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The low-energy excitations in many condensed matter and metamaterial systems can be well described
by the Dirac equation. The mass term associated with these collective excitations, also known as the Dirac
mass, can take any value and is directly responsible for determining whether the resultant band structure
exhibits a band gap or a Dirac point with linear dispersion. Manipulation of this Dirac mass has inspired
new methods of band structure engineering and electron confinement. Notably, it has been shown that a
massless state necessarily localizes at any domain wall that divides regions with Dirac masses of different
signs. These localized states are known as Jackiw-Rebbi-type Dirac boundary modes and their tunability
and localization features have valuable technological potential. In this study, we experimentally
demonstrate that nonlinearity within a 1D Dirac material can result in a self-induced domain boundary
for the Dirac mass. Our experiments are performed in a dimerized magnetomechanical metamaterial that
allows complete control of both the magnitude and sign of the local material nonlinearity, as well as the sign
of the Dirac mass. We find that the massless bound state that emerges at the self-induced domain boundary
acts similarly to a dopant site within an insulator, causing the material to exhibit a dramatic binary switch in
its conductivity when driven above an excitation threshold.
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The Dirac equation and its analogs are frequently
encountered in a wide range of condensed matter and
metamaterial systems [1–12]. A prominent characteristic
of these systems is the linear dispersion relation near
crossing points between their bulk bands, commonly
known as Dirac points, where the collective excitations
appear massless [13,14]. The degeneracy at any Dirac point
is held by material-specific symmetries which, when
broken, can split into a pair of states with Dirac masses
of opposite signs [14]. Such regions of opposite Dirac mass
have been observed in graphene [15–17], topological
insulators [18–21], and various metamaterial systems such
as phononic [22–24] and photonic crystals [25–27].
Notably, it has been shown that there necessarily exists a

localized state on any boundary between regions with
opposite Dirac masses, which was originally discussed
in the context of quantum field theory by Jackiw and
Rebbi [28] but has since been shown to occur in classical
Dirac materials [29–35]. As an intuitive interpretation, the
trapped state appears because an intermediate massless
(and therefore gapless) transition must occur at the boun-
dary for the Dirac mass to flip the sign, which resembles a
metallic boundary between two gapped regions. The
original Jackiw-Rebbi (JR) theory describes a topologically
protected boundary mode at the midgap energy [28]. In
contrast, generic boundary states in a Dirac material form
via a similar process but are not topologically protected.
We, therefore, describe these modes as being of JR type and

these more generic states are expected to exhibit a variety of
tunable in-gap dispersion such as flat bands and linear
crossings [36]. Even so, the localization on the boundary
is unchanged and the JR-type Dirac boundary mode is
believed to contribute to long-range edge transport
observed in a variety of Dirac materials [21,37,38].
In this work, we show that a domain boundary of Dirac

mass, and hence a localized JR-type state, can be self-
induced in a Dirac material with Duffing (third-order)
nonlinearity. We experimentally implement this using a
magnetomechanical approach that provides complete con-
trol over the sign and magnitude of the nonlinear coef-
ficients [39]. We first confirm that a designed inversion of
the Dirac mass in a linear system leads to the appearance of
the JR-type state. Subsequently, we introduce the non-
linearity, and show that a self-induced Dirac mass boundary
and a JR-type state can appear in a homogeneous system
under strong driving conditions. Interestingly, we find that
the induced JR-type state acts similarly to a dopant site in
an insulator, resulting in a binary switch in the conductivity
through the system.
We start with a brief description of the link between the

equations of motion for a diatomic resonator array and the
one-dimensional Dirac equation. Consider an infinite one-
dimensional dimerized lattice of linear resonators with
staggered resonance frequencies and constant nearest-
neighbor coupling strength γ as shown in Fig. 1(a). We
label the sublattices within the unit cell A and B,
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respectively. A mismatch between the natural frequencies
of the two resonators (on sublattices A and B) within a unit
cell creates two-band insulators [40,41]. In between these
two bands is a forbidden-frequency region (band gap)
where no eigenmode exists to host excitation in the
structure and thus this diatomic lattice resembles an
insulator at such frequencies.
It has been shown [42,43] that the coupled-

mode equations representing the discrete, classical one-
dimensional lattice

i
danðtÞ
dt

þ γ½anþ1ðtÞ þ an−1ðtÞ%− ð−1ÞnΔ× anðtÞ ¼ 0; ð1Þ

can be mapped to the 1D Dirac equation

i∂tΨðξ; tÞ ¼ −iγσ̂x∂ξΨðξ; tÞ þ Δ × σ̂zΨðξ; tÞ; ð2Þ

after a transformation to the continuous transverse coor-
dinate. Here, an is the oscillation amplitude at the nth
resonator, 2Δ is the resonance frequency mismatch, and σ̂i
are the Pauli matrices explicitly defined in Supplemental
Material, Sec. I [44]. In this analogy, the term Δ is often
called the Dirac mass. The Dirac equation famously
produces solutions with positive energies as well as
solutions with negative energies [45]—the latter were later
proven to be antiparticles [46] labeled by the negative sign
in front of their mass terms. For the rest of the Letter,
we use the term “negative Dirac mass” for convenience of
discussion as done in other references [1,14]. A more
detailed discussion in the context of our system is also
included in Supplemental Material, Sec. I [44]. Based on
Eq. (1), if we define the first resonator on sublattice site A to
be n ¼ 0, a positive Dirac mass would correspond to a
chain with the A-site resonators having a higher resonance
frequency than that of B-site ones. At the interface between
lattices with Dirac masses of opposite signs [Fig. 1(b)],

a localized JR-type state emerges in the band gap. The
occurrence of this state has been discussed in previous
analytical [34] and experimental [33] studies.
Building upon our discussion in the periodic linear array,

we introduce nonlinearities into our model to design a self-
induced Dirac mass boundary. Since JR-type modes form at
the domain walls separating regions with sign-changing
Dirac mass, we can engineer a self-induced JR-type mode
by adding to Eq. (1) cubic nonlinearities (described in
Supplemental Material, Sec. III [44]) that closely resemble
the Kerr nonlinearities found in optics. Specifically, we
swap the coefficient of the last term −ð−1ÞnΔ with

2π × fnðanÞ ¼ 2π½fð0Þn − ð−1Þn × sgnðδÞ × βa2n%
¼ 2πff0 þ ð−1Þn½δ − sgnðδÞ × βa2n%g; ð3Þ

where fn is the effective resonance frequency for the
nth nonlinear resonator, β > 0 is the third-order nonlinear
coefficient, fð0Þn ≡ f0 þ ð−1Þnδ are the staggered initial
resonance frequencies from the center frequency f0 and
sgnð·Þ is the sign function. In this way, the local Dirac mass
is 2π½δ − sgnðδÞ × βa2n% and the stiffening and softening
nonlinearities are represented by the positive and negative
signs before the nonlinear coefficient β, respectively.
While the nonlinear detuning of a JR mode in purely

stiffening and softening photonic metamaterial was already
discussed in a previous numerical study [34], our exper-
imental effort focuses on inducing a sign flip of the Dirac
mass using nonlinear effects and thereby creating a self-
induced in-gap JR-type state.
To induce this mode in a nonlinear resonator array,

we tune the initial resonance frequencies into a staggered
configuration and impart upon them alternating types of
nonlinearities just as described in Eq. (3). An excitation is
then applied on the left edge of the array [Fig. 1(c)] to
induce—at high excitation amplitudes—an interface

FIG. 1. Engineering Dirac boundary mode in linear and nonlinear diatomic arrays. (a) A diatomic chain with staggered resonance
frequencies and uniform coupling rate (represented by curved dash lines) has a band gap (lower left) that can be shown through a
measurement of the density of state (DOS). (b) A JR-type Dirac boundary state arises at the interface where the unit cell resonance
frequencies are flipped. The resulting in-gap mode is shown below. (c) For nonlinear arrays, inversion of frequencies can be induced by
external excitation from an edge. (d)–(f) Amplitude-dependent frequency detuning in a nonlinear chain at different excitation levels.
Dash lines are used as a visual aid to locate the boundary mode.
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separating the resonators into two regions with positive and
negative Dirac masses through designed nonlinear effects.
Specifically, we put softening nonlinearity onto resonators
with a positive initial frequency offset δ and stiffening
nonlinearity onto those with a negative offset −δ. In this
way, the Dirac mass 2π½δ − sgnðδÞ × βa2n% across this finite
chain is linked to the local excitation amplitude an. In our
experiment, the nonlinear array starts with a uniform
negative Dirac mass and a clear band gap. At low levels
of excitation, even though nonlinearities on resonators near
the edge are weakly evoked, no sign change of the Dirac
mass is induced, and thus no in-gap mode was observed
[Fig. 1(d)]. When the excitation amplitude reaches a certain
threshold, the effective resonance frequencies of the res-
onator pair closest to the array edge become highly detuned
and equalize—closing the local band gap. Further increase
of the excitation amplitude flips the effective resonance
frequencies and changes the sign of the Dirac mass for this
segment, creating an interface within our nonlinear array.
Based on our previous argument, a JR-type state at an in-
gap frequency would emerge at the interface [Fig. 1(e)].
Increasing the excitation level further recruits more reso-
nator pairs to the side with positive Dirac mass and sends
the interface deeper into the gapped array [Fig. 1(f)].
Experimental realization of this model requires a reso-

nator with tunable frequency as well as stiffening or
softening nonlinearities. We implement this using magneto-
mechanical torsional resonators [39] shown in Fig. 2(a).
Each resonator is comprised of a disc magnet mounted on a
mechanical torsional spring which provides a restoring

torque when the resonator is displaced from its neutral
angular position. The torsional mode frequency for an
isolated resonator is set by the spring stiffness as well as the
rotational moment of inertia. We can therefore fine-tune the
resonance frequency by mass loading the resonator. The
magnetically induced mutual torque between adjacent
resonators introduces a coupling that can be condensed
into a rate parameter γ [Fig. 2(b)]. In the point-dipole limit,
the strength of the magnetomechanical coupling γ decays
cubically with increasing distance between the resonators
[47,48] allowing us to consider only the nearest-neighbor
coupling. Additional details on the magnetomechanical
coupling strength γ and photos of our physical setup are
provided in Supplemental Material, Secs. II and III [44],
respectively.
To study the emergence of the JR-type mode, we first

assemble a linear array by placing twelve frequency-tuned
resonators into two configurations. For the first configu-
ration, the resonators of high and low resonance frequen-
cies are arranged so that the Dirac mass for the entire array
is negative [Fig. 2(c)]. Specifically, resonators on sublattice
A and sublattice B have their resonance frequencies tuned
to fA ¼ 163.5 Hz and fB ¼ 165.0 Hz, respectively. We
keep all resonators at the same height with their torsional
axis parallel to one another and set the distance between the
centers of the magnets to 2.7 cm for uniform coupling
strength. We then measured the mechanical susceptibility
of the entire array to probe its density of states (DOS).
We locally excite each resonator along the chain via
magnetic torque applied using a coil. The resulting angular

FIG. 2. Experimental realization of Dirac edge mode in a linear magnetomechanical resonator array. (a) In all experiments we utilize
single degree-of-freedom magnetomechanical resonators, each having a torsional mechanical mode as illustrated. Color represents total
displacement amplitude. (b) The frequency separation between the in-phase (blue line) and the out-of-phase (red line) modes of two
adjacent resonators yields the magnetic coupling rate γ. The coupling rate is cubically dependent on distance. The insets depict the
hybridized mode shapes for a pair of resonators. Measured γ and geometry details are provided in Supplemental Material, Sec. II [44].
(c) and (f) Individual resonance frequencies for an array without and with the frequency-inversion interface. (d) and (g) The resulting
DOS shows an empty or occupied band gap (green) between the upper bulk band (UB) and lower bulk band (LB) colored in gray. (e) and
(h) Spatial distributions of the modes are shown in the DOS.
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displacement is then recorded as a function of time through
a Hall sensor placed directly below the resonator. To obtain
the DOS, frequency scans across the relevant frequency
range are performed for each resonator across the chain and
the steady-state responses are recorded in increments of
0.1 Hz. The DOS of an array with only the negative Dirac
mass is then shown in Fig. 2(d) where a clear band gap is
observed. We are also able to plot the excitation pattern for
the bulk bands as shown in Fig. 2(e). As expected for a
dimerized array, the two bulk modes are separated by a
band gap. For the second configuration, we manually flip
the resonance frequencies for half of the chain. At the
center of this new chain, the Dirac mass changes from
negative to a positive value and we expect to see a JR-type
mode localized at this interface [Fig. 2(f)]. Indeed, we are
able to identify a clear in-gap state from the DOS plot for
the second linear chain [Fig. 2(g)]. At the same time, the
spatial distribution of the mode, as shown in Fig. 2(h),
verifies that this JR-type mode is localized at the interface.
Through the comparison between these two different
configurations of the linear array, we confirm the corre-
spondence between an inversion of the effective resonance
frequencies for resonators on sublattices A and B and the
emergence of a localized JR-type state—a conclusion we
will use in the nonlinear experiment next.
In order to introduce nonlinearities into the resonator

chain as required by Eq. (3), we follow the approach
described in a previous study on magnetostatic spring
stiffening and softening effects [39]. Specifically, the
nonlinearities can be introduced by placing a fixed neo-
dymium magnet near each resonator to generate a local
nonuniform ambient magnetic field. In the point-dipole

limit, the magnetomechanical resonator experiences a
magnetostatic spring effect in addition to the mechanical
restoring force. Depending on the relative location and
orientation of the magnetic moments, as shown in
Supplemental Material, Sec. III [44], the magnetostatic
spring effect can produce either softening or stiffening
effect with increasing oscillation amplitude. In Figs. 3(a)
and 3(b), we show the frequency response of nonlinear
softening and stiffening resonators as a function of exci-
tation amplitude. The experimentally measured frequency
shifts follow the third-order nonlinearities described in
Eq. (3). Additionally, we recorded the effective resonance
frequencies at different oscillation amplitudes for every
resonator used in the nonlinear resonator chain shown in
Supplemental Material, Sec. III [44]. We later use these
amplitude-frequency curves to infer the effective resonance
frequencies in the nonlinear experiment.
We next construct an array of resonators with alternating

types of nonlinearities [see Fig. 3(c)] where a JR-type mode
can be induced by strong excitations. The softening
resonators are placed on the B sublattice and are tuned
to have initial frequencies of around fð0ÞB ¼ 202.0 Hz. The
stiffening resonators on A are tuned to fð0ÞA ¼ 200.0 Hz.
Ten nonlinear resonators spaced 2.7 cm apart are used to
build the array. We magnetically excite the array edge at the
midgap frequency of fdrive ¼ 200.8 Hz by applying a
sinusoidal current through a coil placed near the leftmost
resonator [Fig. 3(c)]. The excitation voltage applied on the
drive coil is linearly proportional to the coil current and
the drive torque on the first resonator. At each excitation
level, we simultaneously record the steady-state oscillation

FIG. 3. Realization of a self-induced Dirac boundary mode in a nonlinear array. (a) and (b) Sample frequency response curves for a
resonator with spring softening (stiffening) nonlinearity. Note that a different coil system is used in the nonlinear experiment, refer to
Supplemental Material, Sec. III [44], Fig. S8 for calibrated nonlinear detuning curves. (c) Configuration for a nonlinear array where
energy transmission is defined as output energy over the input (orange boxes). (d) Energy transmission curve as a function of excitation
level. (e)–(g) Effective individual resonance frequencies for the nonlinear array at three different excitation levels labeled in the
transmission curve.
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amplitudes for all resonators and infer their effective
resonance frequencies using the prerecorded amplitude-
frequency relation.
To study the energy transmission through the array, we

further define a transmission coefficient T:

T ≡ Eout

Ein
¼ a29 þ a210

a21 þ a22
; ð4Þ

where an represents the magnitude of oscillation for the nth
resonator and EinðEoutÞ is the input (output) energy defined
by the sum of the squares of the oscillation amplitudes for
the first (last) unit cell. The energy transmission shows a
sudden jump around an excitation level of 20 peak-to-peak
voltage (Vpp). As we show next, this jump corresponds to
the sudden increase in tunneling via the JR-type mode
which acts similarly to an in-gap dopant site in an insulator.
We can confirm the appearance of the JR-type mode by

examining the inferred resonance frequencies of the non-
linear chain at a few points of interest [Fig. 3(d)]. For low
excitation amplitude, as in Fig. 3(e) for 10 Vpp, the
nonlinearities are only weakly invoked and the effective
resonance frequencies on A and B sites do not cross,
making the Dirac mass negative throughout the chain.
For 20 Vpp, we see the first crossing of the resonance
frequencies between A and B sites [Fig. 3(f)]. From our
previous configuration in Fig. 2, we deduce that a JR-type
mode should have appeared in the band gap near the left
edge of this nonlinear chain, which in turn facilitated the
increased transmission. As the excitation amplitude further
increases to 35 Vpp, we observe more frequency tuning but
the location of the frequency crossing or the JR-type mode
does not change significantly [Fig. 3(g)] and thus T remains
stable. In principle, the mode should migrate deeper into
the chain and become more localized with even higher
excitation as more sites are recruited into the flipped
configuration and the crossing of the resonance frequencies
between A and B sites becomes steeper (Sec. IV of
Supplemental Material [44] discusses mode length scale).
Within our experiment range, we observe a digitization
behavior in the transmission where T remains at a low “zero
state” until the excitation amplitude exceeds the threshold
of 20 Vpp where T suddenly jumps up to (and maintains at)
a higher level resembling a “one state.” Here, the term
“digitization” is used to emphasize the binary behavior of
the transmission before and after the emergence of an in-
gap Dirac boundary state which offers an example of the
application for the nonlinear JR-type Dirac boundary mode.
The ability to control both the magnitude and the sign of

the excitation mass in Dirac materials has been sought after
for its potential to engineer boundary states [15,29]. In this
Letter, we demonstrate a resonator array where local
nonlinearities can be laid out in a way such that a sign-
changing Dirac mass boundary emerges at sufficiently
strong drive amplitude and a JR-type boundary mode

appears. We further show a novel correspondence between
the emergence of a JR-type mode and a sudden improve-
ment of in-gap energy transmission, which is generalizable
to all systems with Duffing-type amplitude-frequency
nonlinearities. Such nonlinearities are routinely encoun-
tered, for example, in macroscale and microscale mechani-
cal devices [49] and in microscale and nanoscale photonic
systems [50]. We expect that similar self-induced Dirac
boundary states could be realized in higher dimensions
where their robustness to disorder along the Dirac mass
boundary and tunable dispersion [36] can be used to
dynamically modify material properties.
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