12

13

15

16

17

18

23

28

33

35

38

39

41

43

 44

45

46

47

48

Reply to Flowers et al.: Existing thermochronologic data constrain Snowball glacial erosion below the Great Unconformity

Kalin T. McDannell^{a,1}, C. Brenhin Keller^a, William R. Guenthner^a, Peter K. Zeitler^a, and David L. Shuster^a

The origin of the Great Unconformity has recently been debated (1-3). Flowers et al. (2) suggested that erosion of the Pikes Peak granite (Colorado) was caused by Neoproterozoic tectonism prior to the Cryogenian, and implied that this local signal, if correct, invalidated a Neoproterozoic glacial origin for the global phenomenon of the Great Unconformity (1). McDannell et al. (3) instead find that inversions of thermochronometric data from widespread North American locations and tectonic settings (including Pikes Peak) are consistent with a Cryogenian glacial contribution to development of the Great Unconformity. Here we address the Flowers et al. comment (4) on our work.

We fully agree regarding the merits of geologic information in constraining inversions. In fact, we state (3) that geologic knowledge should always be incorporated—whether as imposed constraints during inversion (5) or as holdout data for testing and validation (6). Critically, however, physical geologic constraints and interpretive assumptions are not equally valid (3) (Fig. 1). The latter, including any interpretation about which reasonable geologists may disagree, should not be heavily weighted or otherwise strictly imposed (2) in a modeling strategy.

Flowers et al. (4) incorrectly assert that we "show no data or metric to assess how well [our] preferred timetemperature (t-T) paths replicate the observations"; in fact, such data are shown in ref. 3, SI Appendix, figures S4-S12. We refrain only from selecting a best t-T path, since this would be misleading, due to inversion nonuniqueness. McDannell et al. (3) apply geologic constraints, and, unlike ref. 4, integrate all available chronometer data for inversions (ref. 3, SI Appendix, figures S1-S3). It is implausible that our "model outcomes are artifacts," since we obtained results consistent with Cryogenian erosion for locations spanning thousands of kilometers, using search algorithm variants, different uncertainty estimates, and different types and quantities of input data.

McDannell et al. (3) explore t-T solutions constrained by 1) the data alone—providing an honest assessment of what can and cannot be resolved—and 2) the data plus reliable geologic constraints (either relaxed or omitted in cases of greater uncertainty). Deep-time chronometers modeled this way are truly assessing multiple hypotheses instead of simply imposing a preconceived interpretive model to which the data must conform (2). Such conformity is usually achieved only through excessive use of t-T "exploration boxes" and preferential data selection/averaging (e.g., refs. 2 and 7).

Is it more favorable to model all observed thermochronological data and independently address known uncertainties—or to preemptively reduce data quality and resolving power and thus universally require many t-T boxes to attain model convergence? Asserting that thermochronological data are "poor resolution" moves toward a paradigm where data complexity is ignored and inversions only fulfill the modeler's preferred interpretation. The $_{
m Q:6}$ "Cryogenian cooling" forward-model paths in Flowers et al. (4) outperform their alternatives in reproducing overall data trends—consistent with the results of McDannell et al. (3). Finally, considering the geologic deficiencies of alternative exhumation mechanisms in the cratonic localities, Cryogenian glacial erosion remains the most parsimonious model.

Author affiliations: ^aDepartment of Earth Sciences, Dartmouth College, Hanover, NH 03755; Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Earth & Environmental Sciences, Lehigh University, Bethlehem, PA 18015; dDepartment of Earth & Planetary Science, University of California, Berkeley, CA 94720; and eNoble Gas Thermochronology Laboratory, Berkeley Geochronology Center, Berkeley, CA 94709

Author contributions: K.T.M. and C.B.K. designed research; K.T.M. performed research; K.T.M. analyzed data; K.T.M., C.B.K., W.R.G., P.K.Z., and D.L.S. wrote the paper; and W.R.G., P.K.Z., and D.L.S. contributed ideas and edited the paper.

The authors declare no competing interest.

Copyright © 2022 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution License 4.0 (CC BY).

¹To whom correspondence may be addressed. Email: kalin.t.mcdannell@dartmouth.edu.

63 64

65 66

68

69

71

72

73

74

76

77

81

82

83

86

96 97 99

95

104 105 106

107 108 109

110 111 112

113 114 115

116 117 118

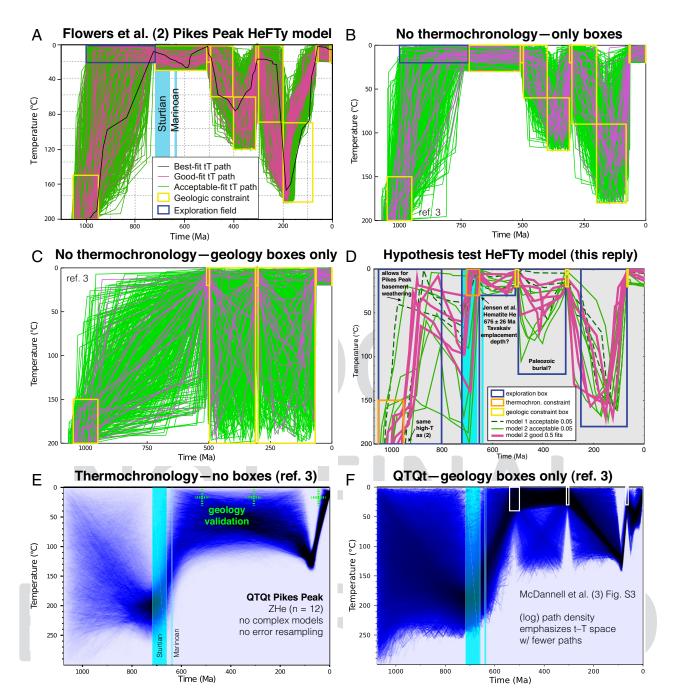
^{1.} C. B. Keller et al., Neoproterozoic glacial origin of the Great Unconformity. Proc. Natl. Acad. Sci. U.S.A. 116, 1136-1145 (2019).

R. M. Flowers, F. A. Macdonald, C. S. Siddoway, R. Havranek, Diachronous development of Great Unconformities before Neoproterozoic Snowball Earth. Proc. Natl. Acad. Sci. U.S.A. 117, 10172–10180 (2020).

K. T. McDannell, C. B. Keller, W. R. Guenthner, P. K. Zeitler, D. L. Shuster, Thermochronologic constraints on the origin of the Great Unconformity. Proc. Natl. Acad. Sci. U.S.A. 119, e2118682119 (2022).

R. M. Flowers, R. A. Ketcham, F. A. MacDonald, C. S. Siddoway, R. Havranek, Existing thermochronologic data do not constrain Snowball glacial erosion below the Great Unconformities. Proc. Natl. Acad. Sci. U.S.A., 10.1073/pnas.2208451119 (2022).

K. T. McDannell, R. M. Flowers, Vestiges of the ancient: Deep-time noble gas thermochronology. Elements 16, 325-330 (2020).


M. Kuhn, K. Johnson, "Over-fitting and model tuning" in Applied Predictive Modeling, M. Kuhn, K. Johnson, Eds. (Springer, 2013), pp. 61-89.

C. P. Sturrock, R. M. Flowers, F. A. Macdonald, The late Great Unconformity of the central Canadian Shield. Geochem. Geophys. Geosyst. 22, e2020GC009567 (2021).

R. A. Ketcham, Forward and inverse modeling of low-temperature thermochronometry data. Rev. Mineral. Geochem. 58, 275–314 (2005).

J. L. Jensen et al., Single-crystal hematite (U-Th)/He dates and fluid inclusions document widespread Cryogenian sand injection in crystalline basement. Earth Planet. Sci. Lett. 500, 145-155 (2018).

^{10.} P. Vermeesch, Y. Tian, Thermal history modelling: HeFTy vs. QTQt. Earth Sci. Rev. 139, 279–290 (2014).

Fig. 1. (A) Flowers et al. (2) HeFTy (8) model inverted "synthetic" dates from effective uranium binned/averaged observations (we do not condone this biased ad hoc approach). (B) Simple Monte Carlo model applying boxes only—without thermochronology data (3). (C) Model with Precambrian boxes removed; Cryogenian or earlier cooling allowed (3). (D) Three HeFTy models attempted here using 1) observed dates, 2) seven eU bins, and 3) five eU bins (2). Tavakaiv dike emplacement depth (9) and the timing of Pikes Peak granite weathering (2) are interpretations. Our model actually tests t-T paths for both the tectonic and glacial hypotheses. Model #1 failed to generate any t-T paths; P value statistical tests fail for precise and/or high n data (10). Model #2 yielded few "acceptable" paths. Model #3 rapidly produced good-fitting solutions. Solutions are consistent with both the glacial and tectonic scenarios, yet better-fitting paths support heating and rapid exhumation during Snowballs. (E) QTQt model—simplest paths that best fit the observed Pikes Peak data (3). (F) QTQt model with geologic constraints (3). Models demonstrate that it is rather a mistake to wield the limitations of inversion approaches ill-suited to deep-time problems just to generate favored thermal histories.

- 1
- Q: 1_Please review 1) the author affiliation and footnote symbols, 2) the order of the author names, and 3) the spelling of all author names, initials, and affiliations and confirm that they are correct as set.
- Q: 2_Please review the author contribution footnote carefully. Ensure that the information is correct and that the correct author initials are listed. Note that the order of author initials matches the order of the author line per journal style. You may add contributions to the list in the footnote; however, funding may not be an author's only contribution to the work.
- Q: 3-You have chosen the CC BY license option for your paper. Please confirm this is correct.
- Q: 4_Certain compound terms are hyphenated when used as adjectives and unhyphenated when used as nouns. This style has been applied consistently throughout where (and if) applicable.
- Q: 5_Please confirm or correct the laboratory added to affiliation e. Also, please confirm or correct the corresponding author email address, which differs from that provided in the metadata.
- Q: 6_PNAS does not use italics for emphasis; italics have therefore been removed for any such occurrences.

NOT FINAL EMBARGOED