
Cloning the Unclonable:

Physically Cloning an FPGA Ring-Oscillator PUF

Hayden Cook, Jonathan Thompson, Zephram Tripp, Brad Hutchings, and Jeffrey Goeders

Department of Electrical and Computer Engineering

Brigham Young University, Provo, Utah, USA

Abstract—This work presents a novel technique to physically
clone a ring oscillator physically unclonable function (RO PUF)
onto another distinct FPGA die, using precise, targeted aging. The
resulting cloned RO PUF provides a response that is identical to
its copied FPGA counterpart, i.e., the FPGA and its clone are
indistinguishable from each other. Targeted aging is achieved by:
1) heating the FPGA using bitstream-located short circuits, and
2) enabling/disabling ROs in the same FPGA bitstream. During
self heating caused by short-circuits contained in the FPGA
bitstream, circuit areas containing oscillating ROs (enabled)
degrade more slowly than circuit areas containing non-oscillating
ROs (disabled), due to bias temperature instability effects. This
targeted aging technique is used to swap the relative frequencies
of two ROs that will, in turn, flip the corresponding bit in the
PUF response.

Two experiments are described. The first experiment uses
targeted aging to create an FPGA that exhibits the same PUF
response as another FPGA, i.e., a clone of an FPGA PUF onto
another FPGA device. The second experiment demonstrates that
this aging technique can create an RO PUF with any desired
response.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are increasingly

being used to implement digital circuits in security-sensitive

industries, such as communications infrastructure, transporta-

tion technologies, medical devices, and particularly national

defense and aerospace applications. In these types of applica-

tions, it is critical that the supply chain is secure, that devices

are from a trusted source, and that they remain secure after

deployment.

Physical unclonable functions (PUFs) play an important role

in FPGA security by providing a unique output derived from

the inherent randomness of the manufacturing process. Since

a PUF’s output is random and unique for every chip, they

are commonly used for device authentication, IP protection,

and cryptography. As the name suggests, PUFs rely on being

physically unclonable, meaning that even if the output of the

PUF is known, it cannot be physically replicated on another

chip (assuming no change to the challenge circuit). This

prevents attacks such as having a counterfeit chip replicate

an authentication response of a trusted chip to gain access to

a secure system.

This work presents a technique to physically clone a ring

oscillator PUF (RO PUF), which is commonly used in FP-

H. Cook, J. Thompson, Z. Tripp, B. Hutchings, and J. Goeders are also
with the NSF Center for Space, High-performance, and Resilient Computing
(SHREC)

GAs. Our cloning technique leverages a novel targeted aging

technique that allows us to change the relative frequency of

individual paths of the FPGA. One can use targeted aging as

a rewriting process, changing the PUF response of one FPGA

to match the response of another or to any arbitrary value.

To the best of our knowledge, this is the first work to

demonstrate the cloning of an RO PUF. We believe this work

proves a considerable vulnerability of not only RO PUFs, but

other delay-based PUFs implemented on FPGAs.

The main contributions of this work are:

• A novel technique for precise FPGA aging, capable of

affecting delays at individual FPGA tiles.

• Demonstrating this aging technique by cloning an RO

PUF of one FPGA onto another.

• Demonstrating that for RO PUFs, any arbitrary PUF

output can be achieved.

• A potential countermeasure to detect if a chip has under-

gone targeted aging.

This paper is organized as follows: Section II discusses re-

lated work in PUF response emulation and cloning. Section III

provides background information on PUFs, BTI, and short

circuit induced aging. Section IV presents our targeted aging

technique, and Section V discusses the PUF model as well as

two potential threat models. We then present the results of two

experiments: Section VI presents an experiment that clones

the response of an RO PUF from one FPGA onto another,

while Section VII presents an experiment that shows that any

arbitrary RO PUF response can be achieved with our cloning

technique. Section VIII presents a potential countermeasure

that allows users to detect if targeted aging has been performed

on an FPGA. Finally, Section IX concludes this paper and

discusses future work.

II. RELATED WORKS

In the literature, the act of cloning a PUF usually refers

to simply emulating a PUF response. The most common

technique for emulating a PUF response was proposed by

Rührmair et al. They use machine learning techniques to

discover a PUF’s input-output responses and create a software

model that is identical to the PUF’s response [1]. However,

this technique requires a threat model that enables injecting

the malicious software model into the existing software that

handles the inputs and outputs of a PUF, which could be

countered with common software authentication techniques.

1

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 F

ie
ld

-P
ro

gr
am

m
ab

le
 T

ec
hn

ol
og

y
(IC

FP
T)

 |
 9

78
-1

-6
65

4-
53

36
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
FP

T5
66

56
.2

02
2.

99
74

59
7

Authorized licensed use limited to: Brigham Young University. Downloaded on June 12,2023 at 15:19:43 UTC from IEEE Xplore. Restrictions apply.

Figure 1: A traditional implementation of an RO PUF.

Another emulation technique is briefly mentioned by Gao et

al. [2], who propose that physical emulation can be achieved

by creating a biased RO PUF where each RO has a different

number of inverters. The larger ROs will have bigger fre-

quencies than the smaller ROs, forcing the comparisons to

output a pre-determined value. For FPGAs this would require

modification of the bitstream, which once again could be

countered by using common authentication techniques, such

as hashing and validating the bitstream, or through bitstream

encryption, which is supported by most vendors.

These techniques to emulate a PUF response are fundamen-

tally different from creating a physical clone, which requires

changing physical characteristics of the device at the transistor

level. To the best of our knowledge, only one other work has

successfully created a physical clone of a PUF. Helfmeier

et al. [3] use a focused ion beam (FIB) to clone a SRAM

PUF, which relies on the random values the memory takes on

startup. This work is unique in that they use the FIB to etch out

part of the transistors that make up the SRAM. This physical

alteration of the transistors creates a bias in the SRAM and

forces it to the desired value on startup. However, SRAM PUFs

are often impossible to implement on FPGAs as the SRAM

in most FPGAs are initialized to a predetermined state upon

startup. Additionally, this technique is invasive, uses expensive

equipment, and requires intimate knowledge of the transistor

layout of the PUF (which is more difficult as an FPGA is a

much more complex device than an SRAM).

III. BACKGROUND

A. RO PUFs

PUFs produce a unique output (response) based on an input

(challenge) and a source of intrinsic randomness. PUFs are

often used for low-cost chip authentication or as a source of

true randomness for cryptographic key generation [4]. Silicon

PUFs use the intrinsic randomness of the manufacturing pro-

cess to implement a random function that has a unique output

for every chip. While many different types of silicon PUFs

exist, such as the SRAM PUF [5], the Butterfly PUF [6], the

Arbiter PUF [7] and the Anderson PUF [8], the RO PUF is

often preferred for FPGAs due to their simplicity and overall

performance [9]. Additionally, unlike other delay-based PUFs,

Figure 2: An RO PUF using a 1-out-of-8 masking scheme as

a reliability enhancement. This RO PUF contains N groups

of ROs, and since each group produces a single bit, has an

output of length N .

such as butterfly and arbiter PUFs, RO PUFs do not require

perfectly symmetric routing which is difficult to achieve on an

FPGA [10].

Suh and Devadas were the first to propose a ring oscillator

based PUF (RO PUF). A Ring Oscillator (RO) is a combina-

tional loop made of an odd number of inverters that oscillates

at a frequency determined by the intrinsic speed of the silicon

where the RO is placed. Due to manufacturing variations, ROs

placed in different locations or on different chips will oscillate

at distinctly different frequencies. RO PUFs then compare

these random frequencies to output a random string of zeros

and ones.

Figure 1 illustrates an RO PUF, which consists of N ROs,

each of which are hooked up to one of two MUXes. The

output of each of these MUXes are fed into one of two

counters, which are in turn, fed into a comparator which

outputs either a zero or one for each comparison. To avoid

correlation between bits, it is common to use each RO in only

one comparison, meaning for N ROs, there would be N/2
comparisons resulting in a random string that is N/2 bits long.

Maiti et al. proposed a configurable RO (CRO). A CRO

uses additional MUXes to change which inverters an RO uses,

which will change the frequency of the ROs in the PUF,

thus changing the resulting output string. This allows each

RO pair in the PUF to produce multiple bits [11], without

increasing the size of the RO PUF. While CROs are generally

more compact than a traditional RO, they are generally more

complicated to implement and suffer from a decrease in

uniqueness in PUF outputs among different chips [9].

B. Reliable RO PUFs

Unfortunately, like all delay-based PUFs, RO PUFs are

susceptible to changes in temperature or voltage and ag-

ing [12]. These phenomena can cause different ROs to change

frequencies at different rates, causing some RO pairs to swap

relative frequencies which causes the RO PUF response to

change. Since the Hamming distance only needs to be under

some pre-determined threshold for a chip to be authenticated,

2

Authorized licensed use limited to: Brigham Young University. Downloaded on June 12,2023 at 15:19:43 UTC from IEEE Xplore. Restrictions apply.

this is tolerated for PUF-based authentication. However, cryp-

tographic applications require the PUF string to be precisely

the same throughout the lifetime of the chip. Using error

correcting algorithms or a fuzzy extractor have been proposed

as solutions for a RO PUF output’s volatility [5]. However,

these methods require additional post-processing on the PUFs

output, which is undesirable for many applications.

Suh and Devadas [13] proposed a reliability enhancement to

their RO PUFs as an alternative to post-processing techniques.

Their reliable RO PUF uses a l-out-of-k masking scheme.

As illustrated in Figure 2, ROs are grouped into groups of

k (where k = 8), with each group producing a single bit.

Each RO must be characterized to find the ROs that have the

minimum and maximum frequencies in each group. These ROs

are saved and compared throughout the lifetime of the chip.

This greatly increases the difference in frequency between

the ROs in a pair, making them less likely to swap relative

frequencies during environmental changes or aging. However,

this also increases the size of the RO PUF circuit by a factor

of k.

C. Bias Temperature Instability (BTI)

Our targeted aging technique used by our cloning method

relies on bias temperature instability (BTI). BTI occurs when

an electric field is applied across the gate oxide of a MOSFET

transistor which can create interface traps that trap carriers,

raising the threshold voltage of the transistor and lowering its

switching speed [14], [15].

There are two distinct cases of BTI: negative bias temper-

ature instability (NBTI), which mainly affects PMOS transis-

tors, and positive bias temperature instability (PBTI), which

mainly affects NMOS transistors. While only NBTI was a

concern in older technology nodes, the introduction of high-

k dielectrics in sub-45 nm nodes has made PBTI become as

much of a concern as NBTI [16], [17].

Historically, the LUTs and routing elements of an FPGA

have been made from NMOS pass transistors [18], [19], which

are primarily affected by PBTI. The conditions needed for

an NMOS transistor to experience PBTI include increased

temperature and positive gate bias [20].

Since a major factor of BTI degradation is a constant DC

gate bias, an AC gate bias helps protect a circuit from BTI

degradation [21]. This can be accomplished by the continuous

switching of transistors via a high-frequency signal.

D. Short Circuit Induced Aging on an FPGA

In order to accelerate BTI effects on the FPGA, we config-

ure short circuits on the FPGA. This method was first proposed

by Gaskin et al. who used custom bitstreams to configure

short circuits onto the FPGA fabric, resulting in high heat and

current [22], [23]. By configuring the FPGA to contain over

20,000 short circuits, they show that the temperature rises to

at least 177 ◦C, accelerating BTI and decreasing the frequency

of the shorted fabric by 5.1% after 36 days of running short

circuits.

A6LUT

AFF

ON

Routing
MUX

0

1
ON

Figure 3: A diagram of a short circuit implemented on an

FPGA, from [22].

The technique we use to induce FPGA aging closely follows

their technique. It involves creating short circuits by routing

two nets with opposing values (a logic-1 and a logic-0) to

drive the same net. In particular, the short circuits use lookup

table (LUT) and flip-flop (FF) primitives, as seen in Figure 3.

To complete the short, the LUT and the FF must be selected so

that they connect to the same routing multiplexer, and the two

multiplexer inputs must be activated simultaneously. While it

is not normally possible to create designs with short circuits,

it can be done by using RapidWright [24] to create the routed

design checkpoint, importing the checkpoint into Vivado, and

then disabling DRC checks before generating a bitstream.

This short-circuit technique has many advantages over tra-

ditional techniques used to accelerate chip aging via heat,

such as using an oven [15], [25]–[27] or a heatgun [28]. One

advantage is its ability to be performed remotely. This provides

extra convenience for our cloning experiments and expands

our attack model for cloning an RO PUF. Additionally, short-

circuits allow the chip to get hotter than traditional methods,

which in turn speeds up the aging process.

Cook et al. [23] show that short circuits can be placed at

different locations on the FPGA to create a non-uniform aging

effect. However, in their work the aging is primarily an effect

of the self-heating of the chip, so the gradient of aging across

the chip is limited due to heat spreading. Their technique does

not produce sharp aging gradients that are required to change

the frequency of an RO relative to its neighboring tile, and so

this aging technique alone is not sufficient to clone PUFs.

IV. TARGETED AGING TECHNIQUE

Cloning PUFs requires precise enough aging that the relative

frequencies of two nearby ROs can be flipped. Once flipped,

the resulting bit obtained from the comparison will also flip,

allowing an attacker to change the PUF’s response string to

any arbitrary value.

In order to achieve this precise aging effect, we create a de-

sign (separate from the PUF challenge-response bitstream) that

contains strategically placed ROs surrounded by thousands of

short circuits. These ROs are configured simultaneously with

the short circuits and change the rate of degradation caused

by the short circuits (see Spoofing Bitstream in Figure 5).

3

Authorized licensed use limited to: Brigham Young University. Downloaded on June 12,2023 at 15:19:43 UTC from IEEE Xplore. Restrictions apply.

ro_en …0 0 10 01

0

1

0 1

LUT1—inverter

1

0

0

1 110

LUT1—inverter
1

0 0PBTI

Figure 4: The layout of the ROs that are placed inside the

shorted bitstream, including a diagram showing every other

LUT being held at a positive bias.

If the ROs (shown in Figure 4) are enabled by holding the

ro en signal high, then the transistors of the ROs switch at high

speeds (about 500MHz). As explained in subsection III-C,

these high switching speeds largely mitigate the BTI effects

of the surrounding short circuits, provide a protective effect

against aging, and cause these RO regions to degrade slower

than the surrounding shorted regions.

When these ROs are disabled, the chain of inverters present

in the ROs speed up the rate of degradation. We believe this

phenomenon occurs because disabling the RO holds some of

the transistors in a positive bias, causing PBTI aging effects.

This results in the RO regions aging at a faster pace than the

rest of the fabric. Figure 4 contains a transistor-level diagram

of what we believe occurs when we implement an RO in the

FPGA fabric, and shows that when disabled (holding the ro en

signal low), the transistor gates will be held at a positive bias

for every other inverter in the RO. While a disabled RO (chain

of inverters) is not the only circuit structure that would hold

the transistors at a bias and induce BTI, we choose to reuse

the same circuit structure for ease of design.

In order for targeted aging to occur, the ROs must be sur-

rounded by short circuits. Without being exposed to extreme

heat from the short circuits, the ROs are ineffective at affecting

the speed of the fabric enough to clone an RO PUF. This is

expected as BTI aging effects are most pronounced when there

exists a combination of high heat and biased transistors.

V. ATTACK MODEL

Our targeted aging technique is key in allowing us to clone

an RO PUF. Unlike most PUF “cloning” methods, which

emulates the PUF challenge-response pairs in software, our

cloning method uses our targeted aging technique to physically

alter the frequencies of different locations of a chip so that it

gives the exact same RO PUF response as another chip.

A. RO PUF Model

To show the versatility of our cloning technique, we chose

to target Suh and Devadas’s “reliable RO PUF” for our

experiments. As explained in Section III-B, reliable PUFs

work by grouping ROs into groups of k. In our experiments,

we chose k = 8. For each group, the ROs with the minimum

and maximum frequencies are identified. These ROs are then

saved to a configuration stored in non-volatile memory off-

chip, such as a separate flash chip. This allows the same ROs

to be compared throughout the lifetime of the part with very

low probability of the PUF ever naturally changing.

We are specifically targeting a “reliable” PUF because it

is designed such that the frequencies of the compared ROs

are far apart. While targeting a PUF where ROs have similar

frequencies would have been easier, attacking a more resilient

PUF model demonstrates the capability of our precise aging

technique.

While Suh and Devadas explain the general idea of their

reliability enhancement, they leave out the implementation

details on how to compare the ROs with the minimum and

maximum frequencies. In our implementation we locate the

fastest and slowest PUFs indices in each group, and save this

configuration data as a list of N pairs: [(A1, B1), (A2, B2),

..., (AN , BN)], Ai ∈ [0, 7], Bi ∈ [0.7]. Each pair is ordered

so that Ai < Bi. We then use the comparison f(Ai) < f(Bj)
(where f() is the frequency of the RO at the given index) to

determine if the PUF bit from that pair is a zero or a one.

This is illustrated in Figure 5.

B. Authentication Threat Model

One potential cloning attack is to clone an RO PUF used

to authenticate a trusted FPGA. If an attacker is able to

physically clone a RO PUF response of a trusted FPGA onto

a malicious FPGA (which could contain back doors, hardware

trojans, etc.), then they could replace the trusted FPGA with

the malicious one without it being detected.

Our threat model for such an attack is illustrated in Figure 5.

In our threat model, the user of the trusted FPGA has designed

a k = 8 reliable PUF architecture and has measured the

intrinsic RO speeds to identify the indices of the fastest and

slowest ROs of each group. These configuration indices, along

with the bitstream, are saved and stored in such a way that

they cannot be modified (read-only, non-volatile memory, or

validated with a hash).

The attacker in our threat model has knowledge of the

trusted design, including the bitstream and configuration in-

dices but cannot make modifications to these files. This could

occur if the attacker gained access to the memory where the

files are stored or possibly by characterizing the PUF itself

(which can be accomplished with a variety of methods [29],

[30]). The attacker must know the exact details of the RO

PUF (placement and routing of individual wires), as our

targeted aging technique targets the individual transistors in

the LUTs and routing multiplexers, so access to the bitstream

or hardware design files is essential.

With these assumptions met, the attacker can then take a

malicious FPGA and use our targeted aging technique to flip

the relative frequencies of selected RO pairs. This will flip

the corresponding bits and allow the attacker to physically

clone the RO PUF response of the trusted FPGA onto their

malicious FPGA. With this accomplished, the attacker could

swap out trusted components with their counterfeit parts

without detection.

4

Authorized licensed use limited to: Brigham Young University. Downloaded on June 12,2023 at 15:19:43 UTC from IEEE Xplore. Restrictions apply.

Trusted FPGA

7

6

5

4

3

2

1

0

#1 #2 #3

RO PUF Bitstream (.bit)

Config: [#1: 0,7] [#2: 0,3] [#3: 0,7]
PUF: 0,0,1,…

PUF: 1,1,0,…

PUF Bitstream
(Before Spoof)

PUF: 0,0,1,…

<

Spoofing (Short Circuit)
Bitstream

RO-on

RO-off

RO-on

RO-off

RO-off

RO-on

PUF Bitstream
(After Spoof)

Attacker’s FPGA

= 8 short circuit

Figure 5: Diagram of the threat model and PUF architecture targeted by our experiment, with heatmaps showing the frequency

of the ROs in MHz. The trusted FPGA contains many ring oscillators, grouped into regions, readable using the RO PUF

bitstream. Following reliable PUF convention, configuration data indicates which ROs within each region should be compared

to generate each bit of the PUF. Our attack model assumes that the trusted bitstream and configuration data is known, but

cannot be modified. The attacker’s FPGA then undergoes our cloning process such that it now produces the same PUF response,

without modifying the trusted bitstream or configuration data.

For example, in Figure 5, you will notice that the trusted

FPGA has been characterized, and for RO group #3, the fastest

RO is located at i = 0, and the slowest RO at i = 7. In the

attacker’s FPGA, the RO at i = 7 is actually faster than the

RO at i = 0, so the spoofing process is required to flip these

relative frequencies. An enabled RO is placed at i = 0, and

a disabled RO at i = 7, and they are surrounded by heat-

generating short circuits. After this biased aging process, the

relative frequencies will have been flipped. This process will

be described in detail in our experiment in Section VI.

C. Cryptographic Threat Model

In the previous threat model, one FPGA’s PUF response

is modified to match another. However, there may be cases

where the attacker actually wants to modify the PUF response

of a trusted, already characterized FPGA (i.e., not clone the

response onto another FPGA, but actually modify the response

of the original FPGA). For example, this might be applicable

for systems that use PUF responses for key generation for

cryptographic functions [31], where the attacker wants to

modify the trusted FPGA to use a key of their choice.

At first glance, this seems like the same problem as pre-

viously discussed: changing the PUF response of an FPGA.

However, there are some subtle differences that make this

attack a bit harder.

Consider again the example in Figure 5. The cloning attack

previously discussed changed the output response of RO group

#3 such that the RO at i = 7 is made to be slower than

the RO at i = 0; however, you will notice that these two

ROs had similar frequencies to begin with (247.52MHz and

248.60MHz), so the relative frequencies needed to be shifted

by only 1.08MHz in order to flip the PUF bit of the attacker’s

FPGA.

In contrast, if an attacker wants to flip PUF bits by attacking

the original, trusted FPGA, they will naturally have to flip ROs

that are further apart in frequency. This is because the attacker

is now trying to change the relative RO frequencies of ROs

that are, by definition, the slowest and fastest ROs in their

group. For example, if the attacker wanted to change the PUF

response of group #3 in the trusted FPGA from Figure 5, then

they would need to flip the relative frequencies of PUFs that

run at 246.26MHz and 247.96MHz, a difference of 1.70MHz.

This may not seem substantially more difficult than the cloning

attack’s difference of 1.08MHz, but it does make the attack

take longer to perform.

It is also worth noting that for this attack, the current

PUF response does not need to be known. However, the RO

PUF layout and the locations of minimum- and maximum-

frequency ROs (i.e. the RO PUF configuration) must still be

known.

This type of attack is demonstrated in our second experi-

ment, discussed in Section VII.

VI. RO PUF CLONING EXPERIMENT

A. Experiment Overview

To test that our targeted aging method is able to physically

clone an RO PUF, we performed an RO PUF cloning experi-

ment. This cloning experiment is based on the authentication

threat model described in Section V-B and targets a 128-bit

RO PUF that uses a 1-out-of-8 masking scheme to improve

reliability. Each RO in the PUF takes up an entire tile, using

seven LUTs as inverters and one LUT as an AND gate.

5

Authorized licensed use limited to: Brigham Young University. Downloaded on June 12,2023 at 15:19:43 UTC from IEEE Xplore. Restrictions apply.

Table I: Summary of the RO PUF Cloning Experiment.

Day Target String Clone String Hamming

Distance

0 0xf7fdd44402ff615 0xa3bb27088027f36 55
27b25f91f7e63fe08 2406f228f6ff2bbee

1 0xf7fdd44402ff615 0xf7fdd44002ff615 2
27b25f91f7e63fe08 27b25f91f7e63fe48

2 0xf7fdd44402ff615 0xf7fdd44402ff615 0
27b25f91f7e63fe08 27b25f91f7e63fe08

We used RapidWright to ensure all ROs use the exact same

placement and routing to avoid bias in our comparisons. Each

RO group is one RO (tile) wide and eight ROs (tiles) tall.

We perform this experiment with two new Digilent ARTY

A7-35T boards containing Xilinx Artix-7 FPGAs. One board

contains the “trusted” FPGA while the other the “clone”

FPGA. Both boards are modified to bypass the power regulator

so that VCCINT can be powered directly. The VCCINT was

connected to separate channels on a Keysight N6705C power

supply, which allows for high currents and precise voltages.

Both boards were placed in a thermal chamber set to 35 ◦C
to eliminate any ambient temperature fluctuations.

Before starting the cloning process, the trusted FPGA was

characterized by measuring the frequency of the ROs that

make up the PUF. The ROs with the minimum and maxi-

mum frequencies in each group were chosen and saved to a

configuration. This configuration was used to create a targeted

aging bitstream. In this bitstream, disabled ROs were placed

in the same spot as the minimum-frequency PUF ROs on the

trusted FPGA, while enabled ROs were placed in the same spot

as the maximum-frequency ROs. 20,544 short circuits were

then placed on the FPGA, surrounding the ROs. To ensure no

undesired bits flipped during the aging process, targeted aging

ROs were placed for each PUF RO pair regardless of whether

the corresponding bit needed to be flipped during the cloning

process.

We programmed the targeted aging bitstream onto the clone

FPGA for 24 hours at a time. After each 24 hour period, we

let the device cool and then characterized the frequency of the

PUF ROs to determine if the PUF was successfully cloned.

In preliminary experiments, we found that increasing the

voltage of VCCINT greatly increases the effects of BTI and

further accelerates our targeted aging. In both experiments

described in this paper the voltage of VCCINT was increased

from the nominal 0.95V to 1.05V. This allows us to reduce

the time it takes to clone an RO PUF from months to days. The

voltage was returned to it nominal value while characterizing

the RO frequencies. The voltage of 1.05V is still within the

rated operating voltage of the part, which has a maximum

voltage of 1.1V

B. Experiment Results

The results of the RO PUF cloning experiment can be seen

in Table I. It took two days to completely clone the PUF

response of the trusted FPGA onto the clone FPGA, with all

but two bits flipping after a single day.

The heatmaps in Figure 5 show the frequencies for a subset

of ROs that make up the PUF for both the trusted FPGA and

the attacker’s clone FPGA. As explained in Section V-B, the

clone FPGA will ultimately use the same RO PUF config-

uration as the trusted FPGA. This configuration corresponds

with the minimum- and maximum-frequency ROs (outlined in

red and green respectively) for each RO group of the trusted

FPGA.

Since the clone FPGA will use the same configuration as

the trusted FPGA, our experiment must target the same ROs.

Before the cloning process, Figure 5 shows that the PUF sub-

string of the clone FPGA is inverted from the trusted FPGA.

By placing the enabled and disabled ROs in the short circuit

bitstream, we flip the relative frequencies of the targeted ROs

on the clone FPGA, giving it the same PUF output as the

trusted FPGA.

While Figure 5 shows that the PUF re-writing process

decreases the clone FPGA’s absolute frequencies across the

heatmap, the enabled ROs see an increase in relative frequency

compared to surrounding RO frequencies. Conversely, the

disabled ROs see a decrease in relative frequency compared

to their neighbors.

VII. PUF INVERSION EXPERIMENT

In the previous experiment we re-wrote a PUF to match

the PUF of another FPGA. As shown in Table I, the 128-bit

PUFs of the two FPGAs differed by only 55 bits to begin with,

so not all ring oscillator pairs needed to have their relatively

frequency flipped. In addition, many of the targeted ROs had

similar frequencies to begin with. To further demonstrate the

effectiveness of our technique, we next conduct an experiment

where we invert every bit of a trusted FPGA’s PUF.

A. Inversion Experiment Overview

To show that an RO PUF response can be changed to output

any arbitrary response, we created an experiment that takes

the trusted FPGA from Section VI and inverts its RO PUF

output. This experiment addresses the threat model described

in Section V-C, and demonstrates that our aging technique can

create arbitrary PUFs, even when attacking ROs that are far

apart in frequency.

The experiment follows the same procedure as outlined in

Section VI-A. We created a targeted aging bitstream similar

to the one used in the previous experiment, but swapping the

position of the enabled and disabled ROs.

B. Inversion Experiment Results

The results for the inversion experiment are summarized

in Table II, and again show that it only took two days to

completely invert the RO PUF response of the RO PUF. It

should be noted that while this inversion experiment took the

same amount of time as the cloning experiment (two days),

it is dependent on the off-the-shelf characteristics of the part,

and we have observed it in general taking a bit longer than

the cloning process (sometimes several days).

6

Authorized licensed use limited to: Brigham Young University. Downloaded on June 12,2023 at 15:19:43 UTC from IEEE Xplore. Restrictions apply.

Table II: Summary of the RO PUF Inversion Experiment.

Day Target String Clone String Hamming

Distance

0 0x08022bbbfd009ea 0xf7fdd44402ff615 128
d84da06e0819c01f7 27b25f91f7e63fe08

1 0x08022bbbfd009ea 0x094e2bb7fd009e2 13
d84da06e0819c01f7 d85da46e2818d01f5

2 0x08022bbbfd009ea 0x08022bbbfd009ea 0
d84da06e0819c01f7 d84da06e0819c01f7

The heatmap in Figure 6 shows the percent change of the

frequency for each RO on the entire FPGA, as a result of

the targeted aging process. Here, it can be clearly seen which

tiles contain enabled and disabled ROs in the targeted aging

bitstream. The tiles with a much larger localized slowdown

(dark red tiles) are where the disabled ROs were placed and

tiles with a much smaller localized slowdown (dark blue tiles)

are where the enabled ROs were placed. As a whole the FPGA

exhibits non-uniform aging (bottom left ages more than top

right), but this does not impact the effectiveness of our attack.

We regularly see this non-uniformity and believe it is a product

of the heat spreading capabilities of the IC and/or packaging.

Additionally, Figure 6 demonstrates how much overall aging

an FPGA must go through in order to clone a PUF. Shorted

regions show a slowdown of 5.34% to 6.73%, while the

enabled and disabled ROs show slowdowns of 3.18% to 4.84%

and 5.00% to 7.92% respectively.

Finally, Figure 7 shows the frequency difference for each of

the 128 RO pairs over time. The bit corresponding to each pair

flips when the frequency difference dips below zero, which

occurs within two days for all RO pairs. After each pair was

flipped, we continued the targeted aging for an additional 17

days. The figure shows that the frequency difference over

time for each RO pair decreases as a decaying exponential.

The largest drop occurs on the first day of targeted aging,

with subsequent days seeing a increasingly smaller drop in

frequency difference. This is similar to the artificial aging

profile demonstrated in [23].

C. Recovery

BTI often sees a slight recovery after a stress period [32]–

[34]. Thus to investigate the effects of recovery on our cloned

PUF response, we perform a five day recovery period.

To recover the chip, we cycle through programming

the FPGA with five different benchmarks to represent

real workloads running on the chip. Three of the de-

signs we use (bgm, blob merge, and diffeq2) are from

the VTR 7 benchmark suite [35]. The fourth design

is a bitcoin design modified from github.com/progranism/

Open-Source-FPGA-Bitcoin-Miner. We run each design on

the FPGA for six hours, for a total of 24 hours. We then pro-

gram our characterization bitstreams to capture the frequencies

of the ROs. This process is repeated for the duration of our

recovery period.

The recovery period shown in Figure 7 indicates that no

significant recovery occurs within the recovery period. This

Figure 6: Heatmap showing the percent change as a result of

the Inversion Experiment. Each RO group is outlined in black.

suggests that our cloning technique may be permanent. How-

ever, additional recovery experiments should be performed

before drawing such a conclusion.

VIII. COUNTERMEASURES

Our targeted aging technique allows the cloning of an

RO PUF with nothing more than vendor supported tools

and a standard power supply, allowing such an attack to be

performed by anybody with sufficient access to the FPGA and

design files. While we have demonstrated our cloning method

on a reliable RO PUF with a 1-out-of-8 masking scheme, we

believe that this same attack can be used on many other delay

based PUF, including more traditional RO PUFs. In fact, for

standard PUFs the frequency differences would likely be much

less, making the attack even easier. Thus it is important to

discuss possible countermeasures for our cloning attack.

One possible countermeasure is to detect if a part has been

aged. Cloning an RO PUF requires substantial aging, leading

to an increase in delay throughout the FPGA fabric (Figure 6).

There are many techniques to detect recycled FPGAs by

identifying if aging through normal use has occurred [36],

[37]. These same techniques can be used to detect if a PUF

has been cloned from a relatively new FPGA. However, these

techniques may report false positives if the “trusted” FPGA

itself has experienced aging from normal usage.

7

Authorized licensed use limited to: Brigham Young University. Downloaded on June 12,2023 at 15:19:43 UTC from IEEE Xplore. Restrictions apply.

Cloning
Period

Recovery
Period

Figure 7: Graph showing the frequency difference for each

of the 128 RO pairs. The corresponding bit for each pair

is flipped when the frequency difference becomes negative.

Targeted aging was performed for the first 19 days, while

recovery was performed for the last five days.

Thus, instead of attempting to identify normal aging, a

cloned FPGA could be detected by identifying targeted aging.

This can be accomplished by calculating the relative frequency

of ROs that are likely to be targeted during a cloning attack.

We define the relative frequency of a region using Equa-

tion (1), where N is the number of neighboring RO regions

and f0, f1, ..., fN are the frequency of those region. For each

region, there are usually eight neighboring RO (N, NE, E, SW,

S, SW, W, NW), with fewer neighbors at near the perimeter

of the RO PUF.

fRelative = fRO −

∑N

i=1
fi

N
(1)

During targeted aging, the relative frequency of regions

where enabled and disabled ROs are placed greatly increase

and decrease respectively. Figure 8a shows the relative fre-

quency distribution of the disabled RO regions from Section VI

for both before and after the cloning process. The relative

frequencies of the disabled RO regions are initially centered

at −0.209MHz but shift to −2.712MHz after the cloning

process, an absolute increase of 13.0x. Similarly, the relative

frequencies of enabled ROs, shown in Figure 8b, shift the

opposite direction, from a mean of 0.169MHz to 3.130MHz,

an absolute increase of 18.5x.

In both cases, the average relative starts near zero but shifts

to a much larger value. This shift in relative frequency of target

regions could be used to detect if PUF cloning has occurred in

an FPGA. If so, appropriate actions could be taken to swap the

FPGA out with one that is still trusted. This detection method

is simple and effective, but without employing it, users of

delay-based FPGA PUFs may be vulnerable to the spoofing

attacks we have demonstrated in this paper.

(a) Relative frequency distribution of the disabled RO regions.

(b) Relative frequency distribution of the enabled RO regions

Figure 8: Histograms showing the distribution of the relative

frequencies of enabled and disabled ROs targeted in Sec-

tion VI. Both graphs include distributions for both before

(blue) and after (red) the cloning process (histograms are

overlapping and semi-transparent).

IX. CONCLUSION

This paper presents a novel targeted aging technique that can

be used to physically clone an RO PUF. By exposing enabled

and disabled ROs to extreme heat, we respectively increase

or decrease the frequency degradation those ROs experience

due to BTI. This allows us to perform targeted aging on

individual paths in an FPGA and can be leveraged to swap

relative frequencies of RO pairs in a PUF, flipping the sign of

their comparison and the resulting bit in the PUF response.

By flipping the right bits, an attacker can achieve any PUF

response on an FPGA, allowing them to clone the RO PUF

response of another FPGA. We demonstrate that not only is

8

Authorized licensed use limited to: Brigham Young University. Downloaded on June 12,2023 at 15:19:43 UTC from IEEE Xplore. Restrictions apply.

a cloning attack possible, but also that any arbitrary PUF

response can be achieved in as little as two days.

The cloning technique can likely be extended to target other

delay-based PUFs, such as CRO or Anderson PUFs, which is

the focus for future work.

This targeted aging technique is the first method shown to be

able to physically clone a delay based PUF. This has significant

implications on the security of such PUFs and may allow for

new attacks targeting systems previously thought of as secure.

REFERENCES

[1] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J.
Schmidhuber, “Modeling attacks on physical unclonable functions,” in
Conference on Computer and communications security (CCS), event-
place: Chicago, Illinois, USA, ACM Press, 2010, p. 237, ISBN: 978-
1-4503-0245-6. DOI: 10.1145/1866307.1866335. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1866307.1866335 (visited on
07/18/2022).

[2] M. Gao, K. Lai, J. Zhang, G. Qu, A. Cui, and Q. Zhou, “Reli-
able and anti-cloning PUFs based on configurable ring oscillators,”
in Conference on Computer-Aided Design and Computer Graph-

ics (CAD/Graphics), Aug. 2015, pp. 194–201. DOI: 10 . 1109 /
CADGRAPHICS.2015.54.

[3] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert, “Cloning
physically unclonable functions,” in Symposium on Hardware-Oriented

Security and Trust (HOST), Jun. 2013, pp. 1–6. DOI: 10.1109/HST.
2013.6581556.

[4] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical
unclonable functions and applications: A tutorial,” Proceedings of the

IEEE, vol. 102, no. 8, pp. 1126–1141, Aug. 2014, ISSN: 1558-2256.
DOI: 10.1109/JPROC.2014.2320516.

[5] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in Cryptographic Hardware and

Embedded Systems (CHES), 2007, pp. 63–80, ISBN: 978-3-540-74735-
2. DOI: 10.1007/978-3-540-74735-2 5.

[6] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls,
“Extended abstract: The butterfly PUF protecting IP on every FPGA,”
in Workshop on Hardware-Oriented Security and Trust (HOST), Jun.
2008, pp. 67–70, ISBN: 978-1-4244-2401-6. DOI: 10.1109/HST.2008.
4559053. [Online]. Available: http : / / ieeexplore . ieee .org /document /
4559053/ (visited on 07/18/2022).

[7] D. Lim, J. Lee, B. Gassend, G. Suh, M. van Dijk, and S. Devadas,
“Extracting secret keys from integrated circuits,” Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 13, no. 10, pp. 1200–
1205, Oct. 2005, ISSN: 1557-9999. DOI: 10.1109/TVLSI.2005.859470.

[8] J. H. Anderson, “A PUF design for secure FPGA-based embedded
systems,” in 2010 15th Asia and South Pacific Design Automation

Conference (ASP-DAC), ISSN: 2153-697X, Jan. 2010, pp. 1–6. DOI:
10.1109/ASPDAC.2010.5419927.

[9] M. S. Alkatheiri, Y. Zhuang, M. Korobkov, and A. R. Sangi, “An
experimental study of the state-of-the-art PUFs implemented on FP-
GAs,” in Conference on Dependable and Secure Computing, Aug.
2017, pp. 174–180. DOI: 10.1109/DESEC.2017.8073844.

[10] S. Morozov, A. Maiti, and P. Schaumont, “An analysis of delay
based PUF implementations on FPGA,” in Reconfigurable Computing:

Architectures, Tools and Applications, 2010, pp. 382–387, ISBN: 978-
3-642-12133-3. DOI: 10.1007/978-3-642-12133-3 37.

[11] A. Maiti and P. Schaumont, “Improving the quality of a physical un-
clonable function using configurable ring oscillators,” in Conference on

Field Programmable Logic and Applications, Aug. 2009, pp. 703–707.
DOI: 10.1109/FPL.2009.5272361.

[12] M. Mustapa and M. Niamat, “Temperature, voltage, and aging effects
in ring oscillator physical unclonable function,” in Conference on

High Performance Computing and Communications, Symposium on

Cyberspace Safety and Security, and Conference on Embedded Soft-

ware and Systems, Aug. 2015, pp. 1699–1702. DOI: 10.1109/HPCC-
CSS-ICESS.2015.247.

[13] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Design Automation Con-

ference, Jun. 2007, pp. 9–14.

[14] N. Weste and D. Harris, CMOS VLSI design: A circuits and systems

perspective, 4th ed. Pearson, Mar. 4, 2010.
[15] S. Gehrer, “Highly efficient implementation of physical unclonable

functions on FPGAs,” 2017.
[16] T. T. Kim, P.-F. Lu, and C. H. Kim, “Design of ring oscillator structures

for measuring isolated NBTI and PBTI,” in International Symposium

on Circuits and Systems (ISCAS), May 2012, pp. 1580–1583. DOI:
10.1109/ISCAS.2012.6271555.

[17] S. Zafar, Y. Kim, V. Narayanan, et al., “A comparative study of NBTI
and PBTI (charge trapping) in SiO2/HfO2 stacks with FUSI, TiN, re
gates,” in Symposium on VLSI Technology, Jun. 2006, pp. 23–25. DOI:
10.1109/VLSIT.2006.1705198.

[18] S. Gehrer, S. Leger, and G. Sigl, “Aging effects on ring-oscillator-
based physical unclonable functions on FPGAs,” in Conference on Re-

ConFigurable Computing and FPGAs (ReConFig), Dec. 2015, pp. 1–6.
DOI: 10.1109/ReConFig.2015.7393289.

[19] V. Betz, “Architecture and CAD for speed and area optimization of
FPGAs,” Thesis, 1998. [Online]. Available: https : / / tspace . library .
utoronto.ca/handle/1807/12758 (visited on 07/18/2022).

[20] E. A. Stott, J. S. Wong, P. Sedcole, and P. Y. Cheung, “Degradation
in FPGAs: Measurement and modelling,” in Symposium on Field

Programmable Gate Arrays (FPGA), Feb. 21, 2010, pp. 229–238,
ISBN: 978-1-60558-911-4. DOI: 10.1145/1723112.1723152. [Online].
Available: https : / / doi . org / 10 . 1145 / 1723112 . 1723152 (visited on
03/26/2020).

[21] H. Reisinger, T. Grasser, K. Ermisch, H. Nielen, W. Gustin, and C.
Schlünder, “Understanding and modeling AC BTI,” in International

Reliability Physics Symposium, Apr. 2011, 6A.1.1–6A.1.8. DOI: 10 .
1109/IRPS.2011.5784542.

[22] T. Gaskin, H. Cook, W. Stirk, R. Lucas, J. Goeders, and B. Hutchings,
“Using novel configuration techniques for accelerated FPGA aging,”
in Conference on Field-Programmable Logic and Applications (FPL),
Aug. 2020, pp. 169–175. DOI: 10.1109/FPL50879.2020.00037.

[23] H. Cook, J. Arscott, B. George, T. Gaskin, J. Goeders, and B.
Hutchings, “Inducing non-uniform FPGA aging using configuration-
based short circuits,” ACM Transactions on Reconfigurable Technology

and Systems, vol. 15, no. 4, pp. 1–33, Dec. 31, 2022, ISSN: 1936-
7406, 1936-7414. DOI: 10.1145/3517042. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3517042 (visited on 07/18/2022).

[24] C. Lavin and A. Kaviani, “RapidWright: Enabling custom crafted
implementations for FPGAs,” in Symposium on Field-Programmable

Custom Computing Machines (FCCM), Apr. 2018, pp. 133–140. DOI:
10.1109/FCCM.2018.00030.

[25] A. Maiti, L. McDougall, and P. Schaumont, “The impact of aging on
an FPGA-based physical unclonable function,” in Conference on Field

Programmable Logic and Applications (FPL), Sep. 2011, pp. 151–156.
DOI: 10.1109/FPL.2011.35.

[26] F. Kastensmidt, J. Tonfat, T. Both, et al., “Voltage scaling and aging
effects on soft error rate in SRAM-based FPGAs,” Microelectronics

Reliability, vol. 54, no. 9, pp. 2344–2348, Sep. 2014, ISSN: 00262714.
DOI: 10 . 1016 / j . microrel . 2014 . 07 . 100. [Online]. Available: https :
//linkinghub.elsevier.com/retrieve/pii/S0026271414002960 (visited on
07/18/2022).

[27] A. Amouri, F. Bruguier, S. Kiamehr, P. Benoit, L. Torres, and M.
Tahoori, “Aging effects in FPGAs: An experimental analysis,” in
Conference on Field Programmable Logic and Applications (FPL),
Sep. 2014, pp. 1–4. DOI: 10.1109/FPL.2014.6927390.

[28] V. Jyothi and J. Rajendran, “Hardware trojan attacks in FPGA and
protection approaches,” in The Hardware Trojan War: Attacks, Myths,

and Defenses, S. Bhunia and M. M. Tehranipoor, Eds., Cham: Springer
International Publishing, 2018, pp. 345–368, ISBN: 978-3-319-68511-
3. DOI: 10.1007/978-3-319-68511-3 14. [Online]. Available: https:
//doi.org/10.1007/978-3-319-68511-3 14 (visited on 10/21/2021).

[29] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, “Semi-invasive EM
attack on FPGA RO PUFs and countermeasures,” in Workshop on

Embedded Systems Security (WESS), 2011, pp. 1–9, ISBN: 978-1-
4503-0819-9. DOI: 10 . 1145 / 2072274 . 2072276. [Online]. Available:
http : / /dl .acm.org/citation .cfm?doid=2072274.2072276 (visited on
07/18/2022).

[30] D. Merli, J. Heyszl, B. Heinz, D. Schuster, F. Stumpf, and G. Sigl,
“Localized electromagnetic analysis of RO PUFs,” in Symposium on

Hardware-Oriented Security and Trust (HOST), Jun. 2013, pp. 19–24.
DOI: 10.1109/HST.2013.6581559.

9

Authorized licensed use limited to: Brigham Young University. Downloaded on June 12,2023 at 15:19:43 UTC from IEEE Xplore. Restrictions apply.

[31] J. Guajardo, B. Škorić, P. Tuyls, et al., “Anti-counterfeiting, key dis-
tribution, and key storage in an ambient world via physical unclonable
functions,” Information Systems Frontiers, vol. 11, no. 1, pp. 19–41,
Mar. 1, 2009, ISSN: 1572-9419. DOI: 10.1007/s10796- 008- 9142- z.
[Online]. Available: https : / / doi . org / 10 . 1007 / s10796 - 008 - 9142 - z
(visited on 07/19/2022).

[32] C. Yilmaz, L. Heiß, C. Werner, and D. Schmitt-Landsiedel, “Modeling
of NBTI-recovery effects in analog CMOS circuits,” in International

Reliability Physics Symposium (IRPS), Apr. 2013, 2A.4.1–2A.4.4. DOI:
10.1109/IRPS.2013.6531944.

[33] P. Hehenberger, H. Reisinger, and T. Grasser, “Recovery of negative
and positive bias temperature stress in pMOSFETs,” in Integrated

Reliability Workshop Final Report, Oct. 2010, pp. 8–11. DOI: 10.1109/
IIRW.2010.5706473.

[34] M. Slimani, K. Benkalaia, and L. Naviner, “Analysis of ageing effects
on ARTIX7 XILINX FPGA,” Microelectronics Reliability, vol. 76-77,
Jul. 1, 2017. DOI: 10.1016/j.microrel.2017.07.006.

[35] J. Luu, J. Goeders, M. Wainberg, et al., “VTR 7.0: Next generation
architecture and CAD system for FPGAs,” ACM Transactions on

Reconfigurable Technology and Systems, vol. 7, no. 2, pp. 1–30, Jun.
2014, ISSN: 1936-7406, 1936-7414. DOI: 10.1145/2617593. [Online].
Available: https : / / dl . acm . org / doi / 10 . 1145 / 2617593 (visited on
07/18/2022).

[36] H. Dogan, D. Forte, and M. M. Tehranipoor, “Aging analysis for re-
cycled FPGA detection,” in Symposium on Defect and Fault Tolerance

in VLSI and Nanotechnology Systems (DFT), Oct. 2014, pp. 171–176.
DOI: 10.1109/DFT.2014.6962099.

[37] Y. Isaka, F. Ahmed, M. Shintani, and M. Inoue, “Unsupervised
recycled FPGA detection based on direct density ratio estimation,”
in International Symposium on On-Line Testing and Robust System

Design (IOLTS), Jun. 2021, pp. 1–6. DOI: 10.1109/IOLTS52814.2021.
9486698.

10

Authorized licensed use limited to: Brigham Young University. Downloaded on June 12,2023 at 15:19:43 UTC from IEEE Xplore. Restrictions apply.

