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Optical isolators today are exclusively built on magneto-optic 
principles but are not readily implemented within photonic 
integrated circuits. So far, no magnetless alternative1–22 has 
managed to simultaneously combine linearity (that is, no 
frequency shift), linear response (that is, input–output scal-
ing), ultralow insertion loss and large directional contrast 
on-chip. Here we demonstrate an electrically driven optical 
isolator design that leverages the unbeatable transparency 
of a short, high-quality dielectric waveguide, with the strong 
attenuation from a critically coupled absorber. Our concept 
is implemented using a lithium niobate racetrack resona-
tor in which phonon-mediated13 photonic Autler–Townes 
splitting10,16,23,24 breaks the chiral symmetry of the resonant 
modes. We demonstrate isolators at wavelengths one octave 
apart near 1,550 nm and 780 nm, fabricated from the same 
lithium-niobate-on-insulator wafer. Linear isolation is dem-
onstrated with simultaneously <1 dB insertion loss, >39 dB 
contrast and 10 dB bandwidth up to ~200 MHz.

Optical isolators are indispensable in nearly all photonic systems 
as they help ensure unidirectionality and provide protection from 
undesirable reflections. Magneto-optic (MO) isolators, based on 
asymmetric Faraday rotation, have long dominated non-reciprocal 
photonic device technologies as they simultaneously provide low 
insertion loss (<2 dB), high directional contrast (30–60 dB) and 
wide bandwidth (several nanometres). While a number of attempts 
have been made to bring these devices on chip25–31, with some mea-
sure of success, there remain many unresolved challenges that have 
held back full adoption. The foremost among these is the lack of 
appropriate materials in photonics foundries, and the additional 
technical constraint of magnetic biasing. Recent results28,30,31 on 
integrated MO isolators have been successful at achieving low inser-
tion loss over modest bandwidth; however, they cannot be easily 
adapted to any wavelength of choice since the Faraday effect is chro-
matic, that is, it is a strong function of wavelength. Moreover, the 
MO material stack is intrinsically lossy, and therefore, the best cur-
rent examples28,30,31 attempt to use the minimum possible amount of 
MO material.

Due to a wide recognition of these limitations, extensive research 
has been performed on alternative isolator and circulator tech-
nologies that leverage synthetic fields5,6,12,21, optomechanics2,7–11, 
acousto-optics1,13,14,17–19,22, electro-optics3,4,16,20, spinning resonators32 
and chirally pumped atoms33. These techniques may be generally 
considered as variations of spatiotemporal modulation and use some 
momentum conservation rule or momentum bias to break reciproc-
ity. Often, these approaches operate over a narrow bandwidth, which 

is quite acceptable for a wide variety of single-frequency laser appli-
cations, for instance, in ultrastable sources34,35, light detection and 
ranging36, frequency combs37 and atomic referencing38–40. A number 
of these alternative techniques have demonstrated very large optical 
contrast20 (Supplementary Section 7); ultimately, however, the abil-
ity to provide low insertion loss remains a huge technical challenge.

The absolute ideal for a two-port low-loss device on chip is sim-
ply a high-quality linear waveguide of short length. This represents 
the best case for achieving the lowest forward insertion loss in the 
‘high-transparency’ direction of an isolator. We now introduce a 
narrow-band absorber, for example, a high quality factor (high-Q) 
resonator that is shunt-coupled to this ideal waveguide10,15. If this 
absorber is detuned more than a few linewidths from the fre-
quency of interest, it will not be accessible to the light propagating 
within the waveguide and a high transparency is observed (Fig. 1a).  
On the other hand, when the light is resonant with the absorber 
and if the absorber is critically coupled to the waveguide (Fig. 1b), 
a giant attenuation factor can be achieved. Here critical coupling 
occurs when the intrinsic loss rate for the whispering-gallery reso-
nator (WGR) mode is matched to the coupling rate from the exter-
nal interface (Supplementary Section 2). It is this combination of 
near-ideal transparency and giant attenuation that we wish to simul-
taneously exploit10,16, and it can be achieved using a narrow-band 
absorber with broken chiral symmetry (Fig. 1c).

In this Letter, we report a method to induce very large chiral 
asymmetry in a two-level photonic atom using phonon-mediated 
photonic Autler–Townes splitting (p-ATS)10,13,16. Here p-ATS is the 
splitting of non-degenerate optical modes caused by an externally 
driven field, in analogy to ATS in electronic systems30,41. When 
coupled with a waveguide, the resulting isolator exhibits near-ideal 
characteristics. The two-level photonic atom is produced using a 
WGR that supports two families of optical modes belonging to the 
transverse electric TE10 and TE00 families. We identify a mode pair 
that is closely spaced in frequency near a mode-family crossing, 
with the TE00 mode (ω1, k1) and TE10 mode (ω2, k2) having distinct 
frequencies (ω) and wavevectors (k), as shown in Fig. 1d. These 
two modes can be unidirectionally coupled through acousto-optic 
scattering, as long as the difference in frequency (Ω = ω2 − ω1) and 
momentum (q = k2 − k1) between the optical modes matches the fre-
quency Ω and momentum q of an acoustic excitation of the mate-
rial. In addition, the overlap integral between the acoustic mode 
and optical modes must be non-zero13. Both these requirements, 
while tricky, can be simultaneously achieved by the engineering of a 
two-dimensional (2D) ‘texture’ for the acoustic excitation of the res-
onator13,17, such that there is a non-zero momentum along the WGR 
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circuit, while a standing wave exists in the transverse direction. 
When the phonon-enhanced optomechanical coupling rate (Gph) 
exceeds the optical loss rates (Gph > √κ1κ2), we enter the strong 
coupling or p-ATS regime (Supplementary Section 1). This regime 
manifests as unidirectional hybridization of the selected TE10 and 
TE00 modes, modifying their dispersion and splitting the frequency 
of resonant absorption in the phase-matched direction only. In this 
analogy, Gph determines the amount of frequency splitting and is 
equivalent to the Rabi frequency in atomic ATS. In this situation, 
light propagating at the original optical resonance frequencies (ω1 
and ω2) in the waveguide no longer interacts with the resonator and 
simply propagates through it. This will be the case as long as the 
process is reasonably well phase matched, and the coupling rate Gph 
is sufficiently large. In the non-phase-matched direction, however, 
the original optical modes remain unmodified. Thus, the funda-
mental limit to the isolator bandwidth is set by the original opti-
cal modes. If we additionally design the system to achieve critical 
coupling for the TE10 mode, then giant contrast is simultaneously 
achieved (Supplementary Section 2). As a result of this architecture, 
our approach achieves unidirectional strong coupling and large 
non-reciprocity with a single radio-frequency (RF) input, without 
requiring multiple phase-shifted signals, which is common in other 
spatiotemporal modulation approaches.

For experimental implementation, we used a lithium-niobate- 
on-insulator-integrated photonics platform. The wide bandgap of 
lithium niobate (LN) imparts a broad transparency window span-
ning from 350 to 5,300 nm. Additionally, the high piezoelectric 
coefficient of LN allows very efficient actuation of surface acous-
tic waves via RF stimulus42, which is a specific advantage for this 
device. In contrast to previous efforts that used aluminium nitride 
as the photonic and piezoelectric material13,17, here we are able to 
achieve much higher optical Q-factors (107 at 780 nm and 3.5 × 106 
at 1,550 nm) and substantially better electromechanical transduc-
tion efficiency (about ten times higher at 40%). The two-mode race-

track resonators and adjacent single-mode waveguides (Fig. 2a) are 
etched with ridge waveguide geometry (Supplementary Section 5). 
Grating couplers covering the wavelength range of interest are fab-
ricated on either end of the waveguide to provide off-chip optical 
access to the isolator. Finally, to ensure the transverse standing-wave 
characteristic for acoustic excitation, we fabricate an acoustic  
reflector by fully etching the LN thin film on the far side of the  
racetrack (Fig. 2a,b).

We first characterize the primary acoustic and optical compo-
nents of the isolator. Measurement of the RF reflection coefficient 
(RF S11) of the interdigitated (IDT) actuator shows a dip near 3 GHz, 
confirming the excitation of the surface acoustic wave (Fig. 2c). The 
optical states of the racetrack resonator are measured by probing the 
transmission through the adjacent waveguide. As shown in Fig. 2d, 
two optical-mode families can be identified, where the TE10 fam-
ily is better coupled to the waveguide due to its larger evanescent 
field. In fact, the TE10 mode is critically coupled to the waveguide to 
ensure maximum attenuation in the backward direction. The TE00 
mode is kept intentionally dark (that is, undercoupled) since it is 
helpful to both lower the Gph requirement and to suppress sideband 
generation (as discussed later). The device is designed such that 
there is a mode crossing near the wavelength of interest. For the 
specific device shown, we find an optical-mode pair located near 
192.6 THz (1,556 nm) that has a frequency separation of ~3.0 GHz, 
which is similar to the acoustic frequency. Finally, a constant RF 
tone at 3 GHz is applied to the IDT actuator, which launches the 2D 
surface acoustic wave and hybridizes the two optical modes, pro-
ducing the p-ATS.

We experimentally measure the non-reciprocal transmission 
using optical heterodyne detection (Supplementary Section 6), 
which enables a separate measurement of the carrier signal transmis-
sion and its sidebands. Figure 2e shows the evolution of the optical 
spectrum for increasing RF driving power, in both phase-matched 
(optical S21) and non-phase-matched (optical S12) directions through 
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the waveguide ports. We factor out the grating coupler losses in 
optical S-parameter measurements (Supplementary Section 6) 
as these devices are intended to be monolithically integrated into 
larger photonic circuits. The frequency of the original TE10 mode 
is defined as the zero-detuning (Δ = 0) point. In the phase-matched 
direction, the optical modes experience a clear p-ATS phenomenon, 
with the central transmission at zero detuning approaching unity 
for large drive power. At the same time, the optical modes remain 
unperturbed in the non-phase-matched direction.

A closer examination of the telecommunication-wavelength 
(1,550 nm) isolator is presented in Fig. 3a. We observe that this 

device simultaneously achieves a forward insertion loss of 1.13 dB 
with peak contrast of 12.75 dB using 29 dBm of RF driving power. 
This drive level corresponds to a phonon-enhanced optomechani-
cal coupling rate Gph of 0.98 GHz, and we are currently prevented 
from increasing this further due to the power-handling capability of 
the IDT actuators. The non-reciprocal contrast here is limited only 
by the degree to which we are able to approach the critical coupling 
in the fabricated device. While our main attention is on the central 
isolation behaviour, we also observe appreciable non-reciprocity on 
the wings corresponding to the dressed states, although absorption 
occurs in the opposite (phase-matched) direction in this case.
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Fig. 2 | Implementation and characterization of phonon-mediated p-ATS isolator. a, Microscopy image of the LN optical isolator. The device is composed 
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During the experiment, we are also able to monitor the ±3 GHz 
sidebands of the carrier signal, and we find that they are consis-
tently ~20 dB below (or above) the original carrier signal power. 
This is owing to a combination of the very high Gph, which signifi-
cantly reduces the interaction between the waveguide and WGR at 

Δ = 0, as well as the undercoupled TE00 mode that does not couple  
well to the waveguide. Further discussion is provided in 
Supplementary Section 3.

Since all the features of this device are lithographically defined 
and they do not depend on the gyrotropic property of any 
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Fig. 3 | Experimental demonstration of phonon-mediated p-ATS isolators near 1,550 and 780 nm. Detuning Δ is defined relative to the unperturbed TE10 
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wavelength-dependent material (for example, the Faraday rotation 
effect in magneto-optics), we are able to shift the operational wave-
length of this isolator freely within the transparency range of LN. 
In fact, optomechanical coupling Gph is directly proportional to the 
optical frequency, implying that isolators operating at short wave-
lengths with comparable parameters will require lower power. There 
is, however, the possibility that this advantage is offset by the gener-
ally higher surface-scattering-induced loss at short wavelengths. In 
this context, we developed a 780 nm demonstration (Fig. 3b) for the 
isolator using the same lithium-niobate-on-insulator substrate. This 
device simultaneously achieves a forward insertion loss of 4.76 dB 
with peak contrast of 12.86 dB, using 25 dBm of RF driving power 
to reach Gph ≈ 0.99 GHz. While the insertion loss achieved in this 
device was not as low, sideband generation is significantly reduced 
since the TE00 mode is very undercoupled.

In the above p-ATS-based approach, the isolation contrast is pri-
marily dictated by the criticality of coupling between the waveguide 
and optical mode (here the TE10 mode) and is therefore strongly 
dependent on the fabricated geometry. Contrast factors greater than 
25 dB can, therefore, be difficult to achieve because of the matching 
requirement with the intrinsic resonator loss. One solution to the 
contrast problem is instead leveraging the non-reciprocal wings to 
either side of the central non-reciprocal band. In these bands, the 
contrast is dictated by the placement of and coupling to the dressed 
states. The contrast is, therefore, a function of Gph and of the relative 
mismatch δ = ω1 − ω2 + Ω between the optical-mode separation and 
applied phonon frequency. Additional discussion of this situation is 
provided in Supplementary Section 4. As a key result, we find that if 
the TE10 mode is intentionally overcoupled and the mode mismatch 
is δ < 0, then there exists a choice of Gph where critical coupling is 
achievable near the lower dressed state. Conversely, for δ > 0, criti-
cal coupling is achievable near the upper dressed state. A dramatic 
example of this situation is presented for an overcoupled 1,538 nm 

isolator (Fig. 4); on the lower dressed state, we can simultaneously 
observe 0.65 dB insertion loss with 39.3 dB contrast using 29 dBm of 
RF driving power to reach Gph ≈ 0.76 GHz. Here spacing between the 
optical modes is 3.72 GHz while the RF drive is at 3.04 GHz, imply-
ing δ ≈ −0.68 GHz. We also implemented this effect with opposite δ 
using a device operating near 780 nm (Supplementary Fig. 4).

We can understand this phenomenon fairly intuitively by consid-
ering instead a sideband picture, which works since the mismatch 
δ puts the system in a regime between pure ATS and the alternat-
ing current Stark effect (the latter explains the noticeable frequency 
shifts in the modes). As we scan the overcoupled TE10 mode (that is, 
intrinsic loss rate less than extrinsic coupling rate), we find a range 
of frequencies where the scattering into the undercoupled TE00 
mode is resonantly enhanced. This implies that as Gph increases, 
the effective intrinsic loss rate of the TE10 mode over this band 
increases, and can approach the extrinsic coupling rate to hit criti-
cality. This intuitive explanation is also experimentally supported 
by the increased Stokes sideband power in the 2→1 case (Fig. 4), 
which indicates increased scattering into the TE00 mode. While this 
approach is much more sensitive to the value of Gph, unlike the cen-
tral isolation band, the tunability of this operating regime can be 
advantageous and ultimately delivers better results in the devices 
shown in this paper.

Since isolators are often used in cascaded configurations, citing 
insertion loss (IL) or isolation contrast (IC) alone is not meaningful. 
Instead, as discussed previously10, the ratio of IC per dB of IL is the 
relevant figure of merit that accounts for cascading. We find that 
this device (Fig. 4) not only provides IC at par with the best MO 
isolators, but significantly outperforms them on IL and isolator fig-
ure of merit (comparison shown in Supplementary Section 7). The 
main disadvantage of our approach compared with magneto-optics 
is the narrower operational bandwidth, which is another equally 
important figure of merit for isolators. In our approach, the isolation  
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bandwidth is fundamentally limited by the optical-mode shape 
and—to an extent—can be increased by lowering the optical 
Q-factor while increasing Gph to achieve the same insertion loss. 
Ultimately, terahertz-range isolation may be reachable by extend-
ing our approach to non-resonant systems4,22, although extremely 
large Gph will be necessary to achieve competitive insertion loss. 
A solution to significantly increase the bandwidth thus remains 
an open challenge. In the interim, the addition of electro-optic or 
thermo-optic frequency tunability would be a clear path towards 
increasing the utility of the isolators demonstrated in this work.

The lack of optical isolators in photonic integrated circuits has 
long been a technological hurdle, and their absence is uniquely felt 
by contemporary quantum and atomic microsystems. Isolator and 
circulator banks are extensively used in low-temperature quantum 
technologies to suppress thermal noise, but stray magnetic fields 
from available isolators can be problematic for superconducting 
materials, for example, in qubits. Magnetless isolators working in 
the visible and near-infrared wavelengths are also critically needed 
to enable chip-scale atom–photon integration38,39,43, as they can cir-
cumvent undesirable Zeeman shifts44. The isolators demonstrated 
by us are extremely well positioned to address these applications, as 
they exhibit narrow-band performance at par with current off-chip 
MO isolators, while simultaneously providing access to wavelength 
ranges that are challenging with MO techniques.

Note added in proof: We recently became aware of a related opti-
cal isolator implementation by Tian et al.45.
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