
Leveraging GPU Tensor Cores for Double Precision

Euclidean Distance Calculations

Benoit Gallet

benoit.gallet@nau.edu

Northern Arizona University

School of Informatics, Computing, and Cyber Systems

Flagstaff, Arizona, USA

Michael Gowanlock

michael.gowanlock@nau.edu

Northern Arizona University

School of Informatics, Computing, and Cyber Systems

Flagstaff, Arizona, USA

Abstract—Tensor cores (TCs) are a type of Application-Specific
Integrated Circuit (ASIC) and are a recent addition to Graphics
Processing Unit (GPU) architectures. As such, TCs are purpose-
fully designed to greatly improve the performance of Matrix
Multiply-Accumulate (MMA) operations. While TCs are heavily
studied for machine learning and closely related fields, where
their high efficiency is undeniable, MMA operations are not
unique to these fields. More generally, any computation that
can be expressed as MMA operations can leverage TCs, and
potentially benefit from their higher computational throughput
compared to other general-purpose cores, such as CUDA cores
on Nvidia GPUs. In this paper, we propose the first double
precision (FP64) Euclidean distance calculation algorithm, which
is expressed as MMA operations to leverage TCs on Nvidia
GPUs, rather than the more commonly used CUDA cores. To
show that the Euclidean distance can be accelerated in a real-
world application, we evaluate our proposed TC algorithm on the
distance similarity self-join problem, as the most computationally
intensive part of the algorithm consists of computing distances
in a multi-dimensional space. We find that the performance
gain from using the tensor core algorithm over the CUDA core
algorithm depends weakly on the dataset size and distribution,
but is strongly dependent on data dimensionality. Overall, TCs
are a compelling alternative to CUDA cores, particularly when
the data dimensionality is low (≤ 4), as we achieve an average
speedup of 1.28× and up to 2.23× against a state-of-the-art GPU
distance similarity self-join algorithm. Furthermore, because this
paper is among the first to explore the use of TCs for FP64
general-purpose computation, future research is promising.

Index Terms—Tensor Cores, Euclidean Distance, GPU, Simi-
larity Searches

I. INTRODUCTION

Tensor cores (TCs) are a type of Application-Specific Inte-

grated Circuit (ASIC), and are specifically designed for Matrix

Multiply-Accumulate (MMA) operations. The high specificity

of TCs makes them typically more efficient at computing

MMA operations, than other more general-purpose cores such

as CPU cores or GPU CUDA cores. Given four matrices

A,B,C, and D, TCs are designed to compute D = A×B+C
(where C and D may be the same matrix). Over the past

few years, TCs have been heavily used for machine learning

and other fields requiring linear algebra, and few papers have

examined broadening the use of TCs for other algorithms.

Despite their high specificity, TCs may also be very versatile:

any computation expressed with MMA operations, as defined

above, should be able to leverage TCs and consequently,

benefit from their high computational throughput.

Several companies have proposed a version of TCs, each

with its own different characteristics. In this paper, we focus

on the Nvidia GPU TCs. These TCs were first introduced

with the Volta generation in 20171. Since this first iteration,

they have been implemented in several GPU models and have

greatly improved over time [1]–[3]. In particular, while the

first generation of TCs was only capable of computing in half

precision using 16-bit floats (FP16), TCs are now capable of

double precision computing using 64-bit floats (FP64) with

the Ampere generation [2]. This enables TCs to be used for

applications where high precision is critical. Furthermore, their

number, as well as their theoretical computational throughput,

have continued to increase, making them an attractive alterna-

tive to the general-purpose CUDA cores.

As mentioned above, in this paper we focus on TCs pro-

posed by Nvidia on their GPUs. In addition to the CUDA

API to access GPU functionalities, we also leverage the Warp

Matrix Multiply-Accumulate (WMMA) API [4], [5], which

provides programmatic access to TCs. While other libraries

also give access to TCs, they are all higher level than the

WMMA API and less versatile, thus less suited to our use

case. However, there are some limitations when using the

WMMA API. In particular, matrix sizes are limited to a few

options, and not all compute precisions are available or can be

combined (e.g., FP32 for both multiplication and accumulation

is not available, and FP16 multiplication can not be combined

with FP64 accumulation).

The Euclidean distance is a metric commonly used in many

scientific applications, particularly for data analysis algorithms

such as the distance similarity self-join [6]–[9], the kNN [10],

or the Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) [11] algorithms. Within these algorithms,

distance calculations are usually the most time-consuming

fraction of the total computation [12]. In this paper, we propose

to improve the throughput of Euclidean distance calculations

by leveraging TCs on the GPU, and consequently also improve

the overall performance of the algorithms mentioned above. To

1https://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf

135

2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/22/$31.00 ©2022 IEEE
DOI 10.1109/HiPC56025.2022.00029

2
0
2
2
 I

E
E

E
 2

9
th

 I
n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 H

ig
h
 P

er
fo

rm
an

ce
 C

o
m

p
u
ti

n
g
,
D

at
a,

 a
n
d
 A

n
al

y
ti

cs
 (

H
iP

C
)

| 9
7
8
-1

-6
6
5
4
-9

4
2
3
-6

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/H

iP
C

5
6
0
2
5
.2

0
2
2
.0

0
0
2
9

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.

illustrate greater applicability to these other algorithms, we use

the distance similarity self-join algorithm as a representative

example case for the other data analysis algorithms mentioned

above. Given a dataset V in d dimensions, the distance

similarity self-join algorithm finds all pairs of points (a, b) that

are within a distance threshold ε of each other; dist(a, b) ≤ ε,
where a, b ∈ V , and dist is the Euclidean distance function.

This paper makes the following contributions:

•We propose a new algorithm for computing Euclidean dis-

tances using TCs, leveraging the Nvidia Ampere architecture

TCs [2] supporting double precision (FP64) computations.

•We integrate the aforementioned method into the distance

similarity self-join algorithm, that we name Tensor Euclidean

Distance Join (TED-JOIN). We show that TED-JOIN is com-

petitive with the best parallel distance similarity self-joins in

the literature for multi-core CPUs and GPU CUDA cores.

•The solution we propose here extends beyond the distance

similarity self-join algorithm and can be integrated into other

algorithms that use the distance similarity self-join, or more

generally Euclidean distance calculations, as a building block.

•We evaluate TED-JOIN across a broad range of datasets,

that span several distributions, sizes and dimensionalities, and

compare it to a state-of-the-art GPU CUDA cores (GDS-

JOIN [6]) and two multi-core CPU distance similarity join

algorithms, SUPER-EGO [7] and FGF-HILBERT [8]. We con-

clude that TED-JOIN should always be preferred over SUPER-

EGO and FGF-HILBERT, and should be preferred over GDS-

JOIN when the dimensionality d ≤ 4, where it achieves an

average speedup of 1.28× (and 1.07× when considering all

the experiments we conducted), and up to 2.23×.

•To our knowledge, this paper proposes the first Euclidean

distance calculation for TCs using FP64 computation, and the

first use of TCs for the distance similarity self-join.

The paper is outlined as follows: we present essential

material in Section II, including an overview of TCs. We

then present in Section III our solution that uses TCs to

compute Euclidean distances and its integration into the dis-

tance similarity self-join algorithm. We show in Section IV the

performance of our solution compared to the state-of-the-art

distance similarity self-join algorithms, and we conclude and

propose future research directions in Section V.

II. BACKGROUND

A. Problem Statement

For two points a and b in d dimensions, and where ai repre-

sents the ith coordinate of the point a, and where i = 1, . . . , d,

the Euclidean distance between a and b is defined as follows:

dist(a, b) =

√
√
√
√

d∑

i=1

(ai − bi)2. (1)

The distance similarity self-join algorithm, as described above,

takes a dataset V in d dimensions as well as a search distance

ε as inputs, and finds all the pairs of points (a, b) such that

dist(a, b) ≤ ε where a, b ∈ V , and where the distance function

is, in this case, the Euclidean distance defined in Equation 1.

For a query point a, finding all the other points in V within ε
from a is called a range query (|V | range queries in total).

B. Tensor Cores (TCs)

TCs on GPUs are an Application-Specific Integrated Circuit

(ASIC) designed for Matrix Multiply-Accumulate (MMA)

operations. Given four matrices A,B,C and D, this MMA

operation is expressed as D = A × B + C. Matrices C and

D are the accumulators and may be equivalent. In hardware,

TCs are designed to process 4×4 MMA operations. However,

the WMMA API only gives access to larger matrices (e.g.,

16 × 16). Therefore, several TCs are used concurrently to

perform MMA operations larger than 4×4. Due to their highly

specific design, TCs are significantly more efficient at MMA

operations than CUDA cores: double precision computation is

presented as twice as efficient when using TCs compared to

CUDA cores on the Nvidia A100 GPU [2]. This significantly

higher processing throughput is our motivation to transform

Euclidean distance calculation into MMA operations, and yield

higher computational throughput.

The WMMA API [4], [5] provides some low-level access

to TCs, giving us the highest versatility possible. However,

several limitations come along with this WMMA API. In

particular, it is limited to certain matrix sizes and compute

precisions. Among the options available, only a few are rele-

vant to our work. In this paper, we focus on FP64 computation,

which limits us to only one size for each of our matrices. Let

Mm,n be a matrix with m rows and n columns. The matrices

that we can use with double precision are thus A8,4, B4,8,

C8,8, and D8,8. We refer the reader to the documentation [4]

for the other TCs options.

Programmatically, the matrices proposed by the WMMA

API are called fragments, and are stored into the GPU threads

registers. The WMMA API defines several functions:

•load matrix sync(): Load a matrix fragment from memory.

•store matrix sync(): Store a matrix fragment into memory.

•mma sync(): Perform an MMA operation using TCs.

•fill fragment(): Fill a matrix fragment with a specified value.

As their name suggests, these function calls are synchro-

nized. Hence, all 32 threads of the warp are blocked until

the operation is complete. The load and store functions

take, among other arguments, a stride between the elements

comprising the matrix rows. Hence, all the elements consisting

of a row in the target matrix need to be coalesced in memory.

Furthermore, the individual elements of the matrix fragments

are stored in an unspecified order in the registers. Thus,

contrary to regular arrays, the first element of a matrix may not

be stored in the first element of the fragment. Consequently,

operations on an individual element of a matrix fragment need

to be applied to all the other elements, using a loop iterating

over all of the elements of the fragment.

C. Tensor Cores in the Literature

As mentioned above, the literature concerning TCs heavily

revolves around machine learning and other closely related

fields, and not many other types of applications employing

136

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.

TCs [13]–[17]. We present in this section a selection of papers

that discuss the use of TCs for applications that focus more

on computational/data-enabled science, similarly to this paper.

Moreover, since most of the literature seems to focus on low

precision computations, we believe that this paper is the first to

propose an implementation using TCs for FP64 computations.

Dakkak et al. [13] propose a method to perform reduction

and scan operations, using the WMMA API to leverage TCs.

Their reduction algorithm consists of multiplying a matrix

whose first row are ones and the rest are zeros with a matrix

containing the values to reduce, and accumulated with a matrix

containing the result from previous reductions. Their scan

solution is similar but uses an upper triangular matrix filled

with ones and where the rest are zeros, instead of a single row

filled with ones. Their proposed solutions achieve a speedup

of 100× for the reduction and 3× for the scan, compared to

other state-of-the-art methods not using TCs.

Ji and Wang [14] propose using TCs to improve the perfor-

mance of the DBSCAN algorithm. They mainly use TCs to

compute distance matrices between the points that might form

a cluster, using the cosine similarity formula (in contrast to

the Euclidean distance used in this paper). They also use TCs

to perform reductions, which are used to determine if points

belong to a cluster or not. Their solution using TCs achieves

a speedup of up to 2.61× to compute distance matrices

compared to using the CUDA cores. While this work is very

relevant to us, it differs in that they use a different distance

metric (cosine similarity vs. Euclidean distance), they do not

use an index structure, and part of their work is exclusive to the

DBSCAN algorithm. In comparison, our solution essentially

concerns the Euclidean distance calculations and, therefore,

more applications than the distance similarity self-join that

we just take as an example for this paper.

Ahle and Silvestri [15] theorize using TCs to compute

similarity searches. They use TCs to compute either the Ham-

ming, squared L2 distances, or cosine similarity through an

inner product operation, expressed as matrix multiplications.

Additionally, they opt for the Local Sensitivity Hashing (LSH)

method, reducing the overall complexity of the computation

similarly to an indexing structure used by other similarity join

solutions [6]–[8]. However, and contrary to these solutions,

the LSH method typically yields an approximate result.

D. Distance Similarity Joins

We discuss in this section several state-of-the-art parallel

distance similarity self-join algorithms [6]–[9], which we use

as reference implementations for our experimental evaluation.

These selected algorithms have in common that they use an in-

dexing structure to prune the number of distance calculations,

which is a commonly used optimization [18], [19]. When

using an index, it is first searched to yield a set of candidate

points for each query point. The set of candidate points is then

refined using distance calculations to keep pairs of query and

candidate points that are within ε of each other.

Kalashnikov [7] proposes SUPER-EGO, a parallel CPU

algorithm to compute a distance similarity join, which is an

improvement over the Epsilon Grid Order (EGO) algorithm

proposed by Böhm et al. [19]. SUPER-EGO performance

relies on a grid index and which is dependent on the search

distance ε, where a grid with cells of size ε× ε is laid on the

search space to efficiently prune the candidate points to refine.

Furthermore, the author proposes to reorder the dimensions

of the points based on their variance, so dimensions with

the highest variance are considered first when computing the

distance between two points. Hence, their cumulative distance

is more likely to reach ε sooner, allowing the short-circuiting

of the distance computation, and thus to not consider the

remaining dimensions. SUPER-EGO has been since improved

by Gallet and Gowanlock [9], as part of a CPU-GPU distance

similarity self-join algorithm. Among the changes, their ver-

sion of SUPER-EGO is capable of FP64 computation while

performing better than SUPER-EGO proposed by Kalash-

nikov [7]. As such, further references to SUPER-EGO in

this paper will refer to the work conducted by Gallet and

Gowanlock [9], rather than Kalashnikov [7].

Perdacher et al. [8] propose FGF-HILBERT, a parallel

CPU distance similarity join algorithm also based on an

epsilon grid order, but using space-filling curves as their

indexing method. Using an EGO-sorted dataset, space-filling

curves are used to determine, for each query point, a range

of consecutive candidate points in the dataset. The authors

further improve the performance by using the OpenMP API

and low-level vectorized instructions, making their solution

highly optimized. Because FGF-HILBERT typically performs

better than SUPER-EGO, particularly in higher dimensions,

it is considered a state-of-the-art CPU distance similarity

join algorithm. Because of some of its optimizations, FGF-

HILBERT is only capable of FP64 computation.

Gowanlock and Karsin [6] propose GDS-JOIN, a GPU

algorithm for high-dimensional distance similarity self-joins.

Their optimizations related to the high-dimensional case in-

clude reordering the dimensions of the points based on their

variance, so these with the highest variance would be consid-

ered first when computing distances. Similarly to SUPER-EGO

presented above, this particularly pairs well with distance

calculation short-circuiting. Overall, dimensions with a higher

variance are susceptible to increase the cumulative distance

more than dimensions with lower variance and are thus more

likely to trigger short-circuiting the distance calculation. They

also propose to index the data in fewer dimensions than the

input dataset dimensionality, making their grid index efficient

even in higher dimensions, as the cost of searching their grid

index is bound by the number of dimensions that are indexed.

Furthermore, as their source code is publicly available, it

appears that new optimizations have been added to the GDS-

JOIN algorithm since the first publication, including the use of

Instruction-Level Parallelism (ILP) in the distance calculation,

which significantly improves the performance of the algorithm.

Our experiments show that this newer version of GDS-JOIN is

more efficient than the published version [6]. Thus, we choose

to use the newer more efficient version, as it is fairer than

comparing TED-JOIN with the original algorithm.

137

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.

III. DISTANCE CALCULATIONS USING TENSOR CORES

We present our algorithm, TED-JOIN, that leverages TCs

for Euclidean distance calculations, and show how it is in-

tegrated into a distance similarity self-join algorithm. For

illustrative purposes, in this section we use 4 × 4 matrices;

however using the WMMA API and FP64, matrix sizes are

either 8× 4, 4× 8 or 8× 8.

A. Adapting the Euclidean Distance Formula

Using the Euclidean distance formula defined above (Equa-

tion 1) between two points a and b in d dimensions, we can

expand this formula as follows:

dist(a, b) =
√

(ad − bd)2 + . . .+ (a1 − b1)2 + 0. (2)

We observe that, from right to left, the computation consists

of a series of multiply-and-accumulate operations, where the

distance in dimension i, computed as (ai− bi)
2 (hence a mul-

tiplication of two terms) gets accumulated with the distance

previously computed in dimension i − 1, where 1 < i < d.

Let a, b, c, d, e, f, g and h be eight points in d dimensions, and

where we want to compute the Euclidean distance between

a, b, c, d and e, f, g, h. For illustration purposes only, we will

use 4× 4 matrices.

A
a1 a2 a3 a4
a1 a2 a3 a4
a1 a2 a3 a4
a1 a2 a3 a4

B
e1 e2 e3 e4
f1 f2 f3 f4
g1 g2 g3 g4
h1h2h3h4

1. B = B × (−1.0) (CUDA cores)

2. C = A× I +B (TCs)

3. D = C × C
t +D (TCs)

Figure 1. Illustration of Euclidean distance calculations using TCs and Equa-
tion 2, between a point a and four points e, f, g, h, and in four dimensions.
This computation is computed in blocking fashion four dimensions at a time.
Matrix D contains the Euclidean distance between a and the other points.

We illustrate in Figure 1 how we can compute Euclidean

distances using Equation 1 and more particularly its equiva-

lent, Equation 2, using TCs. Matrix A contains a single point

a stored in row-major, while matrix B can contain multiple

points (here e, f, g, h), and is also row-major. To compute the

difference between the coordinates, and to use TCs, we first

scale B by a factor −1.0, and we compute C = A× I + B,

where I is the identity matrix. C thus contains the difference

between all coordinates of a and the points e, f, g and h, and

in all four dimensions (because matrices are 4× 4). We then

multiply C by its transpose, Ct, which computes the Euclidean

distance between point a and the points e, f, g, h, in the current

dimensions that we store in D. This calculation is computed

in blocking fashion four dimensions at a time.

A severe limitation of using the Euclidean distance shown

in Equation 1 and represented in Figure 1, is that it is only

capable of computing the distance between one single point

and several other points. Consider D1,1 as the element in

the first column of the first row of matrix D. The result

of the computation in Figure 1 is that D1,1 = dist(a, e),
D2,2 = dist(a, f), D3,3 = dist(a, g) and D4,4 = dist(a, h).
Hence, out of the 4× 4 = 16 results that matrix D can store,

only 4 correspond to actual Euclidean distances. Thus, while

TCs have a higher peak throughput than CUDA cores [2],

only a fraction of the computation is actively used to compute

Euclidean distances, which yields inefficient resource utiliza-

tion. Furthermore, while we use 4×4 matrices for illustration

purposes, we see in Figure 1 that all matrices used in the MMA

operation need to have the same size, since the accumulator

(C) is then used for the multiplication. However, when using

the WMMA API and FP64, these matrix sizes are different and

this solution can not be used. Consequently, we propose to use

the expanded and equivalent form of the Euclidean distance

outlined in Equation 1, which we detail as follows:

dist(a, b) =

√
√
√
√

d∑

i=1

a2i − 2aibi + b2i . (3)

Similarly to Equation 2, we can expand Equation 3, yielding

the following equation:

dist(a, b) =

√
√
√
√
√
√a2d +

Tensor cores
︷ ︸︸ ︷

(−2adbd + b2d)
︸ ︷︷ ︸

CUDA cores

+ . . .+ a2
1
+

Tensor cores
︷ ︸︸ ︷

(−2a1b1 + b2
1
)

︸ ︷︷ ︸

CUDA cores

.

(4)

Using Equation 4, we emphasize which part of the com-

putation will be carried out by TCs and which part by the

CUDA cores. Let Ti = −2aibi + b2i be the MMA operation

done by TCs. To compute dist(ai, bi), we need to calculate

a2i +Ti. To use TCs, we need to transform this into an MMA

operation, computing either a2i × I + Ti, or Ti × I + a2i ,

where I is the identity matrix. However, as aforementioned,

when using FP64 the WMMA API restricts us from reusing

the accumulator from a previous MMA operation to be used

in the multiplication of another MMA operation, due to

different matrix sizes. Furthermore, using Equation 4, we

can compute the Euclidean distance between the four points

a, b, c, d, and the four other points e, f, g, h at a time, using

the method illustrated in Figure 2, and which was not possible

using Equation 1 (Figure 1). Finally, we observe that when

computing the Euclidean distance between multiple points, and

as will be the case when computing a distance similarity self-

join for example, a part of the computation can be reused. The

squared coordinates of the points (a2i and b2i), are often reused

throughout the computation. Indeed, the squared coordinates

of a point are used for all the distance calculations with other

points and do not change throughout the computation. Thus,

the squared coordinates of the points can be precomputed to

further improve the performance of the algorithm. As we still

consider the use of 4×4 matrices for illustrative purposes, we

store in an array P the squared and accumulated coordinates

of each point, four coordinates at a time. Considering that a
is the first point, the element 0 of this precomputed array P
is a2

1
+ a2

2
+ a2

3
+ a2

4
. For a dataset V in d dimensions, this

array represents a memory overhead of only |V | × �d/4�.

Figure 2 presents our algorithm design for computing the

Euclidean distance between two sets of points, rather than

138

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.

A
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

B
e1
e2
e3
e4

f1
f2
f3
f4

g1
g2
g3
g4

h1

h2

h3

h4

C
e2

e2

e2

e2

f2

f2

f2

f2

g2

g2

g2

g2

h2

h2

h2

h2

P ′

a2 a2 a2 a2

b2 b2 b2 b2

c2 c2 c2 c2

d2 d2 d2 d2

1. A = A× (−2.0) (CUDA cores)

2. T = A×B + C (TCs)

3. D = D + T + P (CUDA cores)

Figure 2. Illustration of Euclidean distance calculations using TCs and
Equation 3, between four points a, b, c, d and four points e, f, g, h, and in
four dimensions. This computation is computed in blocking fashion four
dimensions at a time. Matrix D contains the Euclidean distances between
a, b, c, d and e, f, g, h.

between a single point and a set of points (Figure 1). This

method is based on Equation 3. Matrix A contains the first set

of points (a, b, c, d), while B contains the second set of points

(e, f, g, h). Matrix C contains the sum of squared coordinates

of the points in B and are pre-computed, as explained above.

Matrix P ′ contains the sum of squared coordinates of the

points in A. Our algorithm first scales matrix A, and then

computes T = A×B+C using TCs. We then use the CUDA

cores to accumulate P ′, as well as the result matrix D. Because

C,D, and T are different sizes than A and B, we can not

use TCs to compute these operations, which is a limitation

of the WMMA API when using FP64. This computation is

computed in blocking fashion four dimensions at a time. The

algorithm outputs matrix D which contains the Euclidean

distance between a, b, c, d and e, f, g, h, which corresponds

to 16 distances, compared to only 4 when using the algorithm

shown in Figure 1. While we illustrate the computation using

4×4 matrices, when using the WMMA API, because D is an

8× 8 matrix, we can compute 64 distances instead of 8.

B. Tensor Cores for Distance Similarity Joins

As we outlined in Section II-D, most of the distance sim-

ilarity self-join algorithms in the literature reduce the overall

computational complexity by using an index data structure

and, compared to a brute-force approach, typically reduces the

number of candidate points that need to be refined per query

point. In particular, the distance similarity self-join algorithm

that we leverage here, GDS-JOIN, uses a grid index with cells

of size εd. For each query point in the dataset V , we thus

search the grid indexing for neighboring cells, yielding a set

of candidate points for each of the query points, which are

then refined by computing the Euclidean distance between

them and the query point. Because TED-JOIN and GDS-

JOIN use the same index, both algorithms yield the same

candidate points to be refined using distance calculations. This

allows us to compare the performance of CUDA and TCs in a

self-consistent manner, where the performance differences are

directly attributable to distance calculations.

A characteristic of the grid index we are using is that all

the query points from the same cell share the same candidate

points. This characteristic is particularly important, as it is

necessary to efficiently make use of Equation 4 (Figure 2).

Indeed, the query points we use in matrix A must compute

their Euclidean distances, in matrix B, to the same set of

candidate points. Hence, the query points used in matrix A
should come from the same grid cell, as they share the same

set of candidate points.

Another optimization used by Gowanlock and Karsin [6]

is the batching of the execution. Because the final result

of the similarity self-join might exceed the memory size

of the GPU, the entire execution is split across multiple

batches. As a positive side-effect, multiple batches allow for

hiding data transfers between the host and the GPU with

computation. Indeed, batches are computed by several parallel

CUDA streams, where the data transfers of a stream can

overlap the computation of another stream. However, as a

batch corresponds to a set of query points to compute, we must

ensure in our case that the query points we send in a batch can

be computed by our TCs algorithm. More specifically, when

assigning query points from a batch to a warp on the GPU, we

must ensure that these query points belong in the same grid

cell and are not from different cells. Otherwise, we would be

unable to use the algorithm presented in Figure 2.

Using the WMMA API and FP64, only one combination

of matrix sizes is available. Namely, matrix A will contain

up to four coordinates of up to eight query points, matrix B
up to four coordinates of up to eight candidate points, matrix

C the sum of squared coordinates of up to eight candidate

points, and matrix D up to sixty-four Euclidean distances.

Because TCs operate at a warp level using the WMMA API,

we assign up to eight query points to a warp, which will then

compute the Euclidean distance to all the candidate points,

as determined by the use of the grid index. If the number of

query points, candidate points, or coordinates is insufficient

to fill the remaining rows or columns of the matrices, we

must fill them with zeros. Because we process four dimensions

at a time, up to �d/4� steps are necessary to compute the

Euclidean distance. Similarly to GDS-JOIN [6], we enable

distance calculations short-circuiting, which may happen after

every MMA operation, i.e., for every 4 dimensions. However,

all currently computed Euclidean distances between all the

query points and candidate points of the warp must short-

circuit to trigger this optimization.

IV. EXPERIMENTAL EVALUATION

In this section, we detail the experimental evaluation we

conducted. We start by comparing our TCs algorithm and

another optimized TCs algorithm to compute Euclidean dis-

tances. We then compare our proposed algorithm TED-JOIN

to other state-of-the-art distance similarity self-join algorithms.

A. Datasets

We evaluate the algorithms using a wide range of real-

world and synthetic datasets, spanning several sizes, dimen-

sionalities, and distributions. Synthetic datasets are generated

following either a uniform or exponential distribution, and

their name is prefixed by either Unif or Expo, respectively,

139

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.

Table I
SYNTHETIC DATASETS USED IN THE EXPERIMENTAL EVALUATION.

Distribution d n

Uniform 2, 3, 4, 6, 8 10M
Exponential 2, 3, 4, 6, 8 2M, 10M

Table II
REAL-WORLD DATASETS USED IN THE EXPERIMENTAL EVALUATION.

Dataset d n Dataset d n

SW2DA [21] 2 1.86M SW2DB [21] 2 5.16M
OSM50M [22] 2 50M Gaia50M [23] 2 50M
SW3DA [21] 3 1.86M SuSy [24] 18 5M
BigCross [25] 57 11M Songs [26] 90 515K

followed by the dimensionality and the number of points

(e.g., Expo3D2M is an exponentially distributed 3-D dataset

containing 2M points). We summarize the different synthetic

datasets that we use in Table I, and the real-world datasets

in Table II. Gaia50M and OSM50M are the first 50M points

of the original datasets, as described by Gowanlock [20].

We choose to use different distributions to better evaluate

the performance of TCs under different workloads: when a

dataset is uniformly distributed, TCs should all have a similar

workload, while when a dataset is exponentially distributed,

some TCs will have a higher workload than other TCs.

We denote the selectivity as s, which represents the average

number of neighboring points found within ε of each query

point when performing a similarity self-join, excluding each

query point finding itself. The selectivity is calculated as

follows: s = (|R|−|V |)/|V |, where |R| and |V | are the result

set of the similarity self-join and dataset sizes, respectively.

This metric is used in the literature to quantify the complexity

of the search for a given value of ε: increasing ε results in

more work to compute, and a higher selectivity.

B. Methodology

We conducted our experiments on the following platforms:

Platform 1: 2× AMD Epyc 7542 CPU (2×32 cores, 2.9GHz),

512 GiB of RAM, Nvidia A100 GPU; Platform 2: Intel Xeon

W-2295 CPU (18 cores, 3GHz), 256 GiB of RAM.

In this section, we use the distance similarity join appli-

cation as a case study for the use of TCs for Euclidean

distance calculations. For completeness, we compare our al-

gorithm to other distance similarity join algorithms, including

parallel CPU algorithms. However, this is only one example

application, and thus we also show brute-force CUDA vs. TC

performance as it may be more applicable to other algorithms.

The algorithms TED-JOIN, GDS-JOIN, SUPER-EGO and

FGF-HILBERT are configured as follows:

•TED-JOIN: Our proposed TCs algorithm is executed on

Platform 1, configured with 256 threads per block (8 warps),

up to 8 query points per warp, and using distance calculations

short-circuiting, as explained in Section III-B.

•GDS-JOIN: Parallel GPU algorithm proposed by Gowanlock

and Karsin [6] and further optimized since the original publica-

tion, executed in Platform 1. This algorithm is configured with

256 threads per block, ILP = min(8, d) and uses distance

calculations short-circuiting, as presented in Section II-D.

•SUPER-EGO: Parallel CPU algorithm proposed by Kalash-

nikov [7], optimized by Gallet and Gowanlock [9] and exe-

cuted on Platform 1 using 64 threads (the number of physical

cores on the platform).

•FGF-HILBERT: Parallel CPU algorithm proposed by Per-

dacher et al. [8], executed on Platform 2 (the only platform

supporting AVX-512, required for this algorithm) and using

18 threads (the number of physical cores on the platform).

While we would have preferred to use a single platform to

conduct all our experiments, and thus have the same number

of threads/cores for all CPU algorithms, prior experiments

we conducted showed us that both SUPER-EGO and FGF-

HILBERT had a relatively poor scalability. Hence, if we were

able to run FGF-HILBERT using 64 threads/cores, as we did

for SUPER-EGO, the results we show in the following sections

would not have been significantly different. Furthermore,

note that despite using fewer threads/cores, FGF-HILBERT

typically outperforms SUPER-EGO.

All the algorithms are using double precision (FP64) to

compute, and are compiled using NVCC v11.2 (for TED-

JOIN and GDS-JOIN) or GCC (v8.5 for SUPER-EGO, and

v9.4 FGF-HILBERT) using the O3 optimization.

During our experiments, many scenarios using FGF-

HILBERT did not produce the correct self-join results, which

are consequently not included. We believe that the issues

encountered with FGF-HILBERT are due to the width of the

vectorized instructions: 512-bits, or 8 FP64 values, which

may not be working when d < 8. Furthermore, SUPER-EGO

happened to fail in several low-dimensional cases without a

clear understanding of the reason, and we thus also do not

report the execution time of these experiments. However, we

consider that the successful experiments should be sufficient to

accurately evaluate the performance of TED-JOIN compared

to the other algorithms. Finally, note that the four algorithms,

TED-JOIN
2, GDS-JOIN [6], SUPER-EGO [7], and FGF-

HILBERT [8], are publicly available.

C. Results: Comparison of Brute-force TC Approaches

We compare the performance of TCs and CUDA cores

for performing Euclidean distance calculations when using

brute-force computation, which is O(|V |2). Here, we use

the algorithm TED-JOIN (TCs), to which we removed all

optimizations, including indexing, and compare it to a highly

optimized MMA reference implementation by Nvidia [27],

that leverages the WMMA API similarly to TED-JOIN,

denoted as WMMA-REF. We selected this implementation

instead of a library such as cuBLAS 3 or CUTLASS 4 (with

the latter built upon the WMMA API), as it is the best direct

comparison between approaches.

We outline two major differences between WMMA-REF

and TED-JOIN, as a consequence of matrix size, as follows:

2https://github.com/benoitgallet/ted-join-hipc22
3https://developer.nvidia.com/cublas
4https://github.com/NVIDIA/cutlass

140

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.

1) The matrix sizes are dependent on data dimensionality and

impact performance [28], [29]. WMMA-REF is designed

and optimized for large MMA operations, whereas TED-

JOIN targets smaller matrices.

2) TED-JOIN uses small matrices, and thus computes many

small 8 × 8 distance matrices and leverages shared mem-

ory. In contrast, WMMA-REF computes the entire |D|2

distance matrix, thus requiring a much larger memory

footprint. Consequently, when using WMMA-REF, and

to be able to use it on large datasets that would exceed

global memory capacity, we store the result matrix using

unified memory, which automatically pages data between

main and global memory. Furthermore, as cuBLAS and

CUTLASS work similarly to WMMA-REF, they have the

same drawback related to the use of unified memory.

Figure 3 plots the performance of TED-JOIN and WMMA-

REF using brute-force searches (i.e., without using an in-

dex) to compute Euclidean distance calculations on a 16-D

exponentially distributed synthetic datasets, spanning 211 to

217 points (we omit datasets with other dimensionalities as

we observed similar results). Note that 218 points overflows

main memory when using WMMA-REF. We observe that the

performance of WMMA-REF degrades quicker than TED-

JOIN as the dataset size increases. We attribute these results

to the use of unified memory by WMMA-REF, which is

required to store the large result matrix (|D|×|D|), and which

is paged between GPU global and main memory when its

size exceeds global memory capacity. In addition to the poor

performance attributed to unified memory, using WMMA-

REF, which computes on large matrices and thus on the d
dimensions of a dataset at a time, limits the use of several

optimizations, which are explored in the following sections.

Namely, this inhibits short-circuiting the distance calculations

when the cumulative distance between points exceeds ε.
We profile TED-JOIN and WMMA-REF on the 217 points

16-D dataset (Figure 3). With this dataset size, unified memory

needs to be paged between global and main memory through-

out the execution. We measure that WMMA-REF transfers

687.84 GB between the L1 and L2 caches, and 503.61 GB

between the L2 cache and global memory. In comparison

TED-JOIN transfers 558.57 GB and only 0.046 GB, respec-

tively, as we rely on shared memory to store small (8 × 8)

result matrices, rather than a large |V | × |V | matrix in global

memory like WMMA-REF. This results in lower L1 and L2

hit rates: 19.35% using WMMA-REF vs. 50.32% using TED-

JOIN for the L1 hit rate, and 72.45% vs. 99.99% for the L2 hit

rate. In summary, the unified memory required by WMMA-

REF negatively affects performance in the case of distance

calculations, and thus TED-JOIN should be preferred.

D. Results: Optimized TC and CUDA Core Approaches

We investigate in this section the performance of TED-

JOIN, as compared to other state-of-the-art algorithms from

the literature: GDS-JOIN, SUPER-EGO, and FGF-HILBERT.

1) Uniformly Distributed Datasets: We start this result

section with uniformly distributed synthetic datasets, detailed

211 212 213 214 215 216 217

|D|

10−1

100

101

T
im
e
(s
)

Brute-force TED-Join

Brute-force WMMA-Ref

Figure 3. Response time of our proposed algorithm TED-JOIN, and WMMA-
REF an optimized MMA algorithm from Nvidia leveraging the WMMA API,
using brute-force searches to compute Euclidean distance calculations on a
16-D exponentially distributed synthetic datasets.

in Table I. We select this distribution as all the query points

will have a similar number of candidate points to refine,

allowing us to evaluate the performance of TCs when their

workload is relatively uniform.

We show in Figure 4 the execution time of TED-JOIN

compared to GDS-JOIN, SUPER-EGO, and FGF-HILBERT

on a selection of uniformly distributed synthetic datasets. In

these cases, we can see that SUPER-EGO is consistently

performing worse than all of the other algorithms, except

on the Unif8D10M dataset when ε = 0.08 (Figure 4(d)).

Furthermore, we observe that TED-JOIN performs similarly

or better than GDS-JOIN in most cases, except on Unif8D10M

when ε < 0.32. From these results, it seems that TED-JOIN

performs similar to GDS-JOIN when ε is low, and therefore

when the workload is low as well, potentially indicating an

overhead from using TCs. But when ε increases, and thus

the workload, the higher computational throughput of TCs

outperforms the CUDA cores used by GDS-JOIN.

We also observe that the speedup is the highest on the 2-D

and 4-D datasets since all 2 or 4 dimensions can be computed

at once using TCs, as we compute 4 dimensions at a time.

The speedup is the lowest on the 6-D datasets since we need

to compute the distances in two iterations (as many as for the

8-D datasets), but where 2 dimensions are zeros and thus that

the CUDA cores in GDS-JOIN do not have to compute.

2) Exponentially Distributed Datasets: In this section we

present the results on the same algorithms as in Section IV-D1

on the exponentially distributed synthetic datasets, detailed

in Table I. We select this distribution as it creates a large

workload variance between the query points, where some

query points may have many candidate points to refine, and

other query points very few, which allows us to evaluate the

performance of the TCs when their workload varies.

Figure 5 reports the execution time of TED-JOIN com-

pared to GDS-JOIN, SUPER-EGO, and FGF-HILBERT on a

selection of exponentially distributed synthetic datasets. Note

that FGF-HILBERT did not run correctly on the 2-D and

6-D datasets (Figures 5(a) and (c)). In these experiments,

TED-JOIN typically performs similarly or better than GDS-

JOIN, particularly as ε increases. SUPER-EGO is consistently

outperformed by the other algorithms, while FGF-HILBERT

performs the best on the Expo4D10M dataset (Figure 5(b)),

but is outperformed by both TED-JOIN and GDS-JOIN on

141

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.

0.3 0.6 0.9 1.2 1.5
ε (×10−2)

0

50

100

150
T
im
e
(s
)

TED-Join

GDS-Join

Super-EGO

FGF-Hilbert

0.2 0.4 0.6 0.8 1.0
ε (×10−2)

0

100

200

300

T
im
e
(s
)

0.4 0.8 1.2 1.6 2.0
ε (×10−1)

0

200

400

T
im
e
(s
)

0.8 1.6 2.4 3.2 4.0
ε (×10−1)

100

101

102

103

104

T
im
e
(s
)

(a) Unif2D10M (b) Unif4D10M

(c) Unif6D10M (d) Unif8D10M

Figure 4. Response times of the TED-JOIN, GDS-JOIN, SUPER-EGO, and
FGF-HILBERT on a selection of uniformly distributed synthetic datasets. s is
in the range (a) 282–6978, (b) 71–8449, (c) 7–4295 and (d) 0–10888. The
legend in (a) corresponds to all subfigures. d ∈ {2, 4, 6, 8}, n = 10M.

0.16 0.32 0.48 0.64 0.80
ε (×10−3)

0

50

100

150

T
im
e
(s
)

TED-Join

GDS-Join

Super-EGO

FGF-Hilbert

0.12 0.24 0.36 0.48 0.60
ε (×10−2)

0

100

200

300

T
im
e
(s
)

0.2 0.4 0.6 0.8 1.0
ε (×10−2)

0

100

200

300

T
im
e
(s
)

0.32 0.64 0.96 1.28 1.60
ε (×10−2)

0

500

1000

1500

T
im
e
(s
)

(a) Expo2D10M (b) Expo4D10M

(c) Expo6D10M (d) Expo8D10M

Figure 5. Response times of TED-JOIN, GDS-JOIN, SUPER-EGO, and
FGF-HILBERT on a selection of exponentially distributed synthetic datasets.
s is in the range (a) 320–7834, (b) 15–7414, (c) 0–1658 and (d) 0–1210.
The legend in (a) corresponds to all subfigures. d ∈ {2, 4, 6, 8}, n = 10M.

the Expo8D10M dataset (Figure 5(d)). Because these datasets

are exponentially distributed, the workload throughout the

computation of the similarity self-join can vary a lot. The

query points in the denser regions of the dataset will have

many candidate points to refine, and the query points in the

sparse regions of the dataset may have only a few candidate

points. Hence, and despite a highly varying workload, TED-

JOIN remains more efficient in most cases compared to GDS-

JOIN and all compared algorithms in general, particularly in

lower dimensions (2 ≤ d ≤ 4).

3) Real-World Datasets: We present in this section the

results of TED-JOIN, GDS-JOIN, SUPER-EGO and FGF-

HILBERT on a selection of the real-world datasets (Table II),

as shown in Figure 6. TED-JOIN and GDS-JOIN perform

very similarly, particularly on the higher dimensional datasets

(Figures 6(b)–(d)), while TED-JOIN outperforms GDS-JOIN

on the SW3DA dataset as ε increases (Figure 6(a)). FGF-

0.4 0.8 1.2 1.6 2.0
ε (×10−2)

0

50

100

T
im
e
(s
)

TED-Join

GDS-Join

Super-EGO

FGF-Hilbert

1.000 1.275 1.550 1.825 2.100
ε (×10−2)

100

101

102

103

104

T
im
e
(s
)

0.100 0.575 1.050 1.525 2.000
ε (×10−2)

0

100

200

300

T
im
e
(s
)

7.000 7.525 8.050 8.575 9.100
ε (×10−3)

0

50

T
im
e
(s
)

(a) SW3DA (d = 3, n = 1.86M) (b) SuSy (d = 18, n = 5M)

(c) BigCross (d = 57, n = 11M) (d) Songs (d = 90, n = 515K)

Figure 6. Response times of TED-JOIN, GDS-JOIN, SUPER-EGO, and
FGF-HILBERT on a selection of real-world datasets (Table II). s is in the
range (a) 163–5373, (b) 5–1090, (c) 1–1104 and (d) 127–998. The legend
in (a) corresponds to all subfigures.

2 3 4 6 8 18 57 90
d

0

5

10

15

20

S
p
ee
du
p

Unif- 10M

Expo- 2M

Expo- 10M

Real-world

Avg. Speedup

No Speedup

2 3 4 6 8 18 57 90
d

0

1

2

3

4

(a) Super-EGO (b) Hilbert-Join

Figure 7. Speedups of TED-JOIN over (a) SUPER-EGO and (b) FGF-
HILBERT across datasets presented in Tables I and II, for all values of ε
we used, and as a function of the dimensionality. The dashed horizontal lines
correspond to the average speedups of TED-JOIN over a compared algorithm,
and the dotted horizontal lines represent no speedup.

HILBERT also performs quite similarly to TED-JOIN and

GDS-JOIN, while SUPER-EGO is often outperformed by the

other algorithms. Overall, these experiments show that TED-

JOIN and GDS-JOIN may perform similarly as dimensionality

increases, while TED-JOIN yields an advantage in lower

dimensions (Figure 6(a)), as we observed in previous Figures 4

and 5. These experiments show us that in higher dimensions

(Figures 6(b)–(d)), TED-JOIN may not yield an advantage

compared to GDS-JOIN.

E. Discussion: When Tensor Cores Should Be Employed

We summarize the results of TED-JOIN as compared to the

SUPER-EGO [9], FGF-HILBERT [8], and GDS-JOIN [6] al-

gorithms that we obtained across experiments, including those

that were omitted due to space constraints. The experiments

covered a wide range of data dimensionalities, sizes, and

distributions, resulting in an insightful picture of the overall

performance of using TCs in TED-JOIN compared to the use

of CUDA cores in GDS-JOIN. We report the speedup of TED-

JOIN over the SUPER-EGO, FGF-HILBERT, and GDS-JOIN

algorithms in Figures 7(a) and (b), and Figure 8, respectively.

142

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.

2 3 4 6 8 18 57 90
d

0.0

0.5

1.0

1.5

2.0

S
p
ee
du
p

Unif- 10M

Expo- 2M

Expo- 10M

Real-world

Avg. Speedup

No Speedup

Figure 8. The same as for Figure 7, but plotting the speedup of TED-JOIN

over GDS-JOIN.

Table III
L1 AND L2 CACHE HIT RATES OF GDS-JOIN AND TED-JOIN ON A

SELECTION OF EXPONENTIALLY DISTRIBUTED SYNTHETIC DATASETS

(2 ≤ d ≤ 16, n = 2M) AND REAL-WORLD DATASETS (SW3DA AND

SUSY), MEASURED USING THE NVIDIA NSIGHT COMPUTE PROFILER.

GDS-JOIN TED-JOIN

Dataset L1 L2 L1 L2

Expo2D2M 71.55% 97.85% 66.40% 98.11%
Expo4D2M 89.89% 95.60% 67.20% 97.65%
Expo8D2M 90.53% 97.15% 45.76% 66.23%
Expo16D2M 97.27% 99.84% 52.15% 57.27%
SW3DA 68.84% 97.62% 54.70% 94.43%
SuSy 92.13% 86.91% 38.00% 53.50%

Table IV
AVERAGE AND MAXIMUM SPEEDUP OF TED-JOIN OVER SUPER-EGO,
FGF-HILBERT, AND GDS-JOIN ACROSS EXPERIMENTS REPORTED IN

FIGURES 7 AND 8.

CPU GPU
SUPER-EGO FGF-HILBERT GDS-JOIN (d ≤ 4)

Average 5.00× 2.09× 1.07× (1.28×)
Maximum 27.22× 9.46× 2.23× (2.23×)

We also report the L1 and L2 cache hit rates of GDS-JOIN

and TED-JOIN in Table III, and the average and maximum

speedups of TED-JOIN over SUPER-EGO, FGF-HILBERT,

and GDS-JOIN in Table IV.

Figure 7(a) plots the speedup of TED-JOIN over the CPU

algorithm SUPER-EGO [7], [9]. We observe that TED-JOIN

consistently achieves a speedup > 1, with an average of 5.00×
and a maximum of 27.22×. Thus, we believe that there is

no clear disadvantage to using TED-JOIN over SUPER-EGO,

regardless of the dimensionality, dataset distribution, or size.

Figure 7(b) plots the speedup of TED-JOIN over the CPU

algorithm FGF-HILBERT [8]. Because many of our exper-

iments could not be correctly conducted using the FGF-

HILBERT algorithm, it makes it harder to draw a clear con-

clusion regarding the performance TED-JOIN compared to

FGF-HILBERT. However, in the successful experiments, our

TCs solution achieved an average speedup of 2.09× with a

maximum of 9.46×, and the majority of the speedups are

above 1. Hence, and similarly to SUPER-EGO, there is no

clear disadvantage of using TED-JOIN over FGF-HILBERT.

Observing the speedup of TED-JOIN over the CUDA

core algorithm GDS-JOIN (Figure 8), we achieve the best

performance when d ≤ 4, and is best on exponentially

distributed synthetic and real-world datasets. However, as the

dimensionality d increases, this speedup decreases, result-

ing in an average speedup of only 1.07×, but achieving a

maximum of 2.23× on the Expo3D2M dataset. If we only

consider datasets where d ≤ 4, TED-JOIN achieves an

average speedup of 1.28× over GDS-JOIN. Regarding the

relatively low speedup in higher dimensions, TCs are designed

for large matrix multiplications, where data can be reused

when computing tiles of the resulting matrix. In the case of

TED-JOIN, we are unable to reuse such data, thus limiting

the performance. Additionally, we measure and compare the

L1 and L2 cache hit rates of GDS-JOIN and TED-JOIN

(Table III). While GDS-JOIN consistently achieves high cache

hit rates, as the dimensionality increases, the cache hit rate

using TED-JOIN decreases significantly. This explains why

the speedup of TED-JOIN over GDS-JOIN decreases with

increasing dimensionality (Figure 8).

From these results, we conclude that TCs should be used

when the dimensionality is low (2 ≤ d ≤ 4). Furthermore,

there are cases where the dimensionality does not evenly

divide by 4 (the dimension of the matrices as defined by

the WMMA API for FP64). In total, �d/4� MMA operations

are needed to compute distance calculations, meaning that an

additional MMA operation needs to be performed for cases

where d mod 4 �= 0, which performs excess work. For

example, because 6-D datasets are stored as 8-D datasets,

where the last two dimensions are filled with zeros, TCs cannot

achieve peak performance.

In summary, TCs should be used under the following

scenarios instead of the reference implementations on their

respective architectures:

•Compared to using CUDA cores, TCs should be used on low-

dimensional datasets (2 ≤ d ≤ 4).

•There is no drawback of using TCs over multi-core CPUs.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to computing

Euclidean distances leveraging TCs on Nvidia GPUs. TCs are

designed solely for Matrix Multiply-Accumulate operations,

and yield a much higher peak throughput than CUDA cores

for this operation [2]. While TCs have been extensively used

in fields such as machine learning, their usage remains very

limited for more general-purpose applications. Hence, to our

knowledge, this paper presents the first use of TCs for FP64

Euclidean distance calculations, where FP64 TCs computa-

tion has only been possible using the Ampere generation of

Nvidia GPUs. This makes our algorithm suitable for scenarios

where precise computation using FP64 is required. As such,

our algorithm can provide the foundation for improving the

performance of other data analysis applications where distance

calculations are used (e.g., distance similarity searches, kNN,

and DBSCAN [6]–[11]). In these cases, our TC GPU kernel

can be adapted to refine candidate points independently of the

index that is used.

Comparison to tensor algorithms: we compared TED-

JOIN to a reference MMA implementation, WMMA-REF,

from Nvidia [27], where no optimizations (including an index)

143

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.

were used. We find that TED-JOIN outperforms WMMA-

REF, because the latter requires unified memory to store a

|V | × |V | distance matrix. Libraries such as cuBLAS and

CUTLASS have the same drawbacks as WMMA-REF, and

are thus also unsuitable for moderately sized input datasets.

Comparison to similarity search reference implementa-

tions: we compared TED-JOIN to the GPU algorithm GDS-

JOIN [6]. Despite an average speedup of 1.07× over GDS-

JOIN when 2 ≤ d ≤ 90, we achieve a maximum speedup

of 2.23× over this algorithm. We find that TED-JOIN yields

the best performance when d ≤ 4 with an average speedup

of 1.28× over GDS-JOIN. Because TED-JOIN and GDS-

JOIN use the same index, this performance improvement is a

direct result of employing TCs. While the maximum speedup

is expected to be 2× due to the maximum throughput of TCs

compared to CUDA cores [2], we achieve a lower speedup

on average because we rely on operations using CUDA cores.

As described in Section III-A, combining CUDA and TCs

to compute FP64 Euclidean distances is required due to the

restricted matrix sizes when using the WMMA API and FP64.

Compared to the multi-core CPU algorithms SUPER-

EGO [7] and FGF-HILBERT [8], we find that TED-JOIN

typically outperforms these algorithms.

Future work includes, investigating cache and shared mem-

ory efficiency, particularly for higher dimensions, modeling

TC performance to determine in which scenarios they should

be leveraged instead of CUDA cores, using other floating point

precisions available for TCs, and incorporating our TC GPU

kernel into other algorithms, such as kNN [10], and particle

simulations such as those in molecular dynamics [30].

ACKNOWLEDGEMENTS

This material is based upon work supported by the National

Science Foundation under Grant No. 2042155.

REFERENCES

[1] Nvidia, “Nvidia Turing Architecture Whitepaper,” 2018, accessed: Nov.
14th, 2022. [Online]. Available: https://images.nvidia.com/aem-dam/
en-zz/Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf

[2] ——, “Nvidia A100 Architecture Whitepaper,” 2020, accessed: Nov.
14th, 2022. [Online]. Available: https://www.nvidia.com/content/dam/
en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

[3] ——, “Nvidia H100 Architecture Whitepaper,” 2022, accessed:
Nov. 14th, 2022. [Online]. Available: https://www.nvidia.com/
hopper-architecture-whitepaper

[4] Nvidia, “CUDA C++ Programming Guide,” 2022, accessed:
Nov. 14th, 2022. [Online]. Available: https://docs.nvidia.com/cuda/
cuda-c-programming-guide

[5] J. Appleyard and S. Yokim, “Programming Tensor Cores in
CUDA 9,” 2017, accessed: Nov. 14th, 2022. [Online]. Available:
”https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/”

[6] M. Gowanlock and B. Karsin, “GPU-Accelerated Similarity Self-Join for
Multi-Dimensional Data,” Proc. of the 15th Intl. Workshop on Data Man-

agement on New Hardware, 2019, https://bitbucket.org/mikegowanlock/
gpu self join/, Accessed: Nov. 14th, 2022.

[7] D. V. Kalashnikov, “Super-EGO: Fast Multi-Dimensional Similarity
Join,” The VLDB Journal, vol. 22, no. 4, pp. 561–585, 2013, accessed:
Nov. 14th, 2022. [Online]. Available: https://www.ics.uci.edu/∼dvk/
code/SuperEGO.html

[8] M. Perdacher, C. Plant, and C. Böhm, “Cache-Oblivious High-
Performance Similarity Join,” Intl. Conf. on Management of Data, p.
87–104, 2019, https://gitlab.cs.univie.ac.at/martinp16cs/hilbertJoin, Ac-
cessed: Nov. 14th, 2022.

[9] B. Gallet and M. Gowanlock, “Heterogeneous CPU-GPU Epsilon Grid
Joins: Static and Dynamic Work Partitioning Strategies,” Data Science

and Engineering, vol. 6, pp. 39–62, 2020.
[10] M. Gowanlock, “Hybrid KNN-join: Parallel nearest neighbor searches

exploiting CPU and GPU architectural features,” Journal of Parallel and

Distributed Computing, vol. 149, pp. 119–137, 2021.
[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based

algorithm for discovering clusters in large spatial databases with noise,”
pp. 226–231, 1996.

[12] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN
Revisited, Revisited: Why and How You Should (Still) Use DBSCAN,”
ACM Trans. Database Syst., vol. 42, no. 3, jul 2017.

[13] A. Dakkak, C. Li, J. Xiong, I. Gelado, and W.-m. Hwu, “Accelerating
Reduction and Scan Using Tensor Core Units,” Proc. of the ACM Intl.

Conf. on Supercomputing, p. 46–57, 2019.
[14] Z. Ji and C.-L. Wang, “Accelerating DBSCAN Algorithm with AI Chips

for Large Datasets,” 50th Intl. Conf. on Parallel Processing, 2021.
[15] T. Ahle and F. Silvestri, “Similarity Search with Tensor Core Units,”

Similarity Search and Applications, pp. 76–84, 2020.
[16] B. Li, S. Cheng, and J. Lin, “tcFFT: A Fast Half-Precision FFT Library

for NVIDIA Tensor Cores,” 2021 IEEE Intl. Conf. on Cluster Computing

(CLUSTER), pp. 1–11, 2021.
[17] T. Lu, Y.-F. Chen, B. Hechtman, T. Wang, and J. Anderson, “Large-

Scale Discrete Fourier Transform on TPUs,” IEEE Access, vol. 9, pp.
93 422–93 432, 2021.

[18] C. Böhm, R. Noll, C. Plant, and A. Zherdin, “Index-supported Similarity
Join on Graphics Processors,” 2009, pp. 57–66.

[19] C. Böhm, B. Braunmüller, F. Krebs, and H.-P. Kriegel, “Epsilon Grid Or-
der: An Algorithm for the Similarity Join on Massive High-dimensional
Data,” Proc. of the ACM SIGMOD Intl. Conf. on Management of Data,
pp. 379–388, 2001.

[20] M. Gowanlock, “Hybrid CPU/GPU Clustering in Shared Memory on the
Billion Point Scale,” Proc. of the ACM Intl. Conf. on Supercomputing,
p. 35–45, 2019.

[21] “Space Weather datasets,” 2016. [Online]. Available: ftp://gemini.
haystack.mit.edu/pub/informatics/dbscandat.zip

[22] “OpenStreetMap Bulk GPS Point Data,” 2012, accessed: Nov. 14th,
2022. [Online]. Available: https://blog.openstreetmap.org/2012/04/01/
bulk-gps-point-data/

[23] “Gaia DR 2 Dataset,” 2018, accessed: Nov. 14th, 2022. [Online].
Available: https://cosmos.esa.int/web/gaia/dr2

[24] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles
in high-energy physics with deep learning,” Nature Communications,
vol. 5, 2014.

[25] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lam-
mersen, and C. Sohler, “StreamKM++: A Clustering Algorithm for Data
Streams,” ACM Journal of Experimental Algorithmics, vol. 17, May
2012.

[26] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The
million song dataset,” Proc. of the 12th Intl. Conf. on Music Information

Retrieval, 2011.
[27] Nvidia, “Double Precision GEMM Using the WMMA API,” 2022,

dmmaTensorCoreGemm.cu; Accessed: Nov. 14th, 2022. [Online].
Available: https://github.com/NVIDIA/cuda-samples

[28] J. Schule, “Tensor Core Performance and Precision,” 2019, accessed:
Nov. 14th, 2022. [Online]. Available: https://developer.nvidia.com/gtc/
2019/video/s9176

[29] V. Sarge and M. Andersch, “Tensor Core Performance on NVIDIA
GPUs: The Ultimate Guide,” 2020, accessed: Nov. 14th, 2022. [Online].
Available: https://developer.nvidia.com/gtc/2020/video/s21929-vid

[30] V. C. de Souza, L. Goliatt, and P. V. Z. Capriles Goliatt, “Clustering
algorithms applied on analysis of protein molecular dynamics,” 2017

IEEE Latin American Conf. on Computational Intelligence (LA-CCI),
pp. 1–6, 2017.

144

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.

