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Abstract

The brain evolved to produce behaviors that help an animal inhabit the natural world. During natural
behaviors, the brain is engaged in many levels of activity from the detection of sensory inputs to
decision-making to motor planning and execution. To date, most brain studies have focused on small
numbers of neurons that interact in limited circuits. This allows analyzing individual computations or
steps of neural processing. During behavior, however, brain activity must integrate multiple circuits
in different brain regions. The activities of different brain regions are not isolated, but may be
contingent on one another. Coordinated and concurrent activity within and across brain areas is
organized by (1) sensory information from the environment, (2) the animal’s internal behavioral state,
and (3) recurrent networks of synaptic and non-synaptic connectivity. Whole-brain recording with
cellular resolution provides a new opportunity to dissect the neural basis of behavior, but whole-brain
activity is also mutually contingent on behavior itself. This is especially true for natural behaviors
like navigation, mating, or hunting, which require dynamic interaction between the animal, its
environment, and other animals. In such behaviors, the sensory experience of an unrestrained animal
is actively shaped by its movements and decisions. Many of the signaling and feedback pathways that
an animal uses to guide behavior only occur in freely moving animals. Recent technological advances
have enabled whole-brain recording in small behaving animals including nematodes, flies, and
zebrafish. These whole-brain experiments capture neural activity with cellular resolution spanning
sensory, decision-making, and motor circuits, and thereby demand new theoretical approaches that
integrate brain dynamics with behavioral dynamics. Here, we review the experimental and theoretical
methods that are being employed to understand animal behavior and whole-brain activity, and the
opportunities for physics to contribute to this emerging field of systems neuroscience.

Introduction

Animals possess repertoires of natural behaviors that allow them to navigate the world, interact with
the environment, and interact with other animals. Examples include searching for mates, hunting prey,
or escaping from predators. These behaviors require animals to simultaneously process many different
sensory experiences, make different types of decisions on multiple timescales, and continuously
monitor and modify their own movements and behavioral performance. Natural behaviors are not
easily reduced to one-to-one mappings from sensory stimulus to motor output, as can be done for feed-
forward reflexes. Instead, natural behaviors engage many types of neural computation at the same
time — multisensory processing, memory storage and recall, decision-making, motor production,
feedback, and control mechanisms — in ways that cannot be compartmentalized. These computations
are often carried out by many brain areas acting together, communicating via system-wide networks
of synaptic connectivity and non-synaptic modulation.

To understand the relationship between whole-brain activity and behavior, we turn to animals where
it is possible to access the entire brain during behavior with minimal artificial constraints. Only a few
model organisms permit whole-brain activity recording in intact animals during natural behaviors.
Here, we focus on the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the



larval zebrafish Danio rerio (Box 1). Other small animals like the hydra are being developed as models
for whole-brain and whole-circuit approaches to behavior'. There has also been much recent work
in rodents where large numbers of neurons can be recorded in rich behavioral contexts>™. These
systems allow circuit-level dissections of behavior®’. However, it is not yet possible to record from
whole mammalian brains with full cellular resolution. The development of neuropixel electrodes has
increased the throughput of electrophysiological brain recordings in mammals, but without the full
field-of-view and resolution of microscopy systems®. Functional magnetic resonance imaging (fMRI)
relies on changes in bloodflow to different brain regions to visualize whole-brain activity, but has low
spatial resolution when compared to optical methods and is not a direct measurement of neuron
activity 1. We thus limit this review to discussing imaging approaches to whole-brain activity in
behaving animals.

The capacity to comprehensively record the brains of worms, flies, and fish during behavior arose with
recent developments in microscopy. Fast, high-throughput microscopes combine rapid volumetric
imaging with three-dimensional tracking of brain-wide dynamics. Many of these imaging systems are
also capable of simultaneously monitoring the behavioral dynamics in unrestrained, semi-restrained,
or virtual reality experimental setups. Advances in imaging technology and data analysis will continue
to expand the range of possible experiments, allowing the acquisition of complete brain recordings
during more types of behavior '

Systems neuroscience in worms, flies, and fish is now generating rich datasets of brain-wide activity
that span multiple sensory inputs, distributed circuits, and different behaviors. Understanding these
datasets requires innovation in theory and computation. Do we understand the brain when we
fully map the detailed patterns of co-variation between sensory inputs, brain activity, and motor
responses? Are there principles of integrated brain function that impose low-dimensional structure
on the correlations between sensation, cognition, and action? How does anatomical wiring impose
constraints that can be used to better understand brain and behavioral dynamics?

Here, we review (1) the technological advances that have enabled rich recordings of whole-brain
activity and behavior, (2) recent experiments in model organisms that have captured behaviorally-
relevant brain-wide activity, (3) and computational and theoretical approaches that attempt to link
brain activity to behavior. At each stage, we highlight ways in which physicists have contributed to
this exciting field and the many opportunities for future work.

Experimental methods for whole-brain imaging

On time scales shorter than a second and spatial scales longer than hundreds of microns, diffusion
is too slow to synchronize cellular or system-wide activity. To rapidly coordinate the activity of
sensory and motor systems over long distances, neurons rapidly propagate electrical signals along
fibers throughout the nervous system. Electrical signaling is coupled to changes in the intracellular
concentrations of multiple ions, including calcium. These changes are typically followed by the
activation of intracellular signaling pathways and eventually cell-to-cell communication by short-
range synaptic transmission and long-range neuromodulation ‘2. Therefore, measuring activity at
the whole-brain level requires microscopic probes that can globally detect changes in electric fields,
intracellular ion concentration, or neurotransmitter release.

One of the most successful approaches has been to use microscopy to capture activity-dependent
fluorescence from proteins expressed in neurons of transgenic animals. Genetically-encoded sensors
derived from fluorescent proteins have been developed for many aspects of neuronal activity >~'°.
The studies we review here primarily use the GCaMP family of indicators, derived from green



fluorescent protein (GFP), which have proven to be well-suited for stable, long-term imaging of large
populations of neurons in many genetically accessible animals?.

After choosing a fluorescent sensor, microscopes are needed to resolve single cells throughout the
brain while sampling at informative timescales of behavioral and neuronal activity, from milliseconds
to minutes or longer. The most common approach to imaging many cells with single-cell resolution
using fluorescence is to confine the excitation light to a portion of the imaging volume, selectively
capture in-focus light from that portion, and then serially scan the brain volume. This approach
underlies confocal, two-photon (2P), structured illumination, and light-sheet microscopy *’~>!.

Conventional two-photon and confocal approaches use point scanning to image a brain volume.
Point scanning has advantages in optical resolution, but is typically too slow to image many cells
throughout a large brain volume on subsecond timescales. Confocal microscopy can be accelerated
by simultaneously scanning many points in a focal plane using a 2D array of pinholes (spinning disk
confocal microscopy). Two-photon laser scanning microscopy (2PLSM) allows deeper imaging into
larger brains, and can be accelerated by adaptive, closed-loop scanning to improve image acquisition
speed for behaving animals %22,

Living biological samples are generally more susceptible to photodamage than inanimate samples
when subjected to laser light. Light-sheet microscopy confines light to an imaging plane without allow-
ing propagation into parallel planes, allowing optical sectioning with minimal photodamage. Many
light-sheet microscope setups use separate objectives for delivering excitation light and recording
fluorescence, imposing physical constraints on the animal being recorded and limiting the behaviors
that can be studied>*. New single-objective light-sheet approaches permit rapid volumetric imaging
with low photodamage and modest trade-offs in resolution, expanding the range of behaviors and
animals that can be studied?!.

Another approach is to use optics to capture information from a three-dimensional volume directly on
a two dimensional sensor, albeit at the cost of x y-resolution and field of view. One way to accomplish
this is to tile images from different focal depths on the sensor (multifocus microscopy)2>%°. A
related strategy is light-field microscopy, which uses microlens arrays to preserve three-dimensional
information in the emitted rays to enable computational reconstruction of volumes from sensor
data?’-!,

Whatever the optical hardware, whole-brain imaging also requires complete optical access to every
neuron inside a behaving animal. Small animals with transparent bodies and brains like nematodes,
larval Drosophila, and larval zebrafish are natural candidates. The heads of non-transparent animals,
including adult Drosophila and larger vertebrates, must be surgically opened to view the brain, or
have microscopes inserted into the brain. The development of non-invasive strategies to image
without surgery will allow cleaner access to behaviorally-relevant brain activity>2. Expanding the
toolbox of techniques for whole brain recording will increase the numbers of animals and behaviors
that can be studied with systems-level approaches.

As our ability to perform whole-brain imaging during behavior increases, so does the problem
of dealing with the enormous amount of data that it rapidly generates. Microscopes measuring
whole-brain neuronal activity easily generate raw image data at 1 GB/s or more. These data must
be reduced into compact time traces corresponding to the activity of discrete neurons or brain
regions. Segregating the activity of individual neurons is challenging when neurons and nerve fibers
are densely packed in a brain volume or when neurons move relative to one another because of
animal self-movement. Continuously tracking neurons inside the rapidly deforming brain of a freely
moving C. elegans or Drosophila larva is as challenging as acquiring the volumetric images in the first
place. To complement the optical hardware that performs whole-brain imaging, image-processing



Box 1: Model organisms for whole-brain imaging during natural behavior

Nematode worm C. elegans Zebrafish Danio rerio Fruit fly Drosophila melanogaster

Number of neurons 300 105 (larva) 10* (larva), 105 (adult)
crawling swimming wakmg
. . . . flight
Behaviors studied escape response light taxis mating
mating prey capture auditory responses
Experimental access single-neuron resolution single-neuron resolution brain region resolution
P identifiable neurons aligned brain atlas aligned brain atlas

algorithms that are both fast and accurate are needed to meet the challenge of comprehensive
neuronal segmentation 7,

Whole-brain imaging in three model organisms

Box 1 describes three model organisms considered in this review: the nematode Caenorhabditis
elegans, the fruit fly Drosophila melanogaster, and the larval zebrafish Danio rerio. Whole-brain
imaging methods are now being used to study these animals. These methods were first demonstrated
in immobilized animals, where brain activity was correlated with fictive behavioral read-outs, such
as the activity of muscles or command motor neurons. Recent breakthroughs have made it possible
to extract whole-brain activity from animals behaving more naturally and navigating real or virtual
spaces nearly unimpeded. We briefly review some of the unique advantages of these three animals
and how whole-brain imaging has advanced our understanding of their behavior.

The nematode C. elegans

The compact nervous system of the nematode C. elegans is ideal for whole-brain experiments. Each
C. elegans hermaphrodite has 302 neurons with a largely stereotyped wiring diagram — about 200
neurons form an anterior brain; about 100 neurons form the motor circuit®>®?. An additional 100
sex-specific neurons in the tail of the male worm orchestrate mating behavior .

The worm brain’s small size allows it to be rapidly imaged with single cell resolution using light
microscopy — either the anterior brain shared by both sexes or the posterior male-specific “brain”*.
Whole-brain imaging was pioneered in immobilized worms, where it was discovered that even in
the absence of external stimulus, a large proportion of the brain’s neurons engage in coordinated
activity. When this whole-brain activity is projected onto a low-dimensional representation, brain
dynamics follow a cyclical trajectory*?. Portions of the cycle correspond to the activity of pre-motor
interneurons known to be associated with locomotion direction, allowing epochs of fictive forward
and backward movement to be inferred in stationary animals. The stereotyped brain-wide activity
patterns for forward/backward behavioral states have been interpreted to represent global commands
that account for the majority of the variance in neural dynamics.

Forward and backward locomotion are slowly changing behavioral states, but muscle activity within



each state occurs on faster time scales to drive rapid exploratory head bending and rhythmic body
undulation*®. Although the neurons that drive these movements operate at much faster time scales,
they are directly modulated by other neurons with slowly changing activity that are correlated with
forward /backward behavioral state changes. The activity and cross-modulation of neurons across a
hierarchy of time scales occurs in both moving and immobilized worms. Nested activity dynamics
across time scales appears to be an organizing principle of the brain circuit, both during unrestrained

and fictive behavior **.

Comparing whole-brain dynamics in immobilized animals to separate behavioral experiments in
moving animals can illuminate correlations between circuit activity and behavior. To more carefully
dissect the mechanisms in whole-brain dynamics that produce behavior, brain and behavioral dy-
namics can be studied at the same time in the same animal. Improvements in volumetric imaging
speed and single neuron tracking now enable whole-brain recording in freely moving worms*>4°. As
observed in immobilized worms, large numbers of neurons in the brain are correlated with forward
and backward movement. In freely moving worms, however, substantial diversity in brain dynamics
is observed, with activity often correlated with additional quantifiable parameters of worm movement
such as velocity and curvature. Reliably decoding these behavioral details from brain-wide activity
requires large numbers of neurons, hinting at a more subtle and distributed neural code for the full
dynamics of worm behavior*”. Moreover, the correlation structure between certain pairs of neurons
changed dramatically when freely-moving worms were immobilized. Thus, the neural dynamics
of fictive behaviors in immobilized worms are measurably different from the corresponding neural
dynamics in unrestrained worms, an important caveat when trying to understand a natural behavior
by studying immobilized animals.

Another challenge in whole-brain recording is matching neurons between animals. In C. elegans, every
neuron follows a stereotyped lineage across development and has a largely stereotyped connectivity
to other neurons. In principle, one should be able to compare whole-brain activity of different animals
by aligning the activities of the same neurons. However, animal-to-animal variability in the relative
positions of cell bodies makes it the neuronal identities difficult to determine. To identify neurons,
one needs additional cell-specific information. Substantial knowledge of gene expression patterns
in C. elegans provides a means of adding identifiers to neurons. Labeling a cell or group of cells of
interest with a fluorescent protein with an emission spectrum orthogonal to that of the calcium sensor
allows specific cells to be tagged and identified. Recently, a combinatorial method of adding many
fluorescent labels of different colors was applied to the entire nervous system, facilitating neuron
identification during whole-brain imaging *®.

The tail of the male C. elegans contains a separate brain for mating with hermaphrodites*’. Male
mating behavior is a complex multi-step behavior composed of numerous component behaviors
that occur in different stimulus-evoked sequences from event to event. The male recognizes the
different parts of the hermaphrodite body as he circles around her (and as she generally tries to
escape from him), and makes many different movement decisions as he searches for the vulva and
copulates. The entire mating circuit in the male tail can be imaged continuously while the male
performs all steps of mating behavior. The full diversity of stimulus and motor patterns that occur
during mating behavior are represented in a similarly diverse set of neuronal activity patterns in
the male tail. The unique activity patterns exhibited by many neurons with respect to the entire
trajectory of the mating behavior facilitate neuronal identification when performing whole-brain
imaging. Many neurons contribute to multiple sub-behaviors in different ways, leading to different
correlation patterns throughout the circuit in different contexts. Functional correlations between
neurons are not fixed, but explicitly depend on context and behavioral state®’. Nevertheless, many
quantitative aspects of male mating behavior may be decoded from brain-wide activity pattern.



Whole-brain imaging promises to shed light on many aspects of worm behavior, but a major hurdle is
data analysis. Extracting signals with minimum motion artifact is challenging in an animal where the
brain itself deforms during normal locomotion®**>=3”, As more behaviors are studied for long periods
of time (timescale of tens of minutes or even hours), data analysis needs to become increasingly
automated without losing the reliability and accuracy of manual annotation (see Computational
methods for understanding neural and behavioral data).

Another caveat is that, in some cases, different calcium activity patterns are encoded in different parts
of the same neuron. To more easily separate traces from neighboring cells, most whole-brain imaging
studies have used nuclear markers of calcium dynamics. This creates a well-separated constellation
of discrete imaging volumes for all neurons, but it misses computationally relevant calcium dynamics
that may occur only in the nerve fibers and processes of many neurons®'~>. Whole-brain imaging
with comprehensive nerve fiber segmentation imaging in the small worm brain is difficult to imagine
with current methods. But in an animal that encodes the full range of its complex behaviors in
only hundreds of neurons, the computing power of single cells should not be underestimated. The
sophistication of single cells in C. elegans is clearly demonstrated in its motor circuit. In larger animals,
networks of spinal cord neurons give rise to rhythmic and organized movements®*>’. In C. elegans,
single motor neuron types encode the properties of networks of cells found in larger animals %43,
Careful analyses of spatiotemporal properties of specific neuron classes will continue to play a vital
role even with the availability of whole-brain approaches.

The fruit fly Drosophila melanogaster

Like C. elegans, the fruit fly has long been used to study the genetic basis of behavior. Since the
advent of optical methods for recording brain activity using transgenic animals, the fly has been
a widely used model for systems neuroscience: from its larval stage (with about 10,000 neurons)
to its adult stage (with about 100,000 neurons) 59 These two life stages have different behavioral
repertoires. Larval behavior primarily consists of foraging for food and avoiding threats, while the
adult fly exhibits a wider range of complex behaviors. The adult integrates visual, auditory, and
chemosensory cues when flying and walking, and as it engages in social behaviors such as courtship,
mating, and aggression.

Whole brain imaging in adult Drosophila is possible with either fast volumetric two-photon or light-
field microscopy. To visualize the entire brain with cellular resolution via imaging, the fly’s brain must
be exposed and its head fixed with respect to a microscope, limiting its range of motion. Nevertheless,
a rich set of sensorimotor behaviors can be explored with head-fixed flies in tethered flight or walking
on trackballs®°.

The large size of the adult Drosophila brain makes it difficult to record from the whole brain at once
with high spatial and temporal resolution. When whole-brain recording is performed with uniformly
labeled cells, the dense packing of cell bodies and neurites makes it difficult to resolve the optical
signal of individual neurons. Because it is impossible to align individual neurons across animals,
comparing experiments requires computational registration of recordings from different animals to
a common spatial atlas®'. Calcium dynamics in brain-wide recordings from the adult fly are often
measured from the densely packed neuropil, where each imaged voxel represents the integrated
activity of many neuronal fibers. These fibers — which locally receive and transmit synaptic signals
and propagate activity along their lengths — will generally have richer calcium dynamics than the cell
bodies that are more distant from synaptic contacts. Imaging volumes instead of discrete neurons
results in whole-brain activity measurements in the adult Drosophila with mesoscale resolution °%2%,
These pan-neuronal recordings in the adult fly are revealing common principles of whole-brain
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Figure 1: Recording from the brains of behaving animals. (A) A C. elegans worm crawls freely on a
motorized stage. A low-magnification 10x objective captures the animal’s entire body to record posture and
behavior, while a high magnification 40x objective records calcium activity from the animal’s brain. Real-
time feedback keeps the animal in the objectives’ field of view. Adapted from Nguyen et al., 2016. (B) A
larval zebrafish swims in a thin, water-filled nchamber. A high-speed, low-magnification optical setup tracks
the animal’s motion, while a high-resolution light-field setup records whole-brain calcium activity.Real-time
feedback in all three dimensions keeps the animal’s brain in the field of view. Adapted from Cong et al., 2017.
(C) An adult fruit fly is tethered and placed on an air-cushioned ball. A high-resolution objective allows for
two-photon excitation and recording of calcium activity from the animal’s head. The fly is free to walk in any
direction on the ball, with low resolution cameras recording the animal’s posture and behavior. Visual and
auditory stimuli are presented to the animal while it is on the ball. Adapted from Seelig et al., 2010.



function. As in C. elegans, large fractions of the brain show correlated patterns of activity even in the
absence of stimuli®*%,

To isolate the activity of single cells in Drosophila, complementary labeling approaches are often be
used. Using selective drivers of gene expression, comprehensive recordings of region-level activity
can be supplemented with targeted recordings from single cells and cell types of interest. Sparse
labeling strategies are another option, giving the experimenter access to a subset of neurons across

the brain with single-neuron resolution ®*.

Brain-wide imaging in the adult fly is now being used to perform whole-brain searches for behavioral
circuits that are less biased towards where sensory and motor signals should be located. A recent
example is the discovery of an unexpectedly widespread brain-wide response to auditory stimuli.
Components of fly courtship songs evoke activity from a diverse array of brain areas in both males and
females® . Stimulus-evoked responses were relatively stereotyped in early mechanosensory areas of
the brain, but became more variable in downstream regions. From moment to moment, different
downstream brain areas respond to the same stimulus inputs. This variability is not explained by
changes in the animal’s instantaneous movements, suggesting that auditory information shapes, but
does not alone drive, motor behavior during courtship. Internal states also affect brain-wide activity
and behavior. In female flies, long-lasting internal states drive different brain activity patterns and
behaviors in the presence of males: changes in receptivity to courtship as well as aggressive behaviors
like shoving and chasing °°.

Brain-wide imaging is also being used to uncover mechanistic principles that likely extend to whole-
brain dynamics in larger animals. A recent study of brain-wide imaging in the adult Drosophila
brain examined the correlation between measures of metabolic activity (fluorescent indicators of
intracellular molecules associated with cellular energy metabolism) and calcium activity®®. The fMRI
signal in whole-brain recording of humans and other large animals is a direct measure of changes
in blood flow, which is believed to reflect changes in local neuronal activity®. The fact that this is
empirically true in the fly suggests a general principle of brain physiology that seems to be shared by
species separated by more than 400 million years of evolution.

Recently, using nuclear-localized GCaMP and oblique light sheet (SCAPE) microscopy, it has become
possible to image a significant fraction of the central brain of an adult fly at single-neuron resolution
as it walks on a trackball®”. Thousands of neurons in the brain were recorded as the fly preformed a
number of behaviors, including running, grooming, and flailing. These data revealed populations
of neurons correlated to behavior over multiple timescales, from seconds to minutes. Different
behaviors were coupled to distinct patterns of brain-wide activity, with some behaviors engaging
the whole brain more strongly than others. While large fractions of the brain appeared to have
activity correlated with behavior, the uncorrelated portions of the brain had high-dimensional activity.
These data show that brain-wide neural activity consists of a combination of localized and broadly
distributed components.

As in C. elegans, it is likely that when recording from neuronal nuclei alone, many signals in the
neuronal processes are missed. Despite this caveat, the ability to record from thousands of neurons
simultaneously in the fly brain represents a significant advance. These results also highlight a key
advantage of whole-brain approaches—the ability to contextualize the activity of a single circuit
within a larger network.

It is also possible to capture the activity of the whole central nervous system of an immobilized
Drosophila larva with light sheet microscopy®®. Whole-brain recording in a crawling Drosophila
larva is harder because of the drastic movements and deformations of the brain in freely crawling
animals®’. The fictive motor behaviors of a brain that was surgically removed from a larva’s body
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Figure 2: Samples of pan-neuronal recordings in behaving animals. (A) A sample image of the brain of
C. elegans (left), labeled with pan-neuronal cytosolic GCaMP6s and nuclear-localized Tag-RFP. Normalized
activity traces (right) of 84 neurons in a freely crawling worm. Adapted from Venkatachalam et al., 2015.
(B) Top and side views of the brain of a larval zebrafish (left), labeled with GCaMP6f. Activity of segmented
neurons in the brain (right) during fictive swim behavior. Adapted from Mu et al., 2019. (C) On the left, a
schematic of volumetric imaging of the brain of an adult Drosophila being presented with auditory stimuli.
The brain is labeled with GCaMP6s and tdTomato. To the right are responses from recorded regions of interest
(ROIs) to auditory stimuli. Adapted from Pacheco et al., 2021. AL note: we may want to reach out to the authors
so we can plot higher-resolution neuron trace plots in a consistent color scheme

could be inferred from the activity of its ventral nerve cord in a recent whole-brain imaging study
using light-sheet microscopy. Two-photon tracking microscopy and single-objective light microscopy
have been used to follow the activity and movements of small numbers of neurons in the motor
circuit of freely moving larvae?2. As these tracking techniques gain in spatial and temporal resolution,
they are likely to extend to larger circuits for behavior in the unrestrained larva.

The larval zebrafish Danio rerio

One vertebrate model organism shares the relatively small size, optical accessibility, and well-
developed genetic toolbox of flies and worms. The larval zebrafish (Danio rerio) has about 100,000
neurons’’, and performs a large variety of stimulus-evoked navigational behaviors. These include
hunting and prey capture, as well as threat avoidance’?. Its brain layout has strong homologies to
mammalian brains (e.g., a bona fide cerebellum and hypothalamus), making it a good candidate
for cross-species studies’?. Its many neurons make it difficult to identify and compare the same
labeled neurons from animal to animal. Functional analysis of whole-brain imaging focuses on
identifying spatial regions of the brain with coherent activity patterns aligned to a spatial brain
atlas. The relatively stereotyped overall topology of the zebrafish brain facilitates alignment across
individuals, allowing brain maps to be compared for different animals and different experiments
with near cellular resolution”%74,

The calcium activity of the entire brain of an immobilized larval zebrafish was first recorded with
single-neuron resolution using light-sheet microscopy’°. Even in this immobilized larva, correlated
activity patterns were observed in large numbers of neurons across brain regions, and cyclic activity
was observed on multiple timescales in different neurons. Since then, comprehensive recording with



cellular resolution has been used to study a number of sensorimotor behaviors in immobilized and
semi-immobilized animals’®. One way to decode the motor behavior of an immobilized fish is to
record the electrical activity of motor nerves in its tail during whole-brain imaging’’. Another way is
to immobilize only the head for whole-brain imaging while monitoring the free movements of the tail.
Thus, a complete map of neurons and brain areas involved in various sensory to motor transformations
can be obtained. Recent studies have mapped brain-wide circuits for thermosensory and optomotor
responses, demonstrating the progressive computations that integrate separate sensory streams —
e.g., separate images presented to the left and right eye, or the detection of warming, cooling, and
absolute temperature — into purposeful motor decisions’®”?. The discovery of neurons that neither
strongly correlate to individual sensory inputs nor motor outputs represent convergence neurons that
carry out intermediate steps in information processing and non-reflexive decision-making®.

For example, the zebrafish larva has a strong and innate optomotor response that allows it to orient
when it sees a moving environment. But when zebrafish are presented with randomly moving dots
with a slight bias, they accumulate and integrate motion evidence over time before deciding in what
direction the dots are moving®:®2. The zebrafish larva also performs memory-dependent behaviors
including operant conditioning ®*%%. When swimming does not result in perceived movement, fish
will gradually change their willingness to perform swim bouts®®. As the larva gradually changes its
decision-making, functional correlations in a distributed brain-wide network also change. These
functional changes predict the outcome of decisions, and point to the distributed nature of decision-
making throughout the brain®%87:%5,

Like most other animals, zebrafish larva exhibit sustained behavioral states that affect brain activity.
For example, brain-wide imaging has been used in the zebrafish larva to uncover sleep signatures that
resemble slow-wave sleep and rapid eye movement (REM) sleep in mammals®®. These sleep states
have the same dependence on hormone signaling as the homologous states in mammals, pointing to
conserved principles in the brain-wide organization of sleep.

Behavioral states in active fish can only be discerned if the fish are allowed to exhibit behavior. One
way to elicit purposeful behavior from a fish is to close the loop between perceived motor action
and an applied stimulus to effectively create a virtual reality environment that can be explored by
an immobilized fish. In a recent study of zebrafish larvae navigating a virtual reality environment,
normal exploratory behavior was observed. However, when the system was switched to “open loop”,
swim commands no longer correlated to perceived self-motion, and the fish begin swimming intensely
for a period, before entering a state of futility-induced passivity®>. Whole-brain imaging revealed
the corresponding distinct brain states, and the discovery of glial cells which accumulate evidence of
futility and ultimately trigger the change in behavioral state. Internal state transitions after prolonged
behavioral challenges have also been demonstrated at the level of brain-wide circuits. Whole-brain
imaging with prolonged behavioral challenge uncovered the progressive activation of neurons in the
habenula, a brain area that controls other circuits that regulate passivity®’.

Functional whole-brain imaging studies in larval zebrafish have also enabled the discovery of neural
populations with functional roles that are conserved in other vertebrates. By combining whole-brain
activity with cell-type specific markers, whole-brain imaging uncovered a variety of neuromodu-
latory cell types that are correlated with the animal’s internal states’’. Remarkably, homologous
neuromodulatory cells in the mouse exhibited similar state-dependent dynamics as the larva, under-
scoring the generalization of principles learned from whole-brain imaging in small, accessible model
animals.

Many complex behaviors and behavioral states only occur in unfettered animals. Certain forms
of environmental feedback, such as proprioceptive or vestibular cues, cannot easily be replicated
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in virtual reality. One recent study of the vestibular response in an immobilized zebrafish larva
was accomplished with a specialized whole-brain imaging system that rotated in its entirety”’.
Complex naturalistic behaviors, such as hunting, can only be studied in freely moving animals. The
predation of Paramecia by zebrafish larvae is a multi-component behavior consisting of visual search,
pursuit, and prey capture. Hunting requires rapid sensory processing, motor feedback, and fast
context-dependent decision making to continue or abort a pursuit. High speed whole-brain imaging
with microscopes that track freely-moving larvae has identified brain regions activated during prey
capture®’. Recording from freely swimming zebrafish foraging for Paramecia has revealed transitions
between distinct brain states for exploratory locomotion versus hunting and identified the network

of neurons that trigger this transition *2.

Whole-brain structural imaging

The functional imaging approaches described above provide a means of quantifying the activity
of the whole brains of diverse species. The small size of the animals reviewed here is also an
advantage when carrying out structural imaging: acquiring the detailed synaptic connectivity of their
entire nervous systems. Determining the “wiring diagram” of the brain through structural imaging
enables direct comparisons between functional activity data and neural anatomy. Connectomes thus
place important constraints on the correlation structure of brain-wide neural activity. Connectomics
requires serial-section electron microscopy — the only imaging modality with the throughput and
resolving power necessary to reconstruct complete synaptic circuits.

C. elegans was the first animal to offer a near complete synapse-level map of its entire nervous system,
a heroic feat with methodology in the 1980s°®. An analysis of a complete circuit for behavior directly
emerged from this connectome. Through systematic laser ablation and behavioral analysis, Chalfie
et al. mapped the circuit for harsh touch sensitivity — a feedforward reflex that allows the worm to
avoid anterior or posterior touches by rapid backward or forward movement - from sensory neurons
to interneurons to motor neurons’>. Since this early achievement, the connectome has provided an
invaluable resource for mapping behavior to circuits in C. elegans. A larger challenge is to use the
connectome to understand whole-brain activity patterns.

One approach to using whole-brain connectomes is to compare animals with connectomes with
informative differences. The low throughput of whole-brain connectomics precludes doing this on a
large scale for most animals. Comparative connectomics, however, has begun with the nematode
C. elegans. The connectome has been mapped for an isogenic population of nematodes across
development at different time points from birth to adulthood . Substantial remodeling of synaptic
circuits that is directed by a number of organizing principles and brain-wide patterns was observed.
The changing connectome of the growing worm is likely to underlie changes in whole-brain dynamics
and behavior that accompany its maturation. Brain-wide imaging applied to the developing worm
may reveal the effect of anatomical maturation on circuit dynamics.

Connectomes of larger animals are being reconstructed. Substantial portions of the connectome of
an entire Drosophila larval brain have been mapped, providing insights into its circuits for sensory
processing, decision-making, learning and memory, and motor control °#°>. The synapse-level con-
nectome of an adult Drosophila hemibrain has recently been completed, and additional connectome
maps are underway>”7%%7,

The adult Drosophila connectome has been used to assess brain-wide functional connectivity. The
pattern of resting-state functional correlations in brain-wide calcium activity has been shown to
reflect the coarse-grained structural connectivity of the fly brain (as inferred from the full anatomical
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wiring diagram). A similar relationship between functional and mesoscale structural connectivity
has been observed in the mammalian brain, underscoring the role of synaptic connections in shaping

brain-wide activity patterns across species“®.

Structural studies are underway in the brain of the larval zebrafish. Light microscopy and the
integrated analysis of a large panel of sparsely-labeled transgenic fish has been used to build a
comprehensive atlas of the brain with single-cell resolution’“. Serial-section electron microscopy,
albeit at lower resolution than needed for individual synapses, has been used to reconstruct the
morphology of all cells and fibers in the brain ®”. With high-resolution imaging and automated analysis,
complete maps of the zebrafish brain with full synaptic resolution are forthcoming °%1°!,

The connectome is not sufficient to understand brain-wide dynamics. As studies of brain-wide activity
repeatedly show — whether in worms, flies, or fish — the same connectome can give rise to functional
correlations between neurons and across brain regions that change dramatically with environmental
context and behavioral state. In C. elegans, we know that the wiring diagram is largely stable across
isogenic individuals that exhibit the same behaviors, underscoring its functional relevance®. The
computational properties of the brain are encoded in both its synaptic and non-synaptic pathways of
communication that span multiple spatial scales — from micro-circuits to the whole nervous system —
and multiple temporal scales — from seconds to animal lifetimes. Connectomes, when combined with
whole-brain activity patterns at the cellular and synaptic level, will be essential for modeling brain
activity.

Computational methods for understanding neural and behavioral data

Emerging methods for high-throughput connectomics, whole-brain functional imaging, and behavioral
quantification are generating enormous datasets. We now have a pressing need for computational
and statistical methods to aid in preprocessing, exploring, integrating, and ultimately understanding
these data. Advances are being made at each stage of analysis, but much work must be done to
realize the potential of modern recording technologies and the datasets they produce.

The most immediate problem is to extract biological signals of interest from the raw data. In
the experimental setups described above, a common first step is to track neurons in a video of a
moving animal and estimate the calcium fluorescence in each cell over time '°271%%, In C. elegans,
for example, the tracking problem is complicated by the fact that cells may come and go from
the field of view, and their relative positions may change as the animal’s body compresses and
expands during movement. A variety of methods approach this problem with new machine learning
techniques®*~’ and experimental techniques for multi-color fluorescence imaging*®. Machine
learning is also accelerating behavioral analysis and connectomics. Markerless tracking algorithms
for identifying keypoints of interest on an animal’s body—Ilike the center-line of the worm, the
eyes and tail of a larval zebrafish, or the legs, body, and eyes of a fruit fly—have seen considerable
advances in recent years '°>~1%’, These methods transfer highly-tuned convolutional neural networks
for human pose estimation to the animal setting with relatively little additional training. Deep
learning has also been key to automatically tracing neural tissue in serial electron microscopy images
for connectomics®%°%11%96: 111 with these advances, it is now possible to measure neural and
behavioral data with high resolution and to trace the neural circuits that give rise to this activity and
drive motor output.

How do we gain understanding from these large-scale neural, behavioral, and connectomic datasets,
once these preprocessing challenges have been surmounted? One approach is bottom-up, looking for
simple, recurring patterns in the data that demand theoretical justification; the other is top-down,
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Figure 3: Computational methods for neural and behavioral analysis. Top Left: The first challenge is to
develop statistical methods to extract biological signals of interest from raw data. For example, extracting
the times of action potentials (i.e. “spikes”) from extracelluar voltage recordings, demixing and deconvolving
calcium fluorescence traces, or tracking body parts in videos. Top Right: Computational models for exploratory
analysis aim to reveal simplifying structure in high dimensional signals, like repeated sequences of spikes, low
dimensional trajectories of neural activity, or clusters of stereotyped behaviors. Bottom left: Top-down analyses
hypothesize an algorithm and circuit implementation to solve a computational problem, like tracking heading
given visual inputs and proprioceptive feedback. The model makes predictions about neural activity that can
be tested against measured data. Bottom right: Rather than hand-tuning an algorithm and circuit, task-based
modeling learns a circuit to solve a particular computation by minimizing a loss function. This relatively new
approach offers an indirect way of making testable predictions of neural activity.
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positing a normative theory of neural computation and hypothesizing a biological mechanism that
could carry it out. These are complementary endeavors that ideally will meet in the middle !'2.

Bottom-up approaches, also known as exploratory analyses ''®, aid in visualizing high-dimensional
data and, hopefully, discovering unexpected structure therein. Dimensionality reduction techniques,
like clustering, principal components analysis, nonlinear manifold learning methods, and dynamical
systems models, are common examples widely used in neuroscience''*. Such techniques are used to
identify stereotyped patterns of behavior ' '>!1°, model their temporal dynamics ''7:''®, and relate neu-
ral activity to behavior'%12°, For example, in C. elegans these analyses have been used to determine

that immobilization alters brain-wide neural dynamics and its correlation structure®’.

Advances in machine learning continue to expand this toolkit, offering new techniques for finding low-
dimensional structure in neural and behavioral data. For example, probabilistic state space models
summarize high-dimensional time series data in terms of simpler latent “states” and a dynamical
system that governs how states change over time 121122, Combined with neural networks or Gaussian
processes, these approaches can find states that lie on a nonlinear manifold, or states that evolve
according to nonlinear dynamics. Such methods underlie many recent techniques for modeling neural
and behavioral time series '>~'32, How can we use these methods to learn about neural computation?
One approach is to use nonlinear dynamical systems theory to characterize the learned dynamics in
terms of linearizations around their fixed points'*>. What have these bottom-up approaches taught
us? In the study of motor cortical dynamics during reaching, where many of these methods were
pioneered, dynamical systems models have shown how complex single-cell tuning curves can be
explained by a few population-level states'>*. In immobilized C. elegans, these approaches have
shown how whole-brain activity can be characterized by a low-dimensional dynamical system with
approximately linear dynamics corresponding to behaviors like forward crawling, reversals, and
turns *2. As we look toward whole-brain recordings in more naturalistic behavior, state space models
offer a means of relating neural and behavioral data in terms of low-dimensional, and hopefully
more interpretable, latent states.

Top-down approaches, in contrast, start with a theoretical model of how a particular computation
could be carried out, and from that derive predictions about neural and/or behavioral data. For
example, theoretical neuroscientists hypothesized that an idealized neural circuit called a “ring
attractor” could maintain an internal estimate of an animal’s heading direction '®>'3¢, In the model,
there is a population of neurons with each neuron tuned to a particular heading: its firing rate
is highest when the animal is facing in its preferred direction. Through a balance of excitatory
and inhibitory synapses, the population of neurons produces a “bump” of activity in the subset of
similarly tuned neurons. Sensory cues and proprioceptive feedback provide external inputs to the
circuit, causing the bump to move in accordance with the animal’s heading. Recently, experiments
have identified such a circuit in the Drosophila central complex '*’, and remarkably the cells were
physically arranged in a ring, just as the theory had predicted.

Rarely are theoretical models borne out so nicely in practice. Many of the brain’s computations are too
complex for closed-form, theoretical solutions. Instead, computational neuroscientists have recently
turned to “task-based” modeling, which leverages artificial intelligence and deep learning 38141,
The idea is to model an artificial agent performing the same computation (i.e. task) as the animal,
but using an artificial neural network in place of a biological one. Rather than solving for the optimal
artificial network weights analytically, task-based modeling uses stochastic gradient descent to search
for an approximately optimal configuration. The trained artificial agent offers a reference point for
studies of biological nervous systems. In particular, the “neural activity” of the artificial agent (i.e.
the activation of units in its artificial neural network) offers a prediction of neural activity in the
biological organism. The key idea is that it is often easier to identify the computational problem
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and the architectural constraints than it is to solve for the theoretically optimal solution, and deep
learning algorithms can solve the hard problem of finding an optimal network weights for a given
task. In this sense, task-based modeling offers a new approach to connecting top-down theories of
computation to complex neural, behavioral, and connectomics data, opening exciting new frontiers
for computational and theoretical neuroscience.

Discussion

Whole-brain imaging is now an important tool in systems neuroscience. Common themes are
emerging in studies of different animals across different behaviors, pointing to shared principles in
the brain-wide representation of behavior 2. Whole-brain imaging may be necessary to understand
the systems-level organization of natural behaviors as, whenever it has been applied, representations
of behavior have proved to be more widely distributed that one might naively expect. Neurons
and neuronal circuits are engaged in different ways during different behaviors. Understanding
the functional correlations across circuits requires explicit integration of whole-brain imaging with
quantitative descriptions of behavioral dynamics. Whole-brain imaging also needs to be coupled
with fine-grained analyses of individual neurons and their connectivity to capture and interpret
computational dynamics at all relevant spatial scales.

This problem of understanding brains and behavior is naturally exciting for physicists. The technical
demands of experiments and the challenges of understanding large and complex datasets have
progressed to the point that collaboration between experimentalists and theorists in neuroscience
and biophysics is needed in many of these whole-brain studies. The same relationship between
theory and experiment that characterizes many areas of physics will advance the field of whole-brain
imaging. Theorists are now making useful and interesting predictions, and experimentalists can
test them by leveraging the growing toolbox of molecular, cellular, and structural perturbations
available in genetically accessible model organisms. Here, we describe areas where experimental
and theoretical physicists can help to move the field forward, either with technological advances or
mathematical modeling.

Functional whole-brain recording methods: outlook and challenges

The advancement of microscopy techniques such as two-photon, confocal, structured illumination,
and light-sheet have enabled functional imaging of the entire brains of C. elegans, Drosophila, and
larval zebrafish. Each technique offers a different ratio of the speed-resolution trade-off. Combining
techniques such as spinning-disk confocal microscopy and light-field microscopy>’, two-photon with
light-sheet microscopy '*3, or incorporating deep-learning techniques for resolution enhancement>!
can partially alleviate the speed-resolution trade-off. While the small size of C. elegans enables func-
tional whole-brain imaging in freely moving animals at high speeds and at single-cell resolution*®3,
and recent work in Drosophila has enabled high-speed recording of flies walking on a ball with
single-cell resolution®’, the development of microscopy systems capable of recording functional
whole-brain datasets with cellular resolution at speeds that match the multiple timescales of neural
and behavioral dynamics remains a challenge in larger organisms.

Another challenge for whole-brain imaging in freely moving animals is the improvement of tracking
algorithms. C. elegans and zebrafish display movements of high complexity'** and tracking has
largely relied on proportional error-correction control software *%:3%14%29 This method compensates
for changes in position but does not compensate for the deformation and changes in brain orientation.
In the case of C. elegans, the brain deforms as the worm moves, making it difficult to track the identity
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of the neurons being recorded over time. Recent studies, train deep neural networks to recognize the
configurations the brain adopts in different worm postures. This approach enables tracking neurons
with ~ 74% accuracy '*%'%7, In larval zebrafish, the brain does not undergo significant deformation
during free swimming behavior and data analysis relies on mapping the recorded brains onto a
reference brain atlas that enables near single cell resolution alignment’*'4>. Nonetheless, tracking
the identity of neurons in different fish remains an unresolved challenge.

Body posture dynamics in Drosophila involves the use of six legs and a pair of wings, making posture
dynamics segmentation a complex computational challenge. In recent years, the development deep
neural network techniques for pose estimation '4%19%14° " and unsupervised techniques for body
position dynamics®'® has enabled the development of predictive models of behavior with higher
spatial and temporal resolution '4*. Incorporating these new developments in animal pose estimation
and predictive models of behavior '*° into tracking control algorithms will significantly improve the
throughput and quality of whole-brain datasets in behaving flies.

Physics-based theoretical frameworks to merge levels of neural computation

Understanding the way in which high-level computational features of brain processing such as
decision-making algorithms, sensorimotor transformations, and internal state trajectories emerge
from the low-level activity or molecular properties of individual neurons requires the development of
theoretical and computational tools which span top-down and bottom-up modeling approaches.

Physics has long navigated different levels of abstraction of natural phenomena. In non-living matter,
theoretical approaches have established satisfactory descriptions of behavior from the level of sub-
atomic particles to that of entire galaxies. In living matter, physics has also succeeded in bridging
different levels through coarse-graining. For example, in the study of bacterial chemotaxis'°!, models
that describe how operon structure determines gene expression have been incorporated into higher-
level models that describe the behavior of populations of freely swimming bacteria '°2. This multiscale
theoretical approach merges physics-based models of molecular networks with physics-based models
of random walks. It led to understanding the way in which correlation structure in gene expression
can shape the distribution of behaviors in a bacterial population, and the manner in which this
determines environmental fitness 1%,

In neuroscience, physics-based models exist at many scales, from descriptions of ion channels and
detailed Hodgkin and Huxley models of neurons and small circuits 1>%'!! to maximum entropy models
of whole-brain activity 1> and phenomenological models of decision-making and behavior '**. Theo-
retical efforts to understand higher-level brain function from whole-brain activity and connectomics
should not be limited to dynamical systems that transform neural dynamics into behavioral dynamics.
They should also incorporate levels of abstraction where the contribution of circuit properties at
multiple scales — such as network motifs, control algorithms, relative timescale constraints, and weak
linkage — can be tested. This challenge could be tackled, for example, by starting with computational
multiscale agent-based models that incorporate different scales of abstraction and then moving to
analytical models that capture relevant phenomena in the range of scales and parameters that are
relevant to a specific scientific question.

Conclusion

Whole-brain imaging was made possible by technological advances in optics, genetics, fluorescent
sensors, and computational image analysis. These whole-brain datasets have allowed novel theoretical
frameworks to be compared against measured data. Looking forward, we hope that continued
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advancements in both experimental and theoretical methods will enhance our understanding of
brain-wide computation.

The field of whole-brain studies of animal behavior has been initiated with animals — invertebrates
and vertebrates — that evolutionarily diverged over 400 million years ago. The complex behaviors
exhibited by worms, flies, and fish are analogous to behaviors studied in larger animals. In these
larger animals, however, it is only possible to study these behaviors with more compartmentalized
approaches. The identification of common principles in brain dynamics and behavior in these
genetically tractable small model organisms are likely to represent principles that are widely shared
across the animal kingdom.

Neuroscience has historically been constrained by the available technologies to reductionist ap-
proaches to understanding behavior, recording from small numbers of neurons in controlled settings.
Ethology, on the other hand, has relied on careful observations to study natural animal behavior.
Determining the neural basis of animal behavior has been a long-standing interest of both fields.
Since behavior often engages widely distributed brain circuits, however, until recently it has not
been possible to simultaneously capture behavior and high-dimensional neural activity '°°. Advances
in physics, biotechnology, and computer science have allowed this gap to be bridged. Whole-brain
approaches to brain dynamics and structure are now opening a new and interdisciplinary field:
studying the neural basis of natural behavior.
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