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Librational feedback cooling
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Librational motion, whereby a rigid body undergoes angular oscillation around a preferred direction, can
be observed in optically trapped, silica microspheres. We demonstrate the cooling of 1 librational degree of
freedom for ∼5-μm-diameter spheres that have been induced to rotate with an external electric field coupled to
their electric dipole moment. Cooling is accomplished by adding a phase modulation to the rotating field. The
degree of cooling is quantified by applying a π/2 shift to the phase of the electric field and fitting the resulting
exponential decay of the librational motion to obtain a damping time, as well as estimating a mode temperature
from the observed libration in equilibrium. The result is an important step in the study of the dynamics of trapped
microspheres, crucial to cooling the mechanical motion to its ground state, as well as providing insights regarding
the charge mobility in the material at microscopic scales.
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I. INTRODUCTION

Classical mechanical systems akin to the canonical mass-
on-a-spring have been used to study oscillator dynamics under
a wealth of different conditions, allowing for these systems to
serve as underlying models for a variety of complex physi-
cal processes. In the flourishing field of optomechanics [1],
restoring forces are often generated by optical interactions
such as radiation pressure and can thus be controlled with
great precision. Indeed, the translational motion of optome-
chanical oscillators has been cooled to the level of single
quanta of the associated potential [2–4].

To date, much less attention has been given to the rotational
degrees of freedom. These have been manipulated primarily
with two mechanisms: Transfer of angular momentum via
the interaction between the polarization of a confining optical
field and a birefringent particle so confined [5–8], or coupling
an external rotating electric field to the electric dipole moment
within the trapped particle [9,10]. Other methods of control
are also possible including spin-mechanical coupling [11].

For the electrostatic technique, the particle must have an
electric dipole moment, which has generally been observed in
silica microspheres (MSs) synthesized via the Stöber process
[7,9,10,12]. As the dipole moment (and thus the MS carrying
it) is driven into rotation by the electric field, its orientation
oscillates about the instantaneous direction of the field, which
we refer to as “libration,” in analogy with the more familiar
astronomical phenomenon [13].
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We present a demonstration of feedback cooling of a libra-
tional degree of freedom, using an optically trapped silica MS
in vacuum. The MS is first translationally confined with active
feedback, electrically neutralized, and then induced to rotate
at a fixed, but freely chosen, angular velocity, by application of
a rotating electric field. For sufficiently small oscillations, the
librational degree of freedom can be described as a damped
harmonic oscillator. Feedback is provided by first detecting
the phase of the MS’s rotation from the polarization of trans-
mitted light, sensitive to the rotation of the MS’s birefringent
axes, and subsequently modulating the phase of the rotating
electric field.

The rotational motion of microscopic objects may provide
systems with inherently low levels of damping [14,15], offer
gyroscopic stabilization of the rotor’s translational degrees
of freedom [5,9,16], and possibly mitigate systematic effects
observed in precision force measurements with optically levi-
tated systems [12,17–19].

II. EXPERIMENTAL APPARATUS

The optomechanical system implemented in this work con-
sists of vertically oriented optical tweezers in vacuum. Silica
MSs [20] with diameter (4.70 ± 0.08) μm [21] are trapped
at the focus of a linearly polarized laser beam with a vac-
uum wavelength of 1064 nm and focused with a numerical
aperture of NA = 0.12, generated by a Yb:Doped fiber laser
and manipulated by a combination of both fiber and free-
space optics. Translational motion of the MS in the horizontal
plane is observed in the deflection of transmitted light, while
vertical motion is derived from the phase of light retrore-
flected by the MS. Active stabilization of the translational
degrees of freedom is accomplished using linear feedback
with piezoelectrically driven deflection of the trap position
for the horizontal degrees of freedom, as well as power
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FIG. 1. A schematic depiction of the central features of the appa-
ratus including the optical trap, the surrounding electrode structure,
and parts of the imaging system. The lower right inset demonstrates
a typical electric field configuration when driving a trapped MS to
rotate. The upper right inset is an idealized version of the expected
signal from the cross-polarized light monitor as the MS is rotating
with the angular velocity ω0. Note that the coordinate pair relevant
for the inset is different from that in the main panel. A complete
description of the apparatus can be found in Ref. [22]

modulation of the trapping beam for the vertical degree of
freedom. We observe negligible coupling between the trans-
lation and rotation of the MS, which are quite separated in
frequency, of the order of 10 to 1000 Hz for translation and of
the order of 10 kHz for rotation. The investigation of such a
coupling may prove interesting for future work.

Six identical electrodes form a cubical cavity around the
focus of the trapping beam, whilst also allowing mechanical
and optical access via central bore holes through each elec-
trode. This architecture allows one to set both the value of the
electric field and its gradient at the location of the trap. By ap-
plying an individually phased sinusoidal voltage to four of the
six electrodes, such that the chosen four lie within the same
plane, a rotating electric field of constant magnitude can be
generated. The orientation of the MS electric dipole moment
then aligns with the electric field, and the angular position can
be actively driven by phase-modulating the driving voltages.
A schematic depiction of the optical trap is shown in Fig. 1.
More details on the apparatus are given in Refs. [22,23].

The rotational degrees of freedom of a rotating MS are
monitored by taking advantage of the residual birefringence
present in Stöber process silica MSs [7,9,10]. A birefringent
MS couples some of the linearly polarized trapping light
into the orthogonal linear polarization following the relation
P⊥ = P0 sin2 (μ/2) sin2 (θ ), where P0 is the incident power,
μ ∝ �n is the phase retardation between the two axes of the
birefringence, and θ is the angle between the projection of the
fast axis into the rotation plane and the incident polarization

FIG. 2. Block diagram of the feedback architecture, where all
of the elements within the dotted border are integrated with the
FPGA, such that the entire module is mutually clocked by the same
top-level oscillator. The power of the cross-polarized light incident
on the photodiode is modulated at the angular frequency 2ω0 for a
MS rotating at ω0. The 2ω0 carrier is demodulated by phase-locked
sampling, yielding φ, the angular position of the dipole moment
relative to the electric field. The derivative can then be computed and
scaled by an arbitrary and user-controlled gain parameter Kd . The
quantity φext represents an arbitrary user-defined phase that can be
added to the phase modulation φm of the electric field.

[24]. Thus, a birefringent MS driven to rotate with the angular
velocity ω0 will generate cross-polarized light with an inten-
sity modulation at 2ω0.

The cross-polarized light is separated from the transmit-
ted light with a polarizing beamsplitter and projected onto a
photodiode. The modulating photocurrent is first converted
to a voltage, amplified, digitized, digitally filtered around
2ω0, and finally digitally demodulated, following the tech-
nique described in Refs. [22,25]. The digitization, filtering,
and demodulation operations are performed with a field-
programmable gate array (FPGA, NI PCIe-7841) in order to
derive the feedback signal, while the amplified photodiode
output is also digitized in parallel by a second analog-to-
digital converter (ADC, NI PXI-6259) operated at 500 kHz
and stored for offline analysis with monitor signals of the four
driving voltages. A schematic view of the feedback architec-
ture is shown in Fig. 2.

The drive voltages are first generated by the FPGA config-
ured to operate as a direct digital synthesis (DDS) wave-form
generator. Full digital control allows the generation of four
distinct signals from a single DDS: The sin, cos, − sin, and
− cos components. By phase-modulating the top-level DDS,
the angular position of the resultant electric field vector is nec-
essarily modulated. While the internal structure of the DDS is
clocked at 40 MHz, the digital-to-analog converters (DACs)
are updated at 1 MHz, and for the data presented here, the
rotation velocity was fixed to 25 kHz. The four DDS outputs
are amplified (Tabor 9400) to of the order of 100 V before
driving the electrodes. A finite element analysis (FEA) of the
electrode structure suggests that electric fields of the order of
100 kV m−1 are possible with this hardware configuration.

Note that all components within the FPGA module are
clocked by the same top-level oscillator, ensuring a phase
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lock between signal generation and subsequent sampling and
demodulation.

III. THE LIBRATIONAL DEGREE OF FREEDOM

Silica MS produced via the Stöber process possess an
electric dipole moment d [9,12,26,27] which, for otherwise
identical spheres, can vary in magnitude by more than a factor
of 10 [22,26]. If the MS is subject to a rotating electric field of
the form E = E [sin (ω0t )x̂ + cos (ω0t )ŷ], where the choice of
ẑ as the rotation axis is arbitrary, the orientation of the MS’s
electric dipole moment tends to align with the direction of the
electric field due to the torque d × E. Additionally, the MS is
subject to a drag torque proportional to it’s angular velocity
and to a randomly fluctuating thermal torque, both a result of
collisions with residual gas molecules. By defining φ′ as the
angle between the electric field vector E and the orientation of
the dipole moment d, and restricting the analysis to the plane
of rotation (xy plane), the angular momentum L of the MS is
governed by the following equation of motion:

∂L
∂t

=

⎡
⎢⎢⎣E d sin (ω0t − φ′)︸ ︷︷ ︸

driving torque

− βrot
∂φ′

∂t︸ ︷︷ ︸
drag torque

+ √
Sthη(t )︸ ︷︷ ︸

thermal torque

⎤
⎥⎥⎦ẑ,

with d = |d| being the magnitude of the MS electric dipole
moment; βrot being the rotational drag coefficient of the MS;
Sth = 4kBTβrot being the single-sided power spectral density
of the thermal torque noise, with kB being the Boltzmann
constant and T the temperature of the residual gas; and η

being a time-domain representation of a stochastic Wiener
process, such that F[η]F[η] = 1, with F being the Fourier
transform operator and ( ) indicating complex conjugation. A
derivation of Sth and βrot is detailed with great care in both
Refs. [28,29].

Now transform the equation of motion to the frame corotat-
ing with the electric field by defining the angular coordinate
φ = φ′ − ω0t and recognizing that L = Iφ̇′, where I is the
MS moment of inertia. The result has an equilibrium solu-
tion, found by setting φ̈ = φ̇ = 0 and momentarily ignoring
the stochastic drive. Physically, the equilibrium solution is
induced by the overall gas drag from the rotation and is given
by φeq ≈ − arcsin (βrotω0/E d ), relative to φframe = ω0t . The
numerical value can be estimated by considering the pressure
and the species of residual gas, which, in the present data,
is dominated by ∼2 × 10−6 hPA of H20, as well as typical
values of the dipole moment, 100 to 2000 e μm, and chosen
electric field conditions, E ∼ 10 to 100 kV m−1 and ω0 =
2π (25kHz). We find φeq ≈ −1.3 × 10−7 to −2.6 × 10−5 rad,
and thus, the constant term is dropped from the formalism.

The effect of active feedback via modulation of the phase
of the rotating electric field would change the argument of
the sin in Eq. (1) to (ω0t + φm − φ′). Implementing pure
derivative gain, to mimic the effect of damping, of the form
φm = −Kd φ̇ with Kd a tunable constant, and linearizing the
equation of motion, we arrive at the following result:

∂2φ

∂t2
+ γ

∂φ

∂t
+ ω2

φφ = −Kdω
2
φ

∂

∂t
(φ + ξ ) +

√
Sth

I
η, (1)

with ξ representing the measurement noise necessarily in-
jected by the feedback, and where we have defined a damping
coefficient γ and a natural frequency ωφ :

γ ≡ βrot

I
, ωφ ≡

√
Ed

I
, (2)

recognizing the usual equation of motion for a damped har-
monic oscillator with forcing terms. Computational delays
inherent to the feedback architecture are such that the calcu-
lated value of φ̇ + ξ̇ in the feedback forcing term is in fact
delayed in time, i.e., φ̇ + ξ̇ = φ̇(t − tfb) + ξ̇ (t − tfb) for the
term proportional to Kd , with tfb approximately of the order of
100 μs.

A. Step response: Homogeneous solution

Consider the response of the system to a step function, such
as would result from a discrete change in the orientation of the
rotating electric field. If the step is sufficiently fast compared
to the length of one librational period, it can be modeled as
an instantaneous effect. Further ignoring the thermally driven
portion of the solution and assuming that any transients have
been fully damped, the step response can be derived by inte-
grating Eq. (1) subject to the initial conditions φ(0) = φ0 and
φ̇(0) = 0, where a step of magnitude φ0 is assumed at time
t = 0.

A proper treatment would consider the full functional form
of the potential well (U ∼ ∫

sin φ dφ instead of ∼φ2), include
anomalous dissipation generated by the feedback-injected
noise ξ , and account for the causal limitation represented by
tfb, but for the purpose of this demonstration of librational
cooling, we appeal to the approximated case with a quadratic
potential and with ξ = 0 as well as tfb = 0. The accuracy and
limitations of the approximation are discussed below. Inte-
grating the simplified equation of motion φ̈ + (γ + kd )φ̇ +
ω2

φφ = 0, subject to the aforementioned initial conditions and
with kd ≡ Kdω

2
φ defined for brevity, φ(t ) is obtained as

φ(t ) = φ0e
−γd t/2 cos

⎛
⎝

√
ω2

φ − γ 2
d

4
t

⎞
⎠, (3)

where γd ≡ γ + kd . The time constant of the exponential en-
velope τ = 2/γd is determined by the combined effect of the
system’s intrinsic damping γ , assumed to be dominated by
collisions with residual gas, and the feedback-induced damp-
ing kd , allowing the effect of the feedback to be quantified.

The analytic solution given by Eq. (3) can be evaluated
against a numerical solution obtained by integrating the full
form of the sinusoidal potential. A Runge-Kutta integrator
was used for this purpose, with a few different electric field
amplitudes and effective damping coefficients γd , chosen to
span the approximate range of both parameters. A comparison
between the exponential fits to the decaying envelopes of
oscillation for both the analytic solution of the approximate
potential and the numerical solution of the full potential (with
otherwise identical E , d , I , and γd ) is used to estimate the sys-
tematic bias associated with the approximated solution above.
As expected, an exponential fit to the amplitude envelope of
the analytical solution of the linearized equation of motion
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yields the correct answer: (τ̂ )linear ≈ τtruth. The same exponen-
tial fit to the amplitude envelope of the numerical solution of
the full sinusoidal potential systematically underestimates the
true value of the damping time by a fixed multiplicative factor:
(τ̂ )full ≈ 0.91τtruth.

B. Thermal steady state

The thermally driven steady-state motion of the MS libra-
tional degree of freedom should also depend on the level of
the applied feedback. An expression for the expected power
spectral density of the librational motion can be derived by
considering the Fourier transform of Eq. (1), with kd = Kdω

2
φ

as before. We generally follow the extensive formalism pre-
sented in the Supplemental Material of Ref. [30]. Let φ̃(ω) ≡
F[φ(t )] and recall that, for individual Fourier component
solutions, we know F[φ(t − tfb)] = e−iωtfb φ̃ and F[φ̇] = iωφ̃,
with tfb as before. We find that

φ̃ =
√
Sth/I − ikdωe−iωtfb ξ̃[

ω2
φ − ω2

] + iω[γ + kde−iωtfb ]
, (4)

with ξ̃ being the Fourier transform of the measurement noise.
We can compute the expected power spectral density of the
librational motion directly:

Sφφ = φ̃φ̃

= Sth/I2

G(ω)
+ k2

dω
2Sξξ

G(ω)
,

(5)

with the denominator G(ω) = [ω2
φ − ω2 + ωkd sin (ωtfb)]2 +

ω2[γ + kd cos (ωtfb)]2 being the inverse of the effective me-
chanical susceptibility in the presence of feedback, and where
it has been assumed that ξ and η are uncorrelated.

Solving for the quantity φ̃ + ξ̃ , we can compute the ex-
pected power spectral density of the libration, as observed
from the in-loop detector:

SIL = (φ̃ + ξ̃ )(φ̃ + ξ̃ )

= Sth/I2

G(ω)
+

[(
ω2

φ − ω2
)2 + γ 2ω2

]
Sξξ

G(ω)
, (6)

with G(ω) as before.
The intended effect of the feedback is to introduce addi-

tional damping. However, due to the fixed temporal phase shift
tfb associated with this particular feedback implementation,
the effect on the observed power spectral density is nontrivial.
Importantly, there is a noise injection term proportional to
Sξξ , but suppressed at the resonance, and the denominator
G(ω) induces a clear asymmetry in the observed spectral den-
sity. The former effect is the well-understood result of noise
cancellation in the detector induced by the feedback system
and is often referred to as noise squashing [30–32]. Systems
with both in-loop and out-of-loop detectors can circumvent
the noise squashing, but the signal level in this first iteration
of librational cooling was not sufficient for distribution to
multiple detectors.

The parameter kd can be extracted by fitting Eq. (6) to the
observed spectra, and together with the known values of I ,
ωφ , and γ , an effective temperature of the librational motion

can be estimated. From equipartition and Parseval’s theorem,
maintaining the convention of single-sided PSDs, the effective
mode temperature can be calculated:

kBTeff = Iω2
φ〈φ2〉

= Iω2
φ

1

2π

∫ ∞

0
Sφφdω

≈ Iω2
φ

4

[
Sth/I2

ω2
φ (γ + kd )

+ k2
dSξξ

γ + kd

]
,

(7)

where in the final line it has been assumed that tfb = 0 in
order to arrive at a closed form expression for Teff . Clearly,
any estimation via the expression in Eq. (7) will have limited
accuracy since it is known that tfb �= 0. The acquired spectra
will be numerically integrated in future iterations of the appa-
ratus, taking advantage of both improved signal-to-noise and
a dedicated out-of-loop sensor.

IV. RESULTS

Librational feedback cooling was demonstrated with three
distinct MSs, all from the same lot with a diameter of (4.70 ±
0.08) μs and each trapped for approximately one month.
A variety of different derivative gain values Kd were used,
as well as a few different electric field amplitudes so that
effective values of kd span roughly 4 orders of magnitude.
The degree of cooling for a specific choice of parameters was
quantified via two distinct methods: Application of a step, and
thermalization.

A. Discrete phase step

As the driving voltages that source the rotating electric
field are generated by a single top-level DDS, it is possible to
apply arbitrary phase steps by propagating the phase of each
of the four output sinusoids simultaneously. As a result, the
applied electric field rapidly changes orientation. Electric field
phase changes of �φ = ±π/2 in this system, corresponding
to drive voltage amplitude changes of (1/2) the peak-to-peak
voltage, have been measured to have rise times trise < 2 μs.
This is consistent with both the 50-k
 termination resistance
and the 30-pF electrode-to-ground capacitance as well as the
∼500-kHz full-scale bandwidth of the driving amplifier. The
frequency of libration can be controlled by tuning the electric
field and usually has values ωφ = √

E d/I approximately of
the order of 2π × 1 kHz, so that ωφtrise � 0.01 rad, and thus
the finite rise time of the step has a negligible effect on the
dynamics. This is sufficiently fast that it is effectively instan-
taneous relative to the order of 1-kHz fundamental frequency
of the libration.

For the measurements presented here, a step of �φ =
±π/2 was applied to the rotating electric field (where the
± indicates that the phase offset was applied alternately in
the “forward” and “backward” directions), and the subse-
quent ringdown of the MS’s librational motion was observed.
Between successive measurements, the feedback gain and the
electric field amplitude were first altered to their new values,
and then the motion was allowed to thermalize for >3000 s,
following the expected torsional damping times (dependent
on the base pressure of the vacuum chamber) observed
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FIG. 3. The amplitude envelope of the libration in response to
an applied step, for a variety of derivative gain values, including
kd = 0, where distinct colors (and lightness values) distinguish dif-
ferent values of derivative gain. A dashed line indicates the result
of exponential fitting, with the extracted damping time showing in
the legend. Inset: An example of the underlying oscillation of the
librational motion for the largest value of derivative gain. Some
filtering artifacts are present immediately following the step and are
excluded from the exponential fit.

previously in the same system [10]. A few examples of the
measured response to such a step are shown in Fig. 3, for one
specific MS.

The libration is extracted from the cross-polarized light
signal, first by Hilbert transforming the primary rotation sig-
nal at 2ω0 = 2 × 2π (50 kHz), which yields 2φ′, the angular
position of the MS in the lab frame. Using the known drive
frequency ω0, the libration is then reconstructed as φ = φ′ −
ω0t . Finally, the amplitude envelope of the libration is ex-
tracted by a second Hilbert transform of the reconstructed φ.

A damping time is inferred by downsampling the am-
plitude envelope and then fitting the result with a decaying
exponential, including a constant offset to account for the
rms amplitude of the thermal motion after the transient re-
sponse has fully decayed. The fit of the amplitude envelope
is constrained to the domain [t0 + 0.1τ0, t0 + 2.0τ0], where
t0 indicates when the step was applied and τ0 is an initial
estimate of the e-folding time obtained from the mean of
data samples that cross φ ∼ (π/2)e−1 after the step. From
Sec. III and the aforementioned numerical integrations of the
full potential (rather than the harmonic approximation), we
know that the decay time, τ ≈ 2/γ , will be systematically
underestimated by the naïve exponential fit to actual data, but
by a fixed multiplicative constant. Regardless, the scaling of
the decay time from the fit τ̂ as a function of kd still allows
characterization of the cooling.

A summary of all step response measurements is shown
in Fig. 4, with the extracted τ̂ plotted as a function of the
derivative gain. When the derivative gain is sufficiently small,
there is some intrinsic damping that dominates. Interestingly,
the zero-feedback damping times observed, of the order of
10 to 100 s, are inconsistent with the expected value of
τ ≈ 2/γ ≈ 2I/βrot ∼ 4000 s [9,10] given the base pressure
achieved in this vacuum system. This may be the result of
phase noise either in the top-level DDS sourcing the electric
field or in the synchronization of the various ADCs, DACs,

FIG. 4. Summary of the libration phase step measurements. The
damping time extracted from exponential fits is plotted as a function
of the applied derivative gain. Different colors (lightness values) indi-
cate different electric field amplitudes, while different marker shapes
indicate distinct MSs. (Left) Damping times in the absence of applied
feedback, showing a clear dependence on both drive amplitude and
MS, with the former being a monotonic relation. Data from distinct
MSs have been offset horizontally to aid their visibility. (Right)
Damping times with feedback on. Dashed lines indicate fits to the
expected scaling relation τ̂ = 2/(γ +Ckd ), where C is an arbitrary
scaling constant found to be necessary to match the observed relation
between kd and τ̂ .

and digital demodulation operations. It may also be symp-
tomatic of nonlinearities, such as those that might arise from
higher-order charge distributions present in the MS.

From Sec. III, the exponential damping time might be
expected to follow the relation τ̂ = 2/(γ + kd ). The data are
inconsistent with this expectation, instead being described
by the relation τ̂ ∼ 2/(γ +Ckd ), with C being a positive
scaling constant. The constant C is different for distinct MSs,
but consistent across drive voltage for each MS. For the
three whose data are presented here, we have the following:
C1 = 0.29 ± 0.03, C2 = 0.53 ± 0.05, and C3 = 0.24 ± 0.03.
As was noted in Sec. III, a systematic bias in the estimate of τ̂

is expected from fitting a naïve exponential to the ringdowns
within the sinusoidal potential, but this factor of τ̂ → 1.1τ̂

does not explain the observed deviation, nor would it be dif-
ferent between MSs, under the construction presented here.
This is discussed further in the next section.

B. Thermalization

Immediately prior to a phase step measurement, but af-
ter the long 3000-s thermalization time, 200 s of librational
motion are monitored and digitized, in 20 continuous 10-s
integrations. For each integration, the libration φ is extracted
with the same Hilbert transform discussed in the previous sec-
tion, and the power spectral density is estimated by squaring
the Fourier transform of the digitized signal. The observed
motion is sufficiently small so that the approximation sin φ ≈
φ is valid.

An exemplary pair of two such 200-s datasets with one MS
are shown in Fig. 5, where the PSD of a few individual 10-s
integrations are shown, as well as the PSD of the concatenated
signal. Between successive integrations, the central frequency
of the librational motion ωφ appears to change by an order
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FIG. 5. PSDs of the librational motion depicting a drifting cen-
tral frequency. Each panel contains one 200-s dataset, with 5.4 h
between the two. The power spectral density of each full dataset is
shown in light gray, while the power spectral densities of individual
10-s integrations within the datasets are shown in curves of varying
lightness and color. It appears that some of the observed spectral
width is driven by slow fluctuations in the center frequency, distinct
from additive dissipation and subsequent line broadening.

of 0.1 Hz, and as a result, the PSD of the concatenated signal
appears anomalously broadened. Furthermore, under identical
conditions, but ∼5 h later, the central frequency continued
to drift by >2 Hz. Both effects can hinder the estimations
of damping, given that γ̂d = γ + kd is extracted from the
width of the observed spectral feature. Dividing the data into
smaller blocks, effectively implementing shorter integration
times, provides little improvement given the fixed sampling
rate and frequency resolution implied the Nyquist-Shannon
sampling limit [33,34].

In order to mitigate the effect of this drift, first, the
central frequency of libration ω̂i, of each of the i integra-
tions is estimated by fitting the spectral feature to Eq. (5)
with Sξ = 0 and tfb = 0, but an added constant offset to
account for detector noise. From these estimations, a mean
central frequency can be defined as ω ≡ (1/N )

∑N
i ω̂i. The

librational motion in each integration is then frequency
shifted by �ω = ω − ω̂i. The frequency shift is accomplished
by assuming the filtered signal φ(t ) can be represented
by φ(t ) = A(t ) cos [ωit + θ (t )], as well as the implicit re-
quirement that A(t ) and θ (t ) change slowly relative to
ωi. The analytic representation of the signal can then be
constructed from the Hilbert transform H as φa(t ) = φ +
iH[φ] = A(t ) exp {i[ωit + θ (t )]}, so that a frequency shift can
be implemented simply via the multiplication φa exp (i�ωt ).

The real part of the frequency-shifted analytic signal is then
the desired librational motion, which is constructed separately
for each individual integration. The average PSD of all such

FIG. 6. A few examples of the mean PSDs of the librational
motion of one particular MS, where distinct colors (and lightness
values) distinguish different values of derivative gain. For measure-
ments with kd �= 0, each PSD shown is the mean of the PSDs of 20
individual and consecutive 10-s integrations, following the averaging
procedure discussed in the text. The dashed lines indicate fits of
the PSD to the expression in Eq. (6), with the extracted value of
γ̂d = γ + kd and the ratio of the effective mode temperature from
Eq. (7) to the zero-feedback mode temperature both shown in the
legend. For the data with kd = 0, there are 10 distinct PSDs from
10 measurement series all plotted together, where each PSD is again
the mean of 20 consecutive integrations, with a delay of the order
of 1 h between each measurement series to ensure thermalization
of the system. The dashed line for kd = 0 represents the mean of
the fits to each of the 10 measurement series and is used to derive
an estimate of zero-feedback damping γ , whereas the zero-feedback
mode temperature is derived from a direct integration of the spectra
and the assumption of equipartition.

integrations for one 200-s measurement is fit to Eq. (6) in
order to estimate γd , kd , and Sξ , where the value of γ is
loosely constrained to 2/τ (kd = 0), i.e., the level of intrinsic
damping observed during ringdown measurements when the
effect of the active feedback is negligible. A few examples of
the average PSDs together with their fits are shown in Fig. 6.

As with the step response, the thermal behavior of the
system in the absence of feedback is inconsistent with the
assumption that residual gas dominates the observed damping.
For these specific MSs, we would naïvely expect the effective
librational mode temperature in the absence of feedback and
at the base pressure of the vacuum system to be around 0.5 K,
following the formalism in Refs. [28,29]. Direct integration
of the measured spectra in the absence of feedback (where
the signal-to-noise is sufficient to do so), together with the
equipartition theorem, implies the zero-feedback mode tem-
perature T0 is approximately T0 ≈ 260 K, for the particular
MS and electric field drive conditions pertinent to the data
shown in Fig. 6. The apparently elevated mode temperature
is qualitatively consistent with the shorter than expected zero-
feedback damping times observed in Sec. IV A.

Given this observation, Teff from Eq. (7) is calculated for
each measurement series by assuming the system is driven
with a torsional power spectral density Sth = 4kBT0γ I , where
T0 is computed by direct integration of the zero-feedback
thermal spectra for a particular MS and electric field drive,
and γ is derived by fitting the zero-feedback spectra with
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FIG. 7. Summary of the libration thermalization measurements,
where, as before, different colors (and lightness values) indicate
different electric field amplitudes, while different marker shapes indi-
cate distinct MSs. Top panel: Ratio of the effective mode temperature
calculated via Eq. (7) to the zero-feedback mode temperature, with
the values of ωφ , γ , k̂d , Sth, and Sξ extracted from fitting Eq. (6) to
the observed PSDs. The reheating observed for large kd is consistent
with broadband noise injection from the feedback loop as the gain is
increased. Bottom panel: Ratio of the extracted value of k̂d , relative
to the expected value kd = Kdω

2
φ .

Eq. (6) while fixing kd = Sξ = 0 to eliminate feedback terms.
A summary of all the fitting results is shown in Fig. 7, with
the ratios Teff/T0 and k̂d/kd plotted as a function of kd . The
ambiguity associated with assuming some arbitrary thermal
bath driving the librational motion suggests the mode temper-
ature under the influence of feedback is best provided as a
ratio relative to the system’s mode temperature in the absence
of feedback. Over the range of parameters tested in this work,
zero-feedback mode temperatures T0 were observed in the
range 220 to 350 K.

C. Anomalous dissipation

The formalism presented in Sec. III suggests that ωφ =√
E d/I , which would normally be assumed constant for a

fixed electric field magnitude. Clearly, the measurements pre-
sented here are inconsistent with that assumption, and there is
not only a source of anomalous dissipation for the librational
degree of freedom, as was shown in Sec. IV A, but also slow
drifts in the central frequency, as seen in Sec. IV B. The
magnitude of the electric field is measured to be constant
within ±50 V m−1, consistent with the absolute accuracy of
the DACs sourcing it, ∼0.03% of their full scale, as reported
by the manufacturer over both 24-h and 1-yr timescales [35].

This naturally implies that some combination of the MS
electric dipole moment d and moment of inertia I are
fluctuating. For the MSs used [20], electric dipole moments
over the range 100 to 2000 eμm have been observed [22]. The
underlying mechanism that gives rise to these dipole moments
is not fully understood and it has been observed that ionization
of residual gas in close proximity to a trapped MS can greatly
affect the magnitude of the dipole moment [10].

It is natural then to suggest that both the anomalous dis-
sipation and the slow drifts of the central frequency are a
result of a changing charge multipole within the MS. Using
one of the three MSs presented in this work, two dedicated
dipole moment measurements following the procedure first
established in Ref. [9] and separated by O(1 month) yielded
1804 ± 39 (stat.) ± 84 (sys.) initially and then 1094 ± 24
(stat.) ± 51 (sys.) e µm, a very significant change for what has
often been assumed a persistent physical characteristic of the
MSs. Indeed, multiple physics searches with this and similar
apparatuses have encountered systematic effects consistent
with electromagnetic interactions that slowly fluctuate in time
[18,19].

V. CONCLUSION

We have successfully demonstrated feedback cooling of a
librational degree of freedom of an optically trapped silica
microsphere in vacuum. In this first implementation of li-
brational cooling, feedback was accomplished primarily with
damping constructed from the derivative of the libration. The
level of feedback was tuned over roughly 4 orders of mag-
nitude for an individual microsphere, characterized both by
applying a step and observing the resulting transient and by
analyzing the steady-state motion once it has thermalized with
the environment. Transient damping times scale inversely
with the applied derivative gain, as expected, although with
an overall systematic bias that is distinct across individual
microspheres and is as of yet unexplained. Thermally driven
power spectral densities of the libration have widths consistent
with the applied derivative gain when the latter is sufficiently
large.

Both the step response and steady-state measurements pre-
sented suggest some source of anomalous dissipation in this
system, as well as drifts of the physical properties of optically
trapped microspheres. The librational damping time and ther-
mal spectral width in the absence of feedback are inconsistent
with expectation from fluctuations driven by residual gas,
although this is likely a symptom of noise in the driving the
electronics given the observed scaling with drive amplitude,
and furthermore it can be tested in the future with improved
hardware. At the same time, large drifts in the fundamental
frequency of the libration are observed, suggesting the ratio
(d/I ) is changing by up to a factor of 2. Any such changes
would have consequences for precision measurements limited
by electrostatic backgrounds.
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