2022 1IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC) | 978-1-6654-9423-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/HiPC56025.2022.00029

2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)

Leveraging GPU Tensor Cores for Double Precision
Euclidean Distance Calculations

Benoit Gallet
benoit.gallet@nau.edu
Northern Arizona University

Michael Gowanlock
michael.gowanlock @nau.edu
Northern Arizona University

School of Informatics, Computing, and Cyber Systems School of Informatics, Computing, and Cyber Systems

Flagstaff, Arizona, USA

Abstract—Tensor cores (TCs) are a type of Application-Specific
Integrated Circuit (ASIC) and are a recent addition to Graphics
Processing Unit (GPU) architectures. As such, TCs are purpose-
fully designed to greatly improve the performance of Matrix
Multiply-Accumulate (MMA) operations. While TCs are heavily
studied for machine learning and closely related fields, where
their high efficiency is undeniable, MMA operations are not
unique to these fields. More generally, any computation that
can be expressed as MMA operations can leverage TCs, and
potentially benefit from their higher computational throughput
compared to other general-purpose cores, such as CUDA cores
on Nvidia GPUs. In this paper, we propose the first double
precision (FP64) Euclidean distance calculation algorithm, which
is expressed as MMA operations to leverage TCs on Nvidia
GPUs, rather than the more commonly used CUDA cores. To
show that the Euclidean distance can be accelerated in a real-
world application, we evaluate our proposed TC algorithm on the
distance similarity self-join problem, as the most computationally
intensive part of the algorithm consists of computing distances
in a multi-dimensional space. We find that the performance
gain from using the tensor core algorithm over the CUDA core
algorithm depends weakly on the dataset size and distribution,
but is strongly dependent on data dimensionality. Overall, TCs
are a compelling alternative to CUDA cores, particularly when
the data dimensionality is low (< 4), as we achieve an average
speedup of 1.28x and up to 2.23 x against a state-of-the-art GPU
distance similarity self-join algorithm. Furthermore, because this
paper is among the first to explore the use of TCs for FP64
general-purpose computation, future research is promising.

Index Terms—Tensor Cores, Euclidean Distance, GPU, Simi-
larity Searches

I. INTRODUCTION

Tensor cores (TCs) are a type of Application-Specific Inte-
grated Circuit (ASIC), and are specifically designed for Matrix
Multiply-Accumulate (MMA) operations. The high specificity
of TCs makes them typically more efficient at computing
MMA operations, than other more general-purpose cores such
as CPU cores or GPU CUDA cores. Given four matrices
A, B,C, and D, TCs are designed to compute D = Ax B+C
(where C' and D may be the same matrix). Over the past
few years, TCs have been heavily used for machine learning
and other fields requiring linear algebra, and few papers have
examined broadening the use of TCs for other algorithms.
Despite their high specificity, TCs may also be very versatile:
any computation expressed with MMA operations, as defined
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above, should be able to leverage TCs and consequently,
benefit from their high computational throughput.

Several companies have proposed a version of TCs, each
with its own different characteristics. In this paper, we focus
on the Nvidia GPU TCs. These TCs were first introduced
with the Volta generation in 2017'. Since this first iteration,
they have been implemented in several GPU models and have
greatly improved over time [1]-[3]. In particular, while the
first generation of TCs was only capable of computing in half
precision using 16-bit floats (FP16), TCs are now capable of
double precision computing using 64-bit floats (FP64) with
the Ampere generation [2]. This enables TCs to be used for
applications where high precision is critical. Furthermore, their
number, as well as their theoretical computational throughput,
have continued to increase, making them an attractive alterna-
tive to the general-purpose CUDA cores.

As mentioned above, in this paper we focus on TCs pro-
posed by Nvidia on their GPUs. In addition to the CUDA
API to access GPU functionalities, we also leverage the Warp
Matrix Multiply-Accumulate (WMMA) API [4], [5], which
provides programmatic access to TCs. While other libraries
also give access to TCs, they are all higher level than the
WMMA API and less versatile, thus less suited to our use
case. However, there are some limitations when using the
WMMA APL In particular, matrix sizes are limited to a few
options, and not all compute precisions are available or can be
combined (e.g., FP32 for both multiplication and accumulation
is not available, and FP16 multiplication can not be combined
with FP64 accumulation).

The Euclidean distance is a metric commonly used in many
scientific applications, particularly for data analysis algorithms
such as the distance similarity self-join [6]-[9], the kNN [10],
or the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [11] algorithms. Within these algorithms,
distance calculations are usually the most time-consuming
fraction of the total computation [12]. In this paper, we propose
to improve the throughput of Euclidean distance calculations
by leveraging TCs on the GPU, and consequently also improve
the overall performance of the algorithms mentioned above. To

Thttps://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture- whitepaper.pdf
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illustrate greater applicability to these other algorithms, we use
the distance similarity self-join algorithm as a representative
example case for the other data analysis algorithms mentioned
above. Given a dataset V in d dimensions, the distance
similarity self-join algorithm finds all pairs of points (a, b) that
are within a distance threshold e of each other; dist(a,b) <,
where a,b € V, and dist is the Euclidean distance function.

This paper makes the following contributions:

*We propose a new algorithm for computing Euclidean dis-
tances using TCs, leveraging the Nvidia Ampere architecture
TCs [2] supporting double precision (FP64) computations.
*We integrate the aforementioned method into the distance
similarity self-join algorithm, that we name Tensor Euclidean
Distance Join (TED-JOIN). We show that TED-JOIN is com-
petitive with the best parallel distance similarity self-joins in
the literature for multi-core CPUs and GPU CUDA cores.
*The solution we propose here extends beyond the distance
similarity self-join algorithm and can be integrated into other
algorithms that use the distance similarity self-join, or more
generally Euclidean distance calculations, as a building block.
*We evaluate TED-JOIN across a broad range of datasets,
that span several distributions, sizes and dimensionalities, and
compare it to a state-of-the-art GPU CUDA cores (GDS-
JOIN [6]) and two multi-core CPU distance similarity join
algorithms, SUPER-EGO [7] and FGF-HILBERT [8]. We con-
clude that TED-JOIN should always be preferred over SUPER-
EGO and FGF-HILBERT, and should be preferred over GDS-
JOIN when the dimensionality d < 4, where it achieves an
average speedup of 1.28x (and 1.07x when considering all
the experiments we conducted), and up to 2.23x.

*To our knowledge, this paper proposes the first Euclidean
distance calculation for TCs using FP64 computation, and the
first use of TCs for the distance similarity self-join.

The paper is outlined as follows: we present essential
material in Section II, including an overview of TCs. We
then present in Section III our solution that uses TCs to
compute Euclidean distances and its integration into the dis-
tance similarity self-join algorithm. We show in Section IV the
performance of our solution compared to the state-of-the-art
distance similarity self-join algorithms, and we conclude and
propose future research directions in Section V.

II. BACKGROUND

A. Problem Statement

For two points a and b in d dimensions, and where a; repre-
sents the 7" coordinate of the point a, and where i = 1,. .. ,d,
the Euclidean distance between a and b is defined as follows:

6]

The distance similarity self-join algorithm, as described above,
takes a dataset V' in d dimensions as well as a search distance
€ as inputs, and finds all the pairs of points (a,b) such that
dist(a,b) < e where a,b € V, and where the distance function
is, in this case, the Euclidean distance defined in Equation 1.
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For a query point a, finding all the other points in V' within e
from a is called a range query (]V| range queries in total).

B. Tensor Cores (TCs)

TCs on GPUs are an Application-Specific Integrated Circuit
(ASIC) designed for Matrix Multiply-Accumulate (MMA)
operations. Given four matrices A, B,C' and D, this MMA
operation is expressed as D = A x B + C. Matrices C' and
D are the accumulators and may be equivalent. In hardware,
TCs are designed to process 4 x 4 MMA operations. However,
the WMMA API only gives access to larger matrices (e.g.,
16 x 16). Therefore, several TCs are used concurrently to
perform MMA operations larger than 4 x 4. Due to their highly
specific design, TCs are significantly more efficient at MMA
operations than CUDA cores: double precision computation is
presented as twice as efficient when using TCs compared to
CUDA cores on the Nvidia A100 GPU [2]. This significantly
higher processing throughput is our motivation to transform
Euclidean distance calculation into MMA operations, and yield
higher computational throughput.

The WMMA API [4], [5] provides some low-level access
to TCs, giving us the highest versatility possible. However,
several limitations come along with this WMMA APL In
particular, it is limited to certain matrix sizes and compute
precisions. Among the options available, only a few are rele-
vant to our work. In this paper, we focus on FP64 computation,
which limits us to only one size for each of our matrices. Let
M, », be a matrix with m rows and n columns. The matrices
that we can use with double precision are thus Ag 4, Bags,
Cs g, and Dgg. We refer the reader to the documentation [4]
for the other TCs options.

Programmatically, the matrices proposed by the WMMA
API are called fragments, and are stored into the GPU threads
registers. The WMMA API defines several functions:
eload_matrix_sync(): Load a matrix fragment from memory.
estore_matrix_sync(): Store a matrix fragment into memory.
emma_sync(): Perform an MMA operation using TCs.
ofill_fragment(): Fill a matrix fragment with a specified value.

As their name suggests, these function calls are synchro-
nized. Hence, all 32 threads of the warp are blocked until
the operation is complete. The load and store functions
take, among other arguments, a stride between the elements
comprising the matrix rows. Hence, all the elements consisting
of a row in the target matrix need to be coalesced in memory.
Furthermore, the individual elements of the matrix fragments
are stored in an unspecified order in the registers. Thus,
contrary to regular arrays, the first element of a matrix may not
be stored in the first element of the fragment. Consequently,
operations on an individual element of a matrix fragment need
to be applied to all the other elements, using a loop iterating
over all of the elements of the fragment.

C. Tensor Cores in the Literature

As mentioned above, the literature concerning TCs heavily
revolves around machine learning and other closely related
fields, and not many other types of applications employing
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TCs [13]-[17]. We present in this section a selection of papers
that discuss the use of TCs for applications that focus more
on computational/data-enabled science, similarly to this paper.
Moreover, since most of the literature seems to focus on low
precision computations, we believe that this paper is the first to
propose an implementation using TCs for FP64 computations.

Dakkak et al. [13] propose a method to perform reduction
and scan operations, using the WMMA API to leverage TCs.
Their reduction algorithm consists of multiplying a matrix
whose first row are ones and the rest are zeros with a matrix
containing the values to reduce, and accumulated with a matrix
containing the result from previous reductions. Their scan
solution is similar but uses an upper triangular matrix filled
with ones and where the rest are zeros, instead of a single row
filled with ones. Their proposed solutions achieve a speedup
of 100x for the reduction and 3x for the scan, compared to
other state-of-the-art methods not using TCs.

Ji and Wang [14] propose using TCs to improve the perfor-
mance of the DBSCAN algorithm. They mainly use TCs to
compute distance matrices between the points that might form
a cluster, using the cosine similarity formula (in contrast to
the Euclidean distance used in this paper). They also use TCs
to perform reductions, which are used to determine if points
belong to a cluster or not. Their solution using TCs achieves
a speedup of up to 2.61x to compute distance matrices
compared to using the CUDA cores. While this work is very
relevant to us, it differs in that they use a different distance
metric (cosine similarity vs. Euclidean distance), they do not
use an index structure, and part of their work is exclusive to the
DBSCAN algorithm. In comparison, our solution essentially
concerns the Euclidean distance calculations and, therefore,
more applications than the distance similarity self-join that
we just take as an example for this paper.

Ahle and Silvestri [15] theorize using TCs to compute
similarity searches. They use TCs to compute either the Ham-
ming, squared L, distances, or cosine similarity through an
inner product operation, expressed as matrix multiplications.
Additionally, they opt for the Local Sensitivity Hashing (LSH)
method, reducing the overall complexity of the computation
similarly to an indexing structure used by other similarity join
solutions [6]-[8]. However, and contrary to these solutions,
the LSH method typically yields an approximate result.

D. Distance Similarity Joins

We discuss in this section several state-of-the-art parallel
distance similarity self-join algorithms [6]-[9], which we use
as reference implementations for our experimental evaluation.
These selected algorithms have in common that they use an in-
dexing structure to prune the number of distance calculations,
which is a commonly used optimization [18], [19]. When
using an index, it is first searched to yield a set of candidate
points for each query point. The set of candidate points is then
refined using distance calculations to keep pairs of query and
candidate points that are within e of each other.

Kalashnikov [7] proposes SUPER-EGO, a parallel CPU
algorithm to compute a distance similarity join, which is an
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improvement over the Epsilon Grid Order (EGO) algorithm
proposed by Bohm et al. [19]. SUPER-EGO performance
relies on a grid index and which is dependent on the search
distance €, where a grid with cells of size € X € is laid on the
search space to efficiently prune the candidate points to refine.
Furthermore, the author proposes to reorder the dimensions
of the points based on their variance, so dimensions with
the highest variance are considered first when computing the
distance between two points. Hence, their cumulative distance
is more likely to reach e sooner, allowing the short-circuiting
of the distance computation, and thus to not consider the
remaining dimensions. SUPER-EGO has been since improved
by Gallet and Gowanlock [9], as part of a CPU-GPU distance
similarity self-join algorithm. Among the changes, their ver-
sion of SUPER-EGO is capable of FP64 computation while
performing better than SUPER-EGO proposed by Kalash-
nikov [7]. As such, further references to SUPER-EGO in
this paper will refer to the work conducted by Gallet and
Gowanlock [9], rather than Kalashnikov [7].

Perdacher et al. [8] propose FGF-HILBERT, a parallel
CPU distance similarity join algorithm also based on an
epsilon grid order, but using space-filling curves as their
indexing method. Using an EGO-sorted dataset, space-filling
curves are used to determine, for each query point, a range
of consecutive candidate points in the dataset. The authors
further improve the performance by using the OpenMP API
and low-level vectorized instructions, making their solution
highly optimized. Because FGF-HILBERT typically performs
better than SUPER-EGO, particularly in higher dimensions,
it is considered a state-of-the-art CPU distance similarity
join algorithm. Because of some of its optimizations, FGF-
HILBERT is only capable of FP64 computation.

Gowanlock and Karsin [6] propose GDS-JOIN, a GPU
algorithm for high-dimensional distance similarity self-joins.
Their optimizations related to the high-dimensional case in-
clude reordering the dimensions of the points based on their
variance, so these with the highest variance would be consid-
ered first when computing distances. Similarly to SUPER-EGO
presented above, this particularly pairs well with distance
calculation short-circuiting. Overall, dimensions with a higher
variance are susceptible to increase the cumulative distance
more than dimensions with lower variance and are thus more
likely to trigger short-circuiting the distance calculation. They
also propose to index the data in fewer dimensions than the
input dataset dimensionality, making their grid index efficient
even in higher dimensions, as the cost of searching their grid
index is bound by the number of dimensions that are indexed.
Furthermore, as their source code is publicly available, it
appears that new optimizations have been added to the GDS-
JOIN algorithm since the first publication, including the use of
Instruction-Level Parallelism (/LP) in the distance calculation,
which significantly improves the performance of the algorithm.
Our experiments show that this newer version of GDS-JOIN is
more efficient than the published version [6]. Thus, we choose
to use the newer more efficient version, as it is fairer than
comparing TED-JOIN with the original algorithm.
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III. DISTANCE CALCULATIONS USING TENSOR CORES

We present our algorithm, TED-JOIN, that leverages TCs
for Euclidean distance calculations, and show how it is in-
tegrated into a distance similarity self-join algorithm. For
illustrative purposes, in this section we use 4 X 4 matrices;
however using the WMMA API and FP64, matrix sizes are
either 8 x 4, 4 x 8 or 8 x 8.

A. Adapting the Euclidean Distance Formula

Using the Euclidean distance formula defined above (Equa-
tion 1) between two points a and b in d dimensions, we can
expand this formula as follows:

dist(a,b) = /(ag —ba)2 + ...+ (a1 —b1)2+0. (2)

We observe that, from right to left, the computation consists
of a series of multiply-and-accumulate operations, where the
distance in dimension 4, computed as (a; — b;)? (hence a mul-
tiplication of two terms) gets accumulated with the distance
previously computed in dimension ¢ — 1, where 1 < ¢ < d.
Let a,b,c,d, e, f, g and h be eight points in d dimensions, and
where we want to compute the Euclidean distance between
a,b,c,d and e, f, g, h. For illustration purposes only, we will
use 4 x 4 matrices.

A B

ai as az 1 €3 €3

al 02 atg a./l €1 €2 €3 €4 1. B = B x (—1.0) (CUDA cores)
. 2.C'=Ax I+ B (ICs)

a1 Ao a3 g4 g1 92 g3 g4 3 D= C x Ct N D (TC )
aiazazas| |hyhohshy 7 S

Figure 1. Illustration of Euclidean distance calculations using TCs and Equa-
tion 2, between a point a and four points e, f, g, h, and in four dimensions.
This computation is computed in blocking fashion four dimensions at a time.
Matrix D contains the Euclidean distance between a and the other points.

We illustrate in Figure 1 how we can compute Euclidean
distances using Equation 1 and more particularly its equiva-
lent, Equation 2, using TCs. Matrix A contains a single point
a stored in row-major, while matrix B can contain multiple
points (here e, f, g, h), and is also row-major. To compute the
difference between the coordinates, and to use TCs, we first
scale B by a factor —1.0, and we compute C' = A x [ + B,
where [ is the identity matrix. C' thus contains the difference
between all coordinates of a and the points e, f, g and h, and
in all four dimensions (because matrices are 4 x 4). We then
multiply C by its transpose, C*?, which computes the Euclidean
distance between point a and the points e, f, g, h, in the current
dimensions that we store in D. This calculation is computed
in blocking fashion four dimensions at a time.

A severe limitation of using the Euclidean distance shown
in Equation 1 and represented in Figure 1, is that it is only
capable of computing the distance between one single point
and several other points. Consider D;; as the element in
the first column of the first row of matrix D. The result
of the computation in Figure 1 is that Dy = dist(a,e),
Dy o = dist(a, f), D33 = dist(a,g) and Dy 4 = dist(a, h).
Hence, out of the 4 x 4 = 16 results that matrix D can store,
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only 4 correspond to actual Euclidean distances. Thus, while
TCs have a higher peak throughput than CUDA cores [2],
only a fraction of the computation is actively used to compute
Euclidean distances, which yields inefficient resource utiliza-
tion. Furthermore, while we use 4 x 4 matrices for illustration
purposes, we see in Figure 1 that all matrices used in the MMA
operation need to have the same size, since the accumulator
(C) is then used for the multiplication. However, when using
the WMMA API and FP64, these matrix sizes are different and
this solution can not be used. Consequently, we propose to use
the expanded and equivalent form of the Euclidean distance
outlined in Equation 1, which we detail as follows:

d
dist(a,b) = \| Y a? — 2a;b; + b?. 3)
i=1

Similarly to Equation 2, we can expand Equation 3, yielding
the following equation:

Tensor cores Tensor cores

—_— —_—~—
dist(a,b) = | a3+ (—2agbg +b3) + ... +a} + (—2a1by + b7).
CUDA cores CUDA cores
4)

Using Equation 4, we emphasize which part of the com-
putation will be carried out by TCs and which part by the
CUDA cores. Let T; = —2a;b; + bf be the MMA operation
done by TCs. To compute dist(a;,b;), we need to calculate
a? + T;. To use TCs, we need to transform this into an MMA
operation, computing either a? x I +T;, or T; x I+ a?,
where [ is the identity matrix. However, as aforementioned,
when using FP64 the WMMA API restricts us from reusing
the accumulator from a previous MMA operation to be used
in the multiplication of another MMA operation, due to
different matrix sizes. Furthermore, using Equation 4, we
can compute the Euclidean distance between the four points
a,b,c,d, and the four other points e, f,g, h at a time, using
the method illustrated in Figure 2, and which was not possible
using Equation 1 (Figure 1). Finally, we observe that when
computing the Euclidean distance between multiple points, and
as will be the case when computing a distance similarity self-
join for example, a part of the computation can be reused. The
squared coordinates of the points (a? and b?), are often reused
throughout the computation. Indeed, the squared coordinates
of a point are used for all the distance calculations with other
points and do not change throughout the computation. Thus,
the squared coordinates of the points can be precomputed to
further improve the performance of the algorithm. As we still
consider the use of 4 x 4 matrices for illustrative purposes, we
store in an array P the squared and accumulated coordinates
of each point, four coordinates at a time. Considering that a
is the first point, the element O of this precomputed array P
is a? + a2 + a2 + a2. For a dataset V in d dimensions, this
array represents a memory overhead of only |V| x [d/4].

Figure 2 presents our algorithm design for computing the
Euclidean distance between two sets of points, rather than

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.



A B C P’

ayazazag |er f1 91 hy| (€2 27 R a2 a? a2 a2
by by by ba| |C2 f292ho|l |e2 [2g* 2| |b2 b2 b2 b2
c1cgcezcal (€3 f303hs] |2 P97 h2 |c? e e? 2
didydsdy| [c4 f191ha| | [7 97 h? |d?d?d?d?

1. A=A x (—2.0) (CUDA cores)
2.T=Ax B+ C (TCs)
3. D =D+ T+ P (CUDA cores)

Figure 2. Illustration of Euclidean distance calculations using TCs and
Equation 3, between four points a, b, ¢, d and four points e, f, g, h, and in
four dimensions. This computation is computed in blocking fashion four
dimensions at a time. Matrix D contains the Euclidean distances between
a,b,c,d and e, f, g, h.

between a single point and a set of points (Figure 1). This
method is based on Equation 3. Matrix A contains the first set
of points (a, b, ¢, d), while B contains the second set of points
(e, f,g,h). Matrix C contains the sum of squared coordinates
of the points in B and are pre-computed, as explained above.
Matrix P’ contains the sum of squared coordinates of the
points in A. Our algorithm first scales matrix A, and then
computes 7' = A x B+ C using TCs. We then use the CUDA
cores to accumulate P’, as well as the result matrix D. Because
C,D, and T are different sizes than A and B, we can not
use TCs to compute these operations, which is a limitation
of the WMMA API when using FP64. This computation is
computed in blocking fashion four dimensions at a time. The
algorithm outputs matrix D which contains the Euclidean
distance between a,b,c,d and e, f, g, h, which corresponds
to 16 distances, compared to only 4 when using the algorithm
shown in Figure 1. While we illustrate the computation using
4 x 4 matrices, when using the WMMA API, because D is an
8 x 8 matrix, we can compute 64 distances instead of 8.

B. Tensor Cores for Distance Similarity Joins

As we outlined in Section II-D, most of the distance sim-
ilarity self-join algorithms in the literature reduce the overall
computational complexity by using an index data structure
and, compared to a brute-force approach, typically reduces the
number of candidate points that need to be refined per query
point. In particular, the distance similarity self-join algorithm
that we leverage here, GDS-JOIN, uses a grid index with cells
of size €?. For each query point in the dataset V', we thus
search the grid indexing for neighboring cells, yielding a set
of candidate points for each of the query points, which are
then refined by computing the Euclidean distance between
them and the query point. Because TED-JOIN and GDS-
JOIN use the same index, both algorithms yield the same
candidate points to be refined using distance calculations. This
allows us to compare the performance of CUDA and TCs in a
self-consistent manner, where the performance differences are
directly attributable to distance calculations.

A characteristic of the grid index we are using is that all
the query points from the same cell share the same candidate
points. This characteristic is particularly important, as it is
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necessary to efficiently make use of Equation 4 (Figure 2).
Indeed, the query points we use in matrix A must compute
their Euclidean distances, in matrix B, to the same set of
candidate points. Hence, the query points used in matrix A
should come from the same grid cell, as they share the same
set of candidate points.

Another optimization used by Gowanlock and Karsin [6]
is the batching of the execution. Because the final result
of the similarity self-join might exceed the memory size
of the GPU, the entire execution is split across multiple
batches. As a positive side-effect, multiple batches allow for
hiding data transfers between the host and the GPU with
computation. Indeed, batches are computed by several parallel
CUDA streams, where the data transfers of a stream can
overlap the computation of another stream. However, as a
batch corresponds to a set of query points to compute, we must
ensure in our case that the query points we send in a batch can
be computed by our TCs algorithm. More specifically, when
assigning query points from a batch to a warp on the GPU, we
must ensure that these query points belong in the same grid
cell and are not from different cells. Otherwise, we would be
unable to use the algorithm presented in Figure 2.

Using the WMMA API and FP64, only one combination
of matrix sizes is available. Namely, matrix A will contain
up to four coordinates of up to eight query points, matrix B
up to four coordinates of up to eight candidate points, matrix
C the sum of squared coordinates of up to eight candidate
points, and matrix D up to sixty-four Euclidean distances.
Because TCs operate at a warp level using the WMMA API,
we assign up to eight query points to a warp, which will then
compute the Euclidean distance to all the candidate points,
as determined by the use of the grid index. If the number of
query points, candidate points, or coordinates is insufficient
to fill the remaining rows or columns of the matrices, we
must fill them with zeros. Because we process four dimensions
at a time, up to [d/4] steps are necessary to compute the
Euclidean distance. Similarly to GDS-JOIN [6], we enable
distance calculations short-circuiting, which may happen after
every MMA operation, i.e., for every 4 dimensions. However,
all currently computed Euclidean distances between all the
query points and candidate points of the warp must short-
circuit to trigger this optimization.

IV. EXPERIMENTAL EVALUATION

In this section, we detail the experimental evaluation we
conducted. We start by comparing our TCs algorithm and
another optimized TCs algorithm to compute Euclidean dis-
tances. We then compare our proposed algorithm TED-JOIN
to other state-of-the-art distance similarity self-join algorithms.

A. Datasets

We evaluate the algorithms using a wide range of real-
world and synthetic datasets, spanning several sizes, dimen-
sionalities, and distributions. Synthetic datasets are generated
following either a uniform or exponential distribution, and
their name is prefixed by either Unif or Expo, respectively,
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Table I
SYNTHETIC DATASETS USED IN THE EXPERIMENTAL EVALUATION.

Distribution n
Uniform 2,3,4,6,8 10M
Exponential 2,3,4,6,8 2M, 10M

Table 1T
REAL-WORLD DATASETS USED IN THE EXPERIMENTAL EVALUATION.
Dataset d n Dataset d n
SW2DA [21] 2 1.86M  SW2DB [21] 2 5.16M
OSM50M [22] 2 50M  GaiaS0M [23] 2 50M
SW3DA [21] 3 1.86M  SuSy [24] 18 5M
BigCross [25] 57 1IM Songs [26] 90 515K

followed by the dimensionality and the number of points
(e.g., Expo3D2M is an exponentially distributed 3-D dataset
containing 2M points). We summarize the different synthetic
datasets that we use in Table I, and the real-world datasets
in Table II. Gaia50M and OSM50M are the first S0M points
of the original datasets, as described by Gowanlock [20].
We choose to use different distributions to better evaluate
the performance of TCs under different workloads: when a
dataset is uniformly distributed, TCs should all have a similar
workload, while when a dataset is exponentially distributed,
some TCs will have a higher workload than other TCs.

We denote the selectivity as s, which represents the average
number of neighboring points found within € of each query
point when performing a similarity self-join, excluding each
query point finding itself. The selectivity is calculated as
follows: s = (|R|—|V])/|V|, where |R| and |V| are the result
set of the similarity self-join and dataset sizes, respectively.
This metric is used in the literature to quantify the complexity
of the search for a given value of e: increasing e results in
more work to compute, and a higher selectivity.

B. Methodology

We conducted our experiments on the following platforms:
Platform 1: 2x AMD Epyc 7542 CPU (2 x 32 cores, 2.9GHz),
512 GiB of RAM, Nvidia A100 GPU; Platform 2: Intel Xeon
W-2295 CPU (18 cores, 3GHz), 256 GiB of RAM.

In this section, we use the distance similarity join appli-
cation as a case study for the use of TCs for Euclidean
distance calculations. For completeness, we compare our al-
gorithm to other distance similarity join algorithms, including
parallel CPU algorithms. However, this is only one example
application, and thus we also show brute-force CUDA vs. TC
performance as it may be more applicable to other algorithms.

The algorithms TED-JOIN, GDS-JOIN, SUPER-EGO and
FGF-HILBERT are configured as follows:

*TED-JOIN: Our proposed TCs algorithm is executed on
Platform 1, configured with 256 threads per block (8 warps),
up to 8 query points per warp, and using distance calculations
short-circuiting, as explained in Section III-B.

*GDS-JOIN: Parallel GPU algorithm proposed by Gowanlock
and Karsin [6] and further optimized since the original publica-
tion, executed in Platform 1. This algorithm is configured with
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256 threads per block, ILP = min(8,d) and uses distance
calculations short-circuiting, as presented in Section II-D.
*SUPER-EGO: Parallel CPU algorithm proposed by Kalash-
nikov [7], optimized by Gallet and Gowanlock [9] and exe-
cuted on Platform 1 using 64 threads (the number of physical
cores on the platform).

*FGF-HILBERT: Parallel CPU algorithm proposed by Per-
dacher et al. [8], executed on Platform 2 (the only platform
supporting AVX-512, required for this algorithm) and using
18 threads (the number of physical cores on the platform).

While we would have preferred to use a single platform to
conduct all our experiments, and thus have the same number
of threads/cores for all CPU algorithms, prior experiments
we conducted showed us that both SUPER-EGO and FGF-
HILBERT had a relatively poor scalability. Hence, if we were
able to run FGF-HILBERT using 64 threads/cores, as we did
for SUPER-EGO, the results we show in the following sections
would not have been significantly different. Furthermore,
note that despite using fewer threads/cores, FGF-HILBERT
typically outperforms SUPER-EGO.

All the algorithms are using double precision (FP64) to
compute, and are compiled using NVCC v11.2 (for TED-
JOIN and GDS-JoIN) or GCC (v8.5 for SUPER-EGO, and
v9.4 FGF-HILBERT) using the O3 optimization.

During our experiments, many scenarios using FGF-
HILBERT did not produce the correct self-join results, which
are consequently not included. We believe that the issues
encountered with FGF-HILBERT are due to the width of the
vectorized instructions: 512-bits, or 8 FP64 values, which
may not be working when d < 8. Furthermore, SUPER-EGO
happened to fail in several low-dimensional cases without a
clear understanding of the reason, and we thus also do not
report the execution time of these experiments. However, we
consider that the successful experiments should be sufficient to
accurately evaluate the performance of TED-JOIN compared
to the other algorithms. Finally, note that the four algorithms,
TED-JOIN?, GDS-JOIN [6], SUPER-EGO [7], and FGF-
HILBERT [8], are publicly available.

C. Results: Comparison of Brute-force TC Approaches

We compare the performance of TCs and CUDA cores
for performing Euclidean distance calculations when using
brute-force computation, which is O(|V|?). Here, we use
the algorithm TED-JOIN (TCs), to which we removed all
optimizations, including indexing, and compare it to a highly
optimized MMA reference implementation by Nvidia [27],
that leverages the WMMA API similarly to TED-JOIN,
denoted as WMMA-REF. We selected this implementation
instead of a library such as cuBLAS * or CUTLASS # (with
the latter built upon the WMMA API), as it is the best direct
comparison between approaches.

We outline two major differences between WMMA-REF
and TED-JOIN, as a consequence of matrix size, as follows:

2https://github.com/benoitgallet/ted-join-hipc22
3https://developer.nvidia.com/cublas
“https://github.com/NVIDIA/cutlass
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1) The matrix sizes are dependent on data dimensionality and
impact performance [28], [29]. WMMA-REF is designed
and optimized for large MMA operations, whereas TED-
JOIN targets smaller matrices.

TED-JOIN uses small matrices, and thus computes many
small 8 x 8 distance matrices and leverages shared mem-
ory. In contrast, WMMA-REF computes the entire |D|?
distance matrix, thus requiring a much larger memory
footprint. Consequently, when using WMMA-REF, and
to be able to use it on large datasets that would exceed
global memory capacity, we store the result matrix using
unified memory, which automatically pages data between
main and global memory. Furthermore, as cuBLAS and
CUTLASS work similarly to WMMA-REF, they have the
same drawback related to the use of unified memory.

Figure 3 plots the performance of TED-JOIN and WMMA -
REF using brute-force searches (i.e., without using an in-
dex) to compute Euclidean distance calculations on a 16-D
exponentially distributed synthetic datasets, spanning 2!! to
217 points (we omit datasets with other dimensionalities as
we observed similar results). Note that 2'8 points overflows
main memory when using WMMA-REF. We observe that the
performance of WMMA-REF degrades quicker than TED-
JOIN as the dataset size increases. We attribute these results
to the use of unified memory by WMMA-REF, which is
required to store the large result matrix (|D| x |D|), and which
is paged between GPU global and main memory when its
size exceeds global memory capacity. In addition to the poor
performance attributed to unified memory, using WMMA-
REF, which computes on large matrices and thus on the d
dimensions of a dataset at a time, limits the use of several
optimizations, which are explored in the following sections.
Namely, this inhibits short-circuiting the distance calculations
when the cumulative distance between points exceeds e.

We profile TED-JOIN and WMMA-REF on the 27 points
16-D dataset (Figure 3). With this dataset size, unified memory
needs to be paged between global and main memory through-
out the execution. We measure that WMMA-REF transfers
687.84 GB between the L1 and L2 caches, and 503.61 GB
between the L2 cache and global memory. In comparison
TED-JOIN transfers 558.57 GB and only 0.046 GB, respec-
tively, as we rely on shared memory to store small (8 x 8)
result matrices, rather than a large |V| x |V| matrix in global
memory like WMMA-REF. This results in lower L1 and L2
hit rates: 19.35% using WMMA-REF vs. 50.32% using TED-
JOIN for the L1 hit rate, and 72.45% vs. 99.99% for the L2 hit
rate. In summary, the unified memory required by WMMA -
REF negatively affects performance in the case of distance
calculations, and thus TED-JOIN should be preferred.

2)

D. Results: Optimized TC and CUDA Core Approaches

We investigate in this section the performance of TED-
JOIN, as compared to other state-of-the-art algorithms from
the literature: GDS-JOIN, SUPER-EGO, and FGF-HILBERT.

1) Uniformly Distributed Datasets: We start this result
section with uniformly distributed synthetic datasets, detailed
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Figure 3. Response time of our proposed algorithm TED-JOIN, and WMMA -
REF an optimized MMA algorithm from Nvidia leveraging the WMMA API,
using brute-force searches to compute Euclidean distance calculations on a
16-D exponentially distributed synthetic datasets.

in Table I. We select this distribution as all the query points
will have a similar number of candidate points to refine,
allowing us to evaluate the performance of TCs when their
workload is relatively uniform.

We show in Figure 4 the execution time of TED-JOIN
compared to GDS-JOIN, SUPER-EGO, and FGF-HILBERT
on a selection of uniformly distributed synthetic datasets. In
these cases, we can see that SUPER-EGO is consistently
performing worse than all of the other algorithms, except
on the Unif8DIOM dataset when e 0.08 (Figure 4(d)).
Furthermore, we observe that TED-JOIN performs similarly
or better than GDS-JOIN in most cases, except on Unif8D10M
when ¢ < 0.32. From these results, it seems that TED-JOIN
performs similar to GDS-JOIN when € is low, and therefore
when the workload is low as well, potentially indicating an
overhead from using TCs. But when € increases, and thus
the workload, the higher computational throughput of TCs
outperforms the CUDA cores used by GDS-JOIN.

We also observe that the speedup is the highest on the 2-D
and 4-D datasets since all 2 or 4 dimensions can be computed
at once using TCs, as we compute 4 dimensions at a time.
The speedup is the lowest on the 6-D datasets since we need
to compute the distances in two iterations (as many as for the
8-D datasets), but where 2 dimensions are zeros and thus that
the CUDA cores in GDS-JOIN do not have to compute.

2) Exponentially Distributed Datasets: In this section we
present the results on the same algorithms as in Section IV-D1
on the exponentially distributed synthetic datasets, detailed
in Table I. We select this distribution as it creates a large
workload variance between the query points, where some
query points may have many candidate points to refine, and
other query points very few, which allows us to evaluate the
performance of the TCs when their workload varies.

Figure 5 reports the execution time of TED-JOIN com-
pared to GDS-JOIN, SUPER-EGO, and FGF-HILBERT on a
selection of exponentially distributed synthetic datasets. Note
that FGF-HILBERT did not run correctly on the 2-D and
6-D datasets (Figures 5(a) and (c)). In these experiments,
TED-JOIN typically performs similarly or better than GDS-
JOIN, particularly as ¢ increases. SUPER-EGO is consistently
outperformed by the other algorithms, while FGF-HILBERT
performs the best on the Expo4DI0OM dataset (Figure 5(b)),
but is outperformed by both TED-JOIN and GDS-JOIN on

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 12,2023 at 15:48:42 UTC from IEEE Xplore. Restrictions apply.



150

300
== TED-JoIN
. GDS-Join .
21007 —= sursn-EGO =200
E == FGF-HILBERT E
- // = 100
0 = 0] :
03 06 09 12 15 02 04 06 08 1.0
€ (x1072) Géxl[]’z
(a) Unif2D10M (b) Unif4D10M
400 10*
— /—\1()3 P
2200 21
= a 10!
A
0 - 10
04 08 12 16 20 08 16 24 32 40
€ (x107! € (x107!
(c) U(nif6D10?vI (d) lﬂnifSDl()M

Figure 4. Response times of the TED-JOIN, GDS-JOIN, SUPER-EGO, and
FGF-HILBERT on a selection of uniformly distributed synthetic datasets. s is
in the range (a) 282-6978, (b) 71-8449, (c) 7-4295 and (d) 0-10888. The
legend in (a) corresponds to all subfigures. d € {2,4, 6,8}, n = 10M.
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Figure 5. Response times of TED-JOIN, GDS-JOIN, SUPER-EGO, and

FGF-HILBERT on a selection of exponentially distributed synthetic datasets.
s is in the range (a) 320-7834, (b) 15-7414, (c) 0-1658 and (d) 0-1210.
The legend in (a) corresponds to all subfigures. d € {2,4, 6,8}, n = 10M.

the Expo8D10M dataset (Figure 5(d)). Because these datasets
are exponentially distributed, the workload throughout the
computation of the similarity self-join can vary a lot. The
query points in the denser regions of the dataset will have
many candidate points to refine, and the query points in the
sparse regions of the dataset may have only a few candidate
points. Hence, and despite a highly varying workload, TED-
JOIN remains more efficient in most cases compared to GDS-
JOIN and all compared algorithms in general, particularly in
lower dimensions (2 < d < 4).

3) Real-World Datasets: We present in this section the
results of TED-JOIN, GDS-JOIN, SUPER-EGO and FGF-
HILBERT on a selection of the real-world datasets (Table II),
as shown in Figure 6. TED-JOIN and GDS-JOIN perform
very similarly, particularly on the higher dimensional datasets
(Figures 6(b)—(d)), while TED-JOIN outperforms GDS-JOIN
on the SW3DA dataset as e increases (Figure 6(a)). FGF-

142

100 10t
== TED-JoIN
. GDS-JoIx R 10%
< =@— SUPER-EGO < )
g 501 == FGF-HiLBERT g 10 P/./
= =
10H =
(L= - 10° _
04 08 12 16 20 1.000 1.275 1.550 1.825 2.100
€(x1072) €(x1072)
(a) SW3DA (d = 3, n = 1.86M) (b) SuSy (d = 18, n = 5M)
300
=200 =50 /—/
o o
E £
=100 =

7.000 7.525 8.050 8.575 9.100
x10-3)
=90, n= 515}()

0
0.100 0.575 1.050 1.525 2.000

-2

(c) BigCrogs((>(<11:0 \)T), n = 11M) (d) Songsﬁ(vs

Figure 6. Response times of TED-JOIN, GDS-JOIN, SUPER-EGO, and
FGF-HILBERT on a selection of real-world datasets (Table II). s is in the
range (a) 163-5373, (b) 5-1090, (c) 1-1104 and (d) 127-998. The legend
in (a) corresponds to all subfigures.
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Figure 7. Speedups of TED-JOIN over (a) SUPER-EGO and (b) FGF-
HILBERT across datasets presented in Tables I and II, for all values of €
we used, and as a function of the dimensionality. The dashed horizontal lines
correspond to the average speedups of TED-JOIN over a compared algorithm,
and the dotted horizontal lines represent no speedup.

HILBERT also performs quite similarly to TED-JOIN and
GDS-JoIN, while SUPER-EGO is often outperformed by the
other algorithms. Overall, these experiments show that TED-
JOIN and GDS-JOIN may perform similarly as dimensionality
increases, while TED-JOIN yields an advantage in lower
dimensions (Figure 6(a)), as we observed in previous Figures 4
and 5. These experiments show us that in higher dimensions
(Figures 6(b)—(d)), TED-JOIN may not yield an advantage
compared to GDS-JOIN.

E. Discussion: When Tensor Cores Should Be Employed

We summarize the results of TED-JOIN as compared to the
SUPER-EGO [9], FGF-HILBERT [8], and GDS-JOIN [6] al-
gorithms that we obtained across experiments, including those
that were omitted due to space constraints. The experiments
covered a wide range of data dimensionalities, sizes, and
distributions, resulting in an insightful picture of the overall
performance of using TCs in TED-JOIN compared to the use
of CUDA cores in GDS-JOIN. We report the speedup of TED-
JOIN over the SUPER-EGO, FGF-HILBERT, and GDS-JOIN
algorithms in Figures 7(a) and (b), and Figure 8, respectively.
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Figure 8. The same as for Figure 7, but plotting the speedup of TED-JOIN
over GDS-JOIN.

Table IIT
L1 AND L2 CACHE HIT RATES OF GDS-JOIN AND TED-JOIN ON A
SELECTION OF EXPONENTIALLY DISTRIBUTED SYNTHETIC DATASETS
(2 <d < 16,n = 2M) AND REAL-WORLD DATASETS (SW3DA AND
SUSY), MEASURED USING THE NVIDIA NSIGHT COMPUTE PROFILER.

GDS-JoIN TED-JOIN
Dataset L1 L2 L1 L2
Expo2D2M  71.55% 97.85% 66.40% 98.11%
Expo4D2M 89.89% 95.60% 67.20% 97.65%
Expo8D2M  90.53% 97.15% 45.76% 66.23%
Expol6D2M  97.27% 99.84% 52.15% 57.27%
SW3DA 68.84% 97.62% 54.70% 94.43%
SuSy 92.13% 86.91% 38.00% 53.50%
Table IV

AVERAGE AND MAXIMUM SPEEDUP OF TED-JOIN OVER SUPER-EGO,
FGF-HILBERT, AND GDS-JOIN ACROSS EXPERIMENTS REPORTED IN
FIGURES 7 AND 8.

CPU GPU
SUPER-EGO  FGF-HILBERT GDS-JOIN (d < 4)
Average 5.00x 2.09x 1.07x (1.28x%)
Maximum 27.22x 9.46 x 2.23%x (2.23%)

We also report the L1 and L2 cache hit rates of GDS-JOIN
and TED-JOIN in Table III, and the average and maximum
speedups of TED-JOIN over SUPER-EGO, FGF-HILBERT,
and GDS-JOIN in Table IV.

Figure 7(a) plots the speedup of TED-JOIN over the CPU
algorithm SUPER-EGO [7], [9]. We observe that TED-JOIN
consistently achieves a speedup > 1, with an average of 5.00x
and a maximum of 27.22x. Thus, we believe that there is
no clear disadvantage to using TED-JOIN over SUPER-EGO,
regardless of the dimensionality, dataset distribution, or size.

Figure 7(b) plots the speedup of TED-JOIN over the CPU
algorithm FGF-HILBERT [8]. Because many of our exper-
iments could not be correctly conducted using the FGF-
HILBERT algorithm, it makes it harder to draw a clear con-
clusion regarding the performance TED-JOIN compared to
FGF-HILBERT. However, in the successful experiments, our
TCs solution achieved an average speedup of 2.09x with a
maximum of 9.46x, and the majority of the speedups are
above 1. Hence, and similarly to SUPER-EGO, there is no
clear disadvantage of using TED-JOIN over FGF-HILBERT.

Observing the speedup of TED-JOIN over the CUDA
core algorithm GDS-JOIN (Figure 8), we achieve the best
performance when d < 4, and is best on exponentially
distributed synthetic and real-world datasets. However, as the
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dimensionality d increases, this speedup decreases, result-
ing in an average speedup of only 1.07x, but achieving a
maximum of 2.23x on the Expo3D2M dataset. If we only
consider datasets where d < 4, TED-JOIN achieves an
average speedup of 1.28x over GDS-JOIN. Regarding the
relatively low speedup in higher dimensions, TCs are designed
for large matrix multiplications, where data can be reused
when computing tiles of the resulting matrix. In the case of
TED-JOIN, we are unable to reuse such data, thus limiting
the performance. Additionally, we measure and compare the
L1 and L2 cache hit rates of GDS-JOIN and TED-JOIN
(Table IIT). While GDS-JOIN consistently achieves high cache
hit rates, as the dimensionality increases, the cache hit rate
using TED-JOIN decreases significantly. This explains why
the speedup of TED-JOIN over GDS-JOIN decreases with
increasing dimensionality (Figure 8).

From these results, we conclude that TCs should be used
when the dimensionality is low (2 < d < 4). Furthermore,
there are cases where the dimensionality does not evenly
divide by 4 (the dimension of the matrices as defined by
the WMMA API for FP64). In total, [d/4] MMA operations
are needed to compute distance calculations, meaning that an
additional MMA operation needs to be performed for cases
where d mod 4 # 0, which performs excess work. For
example, because 6-D datasets are stored as 8-D datasets,
where the last two dimensions are filled with zeros, TCs cannot
achieve peak performance.

In summary, TCs should be used under the following
scenarios instead of the reference implementations on their
respective architectures:

*Compared to using CUDA cores, TCs should be used on low-
dimensional datasets (2 < d < 4).
*There is no drawback of using TCs over multi-core CPUs.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to computing
Euclidean distances leveraging TCs on Nvidia GPUs. TCs are
designed solely for Matrix Multiply-Accumulate operations,
and yield a much higher peak throughput than CUDA cores
for this operation [2]. While TCs have been extensively used
in fields such as machine learning, their usage remains very
limited for more general-purpose applications. Hence, to our
knowledge, this paper presents the first use of TCs for FP64
Euclidean distance calculations, where FP64 TCs computa-
tion has only been possible using the Ampere generation of
Nvidia GPUs. This makes our algorithm suitable for scenarios
where precise computation using FP64 is required. As such,
our algorithm can provide the foundation for improving the
performance of other data analysis applications where distance
calculations are used (e.g., distance similarity searches, kNN,
and DBSCAN [6]-[11]). In these cases, our TC GPU kernel
can be adapted to refine candidate points independently of the
index that is used.

Comparison to tensor algorithms: we compared TED-
JOIN to a reference MMA implementation, WMMA-REF,
from Nvidia [27], where no optimizations (including an index)
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were used. We find that TED-JOIN outperforms WMMA -
REF, because the latter requires unified memory to store a
|[V| x |V| distance matrix. Libraries such as cuBLAS and
CUTLASS have the same drawbacks as WMMA-REF, and
are thus also unsuitable for moderately sized input datasets.

Comparison to similarity search reference implementa-
tions: we compared TED-JOIN to the GPU algorithm GDS-
JOIN [6]. Despite an average speedup of 1.07x over GDS-
JOIN when 2 < d < 90, we achieve a maximum speedup
of 2.23x over this algorithm. We find that TED-JOIN yields
the best performance when d < 4 with an average speedup
of 1.28x over GDS-JOIN. Because TED-JOIN and GDS-
JOIN use the same index, this performance improvement is a
direct result of employing TCs. While the maximum speedup
is expected to be 2x due to the maximum throughput of TCs
compared to CUDA cores [2], we achieve a lower speedup
on average because we rely on operations using CUDA cores.
As described in Section III-A, combining CUDA and TCs
to compute FP64 Euclidean distances is required due to the
restricted matrix sizes when using the WMMA API and FP64.

Compared to the multi-core CPU algorithms SUPER-
EGO [7] and FGF-HILBERT [8], we find that TED-JOIN
typically outperforms these algorithms.

Future work includes, investigating cache and shared mem-
ory efficiency, particularly for higher dimensions, modeling
TC performance to determine in which scenarios they should
be leveraged instead of CUDA cores, using other floating point
precisions available for TCs, and incorporating our TC GPU
kernel into other algorithms, such as kNN [10], and particle
simulations such as those in molecular dynamics [30].
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