovery (Sect. 5.2). For real data, we suggest fitting the model

on the first T − 1 time points of data and then, predicting for the held-out, final T -th time
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point. Then, model checks such as posterior predictive checks (e.g., graphical or Bayesian

p-values) or sampled predictive p-values can be performed (Conn et al. 2018). We also

suggest comparing the posterior and prior densities for the growth coefficients α and ρ to

assess if there is Bayesian learning and to interrogate if the priors dominate inference. For

example, if the posteriors of many α j j ′ are tightly concentrated on one of the prior bounds,

re-evaluation of modeling assumptions and prior choice is recommended.

5.2. SIMULATION

We focus on examining how well we can recover the α and ρ parameters related to

species growth, as these coefficients have ecological interpretations. We explore the effects of

altering the amount of redistribution, the proportion of zeros in the observed data, the number

of areal units, or the number of species in the community. We simulated data using the areal

units of equal size (i.e., a grid-system) across T = 20 time points. Process and observation

errors were the same for all simulations, but varied across species. Additionally, each species

had the same redistribution matrix, constant across time for simplicity. Redistribution was

defined according to Gaussian dispersal based on the distance between grid centers.

Simulation results are presented in Supplement S2, and we summarize the main findings

here. We assess the recovery of the growth parameters by comparing nominal and empirical

coverage. The largest factor impacting our ability to recover the α coefficients is the propor-

tion of observed 0s in the data (Table S3a). It is particularly the intraspecific competition

coefficients α j j where empirical coverage falls below nominal. This is also the case when the

number of areal units increases (Table S2a). Recovery of the interspecific species–species

interaction coefficients α j j ′ is generally quite robust, with empirical coverage at or above

nominal. When the data have few observed zeros, the model is quite robust to increasing

the number of species J (Tables S4, S5).

In the event of large amounts of redistribution, empirical coverage of the density-

independent growth intercepts in ρ j0 falls below nominal (Table S1b). This may due to

the fact that little in the model informs whether the loss or gain in abundance of a particular

species in a given areal unit is due to growth or redistribution.

Taken together, our simulation encourages application of the model to data comprising

relatively abundant species that do not redistribute across long-distances at high rates. Given

these conditions, our model appears to be robust to the number of species in the community.

6. APPLICATION: EBIRD DATA

As mentioned in Sect. 2, we consider a community of six species. Three are resident

species in the region of interest (tufted titmouse, carolina chickadee, carolina wren), whereas

the remaining three are migrants that return to the study region during the breeding season

(gray catbird, chipping sparrow, eastern towhee). Therefore, we focus on data collected

during the combined months of May and June in each year, resulting in an annual time step.
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Figure 3. Spatial region colored by land cover type in 500 × 500 m grid cells (left) and our choice of BLOBs

(right). Points are unique eBird observation locations in May–June during the years of interest.

6.1. DATA FORMATTING AND REDISTRIBUTION

In order to apply our model to eBird data, a key challenge arises to determine how to

discretize the spatial region. Due to biases in sampling location (Johnston et al. 2020; Tang

et al. 2021), using equal-sized grid cells/areal units of reasonable area over a large spatial

region would result in the majority of the cells having no observations in a given year. To

work around this issue, we create areal units of varying area that are irregularly shaped but

approximately uniform in land cover type. The intention is that each resulting unit will have

at least one observation for the majority of years in our analysis while preserving the type

of land cover, as interactions may be habitat dependent. We refer to these single-land cover

dominated areal units as ‘bulk land-occupancy blocks’, or BLOBs. See Fig. 3 for the 62

BLOBs we adopted considering only two dominant land cover types: forest and developed.

The next step in order to apply our model to eBird data requires obtaining the response

variable yi j t for each BLOB i , species j , and time t . Borrowing from the literature, we use

the idea of fixed-radius point count (Hutto et al. 1986) to obtain a notion of sampling effort

for each observation. In particular, we associate a circle of radius r to each observation,

which we take to be the effective sampling area for that observation. Then, we take our

observed count per area yi j t to be the total sum of the counts of species j within BLOB i

divided by the total effective sampling area:

yi j t =

∑ni t

m=1 yi j t,m
∑ni t

m=1 πr2
=

∑ni t

m=1 yi j t,m

ni tπr2
. (4)

Upon forming the BLOBs, we use the dominant land cover type as a covariate for ESI.

Irregularly shaped and sized BLOBs require a nuanced redistribution matrix. In par-

ticular, it becomes inappropriate to use a redistribution kernel defined solely through the

distance between centroids. Instead, we allow redistribution to occur both locally via Gaus-

sian dispersal and at long-distances with some constant propensity for far-range movement.

Additionally, to be realistic, redistribution matrices differ by species. Details are given in

Appendix A.2.



Modeling Community Dynamics Through Environmental Effects 189

Figure 4. Posterior predictive densities of species abundances (log scale) in selected areal units in held-out year

of data. The vertical line denotes observed log count-per-area, where green is forest land cover and yellow is

developed (Color figure online). .

6.2. PRIORS

Based on feeding guilds of the six species, a priori we set the α j j ′ interaction coefficients

between the three lower canopy cleaner insectivores (tufted titmouse, carolina chickadee,

carolina wren) and the two ground forager omnivores (chipping sparrow, eastern towhee)

to 0. The remaining priors for the α j j ′ specify competitive interactions. Additionally, infor-

mative priors for the intercepts in ρ were obtained using available information concerning

clutch size, number of broods, and survival rate (see Section S3, Table S7).

7. RESULTS

We examine the effect of varying the different parameters in the redistribution matrix to

obtain the best fitting model. Tables of these parameters and corresponding RMSPEs are

provided in Tables S10, S11. The following results are reported for the values of parameters

in the matrices H j that yield the overall superior performance in terms of RMSPE for the

held-out 2019 CPAs. Figure 4 plots histograms of posterior predictive distributions for the

CPAs of all species in a few BLOBs in the 2019 North Carolina test data, along with the

true observed CPA. We see that the posterior predictive distributions capture the true CPA

quite well. In Figure S2, we provide spatial maps of posterior mean estimated latent log-

abundance of carolina chickadee across time. The growth process variances are estimated

much larger for the more abundant, resident species, and carolina chickadee has the largest

estimated observation error (Table S14). Posterior summaries of the β coefficients in the

regressions to estimate the conditional probability of observed zero given presence are

provided in Table S15. The majority of species have an estimated significant negative β1, j

coefficient, suggesting that as the abundances of species j increases, the probability of zero

due to chance decreases. This is expected, as a species that is highly abundant in an area

should be easily observed.
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Figure 5. Prior (blue) and posterior densities for ρ coefficients by species. Posteriors for ESI (forest) reveal strong

Bayesian learning for chipping sparrow and eastern towhee (Color figure online). .

7.1. ENVIRONMENT–SPECIES INTERACTIONS

The posterior densities for the ESI parameters plotted in Fig. 5 reveal strong Bayesian

learning (posterior summaries provided in Table S13). The coefficient for forest is signifi-

cantly positive for the gray catbird and significantly negative for chipping sparrow. Chipping

sparrow are quite commonly found in gardens and parks in many areas (Dunn 2017), which

may help explain the negative coefficient for forest land cover compared to the baseline of

developed. In contrast, gray catbirds are less commonly found in residential areas.

7.2. SPECIES–SPECIES INTERACTIONS

For clarity, the coefficients α mathematically represent the species–species interactions

in the model, but do not necessarily indicate the presence/absence of an interaction in nature.

In the following, we interpret the coefficients within the scope of the statistical model. The

majority of the interspecific competition parameters in α were estimated to be close to 0,

corresponding to few direct pairwise interspecific interactions, whereas the intraspecific

competition coefficients tended to be more strongly negative (Table S12). The prior and

posterior densities are plotted in Fig. 6. We see that many of the intraspecific interactions

(carolina chickadee, gray catbird, and chipping sparrow) are estimated to be large and

negative. In many cases, the posterior densities of the α coefficients are different from the

prior, demonstrating evidence of Bayesian learning. Cases where the posterior resembles

the prior are most common for interactions involving gray catbird. This may be a result of a

priori setting the gray catbird to interact with all the species when the data may not be able

to inform about all these interactions.

8. DISCUSSION

Our framework captures nonlinear responses of a species to interactions with the envi-

ronment and other species in the community, and our modeling enables inference on these

important effects. We incorporate the notion of movement to more accurately represent

the dynamics of an ecological system. Allowing populations to redistribute across a spatial

region can lead to more accurate representation of the relationships between interactions
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Figure 6. Prior (blue) and posterior (black) densities for α coefficients, where column species affect row species.

Intraspecific competition is represented by the plots on the main diagonal. The white spaces represent interactions

that are zero a priori. Posteriors that look different from the prior indicate Bayesian learning (Color figure online).

.

and population growth by disentangling the two components. Simulation studies reveal dif-

ficulty in recovering some species–species interaction parameters α j j ′ when the data consist

of a high proportion of observed zeros. These findings are not surprising; we expect dif-

ficulty in learning about species–species interactions when a species is not present and/or

highly mobile. Additionally, it is well understood that fitting mechanistic models require

large amounts of high-quality data (Urban et al. 2016). Therefore, it seems that our model

is best suited for applications where species are observed to be relatively abundant.

The application using eBird data suggests a pattern of few strong and many weak species

interactions. We found evidence of strong ESI with forested land cover for a few species,

which is expected as land cover type affects nesting sites, cover, and food. We acknowledge

that our application could benefit from incorporating additional environmental covariates.

However, the small areas analyzed for this demonstration do not admit meaningful variation

in climate variables such as temperature.

Many of the intraspecific coefficients (α j j ) were estimated to be large and negative. The

majority of the interspecific (α j j ′, j �= j ′) coefficients were either estimated to be close to

0 or not informed by the data; the model estimates few strong and many weak interactions.

This trend is in agreement with the few studies that have examined interaction strengths,

though these studies tend to focus on predator-prey interactions developed using food-web

theory, rather than competitive interactions. For example, when examining population-level

interactions through the Jacobian community matrices of soil food webs, de Ruiter et al.
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(1995) found evidence of skew toward weak interaction strengths for both the negative

effects of predators on prey, as well as for positive effects of prey on predators. The skew

toward weak interaction strengths may be an important factor when examining community

stability, as Allesina and Tang (2012) found that many weak interactions can help stabilize

competitive networks, and Haydon (2000) demonstrated that the effects of intraspecific

interactions may override the effects of interspecific interactions.

Here, we hypothesize why estimated parameters in α did not reflect the interspecific

competition between pairs of species that we expected or have been documented to interact.

This is most likely a result of our large-scale model-based approach, rather than analyz-

ing data collected from a smaller scale experiment. The mathematical interpretation of the

species-interaction coefficients α do not directly parallel the ecological interpretation of

interaction. Our framework is developed for the population-level, and so unless there are

repeated competitive effects that species j ′ exerts onto j that impact its growth rate, our

model cannot learn about interactions that take place between individuals. Another factor to

consider is spatial scale; closer individuals are more likely to interact with each other than

distant ones (Wootton and Emmerson 2005), and interaction strength may change in hetero-

geneous habitats as the habitat structure can alter consumer–resource interactions (Werner

et al. 1983). Additionally, allowing the species to redistribute could lead to fewer localized

interactions and therefore, potentially weaker interaction strength. Lastly, the duration of

each time interval for observing the potential interactions must be appropriate. If measure-

ments are taken over too long of a time interval, indirect effects and density-dependent

feedbacks can develop, which can influence the estimates of pairwise interactions (Berlow

et al. 1999).

A limitation of our large model-based approach is that we cannot conclude the existence

of interactions between species. For example, subtle preferences in microhabitat prefer-

ence (ex. tall trees vs scrub) and foraging behavior could be explaining the patterns in the

data, rather than a true competitive interaction. However, these findings could be useful for

further research studies examining the potential competitive interactions between species.

Altogether, our findings highlight the importance of developing realistic models that may

capture both the biotic and abiotic processes that influence community dynamics. Future

work includes developing a richer notion of redistribution that incorporates covariate infor-

mation (e.g., temperature) to better represent the biological process, as well as applying the

model to communities with difference dynamics (e.g., predatory/prey).
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A APPENDIX

A.1 POSTERIOR UPDATE FOR GROWTH COEFFICIENTS

Sampling the ESI coefficient matrix P can be achieved in a similar fashion, so here

we provide details about sampling A. Let 
 = diag(σ 2
γ, j ). The full conditional posterior

distribution for vec(A) is U J multivariate Normal with mean m and covariance M, where

M = (
∑T −1

t=1 Ct )
−1, m = M

∑T −1
t=1 ct , and

Ct = S−1 ⊗ (U′
t Ut )

ct = Ct ⊗ vec((U′
t Ut )

−1U′
t (W

∗
t − (W̃t + V′P)))

(5)

Recall that A is a sparse matrix, structured such that most elements are fixed at 0. Thus,

we only require updating a subset of the elements of A, or equivalently vec(A). Define Au

to be a vector of this subset of elements of A to be updated, and vector Au′ the elements of

A fixed at 0. Here, u holds indices of nonzero elements in vec(A), and u′ the indices of the

zero elements in vec(A). Rather than sampling all of vec(A), we reduce dimensionality by

conditioning on Au′ = 0. We reorganize vec(A), m, and M such that the elements u are

ordered before u′:

vec(A) =

[

Au

Au′

]

m =

[

mu

mu′

]

M =

[

Muu Muu′

Mu′u Mu′u′

]

Multivariate normal theory yields the conditional distribution from which we sample:

Au |Au′ , P,� ∼ MV N|u|J (mu − Muu′M−1
u′u′mu′ , Muu − Muu′M−1

u′u′Mu′u) (6)

A.2 REDISTRIBUTION MATRIX

We first define local redistribution from BLOB Bi to Bk . Using a kernel f (; θ) and

uniform distribution over Bi , the probability r∗
ik of moving from i to k is:

r∗
ik =

1

Bi

∫

Bk

∫

Bi

f (x − y; θ)dxdy (7)

for x ∈ Bi , y ∈ Bk . Then, we take the probability rik of local dispersal from Bi to Bk as

rik =
r∗

ik
∑

k′ r∗
ik′

(8)

We also allow for long distance redistribution from Bi . That is, it is possible for birds

located in BLOB i at time t to redistribute to any other BLOB on the map at time t + 1. The
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probability of long distance redistribution to Bk from Bi , sik , is proportional to its area:

sik =
|Bk |

∑

k′ �=i |Bk′ |
(9)

Letting l denote the proportion of dispersal that could occur due to long-distance, redis-

tribution from Bi to any receiving Bk takes the form H[k,i] = (1 − l)rik + lsik , which is

column-normalized to preserve abundances.
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