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Abstract—This work presents a novel technique to physically
clone a ring oscillator physically unclonable function (RO PUF)
onto another distinct FPGA die, using precise, targeted aging. The
resulting cloned RO PUF provides a response that is identical to
its copied FPGA counterpart, i.e., the FPGA and its clone are
indistinguishable from each other. Targeted aging is achieved by:
1) heating the FPGA using bitstream-located short circuits, and
2) enabling/disabling ROs in the same FPGA bitstream. During
self heating caused by short-circuits contained in the FPGA
bitstream, circuit areas containing oscillating ROs (enabled)
degrade more slowly than circuit areas containing non-oscillating
ROs (disabled), due to bias temperature instability effects. This
targeted aging technique is used to swap the relative frequencies
of two ROs that will, in turn, flip the corresponding bit in the
PUF response.

Two experiments are described. The first experiment uses
targeted aging to create an FPGA that exhibits the same PUF
response as another FPGA, i.e., a clone of an FPGA PUF onto
another FPGA device. The second experiment demonstrates that
this aging technique can create an RO PUF with any desired
response.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are increasingly
being used to implement digital circuits in security-sensitive
industries, such as communications infrastructure, transporta-
tion technologies, medical devices, and particularly national
defense and aerospace applications. In these types of applica-
tions, it is critical that the supply chain is secure, that devices
are from a trusted source, and that they remain secure after
deployment.

Physical unclonable functions (PUFs) play an important role
in FPGA security by providing a unique output derived from
the inherent randomness of the manufacturing process. Since
a PUF’s output is random and unique for every chip, they
are commonly used for device authentication, IP protection,
and cryptography. As the name suggests, PUFs rely on being
physically unclonable, meaning that even if the output of the
PUF is known, it cannot be physically replicated on another
chip (assuming no change to the challenge circuit). This
prevents attacks such as having a counterfeit chip replicate
an authentication response of a trusted chip to gain access to
a secure system.

This work presents a technique to physically clone a ring
oscillator PUF (RO PUF), which is commonly used in FP-
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GAs. Our cloning technique leverages a novel targeted aging
technique that allows us to change the relative frequency of
individual paths of the FPGA. One can use targeted aging as
a rewriting process, changing the PUF response of one FPGA
to match the response of another or to any arbitrary value.

To the best of our knowledge, this is the first work to
demonstrate the cloning of an RO PUF. We believe this work
proves a considerable vulnerability of not only RO PUFs, but
other delay-based PUFs implemented on FPGAs.

The main contributions of this work are:

o A novel technique for precise FPGA aging, capable of
affecting delays at individual FPGA tiles.

« Demonstrating this aging technique by cloning an RO
PUF of one FPGA onto another.

o Demonstrating that for RO PUFs, any arbitrary PUF
output can be achieved.

« A potential countermeasure to detect if a chip has under-
gone targeted aging.

This paper is organized as follows: Section II discusses re-
lated work in PUF response emulation and cloning. Section III
provides background information on PUFs, BTI, and short
circuit induced aging. Section IV presents our targeted aging
technique, and Section V discusses the PUF model as well as
two potential threat models. We then present the results of two
experiments: Section VI presents an experiment that clones
the response of an RO PUF from one FPGA onto another,
while Section VII presents an experiment that shows that any
arbitrary RO PUF response can be achieved with our cloning
technique. Section VIII presents a potential countermeasure
that allows users to detect if targeted aging has been performed
on an FPGA. Finally, Section IX concludes this paper and
discusses future work.

II. RELATED WORKS

In the literature, the act of cloning a PUF usually refers
to simply emulating a PUF response. The most common
technique for emulating a PUF response was proposed by
Rithrmair et al. They use machine learning techniques to
discover a PUF’s input-output responses and create a software
model that is identical to the PUF’s response [1]. However,
this technique requires a threat model that enables injecting
the malicious software model into the existing software that
handles the inputs and outputs of a PUF, which could be
countered with common software authentication techniques.
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Figure 1: A traditional implementation of an RO PUF.

Another emulation technique is briefly mentioned by Gao et
al. [2], who propose that physical emulation can be achieved
by creating a biased RO PUF where each RO has a different
number of inverters. The larger ROs will have bigger fre-
quencies than the smaller ROs, forcing the comparisons to
output a pre-determined value. For FPGAs this would require
modification of the bitstream, which once again could be
countered by using common authentication techniques, such
as hashing and validating the bitstream, or through bitstream
encryption, which is supported by most vendors.

These techniques to emulate a PUF response are fundamen-
tally different from creating a physical clone, which requires
changing physical characteristics of the device at the transistor
level. To the best of our knowledge, only one other work has
successfully created a physical clone of a PUF. Helfmeier
et al. [3] use a focused ion beam (FIB) to clone a SRAM
PUF, which relies on the random values the memory takes on
startup. This work is unique in that they use the FIB to etch out
part of the transistors that make up the SRAM. This physical
alteration of the transistors creates a bias in the SRAM and
forces it to the desired value on startup. However, SRAM PUFs
are often impossible to implement on FPGAs as the SRAM
in most FPGAs are initialized to a predetermined state upon
startup. Additionally, this technique is invasive, uses expensive
equipment, and requires intimate knowledge of the transistor
layout of the PUF (which is more difficult as an FPGA is a
much more complex device than an SRAM).

III. BACKGROUND
A. RO PUFs

PUFs produce a unique output (response) based on an input
(challenge) and a source of intrinsic randomness. PUFs are
often used for low-cost chip authentication or as a source of
true randomness for cryptographic key generation [4]. Silicon
PUFs use the intrinsic randomness of the manufacturing pro-
cess to implement a random function that has a unique output
for every chip. While many different types of silicon PUFs
exist, such as the SRAM PUF [5], the Butterfly PUF [6], the
Arbiter PUF [7] and the Anderson PUF [8], the RO PUF is
often preferred for FPGAs due to their simplicity and overall
performance [9]. Additionally, unlike other delay-based PUFs,
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Figure 2: An RO PUF using a 1-out-of-8 masking scheme as
a reliability enhancement. This RO PUF contains N groups
of ROs, and since each group produces a single bit, has an
output of length V.

such as butterfly and arbiter PUFs, RO PUFs do not require
perfectly symmetric routing which is difficult to achieve on an
FPGA [10].

Suh and Devadas were the first to propose a ring oscillator
based PUF (RO PUF). A Ring Oscillator (RO) is a combina-
tional loop made of an odd number of inverters that oscillates
at a frequency determined by the intrinsic speed of the silicon
where the RO is placed. Due to manufacturing variations, ROs
placed in different locations or on different chips will oscillate
at distinctly different frequencies. RO PUFs then compare
these random frequencies to output a random string of zeros
and ones.

Figure 1 illustrates an RO PUF, which consists of N ROs,
each of which are hooked up to one of two MUXes. The
output of each of these MUXes are fed into one of two
counters, which are in turn, fed into a comparator which
outputs either a zero or one for each comparison. To avoid
correlation between bits, it is common to use each RO in only
one comparison, meaning for N ROs, there would be N/2
comparisons resulting in a random string that is N/2 bits long.

Maiti et al. proposed a configurable RO (CRO). A CRO
uses additional MUXes to change which inverters an RO uses,
which will change the frequency of the ROs in the PUF,
thus changing the resulting output string. This allows each
RO pair in the PUF to produce multiple bits [11], without
increasing the size of the RO PUF. While CROs are generally
more compact than a traditional RO, they are generally more
complicated to implement and suffer from a decrease in
uniqueness in PUF outputs among different chips [9].

B. Reliable RO PUFs

Unfortunately, like all delay-based PUFs, RO PUFs are
susceptible to changes in temperature or voltage and ag-
ing [12]. These phenomena can cause different ROs to change
frequencies at different rates, causing some RO pairs to swap
relative frequencies which causes the RO PUF response to
change. Since the Hamming distance only needs to be under
some pre-determined threshold for a chip to be authenticated,
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this is tolerated for PUF-based authentication. However, cryp-
tographic applications require the PUF string to be precisely
the same throughout the lifetime of the chip. Using error
correcting algorithms or a fuzzy extractor have been proposed
as solutions for a RO PUF output’s volatility [5]. However,
these methods require additional post-processing on the PUFs
output, which is undesirable for many applications.

Suh and Devadas [13] proposed a reliability enhancement to
their RO PUFs as an alternative to post-processing techniques.
Their reliable RO PUF uses a l-out-of-k masking scheme.
As illustrated in Figure 2, ROs are grouped into groups of
k (where k = 8), with each group producing a single bit.
Each RO must be characterized to find the ROs that have the
minimum and maximum frequencies in each group. These ROs
are saved and compared throughout the lifetime of the chip.
This greatly increases the difference in frequency between
the ROs in a pair, making them less likely to swap relative
frequencies during environmental changes or aging. However,
this also increases the size of the RO PUF circuit by a factor
of k.

C. Bias Temperature Instability (BTI)

Our targeted aging technique used by our cloning method
relies on bias temperature instability (BTI). BTI occurs when
an electric field is applied across the gate oxide of a MOSFET
transistor which can create interface traps that trap carriers,
raising the threshold voltage of the transistor and lowering its
switching speed [14], [15].

There are two distinct cases of BTI: negative bias temper-
ature instability (NBTI), which mainly affects PMOS transis-
tors, and positive bias temperature instability (PBTI), which
mainly affects NMOS transistors. While only NBTI was a
concern in older technology nodes, the introduction of high-
k dielectrics in sub-45 nm nodes has made PBTI become as
much of a concern as NBTI [16], [17].

Historically, the LUTs and routing elements of an FPGA
have been made from NMOS pass transistors [18], [19], which
are primarily affected by PBTI. The conditions needed for
an NMOS transistor to experience PBTI include increased
temperature and positive gate bias [20].

Since a major factor of BTI degradation is a constant DC
gate bias, an AC gate bias helps protect a circuit from BTI
degradation [21]. This can be accomplished by the continuous
switching of transistors via a high-frequency signal.

D. Short Circuit Induced Aging on an FPGA

In order to accelerate BTI effects on the FPGA, we config-
ure short circuits on the FPGA. This method was first proposed
by Gaskin et al. who used custom bitstreams to configure
short circuits onto the FPGA fabric, resulting in high heat and
current [22], [23]. By configuring the FPGA to contain over
20,000 short circuits, they show that the temperature rises to
at least 177 °C, accelerating BTI and decreasing the frequency
of the shorted fabric by 5.1% after 36 days of running short
circuits.
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Figure 3: A diagram of a short circuit implemented on an
FPGA, from [22].

The technique we use to induce FPGA aging closely follows
their technique. It involves creating short circuits by routing
two nets with opposing values (a logic-1 and a logic-0) to
drive the same net. In particular, the short circuits use lookup
table (LUT) and flip-flop (FF) primitives, as seen in Figure 3.
To complete the short, the LUT and the FF must be selected so
that they connect to the same routing multiplexer, and the two
multiplexer inputs must be activated simultaneously. While it
is not normally possible to create designs with short circuits,
it can be done by using RapidWright [24] to create the routed
design checkpoint, importing the checkpoint into Vivado, and
then disabling DRC checks before generating a bitstream.

This short-circuit technique has many advantages over tra-
ditional techniques used to accelerate chip aging via heat,
such as using an oven [15], [25]-[27] or a heatgun [28]. One
advantage is its ability to be performed remotely. This provides
extra convenience for our cloning experiments and expands
our attack model for cloning an RO PUF. Additionally, short-
circuits allow the chip to get hotter than traditional methods,
which in turn speeds up the aging process.

Cook et al. [23] show that short circuits can be placed at
different locations on the FPGA to create a non-uniform aging
effect. However, in their work the aging is primarily an effect
of the self-heating of the chip, so the gradient of aging across
the chip is limited due to heat spreading. Their technique does
not produce sharp aging gradients that are required to change
the frequency of an RO relative to its neighboring tile, and so
this aging technique alone is not sufficient to clone PUFs.

IV. TARGETED AGING TECHNIQUE

Cloning PUFs requires precise enough aging that the relative
frequencies of two nearby ROs can be flipped. Once flipped,
the resulting bit obtained from the comparison will also flip,
allowing an attacker to change the PUF’s response string to
any arbitrary value.

In order to achieve this precise aging effect, we create a de-
sign (separate from the PUF challenge-response bitstream) that
contains strategically placed ROs surrounded by thousands of
short circuits. These ROs are configured simultaneously with
the short circuits and change the rate of degradation caused
by the short circuits (see Spoofing Bitstream in Figure 5).
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Figure 4: The layout of the ROs that are placed inside the
shorted bitstream, including a diagram showing every other
LUT being held at a positive bias.

If the ROs (shown in Figure 4) are enabled by holding the
ro_en signal high, then the transistors of the ROs switch at high
speeds (about 500 MHz). As explained in subsection III-C,
these high switching speeds largely mitigate the BTI effects
of the surrounding short circuits, provide a protective effect
against aging, and cause these RO regions to degrade slower
than the surrounding shorted regions.

When these ROs are disabled, the chain of inverters present
in the ROs speed up the rate of degradation. We believe this
phenomenon occurs because disabling the RO holds some of
the transistors in a positive bias, causing PBTI aging effects.
This results in the RO regions aging at a faster pace than the
rest of the fabric. Figure 4 contains a transistor-level diagram
of what we believe occurs when we implement an RO in the
FPGA fabric, and shows that when disabled (holding the ro_en
signal low), the transistor gates will be held at a positive bias
for every other inverter in the RO. While a disabled RO (chain
of inverters) is not the only circuit structure that would hold
the transistors at a bias and induce BTI, we choose to reuse
the same circuit structure for ease of design.

In order for targeted aging to occur, the ROs must be sur-
rounded by short circuits. Without being exposed to extreme
heat from the short circuits, the ROs are ineffective at affecting
the speed of the fabric enough to clone an RO PUF. This is
expected as BTI aging effects are most pronounced when there
exists a combination of high heat and biased transistors.

V. ATTACK MODEL

Our targeted aging technique is key in allowing us to clone
an RO PUF. Unlike most PUF “cloning” methods, which
emulates the PUF challenge-response pairs in software, our
cloning method uses our targeted aging technique to physically
alter the frequencies of different locations of a chip so that it
gives the exact same RO PUF response as another chip.

A. RO PUF Model

To show the versatility of our cloning technique, we chose
to target Suh and Devadas’s “reliable RO PUF” for our
experiments. As explained in Section III-B, reliable PUFs
work by grouping ROs into groups of k. In our experiments,
we chose k = 8. For each group, the ROs with the minimum
and maximum frequencies are identified. These ROs are then
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saved to a configuration stored in non-volatile memory off-
chip, such as a separate flash chip. This allows the same ROs
to be compared throughout the lifetime of the part with very
low probability of the PUF ever naturally changing.

We are specifically targeting a “reliable” PUF because it
is designed such that the frequencies of the compared ROs
are far apart. While targeting a PUF where ROs have similar
frequencies would have been easier, attacking a more resilient
PUF model demonstrates the capability of our precise aging
technique.

While Suh and Devadas explain the general idea of their
reliability enhancement, they leave out the implementation
details on how to compare the ROs with the minimum and
maximum frequencies. In our implementation we locate the
fastest and slowest PUFs indices in each group, and save this
configuration data as a list of IV pairs: [(A1, By), (A2, Bs),
s (AN, BN)1, A; € ]0,7], B; € [0.7]. Each pair is ordered
so that A; < B;. We then use the comparison f(4;) < f(B,)
(where f() is the frequency of the RO at the given index) to
determine if the PUF bit from that pair is a zero or a one.
This is illustrated in Figure 5.

B. Authentication Threat Model

One potential cloning attack is to clone an RO PUF used
to authenticate a trusted FPGA. If an attacker is able to
physically clone a RO PUF response of a trusted FPGA onto
a malicious FPGA (which could contain back doors, hardware
trojans, etc.), then they could replace the trusted FPGA with
the malicious one without it being detected.

Our threat model for such an attack is illustrated in Figure 5.
In our threat model, the user of the trusted FPGA has designed
a k = 8 reliable PUF architecture and has measured the
intrinsic RO speeds to identify the indices of the fastest and
slowest ROs of each group. These configuration indices, along
with the bitstream, are saved and stored in such a way that
they cannot be modified (read-only, non-volatile memory, or
validated with a hash).

The attacker in our threat model has knowledge of the
trusted design, including the bitstream and configuration in-
dices but cannot make modifications to these files. This could
occur if the attacker gained access to the memory where the
files are stored or possibly by characterizing the PUF itself
(which can be accomplished with a variety of methods [29],
[30]). The attacker must know the exact details of the RO
PUF (placement and routing of individual wires), as our
targeted aging technique targets the individual transistors in
the LUTs and routing multiplexers, so access to the bitstream
or hardware design files is essential.

With these assumptions met, the attacker can then take a
malicious FPGA and use our targeted aging technique to flip
the relative frequencies of selected RO pairs. This will flip
the corresponding bits and allow the attacker to physically
clone the RO PUF response of the trusted FPGA onto their
malicious FPGA. With this accomplished, the attacker could
swap out trusted components with their counterfeit parts
without detection.
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Figure 5: Diagram of the threat model and PUF architecture targeted by our experiment, with heatmaps showing the frequency
of the ROs in MHz. The trusted FPGA contains many ring oscillators, grouped into regions, readable using the RO PUF
bitstream. Following reliable PUF convention, configuration data indicates which ROs within each region should be compared
to generate each bit of the PUF. Our attack model assumes that the trusted bitstream and configuration data is known, but
cannot be modified. The attacker’s FPGA then undergoes our cloning process such that it now produces the same PUF response,

without modifying the trusted bitstream or configuration data.

For example, in Figure 5, you will notice that the trusted
FPGA has been characterized, and for RO group #3, the fastest
RO is located at 7 = 0, and the slowest RO at 7 = 7. In the
attacker’s FPGA, the RO at ¢ = 7 is actually faster than the
RO at 7 = 0, so the spoofing process is required to flip these
relative frequencies. An enabled RO is placed at ¢ = 0, and
a disabled RO at 7 = 7, and they are surrounded by heat-
generating short circuits. After this biased aging process, the
relative frequencies will have been flipped. This process will
be described in detail in our experiment in Section VI.

C. Cryptographic Threat Model

In the previous threat model, one FPGA’s PUF response
is modified to match another. However, there may be cases
where the attacker actually wants to modify the PUF response
of a trusted, already characterized FPGA (i.e., not clone the
response onto another FPGA, but actually modify the response
of the original FPGA). For example, this might be applicable
for systems that use PUF responses for key generation for
cryptographic functions [31], where the attacker wants to
modify the trusted FPGA to use a key of their choice.

At first glance, this seems like the same problem as pre-
viously discussed: changing the PUF response of an FPGA.
However, there are some subtle differences that make this
attack a bit harder.

Consider again the example in Figure 5. The cloning attack
previously discussed changed the output response of RO group
#3 such that the RO at 7 = 7 is made to be slower than
the RO at ¢+ = 0; however, you will notice that these two
ROs had similar frequencies to begin with (247.52MHz and
248.60MHz), so the relative frequencies needed to be shifted
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by only 1.08MHz in order to flip the PUF bit of the attacker’s
FPGA.

In contrast, if an attacker wants to flip PUF bits by attacking
the original, trusted FPGA, they will naturally have to flip ROs
that are further apart in frequency. This is because the attacker
is now trying to change the relative RO frequencies of ROs
that are, by definition, the slowest and fastest ROs in their
group. For example, if the attacker wanted to change the PUF
response of group #3 in the trusted FPGA from Figure 5, then
they would need to flip the relative frequencies of PUFs that
run at 246.26MHz and 247.96MHz, a difference of 1.70MHz.
This may not seem substantially more difficult than the cloning
attack’s difference of 1.08MHz, but it does make the attack
take longer to perform.

It is also worth noting that for this attack, the current
PUF response does not need to be known. However, the RO
PUF layout and the locations of minimum- and maximum-
frequency ROs (i.e. the RO PUF configuration) must still be
known.

This type of attack is demonstrated in our second experi-
ment, discussed in Section VII.

VI. RO PUF CLONING EXPERIMENT
A. Experiment Overview

To test that our targeted aging method is able to physically
clone an RO PUF, we performed an RO PUF cloning experi-
ment. This cloning experiment is based on the authentication
threat model described in Section V-B and targets a 128-bit
RO PUF that uses a 1-out-of-8 masking scheme to improve
reliability. Each RO in the PUF takes up an entire tile, using
seven LUTs as inverters and one LUT as an AND gate.
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Table I: Summary of the RO PUF Cloning Experiment.

Day Target String Clone String Hamming
Distance
0 0x£7£dd44402££615 0xa3bb27088027£36 55
27b25£91f7e63fe08 2406f228f6ff2bbee
1 0x£7£dd44402££615 0xf7£dd44002££615 2
27b25£91f7e63fe08 27b25£f91f7e63fe4d8
2 0x£f7£dd44402f£615 O0xf7£fdd44402££f615 0
27b25£91f7e63fe08 27b25f91f7e63fe08

We used RapidWright to ensure all ROs use the exact same
placement and routing to avoid bias in our comparisons. Each
RO group is one RO (tile) wide and eight ROs (tiles) tall.

We perform this experiment with two new Digilent ARTY
A7-35T boards containing Xilinx Artix-7 FPGAs. One board
contains the “trusted” FPGA while the other the “clone”
FPGA. Both boards are modified to bypass the power regulator
so that VCCINT can be powered directly. The VCCINT was
connected to separate channels on a Keysight N6705C power
supply, which allows for high currents and precise voltages.
Both boards were placed in a thermal chamber set to 35°C
to eliminate any ambient temperature fluctuations.

Before starting the cloning process, the trusted FPGA was
characterized by measuring the frequency of the ROs that
make up the PUF. The ROs with the minimum and maxi-
mum frequencies in each group were chosen and saved to a
configuration. This configuration was used to create a targeted
aging bitstream. In this bitstream, disabled ROs were placed
in the same spot as the minimum-frequency PUF ROs on the
trusted FPGA, while enabled ROs were placed in the same spot
as the maximum-frequency ROs. 20,544 short circuits were
then placed on the FPGA, surrounding the ROs. To ensure no
undesired bits flipped during the aging process, targeted aging
ROs were placed for each PUF RO pair regardless of whether
the corresponding bit needed to be flipped during the cloning
process.

We programmed the targeted aging bitstream onto the clone
FPGA for 24 hours at a time. After each 24 hour period, we
let the device cool and then characterized the frequency of the
PUF ROs to determine if the PUF was successfully cloned.

In preliminary experiments, we found that increasing the
voltage of VCCINT greatly increases the effects of BTI and
further accelerates our targeted aging. In both experiments
described in this paper the voltage of VCCINT was increased
from the nominal 0.95V to 1.05V. This allows us to reduce
the time it takes to clone an RO PUF from months to days. The
voltage was returned to it nominal value while characterizing
the RO frequencies. The voltage of 1.05V is still within the
rated operating voltage of the part, which has a maximum
voltage of 1.1V

B. Experiment Results

The results of the RO PUF cloning experiment can be seen
in Table I. It took two days to completely clone the PUF
response of the trusted FPGA onto the clone FPGA, with all
but two bits flipping after a single day.
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The heatmaps in Figure 5 show the frequencies for a subset
of ROs that make up the PUF for both the trusted FPGA and
the attacker’s clone FPGA. As explained in Section V-B, the
clone FPGA will ultimately use the same RO PUF config-
uration as the trusted FPGA. This configuration corresponds
with the minimum- and maximum-frequency ROs (outlined in
red and green respectively) for each RO group of the trusted
FPGA.

Since the clone FPGA will use the same configuration as
the trusted FPGA, our experiment must target the same ROs.
Before the cloning process, Figure 5 shows that the PUF sub-
string of the clone FPGA is inverted from the trusted FPGA.
By placing the enabled and disabled ROs in the short circuit
bitstream, we flip the relative frequencies of the targeted ROs
on the clone FPGA, giving it the same PUF output as the
trusted FPGA.

While Figure 5 shows that the PUF re-writing process
decreases the clone FPGA’s absolute frequencies across the
heatmap, the enabled ROs see an increase in relative frequency
compared to surrounding RO frequencies. Conversely, the
disabled ROs see a decrease in relative frequency compared
to their neighbors.

VII. PUF INVERSION EXPERIMENT

In the previous experiment we re-wrote a PUF to match
the PUF of another FPGA. As shown in Table I, the 128-bit
PUFs of the two FPGA s differed by only 55 bits to begin with,
so not all ring oscillator pairs needed to have their relatively
frequency flipped. In addition, many of the targeted ROs had
similar frequencies to begin with. To further demonstrate the
effectiveness of our technique, we next conduct an experiment
where we invert every bit of a trusted FPGA’s PUF.

A. Inversion Experiment Overview

To show that an RO PUF response can be changed to output
any arbitrary response, we created an experiment that takes
the trusted FPGA from Section VI and inverts its RO PUF
output. This experiment addresses the threat model described
in Section V-C, and demonstrates that our aging technique can
create arbitrary PUFs, even when attacking ROs that are far
apart in frequency.

The experiment follows the same procedure as outlined in
Section VI-A. We created a targeted aging bitstream similar
to the one used in the previous experiment, but swapping the
position of the enabled and disabled ROs.

B. Inversion Experiment Results

The results for the inversion experiment are summarized
in Table II, and again show that it only took two days to
completely invert the RO PUF response of the RO PUF. It
should be noted that while this inversion experiment took the
same amount of time as the cloning experiment (two days),
it is dependent on the off-the-shelf characteristics of the part,
and we have observed it in general taking a bit longer than
the cloning process (sometimes several days).
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Table II: Summary of the RO PUF Inversion Experiment.

9% Change

Day Target String Clone String Hamming of
Distance e

63

0 0x08022bbbfd009ea 0xf7£fdd44402££615 128 &
d84da06e0819c01£7 27b25£91£7e63£€08 gg

57

1 0x08022bbb£d009ea 0x094e2bb7£d009e2 13 86
d84da06e0819c01£7 d85dad6e2818d01£5 24

52

2 0x08022bbb£d009ea 0x08022bbb£fd009%ea 0 gé
d84da06e0819c01£f7 d84da06e0819c01£f7 48

The heatmap in Figure 6 shows the percent change of the
frequency for each RO on the entire FPGA, as a result of
the targeted aging process. Here, it can be clearly seen which
tiles contain enabled and disabled ROs in the targeted aging
bitstream. The tiles with a much larger localized slowdown
(dark red tiles) are where the disabled ROs were placed and
tiles with a much smaller localized slowdown (dark blue tiles)
are where the enabled ROs were placed. As a whole the FPGA
exhibits non-uniform aging (bottom left ages more than top
right), but this does not impact the effectiveness of our attack.
We regularly see this non-uniformity and believe it is a product
of the heat spreading capabilities of the IC and/or packaging.

Additionally, Figure 6 demonstrates how much overall aging
an FPGA must go through in order to clone a PUF. Shorted
regions show a slowdown of 5.34% to 6.73%, while the
enabled and disabled ROs show slowdowns of 3.18% to 4.84%
and 5.00% to 7.92% respectively.

Finally, Figure 7 shows the frequency difference for each of
the 128 RO pairs over time. The bit corresponding to each pair
flips when the frequency difference dips below zero, which
occurs within two days for all RO pairs. After each pair was
flipped, we continued the targeted aging for an additional 17
days. The figure shows that the frequency difference over
time for each RO pair decreases as a decaying exponential.
The largest drop occurs on the first day of targeted aging,
with subsequent days seeing a increasingly smaller drop in
frequency difference. This is similar to the artificial aging
profile demonstrated in [23].

C. Recovery

BTI often sees a slight recovery after a stress period [32]—
[34]. Thus to investigate the effects of recovery on our cloned
PUF response, we perform a five day recovery period.

To recover the chip, we cycle through programming
the FPGA with five different benchmarks to represent
real workloads running on the chip. Three of the de-
signs we use (bgm, blob merge, and diffeq2) are from
the VTR 7 benchmark suite [35]. The fourth design
is a bitcoin design modified from github.com/progranism/
Open-Source-FPGA-Bitcoin-Miner. We run each design on
the FPGA for six hours, for a total of 24 hours. We then pro-
gram our characterization bitstreams to capture the frequencies
of the ROs. This process is repeated for the duration of our
recovery period.

The recovery period shown in Figure 7 indicates that no
significant recovery occurs within the recovery period. This
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Figure 6: Heatmap showing the percent change as a result of
the Inversion Experiment. Each RO group is outlined in black.

suggests that our cloning technique may be permanent. How-
ever, additional recovery experiments should be performed
before drawing such a conclusion.

VIII. COUNTERMEASURES

Our targeted aging technique allows the cloning of an
RO PUF with nothing more than vendor supported tools
and a standard power supply, allowing such an attack to be
performed by anybody with sufficient access to the FPGA and
design files. While we have demonstrated our cloning method
on a reliable RO PUF with a 1-out-of-8 masking scheme, we
believe that this same attack can be used on many other delay
based PUF, including more traditional RO PUFs. In fact, for
standard PUFs the frequency differences would likely be much
less, making the attack even easier. Thus it is important to
discuss possible countermeasures for our cloning attack.

One possible countermeasure is to detect if a part has been
aged. Cloning an RO PUF requires substantial aging, leading
to an increase in delay throughout the FPGA fabric (Figure 6).
There are many techniques to detect recycled FPGAs by
identifying if aging through normal use has occurred [36],
[37]. These same techniques can be used to detect if a PUF
has been cloned from a relatively new FPGA. However, these
techniques may report false positives if the “trusted” FPGA
itself has experienced aging from normal usage.
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Figure 7: Graph showing the frequency difference for each
of the 128 RO pairs. The corresponding bit for each pair
is flipped when the frequency difference becomes negative.
Targeted aging was performed for the first 19 days, while
recovery was performed for the last five days.

Thus, instead of attempting to identify normal aging, a
cloned FPGA could be detected by identifying fargeted aging.
This can be accomplished by calculating the relative frequency
of ROs that are likely to be targeted during a cloning attack.
We define the relative frequency of a region using Equa-
tion (1), where N is the number of neighboring RO regions
and fy, f1, ..., fn are the frequency of those region. For each
region, there are usually eight neighboring RO (N, NE, E, SW,
S, SW, W, NW), with fewer neighbors at near the perimeter
of the RO PUR.

ey

N
fRelative = fRO - M
N

During targeted aging, the relative frequency of regions
where enabled and disabled ROs are placed greatly increase
and decrease respectively. Figure 8a shows the relative fre-
quency distribution of the disabled RO regions from Section VI
for both before and after the cloning process. The relative
frequencies of the disabled RO regions are initially centered
at —0.209 MHz but shift to —2.712 MHz after the cloning
process, an absolute increase of 13.0x. Similarly, the relative
frequencies of enabled ROs, shown in Figure 8b, shift the
opposite direction, from a mean of 0.169 MHz to 3.130 MHz,
an absolute increase of 18.5x.

In both cases, the average relative starts near zero but shifts
to a much larger value. This shift in relative frequency of target
regions could be used to detect if PUF cloning has occurred in
an FPGA. If so, appropriate actions could be taken to swap the
FPGA out with one that is still trusted. This detection method
is simple and effective, but without employing it, users of
delay-based FPGA PUFs may be vulnerable to the spoofing
attacks we have demonstrated in this paper.
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(a) Relative frequency distribution of the disabled RO regions.
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Figure 8: Histograms showing the distribution of the relative
frequencies of enabled and disabled ROs targeted in Sec-
tion VI. Both graphs include distributions for both before
(blue) and after (red) the cloning process (histograms are
overlapping and semi-transparent).

IX. CONCLUSION

This paper presents a novel targeted aging technique that can
be used to physically clone an RO PUF. By exposing enabled
and disabled ROs to extreme heat, we respectively increase
or decrease the frequency degradation those ROs experience
due to BTI This allows us to perform targeted aging on
individual paths in an FPGA and can be leveraged to swap
relative frequencies of RO pairs in a PUF, flipping the sign of
their comparison and the resulting bit in the PUF response.

By flipping the right bits, an attacker can achieve any PUF
response on an FPGA, allowing them to clone the RO PUF
response of another FPGA. We demonstrate that not only is
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a cloning attack possible, but also that any arbitrary PUF
response can be achieved in as little as two days.

The cloning technique can likely be extended to target other
delay-based PUFs, such as CRO or Anderson PUFs, which is
the focus for future work.

This targeted aging technique is the first method shown to be
able to physically clone a delay based PUF. This has significant
implications on the security of such PUFs and may allow for
new attacks targeting systems previously thought of as secure.
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