

Randezvous: Making Randomization E�ective on MCUs ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Threat 1. An attacker may attempt to use a bu�er overread [82]

to read the code segment and locate reusable code.

Threat 2. An attacker may attempt to use a bu�er overread [82]

to read control data (pointers to code like return addresses and function

pointers) out of memory to locate reusable code.

Threat 3. An attacker may attempt to guess the location of

reusable code or the location of a control data slot (a memory lo-

cation containing control data) in a brute force attack.

Threat 4. An attacker may corrupt a control data slot to hijack

the control �ow.

Threat 5. An attacker may “spray” control data across a memory

region [78] to corrupt all control data slots within that region.

4 DESIGN

Randezvous is a compiler that transforms code installed on an
ARMv7/8-MMCU and a set of runtime support routines used by the
MCU’s reset and exception handlers. Our design requires the MPU
support, the set of debug registers needed by PicoXOM [75], and
a hardware-based cryptographically secure pseudorandom num-
ber generator (CSPRNG). These features are available on many
real-world MCUs, from low-end (e.g., STM32L412R8 [79]) to high-
end (e.g., MIMXRT685-EVK [58]) and across manufacturers (e.g.,
STMicroelectronics [81], Microchip [56], and Renesas [70]).

In principle, Randezvous protects control data by destroying it
when possible and hiding it with improved entropy when destruc-
tion is infeasible. We break down Randezvous’s design components
into three categories: 1) randomization and code protection, 2) con-
trol data protection, and 3) entropy improvements. We �rst describe
the randomization and code protection schemes that Randezvous
employs, which previous work [25, 75] explored. We then explain
how Randezvous’s control data protection and entropy-improving
techniques mitigate the additional threats described in §3.

4.1 Randomization and Code Protection

Traditional code reuse attacks [71, 83] require the attacker to know
a priori the location of reusable code in memory. Randezvous there-
fore utilizes randomization and XOM to force the attacker to either
use a bu�er overread to leak control data [27, 30, 66, 72] or use
brute force attacks that guess the location of reusable code.

Speci�cally, Randezvous performs the following randomized per-
mutations of code at compile time: 1) Function layout reordering:
Randezvous places each function in the program at a random loca-
tion in the code segment. 2) Basic block layout reordering: In each
function, Randezvous shu�es the order of basic blocks. If a basic
block can fall through to a successor, they are kept contiguous
in memory to avoid adding extra branch instructions to the code.
3) Trap instruction insertion: Randezvous �lls unused code segment
memory (between functions and between basic blocks that do not
fall through) with trap instructions. These instructions are never
executed during benign executions and only detect attack probes
that jump to unused code. When that happens, Randezvous’s trap
handler responds by rebooting the system and optionally alerting
a system administrator that a potential attack attempt has been
thwarted. Randezvous also randomizes the layout of global data
segments (i.e., .rodata, .data, and .bss) at compile time by plac-
ing each memory object at a random location in its segment. The

reason to use compile-time randomization rather than runtime
rerandomization is that, compared to the former, the latter requires
signi�cantly more MCU resources (e.g., separate memory for stor-
ing the original program to be randomized) while only adding one
extra bit of entropy against brute force attacks [74]. Though orthog-
onal to issues that this paper addresses, §A discusses how to deploy
compile-time diversi�ed binaries at scale for interested readers.

To mitigate Threat 1, Randezvous employs XOM on the code
segment. As the ARMv7/8-M MPU does not support XOM [7, 8],
Randezvous employs a software alternative named PicoXOM. Pi-
coXOM [75] con�gures the ARMdebug registers, called DataWatch-
point and Trace (DWT) comparators [7, 8], to generate a trap if a
read is performed from the code segment. Furthermore, since the
debug registers are memory-mapped [7, 8], PicoXOM uses addi-
tional DWT comparators to ensure that XOM cannot be disabled
by writing to the debug registers.

4.2 Control Data Protection

Randomization plus XOM defeats Threat 1. However, an attacker
can attack the system by leaking control data (Threat 2) or by
guessing the location of code (Threat 3) and then corrupting control
data inmemory (Threats 4 and 5).We nowdescribe howRandezvous
protects the con�dentiality and integrity of control data.

4.2.1 Decoy Pointers. To mitigate Threats 2 and 4, we developed
decoy pointers, which are code pointers that point to random trap
instructions and are used to �ll unused data memory. Unlike other
techniques used in code/data layout randomization, decoy pointers
are novel as they, when combined with randomization and XOM,
can camou�age genuine control data (slots): attackers leaking data
via a bu�er overread [82] cannot distinguish actual control data
from decoy pointers; neither can they distinguish control data slots
from unused data memory. Even if leaked, decoy pointers are lethal
and using them in control-�ow hijacking risks trapping the system.

By default, Randezvous only �lls unused memory in the global
data segments with decoy pointers. §4.2.2 and §4.2.3 explain how
Randezvous protects control data on the stack by moving it to the
global data segments. As many MCU heap implementations simply
manage a statically allocated chunk of memory in a global data
segment as the heap, such a heap as a whole bene�ts from decoy
pointers placed around it. A more overhead-tolerant implementa-
tion could camou�age in-heap control data by providing a custom
free that re�lls freed memory with decoy pointers.

4.2.2 Diversified Shadow Stack. Return addresses on the stack pose
two challenges in our threat model. First, return addresses are the
most common target to corrupt in code reuse attacks (Threat 4).
Second, return addresses are relatively easy to leak (Threat 2) via
stack-based bu�er overreads [82]. Randezvous must protect return
addresses to mitigate these threats.

Randezvous protects return addresses by using a diversi�ed

shadow stack, which is a compact shadow stack [17] with random
per-function strides. Randezvous employs four methods of random-
izing the shadow stack. First, Randezvous places the shadow stack
in the .data segment so that its location is randomized at compile
time. Second, Randezvous initializes the shadow stack with decoy
pointers, camou�aging real return addresses. Third, Randezvous
selects a static random stride value for each function at compile

30

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Shen et al.

time. Fourth, Randezvous selects a dynamic global random stride
value at boot time from the CSPRNG. For each non-leaf function,
the static and dynamic stride values are added to a shadow stack
pointer in its prologue to determine the location for saving the
return address for the next function call. Likewise, the stride values
are subtracted from the shadow stack pointer in its epilogue before
loading its own return address from the shadow stack. Since the
dynamic stride value is selected at boot time, the memory locations
to which return addresses are stored get rerandomized for each
reboot. Randezvous further encodes the static stride values in code
and keeps the shadow stack pointer and dynamic stride value in
reserved registers to prevent leakage and corruption.

4.2.3 Local-to-Global Variable Promotion. Local variables that hold
function pointers are susceptible to leakage (Threat 2) or corruption
(Threat 4) as they are stored on the regular stack. An attacker can
use a bu�er over�ow to corrupt them with addresses of reusable
code and can also use a bu�er overread [82] to leak them and use
them to learn the location of reusable code. To mitigate such threats,
we developed a simple local-to-global variable promotion transfor-
mation in the Randezvous compiler. This transformation converts
local variables that may contain function pointers into global vari-
ables, enabling global data layout randomization to randomize their
locations and decoy pointers to camou�age them.

The transformation is safe as long as the function containing
the promoted variable is not called recursively or concurrently by
multiple threads. To support local function pointers in recursive
functions, Randezvous promotes each of such function pointers
to an array and requires a maximum recursion depth speci�ed as
the array length. The function is then instrumented to use a copy
of the function pointer for each recursion. As Randezvous targets
bare-metal single-threaded MCU applications, multithreading is
not an issue. To support multithreading, all promoted variables (as
well as the shadow stack in §4.2.2) must be placed in thread-local
storage. We leave multithreading support for future work.

4.2.4 Return Address Nullification. Our diversi�ed shadow stack
in §4.2.2 mitigates return address leakage. However, a bu�er over-
read [82] may still allow an attacker to leak large amounts of the
shadow stack at a time. To further reduce the danger of such leak-
age, we developed a new compiler transformation called return

address nulli�cation which overwrites the stale return address on
the shadow stack with a null value before a function returns. This
transformation ensures that a single bu�er overread can only leak
the return addresses of actively executing functions, limiting the
number of return addresses a particular bu�er overread can disclose.

When nullifying a return address, instead of zeroing it out, Ran-
dezvous overwrites it with a distinct decoy pointer statically chosen
and encoded in code for each nulli�cation site. In this way, Ran-
dezvous ensures that memory used for return addresses always
appears to be decoy pointers, sustaining its initial state.

4.3 Entropy Improvements

Despite Randezvous’s randomization and control data protection
schemes, the entropy they provide on MCUs with small memory
size may not e�ectively resist brute force and control data spraying
attacks (as §6 will discuss). This section discusses how Randezvous
improves the limited entropy on MCUs to mitigate such attacks.

4.3.1 Delayed Reboot. Randezvous’s code reuse defenses are prob-
abilistic: each time an attacker tries to attack the system by guessing
where reusable code is located or by guessing which chunk of mem-
ory contains control data, there is a small chance that the attacker
will guess correctly. Consequently, if the attacker repeatedly tries
di�erent values and has no bound on the number of attack attempts
(Threat 3), there is an amount of time by which the attacker is
expected to guess correctly and succeed. It is then natural to ask
how long a system is expected to resist such brute force attacks. If
the time is su�ciently long, then probabilistic defenses su�ce.

Our security analysis in §6 models such attacks and computes the
time by which we expect an attacker to succeed. Our analysis shows
that the entropy provided by the aforementioned Randezvous de-
fenses alone may not e�ectively resist such attacks for a reasonable
length of time for all MCUs; small-sized MCUs simply have too few
places in which to hide code and/or camou�age control data.

As the number of possible locations of a single piece of reusable
code or control data is too small, the only other recourse is to
make each failed attack attempt take longer. Hence, we devised
a technique called delayed reboot which arti�cially delays a sys-
tem’s reboot. Whenever it detects a trap caused by a violation of
Randezvous’s security policies, Randezvous reboots the system.
Successive reboots are incrementally slowed, arti�cially reducing
the number of failed attempts an attacker can feasibly perpetrate in
a given amount of time. For the 8-th successive reboot caused by a
violation, an arti�cial delay in time�8 is added to the boot sequence.
�8 increases as 8 increases until the number of such reboots reaches
a predetermined value ', after which �8 remains constant.

Delayed reboot exchanges availability for con�dentiality and
integrity through con�guration of the parameter ' and the delay
function incrementing �8 : a smaller value of ' and larger values of
�8 providemore integrity and con�dentiality at the expense of avail-
ability. §6 quanti�es the security gain and availability loss of using
delayed reboot, and we use our analysis results to inform concrete
con�gurations to meet speci�c system requirements. However, we
note that delayed reboot may not be appropriate for systems with
hard real-time requirements or that cannot tolerate service disrup-
tions. For example, a car’s engine control unit may not be suitable
for delayed reboot due to real-time constraints while, in contrast, a
network of monitoring sensor devices can tolerate delayed reboot,
especially if multiple devices monitor overlapping areas to provide
redundancy. Systems that cannot use delayed reboot will need to
use more memory to gain the entropy needed to stay secure.

4.3.2 Global Guards. Randomizing global data and camou�aging
control data with decoy pointers together hinder an attacker from
corrupting control data in the global data segments. However, the
attacker can still corrupt control data in these regions via spraying
attacks (Threat 5). If corrupting non-control data does not crash
the program, a bu�er over�ow that writes to the whole .data

segment is guaranteed to corrupt control data in the .data segment,
neutralizing the already limited entropy of randomization.

Tomitigate this threat, we repurposed guardmemory [26], which
was originally meant to detect stack smashing only. At boot time,
Randezvous uses the CSPRNG to randomly select one or more
randomly sized pieces of unused data memory as global guards and
con�gures the MPU to disallow writes to them (the speci�c number

31

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Shen et al.

on LLVM’s intermediate representation (IR) bitcode before it is
lowered to machine code. As none of our benchmarks and applica-
tions uses local function pointers in recursive functions, we elided
implementing support for it.

6 SECURITY EVALUATION

We now evaluate Randezvous’s security by measuring the entropy
it adds to three di�erent-sized MCUs and computing the amount
of reboot delay needed to protect these systems from attacks for a
given amount of time. We then provide a proof-of-concept exploit
that experimentally demonstrates the security of Randezvous and
a study on how Randezvous could mitigate attacks exploiting a
real-world CVE. Table 8 in §B lists all mathematical symbols used
in this section for quick reference. §C details the derivation of each
numbered equation in this section for interested readers.

6.1 Attack Procedure

Wemodel a return-into-libc [74, 83] control-�ow hijacking attack as
it is the simplest. Other types of attacks (e.g., ROP [71, 73] and JIT-
ROP [77]) require locating additional reusable code and therefore
require leaking or guessing more code locations. Consequently, if
Randezvous can resist return-into-libc attacks, it should be able to
resist these more sophisticated attacks as well. In the return-into-
libc attack, the attacker follows the two steps below:
(1) Locate the control �ow target to which to jump. For a return-

into-libc attack, this is the address of a function.
(2) Find a control data slot and corrupt it with the address of the

control �ow target acquired in Step 1. This is usually where
a return address or a function pointer is stored, which will be
used in a future control �ow transfer.
On an unprotected system, Step 1 can be skipped because the

attacker has a priori knowledge of the code layout. However, as
Randezvous randomizes the code and data layouts and forbids code
reads via PicoXOM [75] (§4.1), the attacker is forced to

1a) guess the location of the control �ow target, or
1b) try leaking a return address using a bu�er overread, or
1c) try leaking a function pointer (if any) using a bu�er overread.

Similarly, in Step 2, �nding the address of a control data slot is no
longer straightforward for the attacker; in Randezvous, control data
is stored in the .data segment (§4.2.2 and §4.2.3), randomized to
unknown locations (§4.1), camou�aged among numerous decoy
pointers (§4.2.1), and protected by randomly-picked non-writable
global guards (§4.3.2). As a result, the attacker must either

2a) guess the location of a control data slot to corrupt, or
2b) massively corrupt part of the .data segment, aiming to cor-

rupt a desired control data slot while hitting none of the
global guards, i.e., a control data spraying attack [78].

6.2 Attack Probe Analysis

Our analysis assumes that the attacker knows the boundaries of
randomized memory regions and makes no out-of-bounds guesses
in Steps 1 and 2. While not always true in practice, this assumption
biases the analysis in the attacker’s favor and simpli�es our analysis.

We �rst analyze the expected number of attempts the attacker
needs for each strategy to complete Step 1. For Strategy 1a, let
(� be the size of the randomized code segment, (�ċ

be the size

of the original application code, and () be the size of the control
�ow target. Assuming the control �ow target is 2-byte aligned
(typical for Thumb instructions [7, 8]) and has an equal chance to
appear in each eligible location, then the probability of success is
?(,10 =

2

(ÿ−(Đ +2
; the chance of �nding a trap instruction can be

approximated as ?),10 =

(ÿ−(ÿċ

(ÿ
·
(ÿ−(Đ
(ÿ

. For a brute force attack,
an attacker can simply retry the attack repeatedly with di�erent
values for the control �ow target until the attack works, excluding
previously guessed values each time a new guess is made. If %G is a
random variable representing the number of guesses for a success
in Strategy G (G ∈ {10, 11, 12, 20, 21}), then the expected number of
guesses for completing Step 1 with Strategy 1a is

� (%10) =
(� − () + 4

4
. (1)

For Strategies 1b and 1c, our analysis assumes the attacker’s best
case scenario: a function pointer or return address pointing into the
desired function exists in a single memory location; if leaked, the
attacker can locate the function. In this scenario, the attacker �rst
uses a bu�er overread [82] to leak the entire contents of the .data
segment and then examines it for the desired control data. Even
so, the attacker can at most eliminate values that do not look like
control data and still must guess which of the remaining ones can
be used. This is because Randezvous randomizes the .data segment
layout and camou�ages control data with decoy pointers. Let (�
be the size of the randomized .data segment, (� ′ be the size of
memory in the .data segment that does not look like control data,
and # be the number of control data slots in the .data segment.
can be approximated by the current call chain depth (due to
return address nulli�cation in §4.2.4) plus the number of function
pointers in the program. Assuming the desired control data has
an equal chance to appear in each possible location, the attacker
must try every memory location that appears to contain control
data. The probability of success is ?(,11 = ?(,12 =

4

(Ā−(Ā′
, and

the probability of �nding a decoy pointer is approximately ?),11 =

?),12 =

(Ā−(Ā′−4#
(Ā−(Ā′

. The di�erence between Strategies 1b and 1c

is whether the attacker can exclude a previously incorrect guess:
return addresses might be stored in di�erent memory locations as
the dynamic shadow stack stride is randomized on each boot, while
function pointers always reside in the same address across reboots
as the .data segment is randomized once at compile time. This
leads to a di�erence in the expected number of guesses, shown in
Equations 2 and 3, respectively:

� (%11) =
(� − (� ′

4
(2)

� (%12) =
(� − (� ′ + 4

8
(3)

We now consider the expected number of attempts needed to
complete Step 2. For Strategy 2a, the attacker can also leverage a
bu�er overread [82] on the .data segment to �lter out memory that
does not resemble control data except for zeroed memory, which
might be uninitialized control data slots. Let (�0

be the size of ze-
roed memory in the .data segment and (� be the total size of all
global guards. The chance of success is ?(,20 =

4#
(Ā−(Ā′+(Ā0

, and the

chance of hitting any of the global guards is ?),20 =
(ă

(Ā−(Ā′+(Ā0

.

33

Randezvous: Making Randomization E�ective on MCUs ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Table 1: Common Values for Time Analysis

Small Medium Large All Systems

(ÿ 32 KB 1 MB 16 MB (ă 32 bytes

(ÿċ
16 KB 128 KB 1 MB (Đ 16 bytes

(Ā 32 KB 256 KB 4 MB (ē 128 bytes

(Ā′ 1 KB 4 KB 32 KB Cþ 1 second

(Ā0
128 bytes 512 bytes 1 KB CĊ 0.6 seconds

8 32 64)ģğĤ 3 days

Similar to Strategy 1b, the attacker cannot exclude previously in-
correct guesses due to both the dynamic shadow stack stride and
the global guards, so the expected number of guesses is

� (%20) =
(� − (� ′

4#
. (4)

For Strategy 2b, let (, be the size of memory in the .data

segment that the attacker chooses to corrupt. Equations 5 and 6 give
the probability of success and of hitting a global guard, respectively.
Equation 7 computes the expected number of attempts:

?(,21 =

∑min(#,
ďē
4

)

8=1 � (#, 8)� ((Ā−(ă
4

− #,
(ē
4

− 8)

� ((Ā
4
,
(ē
4
)

(5)

?),21 = 1 − ?(,21 −
� ((Ā−(ă

4
− #,

(ē
4
)

� ((Ā
4
,
(ē
4
)

(6)

� (%21) =
1

?(,21
(7)

Combining the two steps, there are three outcomes: 1) success,
only when an attacker makes a correct guess in both steps; 2) noth-
ing happening, due to an incorrect guess in Step 2 that hits none
of the global guards; 3) trap, which can be caused by an incorrect
guess in either Step 1 (�nding a decoy pointer) or Step 2 (hitting any
of the global guards). As none of the two unsuccessful outcomes
gives information about which control data (slot) is (in)correct,
the attacker can only guess blindly in both steps. Let % be a ran-
dom variable of the number of brute force attacks for a success.
Since the two steps are independent of each other, we have the
chance of success ?(= ?(,G · ?(,~ , the chance of trapping the sys-
tem ?) = ?),G · ?(,~ + ?),~ , and the expected number of brute force

attacks for a success � (%) = � (%G) · � (%~) if the attacker adopts
Strategies G and ~ (G ∈ {10, 11, 12} and ~ ∈ {20, 21}).

6.3 Time Analysis

Entropymeasures a system’s randomness, but it fails to measure the
system’s strength against brute force attacks as it fails to consider
the frequency at which attacks are launched. We therefore analyze
how long a Randezvous-protected system, with di�erent sizes, can
resist brute force attacks. This analysis informs the con�guration of
delayed reboot and thus controls the security/availability trade-o�.

Let C� be the time from booting to reaching a vulnerability that
an attacker can exploit and C# be the time for the attacker to send
an attack payload and receive its execution result over the network.
Without Randezvous’s delayed reboot, we can expect the system
to withstand brute force attacks by an amount of time)= = (?) ·

C� + C#) · � (%). With delayed reboot providing a total delay of)3 ,
we wish the whole system to resist brute force attacks for at least

Table 2: Time Analysis Results (Best/Worst for the Attacker)

System Case Strategies � (%) ?Đ)Ĥ
Small Worst {10, 20} 8,155,248.0 0.151% 56.8 days

Small Best {12, 21} 132,651.0 6.073% 1.0 days

Medium Worst {10, 20} 529,522,800.0 0.557% 10.1 years

Medium Best {12, 21} 2,087,482.7 1.934% 15.0 days

Large Worst {10, 20} 68,199,318,000.0 0.007% 1,297.7 years

Large Best {12, 21} 266,649,737.1 0.220% 5.1 years

an amount of time)<8= before the attacker �nishes the expected
number of attack payloads to succeed. So we have)3 f

∑'
8=1 �8 ,

)= +)3 =)<8= , and ' f ?) ·� (%), where ' is the number of reboots
after which the delay stops increasing and {�8 }

'
8=1 is the sequence

of the delay Randezvous adds to the 8-th reboot, as §4.3.1 describes.
We aim to protect the system from brute force attacks for three or

more days. Three days give the system time to alert an administrator
about the attack and for the administrator to respond, even if the at-
tack commences during a short period in which the administrator is
unavailable (e.g., a weekend). Table 1 lists three sets of common val-
ues representing three MCUs of di�erent sizes (STM32L412R8 [79],
STM32F469NIH6 [80], and MIMXRT685-EVK [58, 59]) and values
we pick to evaluate attacks (latencies are based on a wireless net-
work [76]) and Randezvous’s protections. By substituting all vari-
ables with their corresponding values in each set, we can estimate
whether delayed reboot is needed (i.e., whether)= <)<8=) and, if
so, how much delay can be scattered throughout all ' reboots. Our
results, summarized in Table 2, show that the medium and large
systems do not need delayed reboot; Randezvous’s other protec-
tions can mitigate all the modeled attacks for at least half a month.
The small system, however, requires an average per-reboot delay
of 21.3 seconds to keep it probabilistically secure for three days
against all possible attack strategies that we evaluated.

While our results necessitate delayed reboot for certain systems,
we note that using an exponentially-growing delay will still provide
reasonable availability when an attack commences while maintain-
ing our target of three days worth of resilience. For example, our
best case for the attacker expects the system to trap 8055.3 times;
Randezvous could be con�gured with {�8 }

'
8=1 as an exponential

sequence with �1 = 100 ms, ' = 8055, and a ratio of 1.001. Even at
the 2000-th reboot (at which point an administrator should have
been noti�ed), the delay on a single boot is just around 738 ms.

6.4 Exploit Analysis

Proof-of-Concept Exploit. We built a proof-of-concept exploit to
showcase Randezvous’s security. The exploit consists of a script
representing an attacker and a vulnerable application that can run
on an NXP MIMXRT685-EVK board [58]. The application contains
both arbitrary memory read and write vulnerabilities, matching our
threat model in §3. To favor the attacker, it also contains a global
function pointer pointing to the attacker’s desired function. We
compiled the application with three di�erent con�gurations: one
unprotected, one protected with only randomization and PicoXOM
(as in §4.1), and one protected with full Randezvous. For the two
protected con�gurations, we further con�gured the application to
match each of the three di�erent-sized MCUs in Table 1 as closely

34

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Shen et al.

as possible. When running the application, the script communi-
cates with the board via a serial port and sends attack payloads
generated from the best strategies for the attacker for each con�gu-
ration: direct return-into-libc for the unprotected, Strategy 1c with
return address corruption for randomization plus PicoXOM, and
Strategies 1c and 2b for Randezvous.

Our exploit �nished immediately for the unprotected system as
no guessing is needed in Step 1 or 2. With randomization plus Pi-
coXOM, the exploit �nished in 15 seconds, 68 seconds, and 2,821 sec-
onds for the small, medium, and large systems, respectively. Most of
time was spent trying out leaked values that resemble control data.
In contrast, the exploit failed in all three Randezvous-protected
systems after continuously sending attack payloads for three days.

Real-World CVE. To demonstrate its e�cacy against real-world
exploits, we analyzed how Randezvous could stop attacks exploit-
ing CVE-2021-27421 [29]. We picked this CVE because 1) it can
both read from and write to arbitrary heap locations, 2) it a�ects
applications using the NXP MCUXpresso SDK library, and 3) we
can exploit it on our NXP MIMXRT685-EVK board [58].

CVE-2021-27421 [29] over�ows a heap bu�er. We built a demon-
strative application with the CVE for the small system in Table 1
and compiled it with similar con�gurations to those used in our
proof-of-concept exploit. We then launched a return-into-libc at-
tack on our board, which exploits the CVE to corrupt a pointer in
the heap to point to a memory location of our choice. The overwrit-
ten pointer is eventually dereferenced. Our attack utilizes attack
strategies that do not use bu�er overread or spraying (Strategy 1a
with return address corruption for randomization plus PicoXOM
and Strategies 1a and 2a for Randezvous) because the application
stores no return address or function pointer to the attacker’s de-
sired control �ow target in memory and because the exploit only
corrupts four bytes of memory. Our attack exploited the unpro-
tected system immediately and the system protected by random-
ization plus PicoXOM in 23.6 hours. In contrast, the attack failed
on the Randezvous-protected system after running for three days;
we therefore expect Randezvous to resist the attack for more than
three days for the larger systems in Table 1.

7 PERFORMANCE EVALUATION

We evaluated Randezvous’s performance on an NXP MIMXRT685-
EVK board which has an ARMCortex-M33 processor implementing
theARMv8-MMainline architecture that can run up to 300MHz [58].
It comes with 4.5 MB of SRAM, 64 MB of �ash memory, a true ran-
dom number generator (TRNG) that ful�lls Randezvous’s CSPRNG
requirement, and an SD card slot [58, 59].

We used three benchmark suites and two real-world applications
to evaluate Randezvous. BEEBS [62] is a benchmark suite to mea-
sure embedded systems’ energy usage. It includes a wide range of
common MCU workloads (e.g., packet routing, sorting, and hash-
ing). As many BEEBS programs are too small or perform too little
computation, we picked 54 of its 80 programs that run longer than
0.1 seconds on our board for 10,240 iterations. CoreMark-Pro [35]
is a benchmark suite that includes and enhances CoreMark [34],
an industry standard benchmark for embedded processors, with
more CPU- and memory-intensive programs. It consists of �ve inte-
ger benchmarks and four �oating-point benchmarks that together

characterize processor performance. MbedTLS-Benchmark [55]
is a test program of the Mbed TLS library [6]. It measures the la-
tency and throughput of various cryptographic algorithms (e.g.,
SHA, AES, and RSA). PinLock [36] is an application that emulates
a password-based lock. It reads a 4-digit passphrase from a serial
port, computes a SHA-256 hash of the input, and activates an LED
if the hash matches the stored passphrase hash. FatFs-SD is an
application from the board manufacturer. It operates a FAT �lesys-
tem on an SD card with �lesystem creation, mounting, and �le I/O.
Previous work [5, 25, 75, 76] used PinLock and FatFs-SD.

We compiled each program into an ELF executable and loaded
its code into the SRAM for execution, using two con�gurations:
Baseline and Randezvous. In Baseline, we used the LLVM/Clang
compiler [48] to compile programs with all Randezvous passes and
runtime components disabled. In Randezvous, we enabled every-
thing; all Randezvous’s randomization seeds are set to zero, and all
memory size options for Randezvous passes are set appropriately
to allow execution in the SRAM while still adding entropy to the
program. In particular, the shadow stack size and stride length were
tailored to add one bit of entropy. Both con�gurations use the -Os
and -fomit-frame-pointer options and perform link-time opti-
mization (LTO) via the -flto and -fuse-ld=lld options.

7.1 Performance Overhead

To measure Randezvous’s performance overhead, we con�gured
each BEEBS benchmark to execute for 10,240 iterations of its work-
load and print out its execution time in milliseconds. Each bench-
mark in CoreMark-Pro was con�gured to execute for a minimal
number of iterations that is a power of 10 and yields an execution
time of at least 10 seconds. MbedTLS-Benchmark measures latency
and throughput with 1,024 iterations and 1 or 3 seconds, respec-
tively. All benchmarks produced identical numbers over multiple
runs, yielding zero standard deviations. As PinLock and FatFs-SD
access slow peripherals, we ran each of them 10 times and report
the average execution time with a standard deviation.

Tables 3, 4, 5, and 6 present Baseline performance in absolute
numbers as well as the overhead Randezvous incurs relative to
Baseline on CoreMark-Pro, MbedTLS-Benchmark, and the appli-
cations, respectively. Due to space, we only summarize the num-
bers for BEEBS. Overall, Randezvous incurs minor performance
overhead of 5.9%: 6.9% in BEEBS (from -1.6% to 26.2%), 7.0% in
CoreMark-Pro, 4.5% in MbedTLS-Benchmark’s throughput, 5.5% in
MbedTLS-Benchmark’s latency, and 0.6% in the applications.

We studied the overhead by enabling only one of Randezvous’s
features at a time. We discovered that the diversi�ed shadow stack
and return address nulli�cation transformations are the major

Table 3: CoreMark-Pro Execution Time (Lower is Better)

Baseline Randez- Baseline Randez-
(ms) vous (×) (ms) vous (×)

cjpeg-rose7-... 21,172 1.023 parser-125k 41,700 1.069
core 33,813 1.112 radix2-big-64k 15,363 1.177
linear_alg-... 45,177 1.001 sha-test 17,220 1.046
loops-all-... 73,085 1.010 zip-test 37,097 1.014
nnet_test 183,048 1.195

Geomean (×) 1.070

35

Randezvous: Making Randomization E�ective on MCUs ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Table 4: MbedTLS-Benchmark Throughput (Higher is Better)

Baseline Randez- Baseline Randez- Baseline Randez-
vous (×) vous (×) vous (×)

MD5 (KB/s) 14,630.25 0.981 AES-CCM-192 (KB/s) 3,198.46 0.924 ECDSA-secp384r1 (sign/s) 13.05 0.968
SHA-1 (KB/s) 56,491.74 0.958 AES-CCM-256 (KB/s) 3,085.67 0.934 ECDSA-secp256r1 (sign/s) 28.39 0.960
SHA-256 (KB/s) 58,746.89 0.956 CTR_DRBG (NOPR) (KB/s) 8,699.62 0.913 ECDSA-secp521r1 (verify/s) 5.66 1.011
SHA-512 (KB/s) 2,216.21 0.978 CTR_DRBG (PR) (KB/s) 5,092.05 0.932 ECDSA-secp384r1 (verify/s) 12.21 0.965
3DES (KB/s) 816.31 0.874 HMAC.. SHA-1 (NOPR) (KB/s) 1,339.78 0.962 ECDSA-secp256r1 (verify/s) 27.09 0.957
DES (KB/s) 2,067.83 0.873 HMAC.. SHA-1 (PR) (KB/s) 1,215.91 0.961 ECDHE-secp521r1 (handshake/s) 4.46 0.991
AES-CBC-128 (KB/s) 61,610.23 0.950 HMAC.. SHA-256 (NOPR) (KB/s) 1,585.92 0.967 ECDHE-secp384r1 (handshake/s) 7.52 0.975
AES-CBC-192 (KB/s) 56,954.36 0.954 HMAC.. SHA-256 (PR) (KB/s) 1,585.94 0.967 ECDHE-secp256r1 (handshake/s) 16.44 0.970
AES-CBC-256 (KB/s) 50,861.98 0.958 RSA-1024 (public/s) 1,420.58 0.987 ECDH-secp521r1 (handshake/s) 8.62 0.991
AES-GCM-128 (KB/s) 2,192.97 0.919 RSA-1024 (private/s) 14.92 0.975 ECDH-secp384r1 (handshake/s) 14.71 0.975
AES-GCM-192 (KB/s) 2,165.85 0.921 DHE-2048 (handshake/s) 0.94 0.979 ECDH-secp256r1 (handshake/s) 32.55 0.971
AES-GCM-256 (KB/s) 2,139.37 0.922 DH-2048 (handshake/s) 1.18 0.975
AES-CCM-128 (KB/s) 3,319.83 0.919 ECDSA-secp521r1 (sign/s) 7.69 0.986

Geomean (×) 0.955

Table 5: MbedTLS-Benchmark Latency (Lower is Better)

Baseline Randez- Baseline Randez-
(cycle/byte) vous (×) (cycle/byte) vous (×)

MD5 15.84 1.009 AES-GCM-256 113.37 1.084
SHA-1 3.47 1.009 AES-CCM-128 72.75 1.087
SHA-256 3.30 1.009 AES-CCM-192 75.54 1.081
SHA-512 109.40 1.022 AES-CCM-256 78.33 1.070
3DES 298.72 1.145 CTR_DRBG (NOPR) 27.22 1.092
DES 117.32 1.145 CTR_DRBG (PR) 47.12 1.071
AES-CBC-128 3.12 1.013 HMAC.. SHA-1 (NOPR) 181.58 1.039
AES-CBC-192 3.44 1.012 HMAC.. SHA-1 (PR) 200.18 1.040
AES-CBC-256 3.95 1.013 HMAC.. SHA-256 (NOPR) 153.25 1.034
AES-GCM-128 110.58 1.087 HMAC.. SHA-256 (PR) 153.25 1.034
AES-GCM-192 111.97 1.085

Geomean (×) 1.055

sources of overhead in BEEBS and CoreMark-Pro. Speci�cally, the
former reserves two registers and adds a few instructions in the
prologue and epilogue(s) of every non-leaf function. The latter
adds a few more instructions in those function epilogues. As a
result, Randezvous incurred more overhead on benchmarks with
higher register pressure andmore frequent function calls. MbedTLS-
Benchmark’s latency overhead on each algorithm roughly matches
its throughput overhead. The highest (in DES and 3DES) also comes
from these transformations. ECDSA-secp521r1 saw a miniscule
speedup in signature veri�cation, likely caused by caching. Ran-
dezvous exhibits negligible runtime overhead in the applications.
We believe this is due to I/O dominating the execution time.

7.2 Memory Overhead

Memory usage is critical for MCUs. We therefore measured how
much memory Randezvous uses to provide its protections by calcu-
lating code and global data segment sizes (without unused memory)
before and after its transformations during compilation.

Table 6: Application Execution Time (Lower is Better)

Baseline (ms) Stdev (ms) Randezvous (×) Stdev (×)

PinLock 46,429.5 108.8 1.009 0.001
FatFs-SD 14,965.3 47.6 1.003 0.003

Geomean — — 1.006 —

Table 7: CoreMark-Pro Memory Usage (Lower is Better)

Baseline Baseline Randezvous Randezvous
Code (bytes) Data (bytes) Code (×) Data (×)

cjpeg-rose7-... 104,978 51,802 1.135 1.039
core 72,852 8,451 1.151 1.184
linear_alg-... 75,046 8,839 1.148 1.176
loops-all-... 84,440 12,624 1.146 1.125
nnet_test 75,218 48,734 1.147 1.033
parser-125k 80,808 7,266 1.137 3.855
radix2-big-64k 74,196 1,383,731 1.149 1.001
sha-test 77,368 5,887 1.139 1.264
zip-test 91,910 20,347 1.128 1.084

Geomean — — 1.142 1.275

Table 7 and Figure 4 show Randezvous’s code and data size
overhead on CoreMark-Pro, MbedTLS-Benchmark, and the two
applications, respectively. Again, we summarize BEEBS results due
to space. Overall, Randezvous incurs moderate overhead on both
code and data sizes: a geometric mean of 15.8% on code size (from
13.3% to 16.2%) and 21.2% on data size (from 7.9% to 31.8%) in BEEBS,
14.2% and 27.5% in CoreMark-Pro, 10.8% and 11.9% in MbedTLS-
Benchmark, and 13.6% and 24.5% in the applications. We note that
parser-125k in CoreMark-Pro exhibits the highest data size over-
head because its shadow stack is more than twice the size of its
original global data size to accommodate a function that calls itself
over 2,000 times. Correspondingly, its stack usage decreases as none
of its recursive stack frames contains a return address slot.

0
20
40
60
80

100
120
140
160
180

MbedTLS-Benchmark

PinLock
FatFs-SD

C
o
d
e
 S

iz
e
 (

K
B

)

Baseline
Randezvous

0

5

10

15

20

25

30

MbedTLS-Benchmark

PinLock
FatFs-SD

D
a
ta

 S
iz

e
 (

K
B

)

Baseline
Randezvous

Figure 4: MbedTLS-Benchmark and Application Memory Us-

age (Lower is Better)

36

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Shen et al.

Breaking down the overhead, the code size overhead comes from
PicoXOM (3.2%–5.5%), function prologue/epilogue transformations
(4.6%–7.0%), and runtime components that set up the shadow stack
and a single global guard (1,356 bytes). The data size overhead
comes from string literals used in additional code (1,389 bytes),
a diversi�ed shadow stack (48–19,040 bytes), and promoted local
variables containing function pointers (0–5.0%).

8 RELATED WORK

Randomization on General-Purpose Systems. Randomization on
general-purpose systems is well studied. The original ASLR [11, 65]
loads memory sections at random addresses and is widely deployed.
Due to its coarse granularity and lack of entropy on 32-bit systems,
researchers have focused on �ne-grained code randomization at
the level of pages [9], functions [13, 27, 39, 44], basic blocks [45,
87], instructions [32, 42, 63], register allocation [27, 63], execution
paths [30], or tunable sizes [68]. Fine-grained data randomization
has been explored as well, including global data object reorder-
ing [13], data representation encryption [12, 18], structure �eld
randomization [21, 28, 39, 50], stack randomization [3, 13, 23, 49],
and heap randomization [10, 57]. While most of these techniques
can be used on MCUs, Randezvous leverages just a few of them
with the best e�cacy and the least performance impact.

Leakage-resistant randomization for general-purpose systems,
such as Readactor [27], ASLR-Guard [53], LR2 [16], and kRˆX [67],
hide code pointers via indirection or encryption. These systems
are still susceptible to control data leakage; despite not knowing
where code is located, attackers can identify indirect or encrypted
code pointers from disclosed memory and reuse them to corrupt
control data slots. Randezvous’s decoy pointers, in contrast, prevent
attackers from identifying real code pointers from decoy pointers;
using a leaked pointer risks causing a trap.

Runtime rerandomization shortens the window for successful
exploitation and can be done manually at runtime [24], periodi-
cally [4, 38, 39, 69, 89], at certain system calls [14, 52, 85], and when
detecting suspicious probes [86]. Randezvous uses no runtime reran-
domization as its additional resource consumption outweighs its
security gain (as §4.1 describes).

Randomization on MCUs. Previous work has employed random-
ization for MCUs. `Armor [2] and EPOXY [25] employ compile-
time code layout randomization; EPOXY [25] also randomizes data
layout at compile time. AVRAND [64] and MAVR [41] proposed
boot-time code layout randomization for AVR MCUs. Both solu-
tions randomize code and reprogram the �ash memory at every
reboot, using a trusted bootloader reading metadata from EEP-
ROM or a separate processor with extra �ash memory. Compared
to Randezvous, all of the above systems assume a weaker threat
model and, therefore, do not mitigate information leakage. Con-
sequently, attackers can still locate code and launch code reuse
attacks on these systems using information leaked from code [77]
or data [27, 30, 66, 72]. It is also unclear if these systems can re-
sist brute force attacks e�ectively; they omitted modeling such at-
tacks [2, 25, 64] or yielded an outrageously large number of guesses
by incorrectly assuming that attackers have to guess the locations
of all functions in the program before launching an attack [41].

HARM [76] implements function-level periodical code rerandom-
ization using TrustZone-M on ARMv8-M [8], requiring more than
twice the memory. fASLR [54] uses TrustZone-M to dynamically
load functions to random addresses in RAM when being called and
unload �nished ones when out of RAM, thus reducing memory
usage of rerandomization. Unlike HARM and fASLR, Randezvous
requires no TrustZone-M and thus supports ARMv7-M systems.
While runtime rerandomization reduces the window of code reuse
attacks, a successful exploit equipping memory disclosure to learn
the code layout is still possible, especially where rerandomization
may not take place frequently (e.g., fASLR [54]).

As to performance, AVRAND [64] and MAVR [41] only present
startup overhead in absolute numbers; comparing to Randezvous
is impossible. EPOXY shows better performance in BEEBS (1.6%
on average) than Randezvous because its safe stack [46] improves
locality. For BEEBS programs that both Randezvous and HARM [76]
evaluate (all 19 programs by HARM), Randezvous outperforms
HARM (8.8% vs. 25%, on average). Similarly, in BEEBS programs
shared between Randezvous and fASLR [54] (5 programs out of 9
by fASLR), Randezvous is slightly faster (2.3% vs. 3.7%, on average).

CFI on MCUs. An alternative to randomization is to use CFI [1]
and/or protected shadow stacks [17]. To protect shadow stacks,
CaRE [60] and TZmCFI [43] leverage TrustZone-M [8], RECFISH [84]
utilizes privilege mode switching, and Silhouette [91] and Kage [33]
utilize ARM’s unprivileged store instructions. `RAI [5] encodes
return addresses in a reserved register and uses system calls to
extend the encoding space. All these solutions enforce return ad-
dress integrity and use coarse-grained forward-edge CFI [1], while
SCFP [88] extends a RISC-VMCUwith a stateful instruction encryp-
tion scheme for �ne-grained CFI. However, even with a fully precise
static CFG and a protected shadow stack, CFI is still vulnerable to
advanced forward-edge corruptions that adhere to the CFG [19, 37].
In contrast, Randezvous provides probabilistic guarantees but is
not susceptible to such attacks without identifying both a control
�ow target and a control data slot.

Performance-wise, Randezvous outperforms all the above CFI
implementations except Silhouette and Kage. We believe Silhou-
ette’s low overhead (3.4% on BEEBS and 1.3% on CoreMark-Pro) is
due to the high latency of the SDRAM used in its evaluation [91];
we evaluated Silhouette on our board (which uses SRAM), and its
overhead increases to 12.1% on BEEBS and 11.2% on CoreMark-Pro.

9 CONCLUSIONS

We presented Randezvous: a diversi�cation-based control-�ow hi-
jacking defense enhanced with novel techniques that mitigate con-
trol data leakage and strengthen the low entropy on MCUs. We
demonstrated Randezvous’s e�cacy and showed that Randezvous
incurs low overhead on our benchmarks and applications. Ran-
dezvous is open-sourced at https://github.com/URSec/Randezvous.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Le Guan, for
their insightful comments. This work was funded by ONR Award
N00014-17-1-2996 and NSF Awards CNS-1652280 and CNS-1955498.

37

Randezvous: Making Randomization E�ective on MCUs ACSAC ’22, December 5–9, 2022, Austin, TX, USA

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-

Flow Integrity Principles, Implementations, and Applications. ACM Transactions
on Information Systems Security 13, 1, Article 4 (Nov. 2009), 40 pages. https:
//doi.org/10.1145/1609956.1609960

[2] Ali Abbasi, Jos Wetzels, Thorsten Holz, and Sandro Etalle. 2019. Challenges in
Designing Exploit Mitigations for Deeply Embedded Systems. In Proceedings of
the 2019 IEEE European Symposium on Security and Privacy (EuroSP ’19). IEEE
Computer Society, Stockholm, Sweden, 31–46. https://doi.org/10.1109/EuroSP.2
019.00013

[3] Misiker Tadesse Aga and Todd Austin. 2019. Smokestack: Thwarting DOPAttacks
with Runtime Stack Layout Randomization. In Proceedings of the 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO ’19). IEEE
Computer Society, Washington, DC, 26–36. https://doi.org/10.1109/CGO.2019.8
661202

[4] Salman Ahmed, Ya Xiao, Kevin Z. Snow, Gang Tan, Fabian Monrose, and Dan-
feng (Daphne) Yao. 2020. Methodologies for Quantifying (Re-)Randomization
Security and Timing under JIT-ROP. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’20). ACM, Orlando,
FL, 1803–1820. https://doi.org/10.1145/3372297.3417248

[5] Naif Saleh Almakhdhub, Abraham A. Clements, Saurabh Bagchi, and Mathias
Payer. 2020. `RAI: Securing Embedded Systems with Return Address Integrity.
In Proceedings of the 2020 Network and Distributed System Security Symposium
(NDSS ’20). Internet Society, San Diego, CA, 18 pages. https://doi.org/10.14722/n
dss.2020.24016

[6] Arm Holdings. 2008. SSL Library Mbed TLS. https://tls.mbed.org
[7] Arm Holdings 2018. ARMv7-M Architecture Reference Manual. Arm Holdings.

DDI 0403E.d.
[8] Arm Holdings 2019. ARMv8-M Architecture Reference Manual. Arm Holdings.

DDI 0553B.i.
[9] Michael Backes and Stefan Nürnberger. 2014. Oxymoron: Making Fine-Grained

Memory Randomization Practical by Allowing Code Sharing. In Proceedings of
the 23rd USENIX Security Symposium (Security ’14). USENIX Association, San
Diego, CA, 433–447.

[10] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic Memory
Safety for Unsafe Languages. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’06). ACM, Ottawa,
ON, Canada, 158–168. https://doi.org/10.1145/1133981.1134000

[11] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. 2003. Address Obfuscation:
An E�cient Approach to Combat a Board Range of Memory Error Exploits.
In Proceedings of the 12th USENIX Security Symposium (Security ’03). USENIX
Association, Washington, DC, 105–120. https://www.usenix.org/conference/
12th-usenix-security-symposium/address-obfuscation-ef�cient-approach-
combat-broad-range

[12] Sandeep Bhatkar and R. Sekar. 2008. Data Space Randomization. In Proceedings
of the 5th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA ’08). Springer-Verlag, Paris, France, 1–22. https:
//doi.org/10.1007/978-3-540-70542-0_1

[13] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. 2005. E�cient Techniques
for Comprehensive Protection from Memory Error Exploits. In Proceedings of the
14th USENIX Security Symposium (Security ’05). USENIX Association, Baltimore,
MD, 255–270. https://www.usenix.org/conference/14th-usenix-security-
symposium/ef�cient-techniques-comprehensive-protection-memory-error

[14] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely Rerandomization for Mitigating Memory Disclosures. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security (CCS ’15). ACM, Denver, CO, 268–279. https://doi.org/10.1145/2810103.
2813691

[15] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking Blind. In Proceedings of the 2014 IEEE Symposium on Security
and Privacy (SP ’14). IEEE Computer Society, Berkeley, CA, 227–242. https:
//doi.org/10.1109/SP.2014.22

[16] Kjell Braden, Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Stephen
Crane, Michael Franz, and Per Larsen. 2016. Leakage-Resilient Layout Random-
ization for Mobile Devices. In Proceedings of the 2016 Network and Distributed
System Security Symposium (NDSS ’16). Internet Society, San Diego, CA, 15 pages.
https://doi.org/10.14722/ndss.2016.23364

[17] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining Light
on Shadow Stacks. In Proceedings of the 2019 IEEE Symposium on Security and
Privacy (SP ’19). IEEE Computer Society, San Francisco, CA, 985–999. https:
//doi.org/10.1109/SP.2019.00076

[18] Cristian Cadar, Periklis Akritidis, Manuel Costa, Jean-PhilippeMartin, andMiguel
Castro. 2008. Data Randomization. Technical Report MSR-TR-2008-120. Microsoft
Research.

[19] Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. 2015. Control-Flow Bending: On the E�ectiveness of Control-�ow Integrity.
In Proceedings of the 24th USENIX Security Symposium (Security ’15). USENIX

Association, Washington, DC, 161–176. https://www.usenix.org/conference/us
enixsecurity15/technical-sessions/presentation/carlini

[20] Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In Proceedings of the 23rd USENIX Security Symposium (Security
’14). USENIX Association, San Diego, CA, 385–399. https://www.usenix.org/con
ference/usenixsecurity14/technical-sessions/presentation/carlini

[21] Ping Chen, Jun Xu, Zhiqiang Lin, Dongyan Xu, Bing Mao, and Peng Liu. 2015.
A Practical Approach for Adaptive Data Structure Layout Randomization. In
Proceedings of the 20th European Symposium on Computer Security (ESORICS ’15).
Springer-Verlag, Vienna, Austria, 69–89. https://doi.org/10.1007/978-3-319-
24174-6_4

[22] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer.
2005. Non-Control-Data Attacks Are Realistic Threats. In Proceedings of the
14th USENIX Security Symposium (Security ’05). USENIX Association, Baltimore,
MD, 177–191. https://www.usenix.org/conference/14th-usenix-security-
symposium/non-control-data-attacks-are-realistic-threats

[23] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano Giu�rida.
2015. StackArmor: Comprehensive Protection from Stack-based Memory Error
Vulnerabilities for Binaries. In Proceedings of the 2015 Network and Distributed
System Security Symposium (NDSS ’15). Internet Society, San Diego, CA, 15 pages.
https://doi.org/10.14722/ndss.2015.23248

[24] Yue Chen, Zhi Wang, David Whalley, and Long Lu. 2016. Remix: On-Demand
Live Randomization. In Proceedings of the 6th ACM Conference on Data and
Application Security and Privacy (CODASPY ’16). ACM, New Orleans, LA, 50–61.
https://doi.org/10.1145/2857705.2857726

[25] Abraham A Clements, Naif Saleh Almakhdhub, Khaled S. Saab, Prashast Srivas-
tava, Jinkyu Koo, Saurabh Bagchi, andMathias Payer. 2017. Protecting Bare-Metal
Embedded Systems with Privilege Overlays. In Proceedings of the 2017 IEEE Sym-
posium on Security and Privacy (SP ’17). IEEE Computer Society, San Jose, CA,
289–303. https://doi.org/10.1109/SP.2017.37

[26] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. 1998.
StackGuard: Automatic Adaptive Detection and Prevention of Bu�er-Over�ow
Attacks. In Proceedings of the 7th USENIX Security Symposium (Security ’98).
USENIX Association, San Antonio, TX, 15 pages. https://www.usenix.org/c
onference/7th-usenix-security-symposium/stackguard-automatic-adaptive-
detection-and-prevention

[27] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:
Practical Code Randomization Resilient to Memory Disclosure. In Proceedings of
the 2015 IEEE Symposium on Security and Privacy (SP ’15). IEEE Computer Society,
San Jose, CA, 763–780. https://doi.org/10.1109/SP.2015.52

[28] Stephen J. Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per
Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and
Michael Franz. 2015. It’s a TRaP: Table Randomization and Protection against
Function-Reuse Attacks. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS ’15). ACM, Denver, CO, 243–255.
https://doi.org/10.1145/2810103.2813682

[29] CVE 2021. CVE-2021-27421. https://www.cve.org/CVERecord?id=CVE-2021-
27421

[30] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and
Fabian Monrose. 2015. Isomeron: Code Randomization Resilient to (Just-In-Time)
Return-Oriented Programming. In Proceedings of the 2015 Network and Distributed
System Security Symposium (NDSS ’15). Internet Society, San Diego, CA, 15 pages.
https://doi.org/10.14722/ndss.2015.23262

[31] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ine�ectiveness of Coarse-Grained Control-Flow
Integrity Protection. In Proceedings of the 23rd USENIX Security Symposium (Se-
curity ’14). USENIX Association, San Diego, CA, 401–416. https://www.usenix.o
rg/conference/usenixsecurity14/technical-sessions/presentation/davi

[32] Lucas Vincenzo Davi, Alexandra Dmitrienko, Stefan Nürnberger, and Ahmad-
Reza Sadeghi. 2013. GadgeMe If YouCan: Secure and E�cient Ad-Hoc Instruction-
Level Randomization for x86 and ARM. In Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security (ASIACCS
’13). ACM, Hangzhou, China, 299–310. https://doi.org/10.1145/2484313.2484351

[33] Yufei Du, Zhuojia Shen, Komail Dharsee, Jie Zhou, Robert J. Walls, and John
Criswell. 2022. Holistic Control-Flow Protection on Real-Time Embedded Systems
with Kage. In Proceedings of the 31st USENIX Security Symposium (Security ’22).
USENIX Association, Boston, MA. https://www.usenix.org/conference/usenixse
curity22/presentation/du

[34] EEMBC. 2018. CoreMark: An EEMBC Benchmark. https://www.eembc.org/core
mark

[35] EEMBC. 2019. CoreMark-Pro: An EEMBC Benchmark. https://www.eembc.org/co
remark-pro

[36] Embedded Security. 2018. PinLock. https://github.com/embedded-sec/ACES/tre
e/master/test_apps/pinlock

[37] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu: On the

38

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Shen et al.

Weaknesses of Fine-Grained Control Flow Integrity. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (CCS ’15).
ACM, Denver, CO, 901–913. https://doi.org/10.1145/2810103.2813646

[38] Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu Aweke, Sales-
sawi Ferede Yitbarek, Misiker Tadesse Aga, Austin Harris, Zhixing Xu, Baris
Kasikci, Valeria Bertacco, Sharad Malik, Mohit Tiwari, and Todd Austin. 2019.
Morpheus: A Vulnerability-Tolerant Secure Architecture Based on Ensembles
of Moving Target Defenses with Churn. In Proceedings of the 24th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’19). ACM, Providence, RI, 469–484. https://doi.org/10.1145/32
97858.3304037

[39] Cristiano Giu�rida, Anton Kuijsten, and Andrew S. Tanenbaum. 2012. Enhanced
Operating System Security through E�cient and Fine-Grained Address Space
Randomization. In Proceedings of the 21st USENIX Security Symposium (Security
’12). USENIX Association, Bellevue, WA, 475–490. https://www.usenix.org/con
ference/usenixsecurity12/technical-sessions/presentation/giuffrida

[40] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out of Control: Overcoming Control-Flow Integrity. In Proceedings of the 35th
IEEE Symposium on Security and Privacy (SP ’14). IEEE Computer Society, San
Jose, CA, 575–589. https://doi.org/10.1109/SP.2014.43

[41] Javid Habibi, Aditi Gupta, Stephen Carlsony, Ajay Panicker, and Elisa Bertino.
2015. MAVR: Code Reuse Stealthy Attacks and Mitigation on Unmanned Aerial
Vehicles. In Proceedings of the 2015 IEEE 35th International Conference on Dis-
tributed Computing Systems (ICDCS ’15). IEEE Computer Society, Columbus, OH,
642–652. https://doi.org/10.1109/ICDCS.2015.71

[42] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W. David-
son. 2012. ILR: Where’d My Gadgets Go?. In Proceedings of the 2012 IEEE Sympo-
sium on Security and Privacy (SP ’12). IEEE Computer Society, San Francisco, CA,
571–585. https://doi.org/10.1109/SP.2012.39

[43] Tomoaki Kawada, Shinya Honda, Yutaka Matsubara, and Hiroaki Takada. 2021.
TZmCFI: RTOS-Aware Control-Flow Integrity Using TrustZone for Armv8-M.
International Journal of Parallel Programming 49 (April 2021), 216–236. https:
//doi.org/10.1007/s10766-020-00673-z

[44] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.
Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization
of Commodity Software. In Proceedings of the 22nd Annual Computer Security
Applications Conference (ACSAC ’06). IEEE Computer Society, Miami Beach, FL,
339–348. https://doi.org/10.1109/ACSAC.2006.9

[45] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P. Kemerlis, and Michalis
Polychronakis. 2018. Compiler-Assisted Code Randomization. In Proceedings of
the 2018 IEEE Symposium on Security and Privacy (SP ’18). IEEE Computer Society,
San Francisco, CA, 461–477. https://doi.org/10.1109/SP.2018.00029

[46] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI ’14). USENIX
Association, Broom�eld, CO, 147–163. https://www.usenix.org/conference/osdi
14/technical-sessions/presentation/kuznetsov

[47] Donghyun Kwon, Jangseop Shin, Giyeol Kim, Byoungyoung Lee, Yeongpil Cho,
and Yunheung Paek. 2019. uXOM: E�cient eXecute-Only Memory on ARM
Cortex-M. In Proceedings of the 28th USENIX Security Symposium (Security ’19).
USENIX Association, Santa Clara, CA, 231–247. https://www.usenix.org/confe
rence/usenixsecurity19/presentation/kwon

[48] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2nd Interna-
tional Symposium on Code Generation and Optimization: Feedback-Directed and
Runtime Optimization (CGO ’04). IEEE Computer Society, Palo Alto, CA, 12 pages.
https://doi.org/10.1109/CGO.2004.1281665

[49] Seongman Lee, Hyeonwoo Kang, Jinsoo Jang, and Brent Byunghoon Kang. 2022.
SaVioR: Thwarting Stack-Based Memory Safety Violations by Randomizing Stack
Layout. IEEE Transactions on Dependable and Secure Computing (July 2022), 2559–
2575. https://doi.org/10.1109/TDSC.2021.3063843

[50] Zhiqiang Lin, Ryan D. Riley, and Dongyan Xu. 2009. Polymorphing Software
by Randomizing Data Structure Layout. In Proceedings of the 6th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer-Verlag, Como, Italy, 107–126. https://doi.org/10.1007/978-3-642-02918-
9_7

[51] LLVM 2014. llvm::RandomNumberGenerator Class Reference. https://llvm.org/d
oxygen/classllvm_1_1RandomNumberGenerator.html

[52] Kangjie Lu, Stefan Nürnberger, Michael Backes, and Wenke Lee. 2016. How to
Make ASLR Win the Clone Wars: Runtime Re-Randomization. In Proceedings of
the 2016 Network and Distributed System Security Symposium (NDSS ’16). Internet
Society, San Diego, CA, 15 pages. https://doi.org/10.14722/ndss.2016.23173

[53] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo Kim,
and Wenke Lee. 2015. ASLR-Guard: Stopping Address Space Leakage for Code
Reuse Attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS ’15). ACM, Denver, CO, 280–291. https:
//doi.org/10.1145/2810103.2813694

[54] Lan Luo, Xinhui Shao, Zhen Ling, Huaiyu Yan, Yumeng Wei, and Xinwen Fu.
2022. fASLR: Function-Based ASLR via TrustZone-M and MPU for Resource-
Constrained IoT Systems. IEEE Internet of Things Journal 9, 18 (Sept. 2022),
17120–17135. https://doi.org/10.1109/JIOT.2022.3190374

[55] Mbed TLS Contributors. 2009. Mbed TLS Benchmark Demonstration Program.
https://github.com/ARMmbed/mbedtls/blob/development/programs/test/benc
hmark.c

[56] Microchip 2020. 32-bit Microcontroller Families: Industry’s Broadest and Most
Innovative 32-bit MCU Portfolio. Microchip. DS30009904V.

[57] Gene Novark and Emery D. Berger. 2010. DieHarder: Securing the Heap. In
Proceedings of the 17th ACMConference on Computer and Communications Security
(Chicago, IL) (CCS ’10). ACM, 573–584. https://doi.org/10.1145/1866307.1866371

[58] NXP 2021. UM11147 User Manual: RT6xx User Manual. NXP. Rev. 1.4.
[59] NXP 2021. UM11159 User Manual: i.MX RT685 Evaluation Board User Manual.

NXP. Rev. 2.
[60] Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N. Asokan. 2017. CFI CaRE:

Hardware-Supported Call and Return Enforcement for Commercial Microcon-
trollers. In Proceedings of the 20th International Symposium on Research in At-
tacks, Intrusions, and Defenses (RAID ’17). Springer-Verlag, Atlanta, GA, 259–284.
https://doi.org/10.1007/978-3-319-66332-6_12

[61] Aleph One. 1996. Smashing the Stack for Fun and Pro�t. Phrack 7 (Nov. 1996).
Issue 49. http://www.phrack.org/issues/49/14.html

[62] James Pallister, Simon Hollis, and Jeremy Bennett. 2013. BEEBS: Open Bench-
marks for Energy Measurements on Embedded Platforms. arXiv preprint
arXiv:1308.5174 (Aug. 2013). arXiv:1308.5174 [cs.PF] https://arxiv.org/abs/
1308.5174

[63] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2012. Smash-
ing the Gadgets: Hindering Return-Oriented Programming Using In-Place Code
Randomization. In Proceedings of the 2012 IEEE Symposium on Security and Pri-
vacy (SP ’12). IEEE Computer Society, San Francisco, CA, 601–615. https:
//doi.org/10.1109/SP.2012.41

[64] Sergio Pastrana, Juan Tapiador, Guillermo Suarez-Tangil, and Pedro Peris-López.
2016. AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR
Embedded Devices. In Proceedings of the 13th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA ’16). Springer-
Verlag, San Sebastián, Spain, 58–77. https://doi.org/10.1007/978-3-319-40667-1_4

[65] PaX Team. 2001. Address Space Layout Randomization. https://pax.grsecurity.n
et/docs/aslr.txt

[66] Jannik Pewny, Philipp Koppe, Lucas Davi, and Thorsten Holz. 2017. Breaking
and Fixing Destructive Code Read Defenses. In Proceedings of the 33rd Annual
Computer Security Applications Conference (ACSAC ’17). ACM, Orlando, FL, 55–67.
https://doi.org/10.1145/3134600.3134626

[67] Marios Pomonis, Theo�los Petsios, Angelos D. Keromytis, Michalis Polychron-
akis, and Vasileios P. Kemerlis. 2017. kRˆX: Comprehensive Kernel Protec-
tion against Just-In-Time Code Reuse. In Proceedings of the 12th European Con-
ference on Computer Systems (EuroSys ’17). ACM, Belgrade, Serbia, 420–436.
https://doi.org/10.1145/3064176.3064216

[68] Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar. 2020. Practical Fine-
Grained Binary Code Randomization. In Proceedings of the 36th Annual Computer
Security Applications Conference (ACSAC ’20). ACM, Austin, TX, 401–414. https:
//doi.org/10.1145/3427228.3427292

[69] Prabhu Rajasekaran, Stephen Crane, David Gens, Yeoul Na, Stijn Volckaert, and
Michael Franz. 2020. CoDaRR: Continuous Data Space Randomization against
Data-Only Attacks. In Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security (ASIACCS ’20). ACM, Taipei, China, 494–505. https:
//doi.org/10.1145/3320269.3384757

[70] Renesas 2022. RA Family Brochure. Renesas. Document No. R01CP0035EJ0300.
[71] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-

Oriented Programming: Systems, Languages, and Applications. ACMTransactions
on Information and System Security 15, 1, Article 2 (March 2012), 34 pages. https:
//doi.org/10.1145/2133375.2133377

[72] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson,
Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz,
Ahmad-Reza Sadeghi, and Hamed Okhravi. 2017. Address Oblivious Code Reuse:
On the E�ectiveness of Leakage Resilient Diversity. In Proceedings of the 2017
Network and Distributed System Security Symposium (NDSS ’17). Internet Society,
San Diego, CA, 15 pages. https://doi.org/10.14722/ndss.2017.23477

[73] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-into-
libcWithout Function Calls (on the x86). In Proceedings of the 14th ACMConference
on Computer and Communications Security (CCS ’07). ACM, Alexandria, VA, 552–
561. https://doi.org/10.1145/1315245.1315313

[74] Hovav Shacham, Matthew Page, Ben Pfa�, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the E�ectiveness of Address-Space Randomization.
In Proceedings of the 11th ACM Conference on Computer and Communications
Security (CCS ’04). ACM, Washington, DC, 298–307. https://doi.org/10.1145/10
30083.1030124

39

Randezvous: Making Randomization E�ective on MCUs ACSAC ’22, December 5–9, 2022, Austin, TX, USA

[75] Zhuojia Shen, Komail Dharsee, and John Criswell. 2020. Fast Execute-Only
Memory for Embedded Systems. In Proceedings of the 2020 IEEE Secure De-
velopment Conference (SecDev ’20). IEEE Computer Society, Atlanta, GA, 7–14.
https://doi.org/10.1109/SecDev45635.2020.00017

[76] Jiameng Shi, Le Guan, Wenqiang Li, Dayou Zhang, Ping Chen, and Ping Chen.
2022. HARM: Hardware-assisted Continuous Re-randomization for Microcon-
trollers. In Proceedings of the 2022 IEEE European Symposium on Security and
Privacy (EuroSP ’22). IEEE Computer Society, Genoa, Italy, 520–536. https:
//doi.org/10.1109/EuroSP53844.2022.00039

[77] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the
E�ectiveness of Fine-Grained Address Space Layout Randomization. In Proceed-
ings of the 2013 IEEE Symposium on Security and Privacy (SP ’13). IEEE Computer
Society, San Francisco, CA, 574–588. https://doi.org/10.1109/SP.2013.45

[78] Alexander Sotirov. 2007. Heap Feng Shui in JavaScript. In Black Hat Europe.
[79] STMicroelectronics 2020. DS12469 Datasheet: STM32L412xx. STMicroelectronics.

DS12469 Rev 8.
[80] STMicroelectronics 2021. DS11189 Datasheet: STM32F469xx. STMicroelectronics.

DS11189 Rev 7.
[81] STMicroelectronics 2022. AN4230 Application Note: STM32 Microcontroller Ran-

dom Number Generation Validation Using the NIST Statistical Test Suite. STMicro-
electronics. Rev 7.

[82] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund,
and Thomas Walter. 2009. Breaking the Memory Secrecy Assumption. In Pro-
ceedings of the 2nd European Workshop on System Security (EuroSec ’09). ACM,
Nuremburg, Germany, 1–8. https://doi.org/10.1145/1519144.1519145

[83] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent Freeh, and Peng
Ning. 2011. On the Expressiveness of Return-into-libc Attacks. In Proceedings of
the 14th International Symposium on Recent Advances in Intrusion Detection (RAID
’11). Springer-Verlag, Menlo Park, CA, 121–141. https://doi.org/10.1007/978-3-
642-23644-0_7

[84] Robert J. Walls, Nicholas F. Brown, Thomas Le Baron, Craig A. Shue, Hamed
Okhravi, and Bryan C. Ward. 2019. Control-Flow Integrity for Real-Time Embed-
ded Systems. In Proceedings of the 31st Euromicro Conference on Real-Time Systems
(ECRTS ’19). Schloss Dagstuhl–Leibniz-Zentrum füer Informatik, Stuttgart, Ger-
many, 2:1–2:24. https://doi.org/10.4230/LIPIcs.ECRTS.2019.2

[85] Zhe Wang, Chenggang Wu, Jianjun Li, Yuanming Lai, Xiangyu Zhang, Wei-
Chung Hsu, and Yueqiang Cheng. 2017. ReRanz: A Light-Weight Virtual Machine
to Mitigate Memory Disclosure Attacks. In Proceedings of the 13th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
’17). ACM, Xi’an, China, 143–156. https://doi.org/10.1145/3050748.3050752

[86] Zhe Wang, Chenggang Wu, Yinqian Zhang, Bowen Tang, Pen-Chung Yew,
Mengyao Xie, Yuanming Lai, Yan Kang, Yueqiang Cheng, and Zhiping Shi.
2019. SafeHidden: An E�cient and Secure Information Hiding Technique
Using Re-Randomization. In Proceedings of the 28th USENIX Security Sympo-
sium (Security ’19). USENIX Association, Santa Clara, CA, 1239–1256. https:
//www.usenix.org/conference/usenixsecurity19/presentation/wang

[87] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012.
Binary Stirring: Self-Randomizing Instruction Addresses of Legacy x86 Binary
Code. In Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security (CCS ’12). ACM, Raleigh, NC, 157–168. https://doi.org/10.1145/23
82196.2382216

[88] Mario Werner, Thomas Unterluggauer, David Scha�enrath, and Stefan Mangard.
2018. Sponge-Based Control-Flow Protection for IoT Devices. In Proceedings of
the 2018 IEEE European Symposium on Security and Privacy (EuroSP ’18). IEEE
Computer Society, London, United Kingdom, 214–226. https://doi.org/10.1109/
EuroSP.2018.00023

[89] David Williams-King, Graham Gobieski, Kent Williams-King, James P. Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shu�er: Fast and Deployable Continuous Code Re-
Randomization. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’16). USENIX Association, Savannah,
GA, 367–382. https://www.usenix.org/conference/osdi16/technical-sessions/pre
sentation/williams-king

[90] XAMPPRocky and contributors. 2015. Tokei: Count your code, quickly. https:
//github.com/XAMPPRocky/tokei

[91] Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John Criswell, and Robert J. Walls.
2020. Silhouette: E�cient Protected Shadow Stacks for Embedded Systems.
In Proceedings of the 29th USENIX Security Symposium (Security ’20). USENIX
Association, Boston, MA, 1219–1236. https://www.usenix.org/conference/usen
ixsecurity20/presentation/zhou-jie

A DIVERSIFIED BINARY DEPLOYMENT

Deploying and updating diversi�ed MCU application binaries pro-
vides challenges to software developers. However, we believe that

Table 8: De�nitions of Mathematical Symbols Used in the

Security Evaluation

Symbol De�nition

(ÿ Size of randomized code segment

(ÿċ
Size of original application code

(Đ Size of control flow target

(Ā Size of randomized .data segment

(Ā′ Size of memory in .data that does not resemble control data

(Ā0
Size of zeroed memory in .data

(ă Total size of all global guards

(ē Size of memory in .data that a�acker chooses to corrupt

Number of control data slots in .data

?ď,Į Probability of success w/ Strategy G
?Đ ,Į Probability of finding/hi�ing a trap w/ Strategy G
?ď Probability of success

?Đ Probability of trapping the system

%Į Number of guesses for a success in Strategy G
% Number of brute force a�acks for a success

� (-) Expected value of random variable -
Cþ Time from booting to reaching an exploitable vulnerability

CĊ Time for a�acker to send and receive data over network

)Ĥ Expected time to resist brute force a�acks w/o delayed reboot

)Ě Total time of delay provided by delayed reboot

)ģğĤ Expected time to resist brute force a�acks w/ delayed reboot

�ğ Time of delay at 8-th reboot caused by security violation

' Number of reboots a�er which reboot delay stops increasing

such challenges can be readily addressed. When a device manu-
facturer releases a new version of software for an MCU, they can
�rst translate all compilation units to LLVM IR and link the �les
into a single LLVM IR �le containing all the code using LLVM’s
LTO features [48]. They can then, for each device, generate ran-
dom seeds using a CSPRNG or TRNG, have the compiler’s code
generator translate the LLVM IR into a randomized binary using
those seeds, and then record in a database the hash of the generated
binary and the seeds that were used to create it.

When a customer submits a crash dump or requests a service
from the device manufacturer that requires knowing which diversi-
�ed binary the customer is using, the customer can simply supply
the hash of their binary �le. The device manufacturer can then feed
the corresponding random seeds from the database into the code
generator and regenerate the randomized binary. In this way, the
device manufacturer can always re-create the randomized binary
without having to store a copy of each binary given to a customer.

B SYMBOL DEFINITIONS

See Table 8.

C EQUATION DERIVATION

Derivation of Equation 1. To derive Equation 1, let �10 be the
search space size of Strategy 1a. We have

�10 =

(� − () + 2

2
.

We hereafter use ?8 to represent the probability of success at 8-th
guess regardless of the strategy. In Strategy 1a, we have

?8 =
�
�
��10 − 1

�10
·
�
�
��10 − 2

�
�
��10 − 1

· · ·
�
�
�
��10 − 8 + 1

�
�
�
��10 − 8 + 2

·
1

�
�
�
��10 − 8 + 1

=

1

�10
.

40

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Shen et al.

So the expected number of guesses for a success in Strategy 1a,
� (%10), can be expressed by:

� (%10) =

�1ė∑

8=1

8 · ?8 =

�1ė∑

8=1

8 ·
1

�10
=

(� − () + 4

4
.

Derivation of Equation 2. To derive Equation 2, we �rst have

?8 = (1 − ?(,11)
8−1?(,11 .

So

� (%11) =

∞∑

8=1

8 · ?8 =

∞∑

8=1

8 (1 − ?(,11)
8−1?(,11 .

According to geometric distribution,

� (%11) =
1

?(,11
=

(� − (� ′

4
.

Derivation of Equation 3. Similar to the derivation of Equation 1,
let �12 be the search space size of Strategy 1c. We have

�12 =

(� − (� ′

4

and

?8 =
1

�12
.

So

� (%12) =

�1ę∑

8=1

8 · ?8 =

�1ę∑

8=1

8 ·
1

�12
=

(� − (� ′ + 4

8
.

Derivation of Equation 4. Similar to the derivation of Equation 2,
we have

?8 = (1 − ?(,20)
8−1?(,20 .

and

� (%20) =

∞∑

8=1

8 · ?8 =

∞∑

8=1

8 (1 − ?(,20)
8−1?(,20 .

According to geometric distribution,

� (%20) =
1

?(,20
=

(� − (� ′

4#
.

Derivation of Equations 5, 6, and 7. For Strategy 2b, the condition
of success is by corrupting at least one of # control data slots while
not hitting any of the current global guards, and the condition of
trapping the system is by hitting any of the current global guards.
This can be modeled as the following situation:

• The attacker picks (ē
4

consecutive bins out of (Ā
4

bins sorted in
a certain order, # of which are black (representing control data

slots) and (ă
4

of which are red (representing the current global
guards).

• The attacker succeeds if the (ē
4

bins she picks contain no red
bin and at least one black bin.

• The attacker traps the system if the (ē
4

bins she picks contain at
least one red bin.

The total number of di�erent bin permutations (denoted as�) is (Ā
4
!.

The number of bin combinations in which the attacker succeeds
(denoted as�() is the number of all possible combinations of 8 black

bins and (ē
4
−8 non-black non-red bins (8 ∈ {1, 2, . . . ,min(#,

(ē
4
)}),

which can be calculated by

�(=

min(#,
ďē
4

)∑

8=1

� (#, 8)� (
(� − (�

4
− #,

(,

4
− 8) .

This number can then be used to calculate the number of bin per-
mutations in which the attacker succeeds (denoted as �(), by mul-
tiplying it with the number of all possible permutations with the

starting location of the (ē
4

bins �xed (as the bins the attacker picks
must be consecutive). So we have

�(= �(·
(,

4
! ·

(� − (,

4
!

and therefore

?(,21 =

�(

�
=

∑min(#,
ďē
4

)

8=1 � (#, 8)� ((Ā−(ă
4

− #,
(ē
4

− 8)

� ((Ā
4
,
(ē
4
)

.

We can calculate ?),21 indirectly by �rst calculating the prob-

ability of the attacker picking all (ē
4

bins as non-black non-red
bins and then doing a subtraction from 1. Since the number of bin

combinations of (ē
4

non-black non-red bins is� ((Ā−(ă
4

−#,
(ē
4
),

we can easily get

?),21 = 1 − ?(,21 −
� ((Ā−(ă

4
− #,

(ē
4
)

� ((Ā
4
,
(ē
4
)

.

Finally, � (%21) is derived in a similar way to that in � (%11) and
in � (%20). We have

?8 = (1 − ?(,21)
8−1?(,21

and

� (%21) =

∞∑

8=1

8 · ?8 =

∞∑

8=1

8 (1 − ?(,21)
8−1?(,21 .

According to geometric distribution,

� (%21) =
1

?(,21
.

41

