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Data assimilation (DA) aims to combine observations/data with a model  to maximize the utility of
information for obtaining the optimal estimate. The maximum likelihood ensemble filter (MLEF) is a
sequential DA method or a filter-type method. Weaknesses of the filter method are assimilating time-
integrated observations and estimating empirical parameter estimation. The reason is that the forward
model is employed outside of the analysis procedure in this type of DA method. ~ To overcome these
weaknesses, the MLEF is now extended as a smoother and the novel = maximum likelihood ensemble
smoother (MLES) is proposed. The MLES is a smoothing method with variational-like qualities,
specifically in the cost function. Rather than using the error information from a single temporal location
to solve for the optimal analysis update as done by the MLEF, the MLES can include observations and
the forward model within a chosen time window. The newly proposed DA method is first validated by
a series of rigorous and thorough performance tests using the Lorenz 96 model. Then, as DA is known
to be used extensively to increase the predictability of the commonly chaotic dynamical systems seen in
meteorological applications, this study demonstrates the MLES with a model chaotic problem governed
by the 1D Kuramoto—Sivashinky (KS) equation. Additionally, the MLES is shown to be an effective
method in improving the estimate of uncertain empirical model parameters. The MLES and MLEF are
then directly compared and it is shown that the performance of the MLES is adequate and that it is a good
candidate for increasing the predictability of a chaotic dynamical system. Future work will focus on an
extensive application of the MLES to highly turbulent flows.
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1. Nomenclature

CFD Computational fluid dynamics
KS Kuramoto—Sivashinsky
MLES Maximum Likelihood Ensemble Smoother
MLEF Maximum Likelihood Ensemble Filter
NWP Numerical weather prediction
PDE Partial differential equation
PDF Probability density function
KS Kuramoto—Sivashinsky
J (:) Cost function
Q, State vector at time n
Q{, Forecast state vector at time n
Pf Forecast error covariance
Niles Observations taken in smoother window
(0 Synthesized observation data
n Random perturbation for O
O,bs Normal distribution obs. variance
' Observation operator
R Observation error covariance
W/AD) Non-linear forward model
W Non-dimensional control variable
s Number of control variable types
Ng Dimension of grid space
Ny Dimension of state space
k Minimization step index
p’l.( Elements of P}m
y/ Notation for gradient and Hessian
Z Elements of Z
g Gradient of J()
C Hessian of J()
& Used for change of variable in
c Elements of C~1/2
P, Global analysis error covariance
¢ Elements of P}lﬂ
a,b,c Model parameters for KS equation

2. Introduction

The age-old issue of increasing the predictability in chaotic dynamical systems has long been a central
part of research in many facets of physical  and numerical modelling. Data assimilation (DA) is a
mathematical discipline that seeks to enhance the ability to predict the long-term future using available
data in conjunction with a model to enhance the model’s prediction. Numerical weather prediction is

a field in which DA is widely used (e.g. Kalnay (2003) and Asch et al. (2016)). In terms of chaotic
behaviour of turbulent fluid dynamics, the models used in weather prediction share many similarities to
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the models used in computational fluid dynamics (CFD) for engineering applications and thus a natural
extension is to apply DA to CFD. In particular, reduced-order modelling of turbulence is a prominent
area of research in the CFD community due to the impracticality of direct numerical simulations.
Turbulence models such as the Reynolds-averaged Navier—Stokes or large-eddy simulations have been
employed to solve these problems, but their accuracy for highly turbulent flows is limited due to the fact
that the models and model parameters are dependent on the evolving flow conditions and, ideally, would
need dynamic tuning. This dynamic tuning is a major advantage of DA because it uses all available data
to perform statistical error analysis which is then used to tune the model state and parameters as the
system evolves.

To this end, much research has been seen in this increasingly popular ~ field of integrating DA
with CFD (simply referred to as DA +CFD herein) (e.g. Gao & Liu (2014), Gao er al. (2015), Kato
et al. (2015), Reagan et al. (2016), Gao et al. (2016), Gao et al. (2017), He et al. (2018), Hurst &
Gao (2020), Wang et al. (2021), and Wang et al. (2020)). Specifically, considerable improvement has
been made by way of the maximum likelihood ensemble filter (MLEF) (Carrassi et al. (2008), Wang
et al. (2020)). Like most ensemble-based DA methods, the MLEF is a sequential, e.g. filtering method.
While these methods can address most of the needs of DA, there are several weaknesses of filters that
may adversely impact some applications. The major weakness is the assimilation of time-integrated
observations, such as accumulated precipitation, for example (Cohn et al. (1994)). Another drawback is
the empirical parameter estimation. This is particularly problematic for non-linear problems. The reason
for impediment is that, in filters, the prediction model is employed outside of the analysis procedure.
Much better equipped for such problems are the smoothers, in which the prediction model is an integral
part of the analysis procedure. Particularly, smoothers adjust the initial conditions at the beginning of a
time window that, unlike the MLEF, includes multiple observations and a necessary model integration
within the window. Aside from mentioned benefits of smoothers over filters, there are some challenges
for smoothers. One is related to nonlinearity. Since the prediction models are generally non-linear and
they are included in the analysis procedure, it is critical to address nonlinearity in smoothers. The
second challenge is due to increased cost of calculation since the use of the prediction model can add
considerable computational overhead for smoothers. Further reading for the advancements in smoother
DA methods can be found in many references (e.g. Evensen (2000), Chen & Oliver (2012), Bocquet &
Sakov (2014), Posselt et al. (2014) and Evensen (2018)).

The objective of this study is to introduce such a smoother to address these challenges. The novel
maximum likelihood ensemble smoother (MLES) is devised, implemented and tested in this study. The
MLES transforms the MLEF (Zupanski (2005)) from filter to smoother and is then implemented in our
existing DA+CFD system (Gao et al. (2017), Wang et al. (2021), Wang et al. (2020)). Subsequently, the
MLES is verified and validated by the 1D Kuramoto—Sivashinsky (KS) equation in order to understand
the potential advantages of the new algorithm. The KS equation is chosen because it is known to be
chaotic and a good candidate to assess the performance of the proposed MLES. Additionally, the KS
equation has previously been used to compare the ensemble Kalman filter, MLEF and a Monte Carlo
particle filter (Jardak et al. (2010)) and provides a good foundation in comparison with other DA
methods. Our overarching goal is to apply the valid MLES to improve the state predictions and the
estimate of parameters of turbulence models in CFD for practical highly turbulent flows in engineering
applications. However, this study is the inception of the long-term investigation.

In Section 3, the methodology behind the new algorithm is described. The difference between the
smoother and filter is emphasized. Furthermore, a brief description of the forward model and the three
main steps for DA are given; also the pseudocode for the MLES algorithm is given. Section 4 includes a
rigorous derivation of the cost function and the process of minimization in order to obtain the optimum
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state. Section 5 validates the MLES method using the Lorenz 96 model as a testbed. The results of the
MLES and MLEF are presented and compared in Section 6 using the KS equation.

3. A brief overview of the methodology

This study transforms the MLEF to the MLES from a filter method to a smoother one. To put the
transformation in context, the MLEF method is reviewed. Then, the methodology of the MLES is
introduced.

3.1 Overview of the MLEF

The MLEF is based on the Bayesian framework which provides a systematic approach for model
state estimate. Bayes theorem tells us that the posterior probability density function (PDF),  p(Q|O),
is proportional to the prior PDF, Q). multiplied by the likelihood PDF p(! O|Q)

p(Q|0) = p(O|Yp(Q), 3.1)

where O is the observation vector, and the control vector, é is a vector that contains all of the
variables of interest, representing the optimal estimate of the state. Following the standard definition of
multivariate Gaussian-type distributions, we assume both background (prediction) error and observation
error are Gaussian PDFs, so that

A N 1 2 AT . a4
p@=Ng @B xep — G-¢ P Q-¢ . (3.2)
and
1 AT .

p(0]Q) = Ny, (0. R) x exp -5 0-/Q) R bo-unQ) . 3.3)

Therefore, the posterior PDF is given as

n Ioa af T a af 1 AT A

Qo) xexp =3 Q=@ P71 Q-¢ -5 0-#Y R 0-mMY . G4

Approximating the maximum of the posterior p ( Q|O) involves finding the mode of the PDF curve,
which leads to

max p((3|0) = max aexp —J(Q) = argmin J(é) , (3.5)
where J( é) is the cost function and defined as

. N af T N 1 . .
JQ =% 0-¢ P ¢-¢ +; 0-MQ "R 0-Q) (3.6)
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Fig. 1. Graphical description of the differences between the MLES and MLEF.  The y-axis, Q, represents just one state value
in the entire spatial domain. The MLES is updated at the beginning of the smoother window which is the first location of
available observations, represented by the green dashes. The forward model is employed in this entire region for the control
and each additional member of the ensemble. The state of the MLEF is updated sequentially over multiple times at each available
observation and the model is not included the analysis.

The MLEF is a low-rank ensemble-based method where the analysis is performed in ensemble space
(Zupanski (2005), Zupanski et al. (2008)). The members in the ensemble dynamically propagate the
errors of the system to each analysis time and the performance is highly relied upon the quality of the
members.

3.2 Overview of the MLES

The inherent differences between the MLES and MLEEF are (i) the forward model is employed within
the analysis process in the MLES; (ii) the state is optimized for that of the beginning of the time window
in the MLES. Figure 1 illustrates these differences. The continuous line for the MLES in the figure
shows that the model is coupled in the analysis process. The red-filled circle, which is marked at the
beginning of the time window, is the optimal state produced by the MLES, while the blue-filled circles
are the optimal states at each observation time produced by the MLEF.

As in the MLEF method, three main steps in the MLES method includes initialization, forecast and
analysis. The process is illustrated briefly by Fig. 2. First, initialization of the control vector and the
ensemble must be performed in such a way that is realistic and applicable. ~ This involves perturbing
the control and the ensemble from the arbitrarily chosen initial condition, then performing a ‘burn-in’
period in which the forward model is run until each state is fully developed and indistinguishable from
the initial condition, at which point the main DA algorithm is started. The next step is the forecast step.
This entails applying the forward model to the start of the DA window and calculating the forecast
parameters. The last step is the analysis step where the control vector and the ensemble are updated.
The key ingredient for this step is the statistical error from the ensemble and forecast values and their
statistical error information is necessary to update the control. Without this step, the chaotic nature of
the models may eventually make the control and true run deviate. Then, once the analysis state has been
achieved, the cycle of forecast and analysis steps are repeated.
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Fig.2. The flowchart shows the DA +CFD process. The superscripts (e.g. 0, 1) indicate the DA cycle number except for P f
where the superscript 1 /2 represents the square-root. The subscripts (e.g. 1,. . , N,) stand for the number of members in the
ensemble. The subscripts or superscripts f* and a represent forecast and analysis, respectively. 7, is the analysis time location. The
red coloured Q is the control vector.

The initialization of the truth, control and ensemble is based on the lagged forecast initialization
(Kalnay (2003)) and involves perturbing the control and the ensemble from the arbitrarily chosen initial
condition of the truth state. In this study, the numerical simulation regarded as the ‘truth’ is obtained
assuming there is no uncertainty in the initial and boundary conditions as well as in the physical models
and model parameters employed by the forward model. Once the truth run is initialized, the forward
model propagates it to the desired solution time. After a ‘burn-in’ period, the main DA algorithm is
started. The ensemble is generated by adding perturbations to reference conditions and the control is
chosen to be the average of the ensemble. The forward model is denoted by .Z(-) which in general can
be a computational prediction model, an empirical relation or an analytical model. In this study, our
forward model is the CFD model. Note that DA methods do not depend on.Z(").

In this study, the truth is used to synthesize the observations. Synthesized observations are commonly
used to verify new DA methods, particularly when physical observations are not available, and in this
study there are no physical observations. In our case, we synthesize the observations from the known
truth using

0,=7 Qu. +n (3.7)

where étme is the state from the perfect CFD scenario, meaning that a particular initial condition is
chosen and the resulting space-time solution is used to synthesize the observations. 7 is the time index,
and nis a random perturbation taken from a normal distribution of a chosen variance, 0, and mean
of 0. The observation operator,.4-), is generally non-linear and maps the state space to the observation
space. Note that each element in the vector O, receives a specific random perturbation from the result
of the observation operator on the true state. The observations are saved and used later for the analysis
step.

The states of the control and the ensemble are obtained by the forward model to the start of the first
DA cycle. At this point, the square-root forecast error covariance is calculated and the current state is
used as the forecast state. The forecast error covariance P . is defined in ensemble subspace where the

. P2 .
square-root forecast error covariance matrix, 7N approximated as

P}/2= Q;f_dfiz L Q’;—éf Q’;—éf Q;‘V_(jf , (3.8)

L
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where N, is the number of members in the ensemble. érepresents the entire vector of the state variables

for the i-th member in the ensemble andéf is the entire control vector of the forecast state of the MLES.

The main goal of the analysis step is to minimize the cost function by finding the optimum control
state. The cost function, as described in the next section, is a mathematical measurement that represents
the error between the current state, the observations and the forecast state. The newly found optimum
state is then used to formulate the analysis error covariance which is used to update the members in the
ensemble and then the forecast step is used to run the models to the next analysis step.

4. Mathematical formulation of the cost function and error covariance for the MLES

The cost function for the new MLES method begins by extending the existing MLEF method (Zupanski
(2005), Zupanski et al. (2008)) to an ensemble smoother. Mathematically, one defines a cost function
similar to that of a four-dimensional variational DA method, such as

Nrmles
N 1 A A T 0 A a 1 A T _ a
IQ) =5 Q-Q P Q-Q) +5  O,- MQ) R O,-H Q)
n=1

A.1)

where n is the time index and there are N ., observation times in the assimilation time window. R is
the obseArvation error covariance, and J#{*) is the observation operator as defined previously. The state
vector Qy is defined at initial time of the window (r = f,) and O , is the observation vector at the
specified time index. By updating the initial forecast state at the beginning of the DA time window, the
cost function can be minimized, which will represent the algorithm’s most optimal state based on the
available observations. Note that

A Q, 4.2)

denotes the non-linear prediction model integrated from time £, to time #,,. To reiterate, the MLEF only
applies the analysis update at each instance in time where observations are available, whereas the MLES
takes observations that are temporally spread out in a time window. Indeed, the difference between Eq.
3.6 and Eq. 4.1 is the lack of the summation term and the forward model application in the former.

4.1 First change of variable

In DA problems, the magnitude of the physical units inside the control vector can widely vary and imply
a large condition number of the Hessian of the unmodified cost function. Therefore, a standard change
of variable is commonly used in any DA method to remove the dependence on the large magnitude
differences in the original problem. Specifically for the MLES, it transforms the control variable from
dimensional (Q) to non-dimensional (), given by

Q, =Q, +P "y, (4.3)

which implies that one can now distinguish between the state space (with dimension N ) and the grid
space (with size of N ;). The ensemble square-root forecast error covariance is typically written in
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column-vector form

p}/2= pf,,,,pfe i (4.4)

where each p’;:i= 1,. . .N

/, is a column vector of dimension Ng. The transformed control variable

definition implies that there is another cost function defined for @

Nles
1 1 . T .
) = ¥'wts O, My(Q+P ) Ry O,— MG+ ) . (@5)

n=1
Taking the gradient we get

Niles
g=y - P}”H}R;l 0, — A MUQ), + P}/zw) : (4.6)

n=1

where
5 N
H= jﬂAQ) . “@.7
aQ
Now we take the gradient of the above to get the Hessian of ),
lees
— T/2v3T —1 1/2
C=1+ Pf H, R, HnPf . 4.8)
n=1
Before introducing the optimal conditioning, at each time ¢ = ¢, one can define the matrix Z, (¢ QO)
Z,0Q) = z,,...2)° | 4.9)
where
7 (Q,) = Rn_l/anP}/z =R;"> 4 MQy+p]) — A MQ) ., i=1,...N,. (4.10)

z, ( Qo) is the linear approximation that is used in place of H, where Q, is the state’s initial condition at
the start of the smoother window. For the rest of the study, the notation of, &),,) will be dropped and Z,

will be used instead, but this term must be evaluated for different initial states of the DA window. This is

prevalent in the minimization step where the continual updating of the initial state means a recalculation
of the term. The formulation is the same as that in the MLEF, except that the summation term appears
in the smoother and the terms within the summation have time indices associated with them. With this
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notation, we have the gradient and Hessian of Eq. (4.5).

lees
g=w— ZIR;2 0,— MyQ+P "y . (4.11)
n=1
Nm]cs
c=1+ 7'z, . 4.12)

n=1

Eq. (4.12) is another deviation from the MLEF. It contains error information for the state for the entire
DA window, not just the single point in time as in the MLEF.
4.2 Second change of variable

A second change of  variable is more specific to the MLES as it further addresses the Hessian
preconditioning of the transformed cost function. Therefore, the second change of variable is introduced
with the goal of optimally reducing the condition number of the Hessian, referred to as the optimal
Hessian preconditioning. Following the MLEEF, it is given as

w=C"2g, (4.13)

where the Hessian preconditioner, C, results in the optimized control  vector & and eventually the
optimized global control vector Q. Using the optimal Hessian preconditioning term, the new cost
function is defined:

1 _ T _
J(E) S c g g
p e A 1/2=T/2F ) ' =1 A 1/2 ~—T/2
t3 O, M PPCTTE) R O, — Q4RO

n=1

(4.14)

Both the first derivative and second derivative with respect to & can now be calculated. The first
derivative is found using the chain rule and yields

Vel (Q) =CTVV,(Q,) =Cg. 4.15)
Expanding the above equation to purely represent the gradient in terms of & gives
Nmles
Vel(Q) =CTTg —C™2 ZIRTV? 0, - Q) . (4.16)
n=1

The Hessian derivation starts with a Taylor series expansion of Jg):

1
J(y + o) = I(y) +2'by +-6¢'Coy, @.17)
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where the higher order terms have been dropped and is a small positive number. After introducing the
change of variable from Eq. (4.13) and applying the first variation,

6y =C~ 26k, (4.18)

the second-order term in the Taylor expansion becomes

Lo I g T -1/2 1 —1/2(—T/2

56!}1 Coy =3 C 26y C Cc oy = 56? c2cc 6&. (4.19)
Therefore, the Hessian reduces to

vé‘](ék) = C—l/ZCC—T/Z = C-l/z C1/2C—T/2 C—T/2 =1. (420)

4.3 Minimization

The MLES employs the forward model ~within the minimization process. The forward model must
be applied to the control and the members in the ensemble for the length of the smoother window.
While this is advantageous for considerations of nonlinearity, it also induces computational expense
in the analysis procedure. Nevertheless, with the optimal Hessian preconditioning, Eq. 4.20 shows
that when the observation operator is linear, the Hessian is the identity matrix and thus only a single
minimization iteration is needed. Indeed, even with nonlinear observation operators, a sufficient number
of minimization iterations is typically only two to three (Zupanski (2005)).

In this study, the minimization method used is the Newton method. ~ Of course, more complex
minimization techniques can be used (Alekseev et al. (2009)) and are more efficient for larger non-
linear unconstrained optimization problems. However, using the optimum control variable and the
straightforward models in this study, the Newton method proves to be an efficient method of minimizing
the optimized cost function (Zou et al. (1993)). The problem of minimizing a function of n variables,

minf(x), x EIR*!, 4.21)
where f(x) is a smooth function can be solved iteratively using
Xppp =X+ o d, . 4.22)

k indicates the number of iterations, and @ is defined as the step-length value that can vary in each
iteration and is determined by the minimization method. If using the Newton’s method, @, = 1 and the
descent direction d can be solved using

-1
d, = - V¥(x) Vf(x). (4.23)
Using these steps and following Eq. (4.22) and Eq. (4.23), our minimization update equations are

&1 =& +d;, (4.24)
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and the descent direction is
5o a1 o
d, = - VE](Qk) VEJ(Q,(). 4.25)

The process starts with an initial guess of &,_, = 0, which implies

O =0 (4.26)

4.4  State update

. . . . e . Ad .
After the optimal value of &, is obtained, the analysis deterministic state vector Q is updated by

[ T
Q" =@ +pl1+  zZl@Q)z,@p) & 4.27)
1

n=

The local Hessian preconditioning term Cz/ 2 is estimated at the optimal analysis point and is then used
to form the analysis error covariance

[ T2

Nmles
P2 =p/?l1+  ZI(@Qyz,@y]  =pc;. (4.28)

n=1
Finally, the ensemble members are reinitialized for the forecast step in the next DA cycle by
B =Gy +pl. i=1...N. 429

where p¢ is the columns of P¢11/2.

4.5 MLES pseudocode

The pseudocode for the MLES is provided in Algorithm 1, showing three major steps of DA:
initialization, forecast and analysis. Additionally, the solution process is illustrated by the flow chart
in Fig. 3.
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Algorithm 1 MLES method detailing the three major steps

Step 1: Initialization

1 procedure LAGGED FORECAST(Q)™,Qp)

2 Select the initial conditions of uncertainties.

3 Propagate .7 (Q'™¢) and .# (Q) for t € [0,1;].
4 Construct Q)™ from random picks in 7 € [0,7].
5 Select Qpfrom 1 = 1;/2.

6: end procedure

Step 2: Forecast

7. procedure FORECAST STEP(Q/ ,P/)

8: Propagate . (Q'™¢) and . (Q) to next analysis time.
9: Obtain Q’ and Qf.
10: Calculate P}/ 2 by Eq. (4.4).
11: end procedure

Step 3: Analysis

12: procedure ANALYSIS STEP(Q” P%)

13: Set Qo = Qf for the first minimization.

14: Apply change of variable &,_,.

15: Evaluate the Hessian preconditioner by Eq. (4.13).

16: while 1 <k<ndo > Start minimization.
17: Calculate dy by Eq. (4.25).

18: Update &, by Eq. (4.24).

19: Update Q, by Eq. (4.27).

20: end while > End minimization
21: Update control analysis, Qa = Qk.

22: Calculate analysis covariance, Pcl/ 2 by Eq. (4.28).
23: Update Qf fori=1,...,N, by Eq. (4.29).

24: end procedure

25: Repeat Steps 2-3.

5. Validation and performance assessment

The framework is developed and validated by the well-known Lorenz 96 model (Lorenz (1995)).
This model is chosen because it is used in many validation cases for DA and has literature data for

the performance assessment of the framework (e.g. Anderson (2001), Anderson (2007), Hoteit et al.
(2012), Ott et al. (2004), Whitaker & Hamill (2002)). Additionally, by choosing a correct forcing
term, the model is commonly known to cause chaotic behaviour. The result of the MLES algorithm
is compared with those of the MLEF algorithm. The performance of the MLES algorithm is measured
by x? diagnostics, the normalized cost function and a root-mean-square error (RMSE) analysis. The
following sections provide details of the numerical experimental set-up, descriptions of the tests and the
results of the numerical experiments.
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Initialization
(Lagged Forecast)
QO) (1):JVe
Prediction
2 1/2
MQn-1 + PZ—{
=D 2 Synthesized
Forecast ) Observations
H(Qn)
e e A f o
Reinitialization Mn(Qn-1) Observation Operator Olh "
Observational Increment
0, - O}
Step 3
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Q;, P — Algorithm
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Fig.3. A flowchart showing the steps for the MLES algorithm. Note that these steps correspond exactly to the steps as shown in
Algorithm 1.

5.1 Description of the test model

The Lorenz 96 model is given as
=y Xy o —x+F, i=1,..,M. (5.1)

A value of F = 8 is known to cause chaotic behaviour and chosen as such for the validation. In this
study, the number of variables in the test is chosen to be M= 40. The chosen forward model to advance
the solution in time, .#(+), is a second-order finite volume method with the standard four-stage Runge—
Kutta explicit time marching method.
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Tablel The Lorenz 96 model experiment’s data assimilation parameters.

Variable Value

N, 15 members

Observation time interval 0.05 time units

No 40 (every computation cell)
N, mles 10

O,bs 0.05

Diagonal elements of R 0.05%

Minimization steps 3

5.2 Data assimilation configuration

There are a number of parameters specific to DA and are explained herein. N, is the number of
members in the ensemble, excluding the control. The choice of N, greatly determines the ability of the
ensemble-based DA algorithms to accurately capture the error in the current system. The time between
observations is conveniently chosen to be the same as the forward model time step size. This also
dictates the length of a DA cycle. The MLEEF is performed at every observation point in time and the
MLES DA window length is determined by the observation interval as well as N .., or the number
of observations taken in the MLES window. N , is the number of observations. O is the variance of
the normal distribution used for synthesizing observations taken from the truth as shown in Eq. (3.7).
The diagonal elements of the observation covariance, R, are unchanging with values 02 The number
of steps to be used in the minimization procedure is based on Zupanski (2005). The DA conﬁguratlon
parameters for the validation are given in Table 2.

These values are used to gather statistics for the tests in the following sections. ~ Note that the
observation error covariance matrix R only has diagonal elements specified in the table above and stays
constant through the entire simulation, i.e. the random variance for the gathered observation data remains
the same for each DA cycle. Note that for the MLEF, one DA cycle consists of running the model to
each observation available. For the MLES, however, one DA cycle for this numerical experiment is 10
times the length of the DA cycle in the MLEF because the number of observations taken in the time
window is N = 10.

5.3 DA performance measures

The )(2 diagnostics test (Menard ez al. (2000), Zupanski (2005), Wang et al. (2020)) evaluates the
correctness of the innovation covariance matrix. It is given, in observation space, as

X*="2, X= R+HQPH(Q) o0 (5.2)

where H( é) is the tangent linear model of the observation operator, 7). é is the analysis state at each
DA cycle. For a Gaussian distribution of innovations and a linear observation operator, the expected
values should be equal to 1.0. However, due to the calculation of P ¥ wherein the non-linear model is
used, and also due to the finite number of observations per cycle, the actual values for the assimilated
runs will not be exactly 1.0. The result of the test is shown in Fig. 4. Every DA cycle in the MLES
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Fig.4. The x2 diagnostic test for the Lorenz 96 model experiment. The y-axis is in log-scale. The x-axis is normalized DA cycles
by the MLEF one; correspondingly, the MLES updates are shown on the coarser temporal locations as indicated by the red circles
where the MLES performs the analysis.

is performed at a time interval that is equivalent to 10 DA cycles in the MLEF. For convenience, the
x-axis is normalized by the MLEF DA cycles. Accordingly, the MLES is shown on a coarser temporal
scale as indicated by the red circles. Nevertheless, both numerical experiments show the same solution
time at the same corresponding coordinate locations. Both MLEF and MLES show X? values close to
1.0 for each DA cycle. The mean X2 values for the entire run are 0.9509 for the MLEF and 1.088 for
the MLES, respectively. Either by running further numerical experiments or by increasing the number
of Gaussian distributed observations, one would expect each subsequent run to have a mean close to
1.0. The free run )? values are expectedly much larger and emphasizes the chaotic behaviour of the
numerical experiment’s model.

We examine the normalized cost function where the number of observations taken in the spatial
domain is the normalization factor and is calculated by

J

T Loy 'R 0-mb) . (5.3)
No Ny 2 J
The cost function J and the control vector (3 are calculated after the minimization process has occurred
and therefore the analysis state is used for Eq. (5.3). The normalized cost function is used to assess the
minimization in a multi-variate problem and is related to the X test. The uncertainty error is reduced
and thus the expected values are expected to be approximately 0.5. The results can be seen in Fig. 5 and
every value is close to 0.5.

The RMSE is also used to measure the difference between the analysis and the truth. The truth is

simply the deterministic simulation by the forward model using perfect conditions and parameters. The
RMSE is calculated by

N ~a
ms=1 Qtrue -Q
RMSE = m 5.4
NS
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Fig.5. The normalized cost function values for the MLEF and MLES. The x-axis is normalized DA cycles by the MLEF one;
correspondingly, the MLES updates are shown on the coarser temporal locations as indicated by the red circles where the MLES
performs the analysis.
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Fig.6. The RMSE for the free run, MLEF, and MLES. The y-axis is in log-scale. The x-axis is normalized DA cycles by the
MLEF one; correspondingly, the MLES updates are shown on the coarser temporal locations as indicated by the red circles where
the MLES performs the analysis.

The results of the RMSE are seen in Fig. 6 for each DA cycle and compared between the MLEF and
MLES. In addition, the RMSE of the free run is shown and clearly larger than that of the MLEF and
MLES, which is expected. Both the MLEF and MLES have similar values and, overall, the RMSE
shows a stable convergence with the truth as well as having stable performance throughout the numerical
experiment.

Additionally, the first state value, Q, is plotted as a function of the time step for the MLES and
MLEF and the synthesized data for this particular state value are also shown in Fig. 7. This particular
case set-up is the same as described in Section 5.2. The first DA update is located at the 11 ™ time step
and is the corresponding analysis update for the MLES of the time window. After the MLES analysis
update, it is freely forecasted to an end time of 120 time steps. The first analysis point for the MLEF is
also at the 11" time step but is updated at every available observation until the last observation which is
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Fig.7. The trajectory of Q ; for the truth, MLES, MLEF, free run and observations of the Lorenz 96 model over time. Both the
MLEF and MLES are first updated at the 10™ time step and the MLEF is continually updated until the last observation available.
The free run is simply a simulation by the forward model with the same steps as the MLES or MLEF but without DA.

located at the 20" time step. At this point, it is freely forecasted to the same end time as the MLES. A
free run that does not have any DA updates is also included.

Fundamentally, Fig. 7 displays the increase in predictability after DA is applied. Both the MLEF
and MLES diverge from the truth at approximately the 100 ™ time step, while the free run completely
diverges from the truth very early. The DA simulations have good approximations of the truth state but
their trajectories start to deviate from the truth as a consequence of the nature of the chaotic system. It
is worth mentioning that the MLEF DA method is competent and efficient in general; it is encouraging
and promising to have shown the MLES to have comparable performance as the MLEF for these cases.
By design, it is expected that the MLES demonstrates superior performance over the MLEF for practical
applications as mentioned earlier, but this will be part of a future follow-up study.

6. Results and discussions

The validated MLES algorithm is now applied to solve the 1D KS equation. Originally developed for
modelling instabilities in flame fronts (Sivashinsky (1977), Kuramoto (1978)), this simulation provides
insight to the MLES application to turbulent CFD problems. The algorithm is tested and compared
against the original MLEF algorithm.

The model equation is

dy Py ay  aty

— =—a—5 —by— —c—, 6.1

a1 a2 oax “oxt .
where, in the truth run, the model parameter coefficientsare ¢ = 1, b = 1 and ¢ = 1. The boundary

conditions are chosen to be periodic and the computational mesh has 256 cells uniformly distributed
over x €[—100, 100]. The initialization of the ensemble is based on the lagged forecast method (Kalnay
(2003)). That is, given a time interval length of t € [0, #], a ‘burn-in’ simulation of length ¢ . is run
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Analysis RMSE
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lees

Fig.8. The analysis RMSE of the MLES by varying N pjes from 1 to 50. The red dotted points are the statistical average of 100
runs of the RMSE of the analysis of the MLES as a function of N pes. The blue circle is the MLEF at the analysis point and, as
expected, matches the MLES when only one observation is taken in the window.

using an arbitrarily chosen initial condition. Given an ensemble of size N ,, one picks N , randomly
distributed temporal points over the [0, ¢ ;] interval to ensure that the uncertainties of the dynamical
system are properly represented. At each of the chosen temporal points, there is a corresponding state
vector, Q, from the ‘burn-in’ simulation which is then used as the initial conditions for the members in
the ensemble. The true state is set to be the simulation in the middle of the simulation length and the
initial state of the control vector is set to be the state average of the members in the ensemble. ¢  is set
to be 5 time units. Where applicable, initial uncertainty of the model parameters is based on a normally
distributed PDF. The variance for the synthesized observations is chosen to be 0, = 0.001. The time
step of the forward model is A = 0.005 time units.

6.1 Number of time points with observations

We first perform a numerical experiment to study the effect of the MLES as a function of N . (the
number of observations used within a smoothing window). That is, using a fixed time interval between
observations, N, . is varied and the RMSE of the analysis update of the initial DA cycle (i.e. the
beginning of the smoothing window) is then calculated for each value of N, ... Note that by fixing the
time interval between observations and adjusting N, the total length of the entire smoothing window
changes. Figure 8 shows the statistical average of the RMSE calculated over 100 individual runs. N,
varies from 1 to 50. The fixed time interval between observations id ¢ = 0.05 time units and the domain
is fully observed. Also, N, = 20 for each run in this numerical experiment.

As a check, the MLEF is included and shows the analysis RMSE matches the MLES when })., = 1
which is to be expected. Then, as ., is increased, the RMSE values of the analysis drop until there is a
saturation of performance. We expect the overall performance to eventually degrade as ) is increased
beyond a certain threshold as the distance between the last observation and the location of the analysis
becomes larger. In other words, the introduction of nonlinearity (mainly from the forward model) of a
larger smoother window will eventually cause an increase in the error. Nevertheless, Fig. 8 shows that
given more information within a smoothing window, the error is reduced. It is worth noting that while
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Fig.9. MLES performance as a function of N, using a constant smoother window length of Npjes = 25.

there are small oscillations in the RMSE values (see points N .., = 11, 40 and 46, for example), it is
expected that this curve will smooth out as more and more cases are run to help with the averaging. The
important result is that the general trend of error reduction in the MLES goes down as more information
is provided within a smoothing window. Furthermore, there is a balance between the optimal state and
the computational cost for assimilating observations. For example, N, ;.. = 18 provides the desired
optimal state.

les

6.2 Ensemble size

The ensemble size is varied from ; = 5 to N, = 50 and a similar test is run as described in Section 6.1.
The smoother window is kept constant using N .. = 25. The RMSE of the analysis is reported in
Fig. 9. The performance of the MLES is severely diminished when a small ensemble size is used.
The performance is found to be relatively stable after approximately NV , is chosen to be 15 or greater.
However, more members than 20 are not necessary for this case according to the sensitivity study. This
finding is indeed consistent with what is to be expected of other ensemble DA methods (Asch er al.
(2016))

6.3 Number of observations

The MLES is now used to directly compare results with the MLEF. The current test cases are performed
by varying the number of available observations in the domain (N ) while keeping N ., constant for
each case. In doing so, the predictability limits of both methods are directly compared as a function

of the number of observations in the domain. Spatially, these observations are evenly spaced. For the
MLES, only one smoother window (and therefore only one analysis update) is used. Once the optimal
analysis state has been found, the control of the MLES is forecasted to a temporal location equal to
twice the MLES smoother window length and the RMSE is calculated. In order to directly compare
with the MLES, the control of the MLEF is updated using N ;. DA cycles. At the last point of the
MLEF update, the MLEF control state is forecasted to the same ending point of the MLES and the
RMSE is calculated. This means that the time between the updated analysis location for the MLES and
the end of the simulation is equivalent to two smoother window lengths, whereas the last MLEF analysis
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Fig.10. Graphical description of the error comparison with the MLES and MLEF. The MLES is updated at the vertical dashed red
line and freely run to the vertical black dashed line. The MLEEF is updated at each of the green hashes which represent available
observations. The last update for the MLEEF is located at the vertical blue dashed line and run to the same vertical black dashed
line. At the vertical black dashed line, the error of the MLES and MLEEF is calculated with respect to the truth and compared. This
value is saved and the mean of these values is taken over 100 simulations. In the figure, the y-axis, Q, represents just one state
value in the entire spatial domain.
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Fig.11. Performance comparison between the MLES and MLEF using a smaller amount of evenly spaced observations in the
domain. The RMSE is taken at the end of a time window length equal to two smoother window lengths after the first initial MLES
analysis update.

update is exactly one smoother window length. The process is graphically shown in Fig. 10. The size of
the ensemble is set to N, = 20 members and the smoother window is set to be N ., = 25. The other
simulation parameters are the same as presented in Section 6.1. The result of the averaged RMSE over
100 independent runs for each N, is shown in Fig. 11.

€20z aun( ZT Uo Jasn AlISIaAuN a1elS opelojo) AQ £0922/29/SE6/9/.8/3191ue/rewewl/wod dno oiwapese//:sdiy wolj papeojumod



MLES FOR THE KURAMOTO-SIVASHINSKY EQUATION 955

—— MLES — MLEF - - - Free run
--- Truth x Data

| | | | | |
0 02 04 06 08 1 12 14 16 1.8 2 22 24 26 28 3
Time step %104

Fig.12. The model state and observation data at the first spatial location.

The limit of predictability for both algorithms decreases with more available observations which
is to be expected. The error reduction for the MLES is slightly better for all cases. This is promising
and interesting as both DA algorithms have been provided with the same information, while the main
difference is that the MLES has a longer time between the location of the RMSE calculation and the
initial analysis. This will be an area of emphasis for future studies in order to better understand the
impact of the observations on the performance.

6.4 State quantities and RMSE

Three state quantities are presented to compare the improvement of predictability for both the MLES
and MLEF. Using N, = 64, the state variable at spatial domain locations of 1, 65 and 221 for the
MLES, MLETF, free run and truth run are shown in Figs 12—14. Also shown are the observed quantities
at these locations as well. The observation interval is chosen to be 200 time steps in this case. ~ Each
DA algorithm correctly matches the truth state beginning at the first analysis cycle located at time step
0.1 x 10*. Deviation for both runs can be clearly distinguished at time step 2 X 10*. For each spatial
location presented, the MLES does a slightly better job at predicting the truth for a slightly longer time
than the MLEF. It is worth noting that at time step 1.8 X 10*, the MLES does slightly diverge from the
truth but is still a good approximation of the truth.

The RMSE value is also given for the current simulation and is shown in Fig. 15. The MLEF updates
can clearly be seen from the vertical drops after the initial analysis state update. The plot shows good
initial convergence to the truth and accurately depicts the chaotic nature of the KS equation as both DA
algorithms eventually diverge from the truth. Note that this is a single run and previous results have been
collected from an average of these runs.
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Fig.13. The model state and observation data at the 651 spatial location.
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Fig.14. The model state and observation data at the 221! spatial location.

6.5 Model parameter estimation

The estimation of model parameters of the KS equation, a, b and ¢, are now included in the DA process
and therefore added to the control vector Q. The initial uncertainty of the parameters for each member in
the ensemble is chosen by a random Gaussian PDF with mean 0.50 and variance of 0.05. For reference,
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Fig.15. The RMSE values for the MLES, MLEF and free run.

Table2 The estimated model parameters for the MLES and MLEF by taking the average of — the
last analysis model parameters over 100 different cases. The mean of the initialization of the model
parameters is set to be 50% less than that of the truth.

Model Param. Truth MLES MLEF
a 1.00 1.0003 1.0010
b 1.00 1.0013 1.0009
c 1.00 1.0001 1.0012

the truth of these parameters is known as a= b = ¢ = 1. A total of 10 DA cycles for the MLES is used
and the corresponding amount of DA cycles is used for MLEF. The initial ‘burn-in’ period is reduced to
2 time units. The rest of the case setup is similar to that in Section 6.1. Note that the model parameters
are not observed as this is often the case. The statistical average of the mean of the final analysis update
of the model parameters for the MLES and MLEF after 100 independent cases is shown in Table 3. All
three model parameters for both the MLES and MLEEF to converge to approximately the true values.
Additionally, the plots of the model parameter update over time is also shown in Figs 16—18 for a
single run. Although the simulations over the entire solution time are not shown for the sake of space,
both MLES and MLEF converge to the true model parameters quickly. Both DA algorithms show good
prediction of the true model parameters even with a poor initial uncertainty of the truth. = The MLES
does better for a and ¢, while slightly less for » when compared with the MLEF. More complex chaotic

systems will be investigated to see whether the MLES consistently does better than the MLEF in general.

6.6 Averaged observations

In fluid dynamics problems that involve chaotic turbulence, rather than providing instantaneous data,
the time-averaged flow data are desirable. Thus, it is of interest to use time-averaged data. To synthesize
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Fig.17. Model parameter b convergence.

the data, a time-averaged true value is used in the observation operator,  but a random perturbation
n is applied to the averaged value as ‘measurement error’. The acquisition of these data is shown in
Fig. 19. Apart from the averaged observations, the case set-up is identical to that in Section 6.5 where
the statistical average of the model parameters are found after running 100 cases. Table 4 presents the
model parameter estimates by the MLES and MLEF. All three model parameters for both the MLES and
MLEF converge to the true values and the MLES performs slightly better for a and ¢ than the MLEF.
The plots of the model parameter update over time are also shown in Figs 20-22 for a single run.
Note that only three MLES DA cycles (and the equivalent number of MLEF DA cycles) of the simulation
are shown as both MLES and MLEF converge to the true model parameters quickly. Both DA algorithms
show good prediction of the true model parameters even with a poor initial uncertainty of the truth.
Notice that the MLES performs slightly better in this study. Applications to more complex problems
will be investigated in a follow-up study.

N
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Fig.18. Model parameter ¢ convergence.

Table3 The estimated model parameters for the MLES and MLEF using the averaged observations
method.

Model Param. Truth MLES MLEF

a 1.00 0.9997 1.0004

b 1.00 1.0011 1.0006

c 1.00 0.9996 1.0006
4 - gtruth

- - Qtruth 2, (averaged)
X H(Qtrutn,t,) + 1

o

| ] | ] >
by tpeo tyes toea  Time

Fig.19. To gather the averaged data, an average of the true values is taken within an interval and then the observation operator
is applied and perturbed using random variance. The interval is shown as the vertical red dashed lines and the black horizontal
dashed lines are the averaged true values. The black crosses represent the data obtained after applying the observation operator
) and adding random variance, . The y-axis, Q, represents just one state value in the entire spatial domain.
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7. Conclusions and future work

The study introduces a new MLES algorithm and compares it alongside its sister sequential filtering
algorithm, the MLEEF, using the 1D KS equation. Both algorithms show positive impact on the analysis
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Fig.20. Model parameter a convergence for the time-averaged synthesized observations.
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Fig.21. Model parameter b convergence for the time-averaged synthesized observations.

states for each of the numerical experiments presented, while the MLES is at least comparable or slightly
better than the MLEF. This inceptive study shows that it is a promising extension of the MLEF.

Aside from the numerical  experimental results shown in Section 6, many similar numerical
experiments have been performed and it has been observed that the initial starting point of the model
parameters for the members in the ensemble and the control have the most impact on the quality of
results. Quality, in this case, means the closeness to the true values. It is also seen that the large changes
in the observation variance do not impact the results as much as the model parameters do. This leads to
the idea that the gathered data do not have as much of an impact, but rather the empirical knowledge of
the dynamical system is more important in performing such numerical experiments.

To reiterate, the model parameter estimation experiment is under the assumption that the initializa-
tion of the parameters is not exactly the truth. This is an interesting concept because in reality there
would be no notion of a ‘true’ model parameter because model parameters cannot be observed and the
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Fig.22. Model parameter ¢ convergence for the time-averaged synthesized observations.

data gathered would be from physical experiments. Thus, the concept of converging to the ‘true’ model
parameters using synthesized data is inherently different than an actual physical scenario. Nevertheless,
the methodology is applicable when using physical experimental data.

Future work will predominantly focus on the application of the MLES in a larger scale DA +CFD
framework for flows with strong turbulence. In this study, the computational costs of the MLES and
MLEF are comparable. For future larger systems, the computational performance will be compared
as well. Improvements to the algorithm for computational efficiency must also be considered such as
the usage of either the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) minimization
method or a conjugate-gradient minimization approach, and covariance localization. Such improve-
ments are out of scope of this study as the focus of  this study is to develop and test ~ the MLES
method.
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