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Abstract. Hunting and logging, ubiquitous human disturbances in tropical forests, have the potential to alter the
ecological processes that govern population recruitment and community composition. Hunting-induced declines in
populations of seed-dispersing animals are expected to reduce dispersal of the tree species that rely on them, result-
ing in potentially greater distance- and density-dependent mortality. At the same time, selective logging may alter
competitive interactions among tree species, releasing remaining trees from light, nutrient or space limitations. Taken
together, these disturbances may alter the community composition of tropical forests, with implications for carbon
storage, biodiversity conservation and ecosystem function. To evaluate the effects of hunting and logging on tree
fecundity and seed dispersal, we use 3 years of seed rain data from a large-scale observational experiment in previously
logged, hunted and protected forests in northern Republic of Congo (Brazzaville). We find that low-intensity logging
had a meaningful long-term effect on species-specific seed dispersal distances, though the direction and magnitude
varied and was not congruent within dispersal vector. Tree fecundity increased with tree diameter, but did not differ
appreciably across disturbance regimes. The species-specific dispersal responses to logging in this study point towards
the long-lasting toll of disturbance on ecological function and highlight the necessity of conserving intact forest.
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Introduction intended to reduce the negative ecological impacts of
traditional, conventional logging operations. Studies
across the tropics have demonstrated that selective log-
ging techniques can substantially reduce the short-term

Logging concessions now cover almost 56 million ha of
forest in West and Central Africa (FAO 2016). Most con-
cessions are subject to low-intensity, selective logging
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effects of logging (Sist 2000; Sist et al. 2003; Medjibe
et al. 2013), but few studies have considered the long-
term effects of selective logging on critical forest pro-
cesses (Brown and Gurevitch 2004; Meijaard et al. 2005).
Tropical trees respond to environmental disturbance on
timescales that usually surpass the duration of ecological
studies (Gourlet-Fleury et al. 2013; Edwards et al. 2014;
Berdanier and Clark 2015) and changes in tree fecundity
and seed dispersal may persist long after disturbance
has ended, potentially altering ecosystem function.
Logging directly disturbs tropical forest communi-
ties through the extraction of large trees (Laurance et al.
2000), residual damage to remaining trees (Kasenene
and Murphy 1991) and disruption of seed-dispersing ani-
mal communities (Gutiérrez-Granados 2011; Haurez et al.
2016; Rosin and Poulsen 2016). Road construction frag-
ments the forest and provides hunters access to previ-
ously inaccessible areas (Kleinschroth and Healey 2017).
Unsustainable hunting is the major cause of defaunation
in many parts of the world (Hoffmann et al. 2010), causing
over a quarter of the world’s vertebrate species to decline
in abundance over the last four decades (Dirzo et al.
2014). Reductions in vertebrate dispersers may affect the
approximately two-thirds of all woody plants that rely on
animals for seed dispersal (Willson and Traveset 2000;
Muller-Landau and Hardesty 2005; Beaune et al. 2013).
Dispersal failure has consequences for community com-
position through density-dependent recruitment (Cannon
et al. 1994; Bleher and Bohning-Gaese 2001) and competi-
tion at later life stages (Nathan and Muller-Landau 2000).
Studies investigating how hunting and logging affect
seed dispersal have yielded mixed results (Theimer et al.
2011; Beck et al. 2013; Kurten 2013; Camargo-Sanabria
et al. 2014; Comita et al. 2014; Rosin and Poulsen 2016)
in part because the interacting effects of hunting and log-
ging have not been quantified beyond their immediate
responses to disturbances (Markl et al. 2012). In the short
term, intermediate levels of disturbance from selective
logging may increase light and nutrients available to sur-
vivors (Johns 1988; Kasenene and Murphy 1991; Cannon
et al. 1994; Huante et al. 1998; John et al. 2007; Ewel and
Mazzarino 2008; Gutiérrez-Granados 2011; Haurez et al.
2016), thereby increasing tree fecundity (Molino and
Sabatier 2001; Clark et al. 2010, 2014b). Logging may even
increase the dispersal distance of abiotically dispersed
species following forest thinning due to greater wind
speeds through the canopy (Gardiner 1994; Stacey et al.
1994; Gardiner et al. 1997). However, in the longer term,
logging may reduce seed dispersal distance and fecun-
dity through combinations of increased hunting pressure
(Kleinschroth and Healey 2017), declines in vertebrate dis-
persal vectors (Poulsen et al. 2013; Haurez et al. 2016), soil
compaction (Pinard et al. 2000) and invasion of fast-grow-
ing competitors (Schnitzer and Bongers 2002). Because

declines in dispersal vectors and increases in fecundity
can both follow disturbance, investigating the interac-
tions of these processes is essential for understanding the
underlying ecological process (Abernethy et al. 2013).

To evaluate the separate and combined effects of
hunting and logging on both fecundity and dispersal
for animal and abiotically dispersed trees, we collected
3 years of seed rain data from a large-scale observational
experiment in previously logged, hunted and protected
forests in northern Republic of Congo (Brazzaville). By con-
trolling for logging and hunting in our sampling design,
we offer a first opportunity to test their relative effects.
We hypothesized that the fecundity and dispersal dis-
tances of tropical trees will be sensitive to both hunting
and logging. Specifically, we expected that: (i) tree fecun-
dity is greater in logged forests relative to protected for-
ests, regardless of whether trees species are abiotically or
animal dispersed; and (ii) hunting reduces dispersal dis-
tances of animal-dispersed species, but not the dispersal
distances of abiotically (wind or ballistic) dispersed spe-
cies. Understanding the separate and combined effects
of disturbances on seed dispersal is critical to predict
changes in forest species composition and diversity.

Materials and Methods

Study area

We conducted the study in the Nouabale Ndoki National
Park (NNNP; 400 000 ha) and the Kabo logging concession
(267 000 ha) in northern Republic of Congo (Fig. 1). The
forests in this area are classified as lowland tropical forest.
Dominant tree families include Meliaceae, Euphorbiaceae
and Annonaceae (CIB 2006). Rainfall averages ~1700 mm
annually and is seasonal with peaks in May and October.
The Kabo concession borders the NNNP to the south, and
together they include a mosaic of logged and unlogged
forest. Twenty years before the study began, the logging
concession was selectively logged at low intensity (<2.5
stems per hectare) with four species, Entandophragma
cylindricum, E. utile, Triplochiton scleroxylon and Milicia
excelsa, making up 90 % of the harvest volume (CIB 2006).
Although we do not have data on rates of natural distur-
bance at our study site, a comparison of pantropical data
(n=65) report a range of natural stand mortality from 0.86
to 2.02 %, with a best estimate of adjusted stem turno-
ver rate of 1.81 + 0.16 % (Lewis et al. 2004). Approximately
3000 people inhabited the study site at the time of the
study, most residing in the logging town of Kabo. Residents
generally hunted with shotguns, and to a lesser extent with
wire snares, for consumption and for local trade (Poulsen
et al. 2009). A gradient of hunting intensity decreases with
distance from Kabo, with some forest types being used
more than others (Mockrin 2008).
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Figure 1. Location of 30 1-ha study plots in Northern Congo. Protected plots fall within the border of Nouabale-Ndoki National Park (green),
whereas plots exposed to hunting and/or logging were located in the Kabo logging concession (grey) in northern Republic of Congo.

Tree census and seed rain data

We established 30 1-ha tree plots comprised of three
equal-area groups, including 10 sites that were unlogged
and unhunted, 10 sites that were logged and unhunted
and 10 sites that were both logged and hunted. Using
ArcView 3.2 and a 14-class habitat map (Laporte et al.
2007), we randomly located plots within each distur-
bance regime in mixed lowland forest, with a buffer of
at least 500 m to the nearest primary road and 100 m
to the nearest water source. Within each plot, all trees
>10 cm diameter at breast height (DBH) were tagged,
measured, mapped and identified to species (Wortley
and Harris 2014). We additionally recorded canopy sta-
tus (understory, midstory, canopy and emergent) and
presence of lianas in the crown. Canopy openness and
light availability were estimated for each plot by aver-
aging values from four hemispherical pictures taken
at each quarter of a plot. Seed traps 1 m? in area were
centred along three transects at 25, 50 and 75 m from
a plot border, with 10 m separating each trap. All traps
were at least 20 m from the nearest plot border. Seeds
and fruits were collected every 2 weeks and identified to
species or genus level. Previous evidence demonstrates
that parameter estimates are dominated by the rela-
tively abundant seeds falling from within these distances
(Clark et al. 1998).

We used seed rain data from 33 of the most common
species to quantify fecundity and seed dispersal dynam-
ics. Although seed rain was collected on many more
species, we limited analysis to species that occurred in

at least half of all plots. Tree density, size and species
composition were approximately equivalent across plots
and disturbance types [see Supporting Information—
Figs S1-S3]. Of the 44 species that contributed seeds to
at least half of the plots, 11 were lianas—woody vines
that rely on trees for support. We omitted liana species
from the present study despite their clear importance
for frugivore diets, because they extend laterally tens of
metres from their rooting stems, making the attribution
of seeds to a censused stem challenging. The number of
focal trees per 1-ha plot ranged from 50 to 253 with a
median of 155 trees, and the number of seeds per focal
species per plot ranged from 16 to 288 with a median
of 96.

Plant species trait data

The dispersal mode for each tree species was assigned
based on fruit morphology and observations of fruit
consumption (Gautier-Hion et al. 1985; Tutin et al. 1997;
White and Abernethy 1997; Whitney et al. 1998; Clark
et al. 2001; Poulsen et al. 2001, 2002; Hawthorne and
Gyakari 2006; Morgan and Sanz 2006) [see Supporting
Information—Table S1]. Because many animal-dis-
persed species are dispersed by both birds and mam-
mals, we report results by broad classes of animal and
abiotic (wind or ballistic) dispersal mode. In addition to
dispersal mode, the mean tree DBH (cm) and tree den-
sity (stems per hectare) for each species were also cal-
culated by forest type to relate dispersal parameters to
species characteristics.
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Fecundity estimation and dispersal analysis

We use a state-space model for Mast Inference and
Forecasting (available on CRAN as the R package MASTIF,
http://rpubs.com/jimclark/281413) to determine the
relative influence of hunting and logging on the fecun-
dity and dispersal kernel of each tree (Clark, Nuiez and
Tomasek, in revision). Mast Inference and Forecasting
builds on the rich literature of seed dispersal models
that employ a bivariate Student’s t (2Dt) to relate the
size and locations of reproductively active trees to num-
bers of seeds collected in seed traps in order to probabil-
istically estimate the seed production of each tree (Fig.
2; Clark et al. 1999, 2010, 2014a). Some authors use a
two-parameter version of the 2Dt kernel; we do not fit a
shape parameter due to the fact that it is poorly identi-
fied in data and it does not respond to the tail of the
kernel as was originally hoped (e.g. Clark et al. 1999).
Not all seeds in seed traps must come from trees within
the inventory plot. This possibility suggests an intercept
proportional to basal area (Clark et al. 2010) or an integral
over a large landscape area (Muller-Landau et al. 2008)
as a rough accommodation of long-distance dispersal.
In our comparisons an intercept can change estimates,
without actually being sensitive to seeds outside the
plot. This insensitivity to distant trees was demonstrated
by Clark et al. (1998) by fitting the model without inter-
cept to increasingly expanded plot areas. An intercept
is insensitive to long-distance dispersal because distant
trees do not affect the likelihood; the tail of the kernel has
no impact on estimates except in cases where seeds are
rare (Clark et al. 1999). The converse is also true: standard

.
' -
:
;
+.

.

&
@
'.-

"J"’
. sy
& o

¢

errors on estimates of fecundity increase with distance
from seed traps. The intercept model further requires a
strict assumption about forest composition outside the
plot, e.g. extrapolating composition within the plot to infi-
nite distance (Muller-Landau et al. 2008; Clark et al. 2010),
which is unrealistic in many forests.

Mast Inference and Forecasting extends the model
that has been extensively tested with predictive distri-
butions to allow for uncertainty in seed identification,
as well as time-dependence (Clark et al. 2004, 2010)
and quasi-periodic variation and synchronicity in seed
production (Koenig and Knops 2001; Boutin et al. 2006;
Wang et al. 2017). Mast Inference and Forecasting uses
Gibbs sampling—a Markov chain Monte Carlo (MCMC)
technique—as well as Metropolis and Hamiltonian
Markov chain (HMC) for posterior simulations of tree
maturation state, fecundity, seed dispersal kernel
and parameter estimates. Parameter estimates—the
effects of hunting, logging and site-level covariates—
are sampled directly from the posterior (Clark, Nufez
and Tomasek, in revision). We used non-informative flat
priors for the dispersal parameter and variance in the
dispersal parameter with fixed degrees of freedom as
detailed in Clark et al. (2004, 2010, 2014a).

The broad dispersion of seed count data is accom-
modated in at least one of two ways. If accommodated
at the data stage with a negative binomial distribution
(Clark et al. 1998; Muller-Landau et al. 2008), then the dis-
persion parameter has no biological interpretation, and it
cannot respond to the variables that are known to affect
seed variability. Alternatively, a hierarchical specification

00
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100 meters

Figure 2. A schematic of seed shadow modelling, with spatially distributed trees of varying sizes acting as signal sources of varying strengths,

and seed traps acting as stationary detectors through time.
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helps to explain that variation, through individual differ-
ences in covariates and random effects and year or lag
effects (Clark et al. 2004, 2013; Martinez and Gonzdlez-
Taboada 2009; Uriarte et al. 2012). In other words, the
overdispersion is taken up by the underlying process;
the data are conditionally Poisson, but marginally over-
dispersed (Clark, Nuiiez and Tomasek, in revision). Our
model incorporates a Poisson likelihood for count data
with seed production and dispersal, written as:

n
E()’s) =A\ = AZ Ssifi
i=1

where E(y,) is the expected number of seeds counted in a
trap at location s. A_is the expected seed density (seeds
per m? per year) multiplied by the sampling effort A—
the area of a seed trap times the fraction of the fruiting
season it was deployed (m? per year). S_ is the density of
seed (m™2) produced by tree i dispersed to seed trap loca-
tion s; and f; is fecundity for an individual tree i at time t,
which is the product of maturation status (p,) and condi-
tional fecundity (y,) of tree i, (fi’t) =Y 0,2 0. Maturation
and conditional fecundity are dynamic processes, mod-
elled with fixed, random and year effects. Coefficients in
the vector of fixed effects g*include tree diameter, expo-
sure to hunting or logging, and interactions (Clark 2010;
Clark et al. 2013). Random individual effects accommmo-
date the heterogeneity of responses among individual
trees. The effect of year is random across species and
within each of the three disturbance types, accommo-
dating seed rain fluctuations that are coherent within,
but not among the three groups.

Dispersal is summarized by the mean parameter of
the 2Dt dispersal kernel (Clark et al. 1999), here termed
the ‘dispersal parameter’. A shape parameter is also
sometimes fitted for this model, but we have found it to
be unstable and unresponsive to long-distance dispersal
(Clark et al. 2004, 2010).

Our modelling did not explicitly incorporate bound-
ary effects because previous analysis demonstrated that
trees tens of metres from seed traps have little impact on
estimates (Clark et al. 1999). Muller-Landau et al. (2008),
however, concluded that failure to account for boundary
effects could bias models towards higher fecundity and
fat tails (Muller-Landau et al. 2008), leading to overesti-
mated fecundities and dispersal distances. However, this
would not change inferences related to the relative effects
of vectors or disturbance on seed dispersal patterns.

Gibbs sampling was used for posterior simulation.
For each tree species [see Supporting Information—
Fig. S5], model estimates were taken from 50 000
iterations, discarding the first 1000 iteration as pre-con-
vergence. We visually inspected trace plots to confirm
convergence and adequate mixing [see Supporting

Information—Fig. S6A-C]. Model fit was assessed
with root mean squared prediction error (RMSPE)
across species [see Supporting Information—Fig. S4].
Variable selection was based on Deviance Information
Criterion (DIC). Model estimates reported in the text
are posterior means and 95 % credible intervals (CIs)
based on the Gibbs sampler realizations.

Results

Hunting and logging influenced the mean distances of
dispersal kernels (hereafter average dispersal distance),
with the greatest effects on animal-dispersed species,
though the direction and magnitude varied. Two-thirds of
all species (22/33) in disturbed forests had 95 % Cls for
dispersal parameters that did not overlap with estimates
from protected plots, indicating a role of disturbance. This
trend held true whether a species relied on animals for
dispersal entirely (13/18), in part (5/8) or not at all (4/7).

Of the 22 species affected by disturbance, 17 spe-
cies showed an effect of logging alone: nine species
had higher dispersal estimates in logged compared to
protected forest (Celtis mildbraedii, Diospyros canalicu-
lata, Erythrophleum suaveolens, Greenwayodendron sua-
veolens, Lannea welwitschii, Pausinystalia macroceras,
Rinorea oblongifolia, Staudtia kamerunensis, Strombosia
nigropunctata), and eight species had lower dispersal
estimates (Cleistopholis patens, Grossera macrantha,
Myrianthus arboreus, Macaranga barteri, Nesogordonia
kabingaensis, Strombosiopsis tetrandra, Thomandersia
hensii, Terminalia superba).

The combined effects of hunting and logging were
consistent with logging alone for the majority of spe-
cies, with the exception of six species that had disper-
sal estimates greater than (Pteleopsis hylodendron,
S. tetrandra, Guarea cedrata) or less than (G. macran-
tha, D. canaliculata and E. suaveolens) logging alone.
Notably, three species exhibited divergent effects of
disturbance regime on dispersal estimates: logging
positively affected D. canaliculata and E. suaveolens,
whereas the combination of hunting and logging nega-
tively affected dispersal estimates relative to protected
plots. Strombosiopsis tetrandra displayed the opposite
pattern (Table 1; Figs 3 and 4).

To reveal potential group-level effects of dispersal
vectors, we clustered dispersal parameters from indi-
vidual species by dispersal vector (i.e. animal, abiotic
or mixed dispersal). Predictions were congruent within
each dispersal vector, regardless of disturbance type
(Fig. 5). Abiotically dispersed species had the great-
est dispersal estimates overall, with 51.4 m [2.5th and
97.5th quantiles: 17.9, 75.5]. Species dispersed both by
animals and abiotically had dispersal estimates of 41.1
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Table 1. Predictive mean and 95 % CI for seed dispersal distances in metres.

Mean predicted dispersal distance

Logged forests Protected forests Hunted and logged forests

Estimate 250% 97.50% Estimate 250% 97.50% Estimate 250% 97.50%

Abiotically dispersed

Albizia gummifera 51.3 47.7 54.9 52.6 49.4 55.8 533 50.3 56.3
Erythrophleum suaveolens 42.6 40.2 45.0 31.8 30.0 33.7 23.4 221 24.7
Nesogordonia kabingaensis 12.4 9.5 16.5 41.1 38.1 441 37.0 335 40.6
Petersianthus macrocarpus 65.9 64.1 67.7 63.3 61.2 65.6 61.1 58.6 63.4
Pteleopsis hylodendron 43.9 39.0 48.6 36.5 28.4 43.6 57.5 54.0 61.2
Pterocarpus soyauxii 56.9 533 60.4 62.9 60.3 65.5 66.9 64.6 69.2
Terminalia superba 68.0 66.6 69.6 75.0 73.4 76.8 75.9 74.3 77.7

Animal dispersed

Angylocalyx pynaertii 45.0 41.5 48.5 41.0 37.2 45.0 49.9 46.9 52.7
Celtis adolfi-friderici 18.0 16.0 20.3 14.5 13.2 15.9 13.8 129 14.8
Celtis mildbraedii 20.1 18.7 21.6 10.3 9.9 10.8 21.0 19.8 223
Cleistopholis patens 17.8 13.8 217 38.4 30.1 43.6 38.4 34.4 423
Diospyros bipindensis 419 38.7 45.2 39.8 36.7 43.1 39.5 35.2 43.8
Diospyros canaliculata 45.9 42.8 49.0 36.8 33.2 40.2 13.9 12.8 15.0
Greenwayodendron suaveolens 37.2 35.7 38.7 31.4 30.2 32.7 42.4 40.5 442
Guarea cedrata 353 31.0 39.7 28.0 19.5 35.1 39.2 359 42.6
Guarea thompsonii 40.7 37.5 44.0 40.2 36.4 439 46.9 43.7 50.1
Lannea welwitschii 42.5 37.3 47.6 2.2 1.0 8.7 16.9 14.0 20.6
Macaranga barteri 10.2 8.4 12.5 24.4 20.6 283 4.5 3.6 6.0
Staudtia kamerunensis 49.9 45.2 55.2 34.2 229 42.0 49.0 45.7 52.5
Strombosia nigropunctata 211 19.5 22.8 9.8 9.1 10.5 19.6 183 21.0
Strombosia pustulata 17.5 15.9 19.2 15.6 14.5 16.9 14.2 12.7 15.9
Strombosiopsis tetrandra 19.2 18.1 20.3 28.7 26.7 30.7 41.4 38.9 43.9
Xylopia chrysophylla 40.4 36.9 44.0 34.4 279 40.0 429 403 45.6
Xylopia hypolampra 98.5 95.3 100.0 98.8 96.1 100.0 98.0 93.6 99.9
Xylopia phloiodora 47.8 44.3 51.2 45.7 42.2 49.2 44.7 41.3 48.1

Abiotic and animal dispersed

Camptostylus mannii 423 389 45.6 41.5 38.0 45.1 39.7 36.5 43.0
Grossera macrantha 40.5 35.6 45.0 51.9 49.2 54.5 43.9 40.1 46.9
Lepidobotrys staudtii 359 279 42.1 45.7 419 49.4 51.1 47.9 54.3
Myrianthus arboreus 34.2 28.8 39.0 43.3 39.8 46.6 253 22.7 28.1
Pausinystalia macroceras 371 34.0 40.3 31.2 28.8 33.7 39.0 35.6 42.4
Radlkofera calodendron 41.3 37.4 45.1 45.7 42.1 49.0 42.4 38.9 46.0
Rinorea oblongifolia 46.7 43.6 49.8 31.7 27.0 36.3 46.7 433 50.0
Thomandersia hensii 38.0 31.9 43.2 54.0 50.9 57.2 379 31.5 43.1
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tances for all species grouped by dispersal vector. Error bars show
the 2.5th and 97.5th quantiles of mean dispersal distance in forests
that were logged, hunted and logged, or protected from hunting
and logging.

m [28.7, 52.8], and animal-dispersed species had the
lowest dispersal estimates of 34.4 m [6.2, 98.3].

To evaluate the group-level effects of disturbance,
we clustered dispersal estimates of all species by dis-
turbance type, including protected (38.9 m [8.2, 79.8]),
hunted and logged (40.5 m [12.0, 80.3]) and logged for-
ests (39.6 m [11.9, 74.1]). The large overlap in dispersal
estimates among forest types indicates a lack of con-
sistent effects of disturbance on dispersal distance.

Estimated tree fecundity increased with tree diam-
eter (Fig. 6), but was not affected by disturbance regime
(Table 2; Figs 7 and 8). A majority of species (25/33) exhib-
ited a positive effect of tree diameter on fecundity, with
the exception of Radlkofera calodendron, Lepidobotrys
staudtii, S. kamerunensis, R. oblongifolia, Xylopia chryso-
phylla, Diospyros bipindensis, Camptostylus mannii and
D. canaliculata. Logging only influenced fecundity esti-
mates of three species (D. bipindensis, posterior mean
and 95 % ClIs: —-1.78 [-3.51, —0.03], G. macrantha —1.49
[-2.96, —0.08] and M. arboreus 2.30 [0.67, 3.84]).

Discussion

We find that low-intensity logging affected seed dispersal
two decades after the logging event. Guidelines aimed at
reducing the ecological damage stemming from logging
can substantially reduce short-term impacts (Sist 2000;
Sist et al. 2003), but our study suggests that impacts of
low-intensity logging on ecological processes like seed

dispersal are long term and may linger for decades.
The difficult-to-detect effects on a key ecological pro-
cess could have direct consequences for forest species
composition through density-dependent recruitment
(Janzen 1970; Connell 1971; Cannon et al. 1994; Bleher
and Bohning-Gaese 2001) and competition at later life
stages (Nathan and Muller-Landau 2000), potentially
altering the diversity and function of forest ecosystems.

Contrary to our expectations, the dispersal vector of
a seed type, abiotic or animal, was not a reliable indi-
cator of the magnitude or direction of the responses of
tree species to disturbance. Our results do not support
the argument that dispersal decreases for animal-dis-
persed species following perturbation of the disperser
community (Terborgh et al. 2008; Markl et al. 2012), at
least several decades after the fact. It further does not
support the notion that dispersal increases for abioti-
cally dispersed species following forest thinning due to
increased canopy wind speeds (Gardiner 1994; Stacey
et al. 1994; Gardiner et al. 1997). Our results are more
consistent with dispersal effects that are species-spe-
cific, as might be expected from the fact that each spe-
cies has a unique relationship to unmeasured abiotic
variables that contribute to its response to disturbance.

Despite a design specifically implemented to detect
it, our study did not find evidence for an interaction
between hunting and logging for most species, suggest-
ing instead that dispersal following disturbance primar-
ily responds to logging, but not hunting. Using the same
data set, Poulsen et al. (2013) modelled seed dispersal
of nine mammal-dispersed species finding that mean
dispersal distance was farther in logged than unlogged
forest for five species and farther in unhunted than
hunted forest for six species. The disparity between the
two studies could be due to the fact that we modelled
dispersal for 33 tree species, separating them into ani-
mal and abiotic vectors, whereas Poulsen et al. (2013)
only modelled nine mammal-dispersed species for
which they had adequate seed numbers.

Limited evidence for a hunting effect on dispersal
could come from the fact that hunting pressures were
too low, even where present in our data set. Although
hunting has clearly reduced the abundance of large ver-
tebrates in the area (Poulsen et al. 2011), all species still
exist throughout the landscape (Clark et al. 2009)—the
vertebrate community is degraded, not defaunated.
Alternatively, large frugivorous birds may have replaced
the seed dispersal services of large, arboreal mammals.
Bird species richness can increase with logging intensity
(Burivalova et al. 2014), which can aggravate the nega-
tive effects of disturbance on seed dispersal due to the
reduction in seed dispersers (Moran et al. 2004; Kirika
et al. 2008a, b; Neuschulz et al. 2011) or mitigate the
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Figure 6. Comparison of posterior parameter estimates and 95 % CI show a positive effect of tree diameter on tree fecundity for a majority

of species. Species names are colour coordinated here as elsewhere in

the manuscript to denote dispersal vector: animal dispersed (orange),

abiotically dispersed (black) or both animal and abiotically dispersed (grey).

effects of disturbance if generalist bird dispersers replace
lost or reduced dispersal services (Putz et al. 2001; Gray
et al. 2007; Burivalova et al. 2014; LaManna and Martin
2017;Trolliet et al. 2017). Indeed, in our study areaq, there
was a 77 % increase in the density of large frugivorous
birds following logging (Poulsen et al. 2011), a result that
is consistent with other sites in the region (Koerner et al.
2017). Birds are not commonly hunted in our study site,
and 2/3 of the mammal-dispersed species were also dis-
persed by birds [see Supporting Information—Fig. S2],
meaning that the full effects of hunting could be attenu-
ated by an expanded bird community.

Itis also possible that seed trap data inadequately sam-
ple long-distance seed dispersal by animals. A majority of
seeds fall locally (Clark et al. 1999, 2005; Muller-Landau
and Hardesty 2005; Muller-Landau et al. 2008), and stud-
ies that have combined seed traps with direct observa-
tions of seed counts from the canopy (LaDeau and Clark

2001, 2006) or the ground (Minor and Kobe 2017) find
seed traps estimate fecundity well. However, seed dis-
persers may forage over large areas—over 4000 ha in
some hornbills (Holbrook and Smith 2000). Seed trap data
do not fully capture the dispersal of seeds that are con-
sumed and dispersed outside of the plot. Although long-
distance dispersal events may be rare, fully estimating the
effects of disturbance on seed dispersal may require com-
bined methods that can account for both local and long-
distance dispersal. Nevertheless, our findings indicate that
once a forest is disturbed by logging, seed dispersal may
be altered regardless of the effect hunting has on seed dis-
perser communities. This is consistent with other studies
that found animal quild densities were negatively affected
by logging even in the absence of hunting (Poulsen et al.
2013), but contradicts studies that found hunting and log-
ging amplified the negative effects of either in isolation
(Poulsen et al. 2011; Markl et al. 2012).
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Table 2. Posterior mean and 95 % CIs of covariate effects on conditional fecundity.

Covariate effects on conditional fecundity

Diameter Logging Hunting and logging
Posterior 250% 97.50% Posterior 2.50% 97.50%  Posterior 250% 97.50%
mean mean mean

Abiotically dispersed
Albizia gummifera 2.4 0.9 3.8 0.2 -3.1 3.7 1.3 -1.1 3.7
Erythrophleum suaveolens 23 1.2 3.4 1.4 -0.6 3.4 0.3 2.4 3.0
Nesogordonia kabingaensis 2.3 1.4 3.2 -0.6 -1.7 0.5 -0.5 -1.5 0.4
Petersianthus macrocarpus 33 2.3 4.3 -1.5 -3.1 0.1 -1.0 =23 0.3
Pteleopsis hylodendron 1.5 0.0 3.0 -1.3 -4.0 1.3 -2.0 -5.1 1.2
Pterocarpus soyauxii 2.8 1.5 4.1 -1.3 -3.0 0.5 -1.1 -2.8 0.6
Terminalia superba 3.9 2.8 4.9 0.0 -1.9 1.8 -1.3 -3.0 0.4

Animal dispersed
Angylocalyx pynaertii 2.4 1.3 35 -0.2 -1.8 1.4 -0.2 -1.8 1.4
Celtis adolfi-friderici 2.9 2.0 3.8 0.0 -1.2 1.2 -0.3 -1.4 0.7
Celtis mildbraedii 2.4 2.0 29 -0.2 -1.0 0.5 -0.8 -1.4 -0.1
Cleistopholis patens 2.4 0.9 4.0 -1.1 -3.3 1.2 -2.0 -4.1 0.1
Diospyros bipindensis 0.8 -1.4 2.9 -1.8 -3.5 0.0 -1.8 -3.7 0.1
Diospyros canaliculata 0.3 -1.6 2.3 0.1 -1.5 1.8 -1.0 -2.4 0.4
Greenwayodendron suaveolens 4.2 3.4 5.0 -0.1 -0.9 0.7 -0.3 -1.0 0.4
Guarea cedrata 1.8 0.2 33 -0.7 -3.0 1.5 -0.1 -33 33
Guarea thompsonii 2.3 1.3 3.4 -1.1 -2.2 0.1 -1.0 -2.1 0.1
Lannea welwitschii 2.1 0.3 3.8 -0.2 -4.5 4.0 0.6 4.4 5.2
Macaranga barteri 2.4 1.1 3.7 -1.0 -2.6 0.6 -0.8 -2.4 0.8
Staudtia kamerunensis 1.6 -0.2 3.4 -0.3 -4.1 3.6 0.0 -6.2 6.2
Strombosia nigropunctata 1.6 0.6 2.6 -0.5 -1.5 0.5 -0.6 -1.5 0.4
Strombosia pustulata 2.2 1.4 3.0 -0.6 -1.5 0.2 -0.3 -1.2 0.6
Strombosiopsis tetrandra 3.2 2.2 4.1 -0.9 -2.1 0.3 -0.6 -1.7 0.6
Xylopia chrysophylla 1.3 -0.4 3.0 0.1 -3.0 3.2 -2.5 -5.1 0.2
Xylopia hypolampra 1.8 0.2 3.4 1.6 -2.0 5.1 0.9 -2.4 4.2
Xylopia phloiodora 1.7 0.0 33 0.8 -1.4 29 1.6 -0.9 4.0

Abiotic and animal dispersed
Camptostylus mannii 0.9 -1.1 2.8 0.7 -1.3 2.7 0.3 -1.6 2.1
Grossera macrantha 2.3 0.9 3.7 -1.5 -3.0 -0.1 -0.7 -2.2 0.8
Lepidobotrys staudtii 1.7 -0.1 3.6 -0.2 -3.0 2.6 0.1 -2.2 2.4
Myrianthus arboreus 1.7 0.6 2.7 2.1 -0.3 4.5 23 0.7 3.8
Pausinystalia macroceras 1.1 0.1 2.1 -0.1 -1.5 1.3 0.3 -1.0 1.6
Radlkofera calodendron 21 0.0 4.2 -1.9 -4.3 0.7 1.5 -2.4 5.4
Rinorea oblongifolia 1.6 -0.5 3.8 1.7 -1.7 5.0 -1.9 -5.2 1.1
Thomandersia hensii 29 0.0 5.9 11 -4.8 6.9 0.0 -6.2 6.2

AoB PLANTS https://academic.oup.com/aobpla

© The Author(s) 2018

€202 dunf z| uo Josn Ausiaaun &xna Aq ¥01L£42S/v20A10/1/L L/o1oiue/eidqoe/woo dno-oiwepese/:sdny Wwoly papeojumoq



Nufez et al. - Congo tree fecundity and dispersal

Effect of Logging on Estimated Fecundity
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Although dispersal vector was not predictive of how
dispersal would respond to hunting or logging, there
was a clear distinction in dispersal kernel estimates.
Abiotically dispersed seeds moved farthest from the
parent tree, animal-dispersed seeds generally fell clos-
est and species dispersed both by animals and abioti-
cally arrived at intermediate distances. Differences in
dispersal distance between vectors (Venable and Brown
1988; Greene and Johnson 1989, 1993; Cornelissen et al.
2003; Clark et al. 2005; Thomson et al. 2011) are partly
a result of mechanical properties. Abiotically dispersed
seeds tend to have small mass that facilitate passive
dispersal by wings, plumes, samaras and other adapta-
tions for flight (Greene and Johnson 1989, 1993). Seeds
reliant on animal dispersers must develop fleshy fruit
mass to entice seed dispersers (Cao et al. 2016) limiting
their passive dispersal distance.

Estimated fecundity long after disturbance did not
differ across disturbance regimes to the extent found in
studies immediately following disturbance (Markl et al.

0.0

25 50 75

Posterior Parameter Estimate
Figure 7. Comparison of posterior parameter estimates and 95 % CI show no effect of logging on tree fecundity for a majority of species.

2012; Uriarte et al. 2012; Berdanier and Clark 2016).
Low-intensity logging in resource-limited tropical for-
est environments may have limited effects on crowding,
light and soil moisture levels (Molino and Sabatier 2001;
Bongers et al. 2009). However, our results suggest that
any fecundity benefits from disturbance are unobserv-
able 20 years post-logging. Lack of a long-term effect on
fecundity may also be a result of studying only relatively
large trees (210 cm DBH), which have already made it
through the competitive gauntlet of the understory to
attain adulthood, and can access resources that facili-
tate resilience to competitive environments in ways that
smaller plants cannot (Clark et al. 2004).

Tree size was an important determinant of fecundity
making large trees especially important for forest re-
generation (Plumptre 1995; Freitas and Pinard 2008).
Fecundity of large trees should encourage their protec-
tion during logging campaigns (CIB 2006). In addition
to their outsized contribution to longer-distance dis-
persal events (Norghauer et al. 2011), large trees store a
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Effect of Hunting and Logging on Estimated Fecundity
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Figure 8. Comparison of posterior parameter estimates and 95 % CI show no effect of hunting and logging on tree fecundity for a majority

of species.

disproportionate amount of above-ground carbon (Clark
and Clark 1996; Lutz et al. 2012; Slik et al. 2013; Stephenson
etal. 2014) and are crucial for maintenance of forest struc-
ture (Lindenmayer et al. 2012; Lutz et al. 2013) and animal
habitat (Tews et al. 2004; Lutz et al. 2012, 2013).

Our study demonstrates that disturbances to forests
and animal communities contribute to seed dispersal pat-
terns even decades after the initial logging event. In this
case, the responses in seed dispersal to disturbance var-
ied across species with weak patterns related to dispersal
vector or disturbance type. Our lack of a clear directional
effect of hunting and logging on seed dispersal could be
partially due to our study design, which was pseudorepli-
cated: study plots affected by the same disturbance type
were geographically grouped together out of necessity.
This was a direct result of the study areq, particularly the
spatial pattern of hunting and logging around the village of
Kabo (Poulsen et al. 2011), and means that other, unmeas-
ured environmental gradients could influence our results.

The limitations of our study should serve as a chal-
lenge to dispersal ecologists and modelers—what are
the best methods or combinations of methods for dis-
entangling the effects of multiple disturbances that can
operate over disparate spatial and timescales?

Logging concessions cover much of West and Central
Africa (FAO 2016), yet the long-term impacts of low-inten-
sity logging techniques on fundamental ecological pro-
cesses like seed dispersal have been largely overlooked.
This work advances our understanding of how the sepa-
rate and combined effects of hunting and logging affect
seed dispersal in the understudied Afrotropics. Although
care needs to be taken before extrapolating our results to
other contexts, the species-specific dispersal responses to
logging in this study point towards the long-lasting toll of
disturbance on ecological function. Whereas the effects of
disturbance on forest structure and animal communities
are easily measured, the effects on ecological processes
may be more cryptic, long-lasting and difficult to decipher.
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The following additional information is available in the
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Figure S1. Boxplots comparing the distribution of tree
diameters within each plot type show no systematic dif-
ference across plot types.

Figure S2. Boxplots comparing the distributions of total
stems per plot show significant overlap across plot type.
Figure S3. Stacked bar plots comparing community
composition show a consistent distribution of 33 focal
species across plots.

Figure S4. Comparison of standardized root mean
squared prediction error (individual RMSPE/average num-
ber of seeds per trap) with size of circle indicating relative
number of seeds from that species present in the study.
Figure S5. (A-D) Example of individual results
(Nesogordonia kabingaensis) that were amalgamated
across species for in-text summary figures.

Figure S6. (A-C) Examples of model diagnostics for
Nesogordonia kabingaensis.

Table S1. Table of species information and dispersal
vectors.
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