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UNCONDITIONAL ENERGY STABILITY AND SOLVABILITY
FOR A CO0 INTERIOR PENALTY METHOD FOR A
SIXTH-ORDER EQUATION MODELING MICROEMULSIONS

AMANDA E. DIEGEL AND NATASHA S. SHARMA”™

Abstract. We consider a CO interior penalty finite element approximation of a sixth-order
Cahn-Hilliard type equation that models the dynamics of phase transitions in ternary oil-water-
surfactant systems. The nonlinear sixth-order parabolic equation is expressed in a mixed form
whereby a second-order (in space) parabolic equation and an algebraic fourth-order (in space)
nonlinear equation are considered. The temporal discretization is chosen so that a discrete energy
law can be established leading to unconditional energy stability. Additionally, we show that
the numerical method is unconditionally uniquely solvable. We conclude with several numerical
experiments demonstrating the unconditional stability and first-order accuracy of the proposed
method.

Key words. Finite element, Cahn-Hilliard, unconditional energy stability, microemulsions and
unique solvability.

1. Introduction

Microemulsion systems are of great interest across many different fields due to
the flexibility of these models to adapt to a variety of applications such as oil recov-
ery [2], development of environment-friendly solvents [1], consumer and commercial
cleaning product formulations [3], and drug delivery systems [4]. One such model,
which is outlined below, can be described as a sixth-order conserved evolution sys-
tem that models the dynamics of phase transitions in ternary oil-water-surfactant
systems. This model was introduced and studied by Gompper and co-authors
in [5, 6, 7, 8 9] and has demonstrated great ability in capturing many essen-
tial static properties of the ternary oil-water-surfactant systems. The existence
and uniqueness of strong and weak solutions have been analyzed by Pawlow et
al. in [10, 11].

Assume that © C R? is a bounded polygonal domain occupied by the oil-water-
surfactant mixture with boundary 9. Then, according to Gompper [9], the free
energy functional assumes the form

1) B0) = [ o(6) do+ 5 [{(6* = ) Vo + (86}
Q Q

where ¢ is the scalar order parameter representing the local difference between oil
and water concentrations and ag and A are positive constants. Here, fy(¢) denotes
the volumetric nonlinear free energy functional which has the form

fo(®) = é(aﬁ —1)%(¢> 4+ 05)(p+1)2 = §(¢6 —1.5¢* + 0.5),

2

and possesses three extrema at ¢ = +1, 0 which correspond to the water-rich (-
1), oil-rich (+1), and microemulsion (0) phases. We note that while this model
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is defined for an arbitrary choice of ag, in this paper, we limit the range of ag
to positive numbers. The impact of ag can be explained as follows. When the
surfactant is added to the system, a minimum develops in the microemulsion phase
which is represented by ¢ = 0. The minimum is of value —ag. When surfactant
concentration is increased, the phase field ¢ satisfies ¢ < ag. For a detailed
discussion, we direct the interested reader to [10] and references therein.

To construct a system of equations representing the dynamics of phase transitions
in ternary oil-water-surfactant systems, we follow Pawlow and Zajaczkowski [10]
and assume the initial value condition

(2) #(0) = g € H*(Q) such that n-V¢y =n- VAgy = 0 on 99,
and homogeneous Neumann-type boundary conditions

(3) n-Vo=n-VAp=n-Vu=0.

Additionally, we consider the following conservation law

(4) O —V - (MVp) =0,

where M > 0 is a constant mobility and p is the chemical potential given by d4 L,
i.e. the variational derivative of the energy functional F with respect to ¢:

(5) = 0,E =3B(¢° — ¢°) + ¢|Vo|* = V- ((¢* — a0) V) + AA¢.

Therefore, we consider the following system of equations for which the well-posedness
was established in [10]:

(6a) 0ip—V - (MVpu) =0,
(6b) 38(6° — &%) + ¢Vl = V- ((¢” — a0) V) + \A%p — pu = 0.
The following theorem establishes the energy stability of the above system.

Theorem 1.1. Let ¢ be a sufficiently regular solution to the system (6). Then, for
t > 0, the following equality holds.

%(/fo(éb) dx+%/{(¢2—ao)\V¢|2+A(A¢)2} d:c) + M/|VM|2d;p:0,
Q Q 4

Proof. The proof can be found in Lemma 3.1 from [10]. O

Despite its popularity, there has been a lack of available numerical schemes
solving these systems. Indeed, the only established numerical method developed
for the model (6) known to the authors was introduced by Hoppe and Linsenmann
in [12] in which a C° interior penalty (CO-IP) method was utilized for spacial
discretization but where a fully implicit backward Euler time discretization strategy
was adopted for the error analysis. As such, the work presented in that paper
focuses on establishing quasi-optimal error estimates but no discrete energy law is
obtained.

Similar to the work presented in [12], we propose a spacial discretization based
on the CO-IP method. These methods are characterized by the use of C° Lagrange
finite elements where C! continuity requirements imposed by utilizing a conform-
ing mesh are replaced with interior penalty techniques. CO-IP methods were first
introduced by G. Engel et.al. in [13] and revisited and analyzed by Brenner et.al. in
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] and further investigated by others in [25]
and [26] to solve the fourth-order biharmonic problem. However, in contrast to the
work presented by Hoppe and Linsenmann, we propose a time discretization strate-
gy from which a discrete energy law closely related to (1) is satisfied by solutions to
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the numerical scheme. We also provide details for the proof for unique solvability.
Closely related work by the authors of this paper on a sixth-order parabolic equa-
tion modeling the phase-field crystal (PFC) equation can be found in [28] and due
to the success of that implementation, the authors have chosen the CO-IP approach
herein. However, it may be worthwhile to remark that other available numerical
methods for the PFC equation have recently emerged in the literature and include
a local discontinuous Galerkin method by Guo and Xu [27], a Scalar Auxiliary
Variable Fourier-spectral method by Li and Shen [29], and an Invariant Energy
Quadratization approach by Yang and Han [37]. Consideration of adopting a nu-
merical approach differing from the CO-IP method for the microemulsions system
is reserved for future work. Additionally, extensive numerical tests are conducted
to demonstrate the stability and the first-order accuracy of the scheme proposed
herein.

This paper is organized as follows. We first present preliminaries in section 2
which will be required for the definition of the CO-IP method. In section 3, we
present the fully discrete CO-IP method and demonstrate that this method is un-
conditionally uniquely solvable and unconditionally stable. In section 4, we present
several numerical experiments illustrating the performance of our method and con-
clude the paper in section 5.

2. Preliminaries

Suppose that .7, is a geometrically conforming simplicial triangulation of 2. We
introduce the following notation:

hx = diameter of triangle K (h = maxgeg, hi),

v = restriction of the function v to the triangle K,

|| = area of the triangle K,

&y = the set of the edges of the triangles in 7},

e = the edge of a triangle,

le] = the length of the edge,

Vi i={wp, € C(Q)|(wn)x € Pi(K) VK € Z,} the standard Lagrange finite
element spaces associated with .7}, of degree 1.

o 7 = {v, € C(Q)|(vn)k € Po(K) VK € Z,} the standard Lagrange finite
element space associated with 7, of degree 2.

We rely on the standard Sobolev space, inner product, and norm notation for the
remainder of this paper. In particular, for 1 < p < oo we let ||-HLP(S) denote the
standard LP norm over S C R? and for S = €2, we denote the LP norm by simply
Il »- Additionally, we define the bilinear form:

A= 3 [ wevo s S ]

Keo, e€éy,

™ P> /{{6n2}} Haneﬂd“o‘ 2 al o] L] s

with o > 1 known as a penalty parameter and (V2u : V2v) is the inner product
of the Hessian matrices of w and v. The jumps and averages that appear in (7)
are defined as follows. For an interior edge e shared by two triangles K. where n,
points from K_ to K (cf. Figure 1), we define on the edge e

Ov 0%v 1 [(0%v_ 0%y
@ o) = oo gt =1 (o 58 )
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FIGURE 1. Orientation of the unit normal n. outward to the inte-
rior triangle K_. This normal is defined on the interface e shared
by the triangles K_ and K.

where vy = v|k, . For a boundary edge e, we take n. to be the unit normal pointing
towards the outside of 2 and define on the edge e

) |[ ;:eﬂ — i Vo, {{g:;}} — . - (V20) n..

Remark 2.1. Note that the definitions (8) and (9) are independent of the choice
of K4, or equivalently, independent of the choice of ne.

The accuracy of the CO-IP method is measured by the mesh-dependent norm

« vy, 2
W0 = X e+ X [5]

Keo, eEEy L2(e)

)

where the seminorm |wp|g2 () is defined by |wh|%12(K) = [i (V2w : VZwy,) da.
The following lemma guarantees the boundedness of al? (-, -).

Lemma 2.1 (Boundedness of al” (,-)). There ezists positive constants Ceons and
Croer Such that for choices of the penalty parameter o large enough we have

(11) aIILP (wn,vn) < Ceont ||wh||2,h ”Uth,h Ywp, vy € Zp,

(12) Ceoer ||wh||§,h < a£P (wh,wp)  Ywy € Zy,

where the constants Ceony and Ceoer depend only on the shape regqularity of .
Proof. See [14]. O

We remark that for all v € Zj,, we have the following Poincaré type inequalities:
There exists a constant Cp depending only on €2 such that,

(13) [vll> < Cp[[Vollz and  [[Vollz < Cp vl -

Additionally, the first of these inequalities hold for all v € H% (), where H%(2) =
{z € H?*(Q)|n-Vz = 0 on 90Q}. Finally, we present a lemma that provides a method
for bounding | (Vwp, Vv) | where wy, € Z), and v € H(Q).

Lemma 2.2. Suppose 2 is a bounded polygonal domain. For all wyp € Zp,v €
HY(Q) and « large enough,

(14) | (Vwn, Vo) | < V2wl 0] e -
Proof. See [30] for the proof. O
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The remainder of the preliminaries will help in proving the existence of solutions
to the fully-discrete numerical method. Therefore, we define the spaces

Vi =VuNL3(Q) and Z, = Z, N LE(Q),
where L2(Q) is the space of square-integrable functions with zero mean. Addi-

tionally, we define an invertible linear operator T, : Zoh — Zoh via the variational
problem: given ¢ € Z, find T, (¢) € Z;, such that

(15) (VTr(Cn) Vxn) = (Cns Xn) VX € Zn.

Remark 2.1. The variational problem used to define the linear operator Ty, clearly
has a unique solution due to the fact that (V -,V ) is an inner product on Zy,.

The following properties related to the linear operator T, have been established
in [31]. Let (3, &n € Zp, and set

(16)  (Cns&n) 15 = (VTr(Cn): VTr(&n)) = (Cn, Tn(&n)) = (TalCn),&n) -

The definition of (-, -)_; , above defines an inner product on Zp,, and the induced
negative norm satisfies

(].7) HCh”_Lh = (Ch7Ch)_17h = sup M
0#Xxn€EZ, HthHLz

Consequently, for all xj € Z, and all (, € Zoh,

(18) |(Chy xn)| < ||ChH71,h IVxall e -
The following Poincaré-type estimate holds:
(19) IGhll 10 < CliGhllLz sV Ch € Za,

for some C' > 0 that is independent of h. Finally, if .7}, is globally quasi-uniform,
then the following inverse estimate holds:

(20) IGullze < CRM lGhll -y ¥ G € Zi,
for some C > 0 that is independent of h.

3. The Fully-Discrete CO-IP Method

We begin with a description of the time stepping strategy. Let M be a positive
integer such that ¢, = t,,_1 + 7 for 1 < m < M where tg = 0, tjy = T with
7 = T/m. Additionally, denote by ¢™ an approximation of ¢ at time ¢, and de-
fine the numerical time derivative as §,¢™ := ‘b%‘w The time discretization
strategy can be described as follows: a convex-splitting treatment of the volumetric
nonlinear free energy functional fo(¢) is chosen and the treatment of the prob-
lematic nonlinear term ¢?|V¢|? in (6b) follows a discretization such that a discrete
product rule is guaranteed. Therefore, using the notations and definitions defined in
Section 2, the fully-discrete finite element method for (6a)—(6b) is stated as follows:
Given ¢! € Zy, find (¢, ui*) € Zj, x V}, which satisfies

(21a) (0:01 , vn) + MV, Vig) =0, V vpeV
38 ((67)° = (&%, vn) + ((6)2Vep, Vabu) + (o V2, vn)
(21b)  —ao (Vo1 Vn) + Xarf (85, vn) — (Wi, vn) =0 Y by € Zy,

where the initial data is taken to be ¢9 := P,¢g = P,¢(0) such that P, : H(Q) —
Zy, is a projection operator which can either be a nodal interpolation or an elliptic
projection operator.
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Remark 3.1. The scheme (21) satisfies the discrete conservation property (o), 1) =
( 2,1) = (¢o, 1) for any 1 < m < M. This can be shown by choosing v, = 1 in
(21a). The quantity ﬁ (¢o, 1) is referred to as the average of ¢g over Q and is

denoted by ¢,. Due to the discrete conservation property, it follows that ( vl =
0 0"

(¢4:1) = 192/ .
ho 0

3.1. Existence of a Solution. We are now in a position to prove the existence
of a solution to (21).

3Blgl*Cpa

coer
upon a Poincaré constant but does not depend upon h or 7. Then, there exists a

solution (7", ui*) € Zy, x Vi, to (21).

Lemma 3.1. Let 902%1 € Z°h be given and let A > , where Cp; depends

Proof. Let 4,02”_1 € Z;, be given and define %, : Z1n, — Z, to be the continuous map
such that

(“n(ei),x) = 687 (o + ¢0)® — (¢~ + 60)*, X)
+27 (67 + @) IV 7, x) + 27 (0 + 60)> Vi, V)

m— m 2 o
(22) - 20,0’7' (v@h 17 VX) + 27 aﬂP ((ph 7X) + ﬁ (SDh - Soh 1; X)—l,h .

It is a well-known consequence of Brouwer’s fixed-point theorem [32] that
9n(py') = 0 has a solution ¢} € By = {x € Zn : [x|[_;, < ¢} if
(%h(x),x) > 0 for [[x||_, , = g, where we define
9 QMCPT
CCOE’I'
m—1
+ H‘ph H—l,h'

2MC%a3r?

q 138 (£ + B0)® — Bol Ve 1?5 + Ci” [

Additionally, by the definition of (-,-)_; ,, o' is a solution to %, (¢}') = 0 if and
only if it is a solution to

38 (o +60)° = (g™ + 60) v ) + (e + B0) I Vi~ 1%, n)
+ (R + 30 ViR, Vi) — ao (Vi Vi)
(23) +Xaif (@Zﬁﬁh) - (M%Jh) =0,

for all 1/;h S Zch, where Py € ‘c/h is a solution to
o — Qﬁm 1 B
(24) (MVpp',, Viy) = — (h h ,th) , YV v, € V.
’ T

By setting ¢3" = ¢} +¢p and B = W + w3, where ¢q is the initial mass average
and

(25)  up = |Q| (Gl Voo ™M 2 + 3B(eh" + $0)” = 3B(eh' " + 60)*, 1),

one finds that (o}, up',) € Zn, x V is a solution to (23)—(24) if and only if

(@i, u*) € Zp, x Vj, is a solution to (21).
It therefore remains to be shown that (¢,(x),x) > 0 for ||x||_, ,, = ¢. Using the
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polarization identity and Young’s inequality, we have

=27 (38 (e "+ $0)® — Gl Ve 2 X)

02 2 - - C'coerA
= -2 ( BV (3B ()" + ¢0)* — 0| Ve '], x)

Ccoer)\ 61129\/i

20372 —3 = 2 Croer\
> _ P 3 m—1 3 _ v m—1|2 _ coer 2
2~ G 88 (™ + 60)" = Gol Ve ™ P — = Idle
204 T2 m— - oy m— 2 Ccoer)\ 2
> 2P 138 (0t + 80)* — G0l Ve TPl — X115, -
C’CO@’I’A 2
where Cp is the Poincaré constant from (13). Similarly,
m— 2C2 a27_2 m—1]|2 Ccoer)\ 2
~ 2aq7 (Vg™ V) 2 PN o2, Cemerd gz

and

2 _ 1 1 _
e (=@l = 5 2 = 5 e I

Invoking Lemma 2.1 yields,
2AT a}ILP (X; X) = 2Ccoer AT HXth :
Furthermore, we have

687 ((x + $0)°,x) =687 ((x + ¢0)*(x + %0), X)
=387 ((x + d0)* (x + do), (x + do) + (x — ¢0))

=387 [x+ Gollye + 387 ((x+ B0 X2~ o)
=307 [ + G0l o + 307 [|(x + 6001

— 367 ((x+0)". 40 )
> 367 |[x + ol + 387 || 0c + o)l

— 367 [6ol2 1+ 0)°l] s [lx + 3ol
> 307 ||x + 6ol s + 367 || +60)x

- 307 e+ 80l 387 Gol* 1+ 3
> 207 [+ dally, + 37 l0c+ Bl

— 367 G0l Cr1 [|x + o],
= 267+ Full30 + 387 [0+ B0

- 2
=357 b0l *Cr1 IxXll »

465
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where Cp 1 is a constant only depending upon the Poincaré constant (13). Thus,
(%h(x),x) = 687 ((x +0)° = (¥ +0)°,x) +27 ((x + o) Ve 1%, x)
+27 (X + 69)*Vx, VX) = 2a07 (V™. Vx)

2 .
+27’)\a£P 06X) + = (X — P I’X)A h

M
1 _
> Sz I+ 7 (Cooerd = 3B180[Cra) IIxllz
20 -
(C BT 38 (o= + 30" — ol Ve Pl
202
+ 2R o 4 i) 20
for [Ix|_, , = g where
2MC 2MC?
7 = 2RO g (o 4 G~ Gl Vi Pl + D P 2,
eI
14
and \ > M. 0

coer

2. Unconditional Energy Stability. To show unconditional energy stability
with respect to a discrete energy law, we begin by defining a discrete energy closely
related to (1),

(26)
F(8) = 21618 — 2 ollta + A 4 2 jovolZa — 2 1961 + Jal (6,0).

Lemma 3.2. Let (¢7", 1)) € Zn x Vi, be a solution of (21). Then the following
energy law holds for any h,7 > 0:

CItn

¢
(27) Fof)+7 Y [Vatvup |, < P ().
m=1
foralll1 </ < M.
Proof. Setting v = p}* in (6a) and ¢ = §-¢}" in (6b), we have
Ordp's ') + MV g, Vi) = 0,
38 ((#7)° = (@5 ™) 0r01) + (97 VR, Vordht) + (o7 [V 2, 0-07)
—ao (VO™ Vorgi') + Aay” (95, 0-01") = (i)', 6-67) = 0
Adding the two equations together, we obtain
[Vatwsg |, +38 (6197 — (6502, -8 + ((67)*V R, Voro7)
(28) -+ (DR IVer T % 0-07) — a0 (VOR' ™, Vo-0) + Aap” (9,6:67) = 0
Now, using a Taylor series expansion we have

(29) (¢z”>56f¢>;7: —((6m)° = (e 1)%) +
( ;”—1)35@;?: — (o) = )" - o
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where &, np, are between d)hm_l and ¢}'. Therefore,

36 ((07)° — (07 0:07) = o (IR 150 — oI5

35 m m—
= (heriize = o115 -

Additionally, by the polarization identity, we have
((6)2V R, Vorof) + (o1 [Ver 2, 6-67)

1 m m— m m—

;(( O IVORTE = [VoR 1P + Ve — Ve ')

+5- (|V¢>m Y2 (o7 = ()2 + (o — o))

i

2

(||¢ ol — lop = vl

(30)

(31)

a0 (Vo Voeaq) = 52 (IVe5l3: = [IVor (15 - [Vor = vor|I5.)

)
27
ag m 1112
< 22 (196713 = e 17.)
which implies that

(32) —ay (V6 Vo:07) > 2 (I96p 2. — Vo)
and, finally,

P (op, 6-07") =

o (@l (67 0) — af” (97" o) +all (6 — o7 of — o)
(33) 2217( "o o) —ai” (oo h)) -

‘
Combining (28), (30), (31), (32), and (33) and applying 7 > gives the desired
m=1

result. O

The discrete energy law immediately implies the following uniform a priori esti-
mates for ¢ and pp'.

Lemma 3.3. Let (¢, ™) € Zp, x Vi, be a solution of (21). Suppose that F(¢9) <

36]¢,|*C c
B ol Pl d0-P2 } > 0 where Cp1,Cpa
Cleoer Ceoer

are constants only depending upon the Poincaré constant (13) and do not depend
on h or T. Then the following estimates hold for any 7,h > 0:

C independent of h and that A > max {

64)  max [I6715 +IVRIL + 167 Ve 3. + 16713, < €7,

) > Vi, <
m=1

for some constant C that is independent of h, T, and T'.
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Proof. The proof follows as a result of Lemmas 2.1 and 3.2 and the Poincaré type
inequality (13) since

ﬁ/ (6 — 17 ((64)” +05) (¢} + 12 da + 5 |64 Vo4

. (AC;W - 2008 Jof 2y 7 3 [vae

<5 [ (@h=12 (@17 +05) (¢h+ 1 do + 5 AL

A ¢ 2
+ 0k 0hoh) = F Vol + - 3 VAt [,

B B0
= Dot - 2 s + M+fu¢hwhup— 96412 + Sai (ohh)

Y4
Y H\/ﬁwhmHLz

m=1

P+ 3 VI, < Fit) <c
m=1

3B|¢o[*Cp1 aoCpy2
CCOCT ’ Ccoe'r

for)\>max{ }>0andany0<€<M. O

3.3. Uniqueness of the Solution. We are now in a position to prove that the
solution to (21) is unique.

Lemma 3.4. Let ¢]"~' € Zy, be given and

38|¢o[*Cp1 aoCpz C*Cps 50
CCOGT ’ CCOGT ’ CCOCT ’

)\>max{

where C* is the constant from (34) and Cp1,Cpa,Cpgs are all constants depending
only upon the Poincaré constant (13) and do not depend on h or 7. Then, the
solution to (21) is unique for all h, > 0.

Proof. Let ¢;"~' € Z), be given and let (¢}, u*) € Zj, x Vj, and (&, M) € Z), x Vi,
be two sets of solutions to (21). Then, it follows that for all v, € V}, and all ¢y, € Z,

(36a) (0701 — 697 vp) + (MV (it — M), V) =0,
38 ((¢7")° — (@7, ¢n) + (o <I>m>|V¢’” Y2, 4m) + Aakl (¢ — @, )
(36b) + (7)Y — (2p)°V O, Vb)) — (up' — My, ) = 0.

Setting vy = 5z Th(0,¢}" — 6-@7) in (36a) and ¢, = ¢} — @} in (36b), we obtain
367 ((¢1)° — (@7)%, ¢ — @) + 7 (0 — @) [Vl ' %, o' — @})
T (7)o — (P Ve, V(d) — )
m m m m 1 m m m m
+7Aa” (o - h7¢h*¢h)+ﬁ(¢h* ho®n — Pp) 1, =0.
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Using the fact that
(a® —b°,a—b) = ((a —b)(a® + a®b + a®b® + ab® + b*),a — b)
1 1 1 1
=((a=0)(=(a+b)*+ -(a*+b") +=(a®> = b*)* + =a®b? | ,a — b
4 4 2 2
1
> <4(a4 +v*)(a—b), (a— b))
1 1
2 Z(a—b,a—b) = ZHa—bHiz
along with Lemma 2.1, we have

3 m m||2 m m— m mi2
ZBT ||¢h ) ”L2 +TH(QZ)h @ )v¢ 1||L2 +Ccoer>\7_|‘¢h — *h ||2,h

g o = B2+ % (V ((67)° - (@ )3),v<¢z"f<1>hm>)go.

An application of the product rule along with the fact that a® — b3 = (a —b)(a?
ab + b?) leads to

7 2 m—11|2 2
67 g — @Rz + 7 || (08" — @IV |2 + Ceoer AT 195 — @715 +

ﬁuqbz”— P12+ g (00 + 61 eq + (@7)7) V (97 — 871), V(6f' — 2)
+ 5 (o -2 v ((«m )2+ Gyt + (D5)2) V(g5 — @f)) < 0.

Addltlonally7 since a® +ab+b* > 1(a?+b%) > 0 and ¢} and @} are both solutions
to (21), by Lemma 3.3 and Holder s and Young’s inequalities, we have

3 m m m m m— 2 m m
207 05 = @1 + 7 (|67 — 2RIV [ 1s + CooerAT 67 — B[
1
g o = @I+ 5 IV @ — @)l
< -3 ((¢h ;') V ((¢h )2+ ORRN 4 (1)°) V(¢ — 7))
gHV( O + S+ (21)°) [ o 105 — Bl IV (&7 — B s
T m m m m m m
3 17 (@) + @) o 107 = @l IV (857 = 25|
<7167V Nl + 1RV 12) 65 = BFll s [V (05 — 2F)][ 1
<O 95 = @'l IV (6" — @)l s
< O Cpar |6} — 2l

where C* is the constant from the bound found in Lemma 3.3 and Cp 3 depends
only upon the Poincaré type inequality and do not depend on h or 7. Choosing

3B|¢o[*Cp1 agCpy2 C*CP,?,} -0

| /\

IA

7 )
CCOET CCOE’I‘ CCOQT

concludes the proof. O

/\>max{

4. Numerical Results

In this section, we present several numerical experiments demonstrating the ef-
fectiveness of our method. All numerical experiments were completed using the
Firedrake and FEniCS projects [33, 34] and fix ap =4 and § = 5.
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4.1. Accuracy Example. In our first experiment, we set the initial conditions to
be:

¢(z,y) = 0.3 cos (3x) + 0.5 cos (y)

and solve on the domain € = [0,27]? to a final stopping time of T = 0.4. We take
T, to be a regular triangulation of Q consisting of right isosceles triangles with the
coarsest mesh subdividing each side of the domain by 2. We then refine the mesh
by taking a hierarchy of nested triangulations where each updated mesh is obtained
by subdividing the triangles of the current mesh into four congruent sub-triangles.
As source terms are not naturally present in the formulation of (21a)—(21b), an
exact solution is not available. Therefore, to show first-order convergence in the
energy norm, we consider the exact solution to correspond to the solution from
the mesh with N = 256. We then compare and compute the errors between this
solution and the solution found on coarser meshes. Additionally, we scale the time
step size with the mesh size by 7 = 0.05/N and set the mobility as M = 1073, A = 1,
and the penalty parameter v = 8. The finite element spaces utilize P, Lagrange
finite elements to approximate ¢, and P; Lagrange finite elements to approximate
n. Table 4.1 shows the errors and rates of convergence for the given choice of
the parameters where N indicates the number of sub-intervals per side of € on the
coarse mesh. We observe at least first-order convergence in the discrete 2, A norm
of ¢, and second-order convergence in the L? norm of ¢p,.

TABLE 4.1. Errors and convergence rates of the CO-IP method
with M =103, A =1, h = 2V21/N, 7 = 0.05/N and o = 8.

N | |[¢256 — dnll2,n | rate | [|ose — dnllz2 | rate
8 6.1911 — 0.2625 -
16 1.9293 1.6045 0.0624 2.1039
32 0.5601 1.7221 0.0151 2.0685
64 0.1599 1.7516 0.0035 2.1336
128 0.0461 1.7354 0.0008 2.1887

4.2. Unconditional Stability Example. For our second numerical experiment,
we track the total scaled energy evolution for time step sizes 7 = 0.5,0.25,0.0125,
and 0.0625 with 2 := [0, 10]?, T = 5, and with the same initial conditions and choice
of values for M, A, and « as in the first experiment. The mesh size corresponds
to taking 128 sub-intervals along each side (or 6 refinements of the initial mesh
described above). The results are displayed in Figure 2. The large time step sizes
have been chosen to emphasize unconditional energy stability.

4.3. Microemulsions Examples. For the remainder of the numerical experi-
ments, we demonstrate the effectiveness of our proposed scheme in capturing mi-
croemulsions. On a macroscopic level, microemulsions are a single-phase structured
fluid consisting of homogeneous regions of oil and water and which form a compli-
cated, intertwined structure made possible by the presence of the surfactant [10].
The surfactant molecules have an amphiphilic nature which is due to the fact that
it contains two components: one component is hydrophilic (water-loving) and the
other is lipophilic (fat-loving) [35]. The presence of the surfactant molecules en-
ables the formation of a surfactant monolayer at the interface between the oil and
water phases. It is the formation of these monolayers that gives the microemulsion
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FIGURE 2. The time evolution of the scaled total energy. The
mesh size is h = 10v2/128, M = 1073, A = 1, a = 8, 7 varying as
shown in the figure above, and all other parameters defined in the
text.

a definite microstructure [36]. In order to demonstrate the effectiveness of our pro-
posed scheme in capturing microemulsions, we present the results of the numerical
experiments which capture the formation of this definite microstructure.

4.3.1. Microemulsions Example 1 (Replicating the profiles). For our first
microemulsions experiment, the initial conditions are chosen to be randomly dis-
persed oil and water droplets amidst a ‘continuous’ surfactant media as shown in
row 1, entry 1 of Figure 3 such that the initial conditions (2) are satisfied. The
motivation for this experiment is derived from the numerical experiment present-
ed in [12] in which a C° interior penalty finite element method was developed for
(6a)—(6b) but with a different time stepping strategy than that which is presented
herein. We note that the specific choice of initial conditions is not defined in [12]
and, as such, our numerical experiment here is not meant as a benchmark compar-
ison to that shown in [12]. Rather, we demonstrate that the evolution profiles look
similar as both numerical methods show clear separation into oil and water regimes
and capture regions of decomposition into “meandering” structures or formations
of labyrinthine decomposition patterns. Here we choose Q = (—5,5)? and final time
T = 0.1. The evolution of the profiles of ¢, are presented in Figure 3 for A = 107!
with M = 1072, The experiments are performed with mesh parameters: 7 = 0.01/128
and h = 10v2/128. We observe the formation and stability of the microemulsions
which is characterized by the appearance of the monolayers surrounding the pure
oil and pure water phases indicated by the entries in row 3 of Figure 3. Further
investigation into this relationship is an interesting direction for future research.

4.3.2. Microemulsions Example 2. For the second microemulsions experiment,
we keep the same spacial domain 2 = (—5,5)? and the same final time 7' = 0.1 as
well as the same mesh parameters: 7 = 0-01/128 and h = 10v2/128 but choose A =
10! and we pick larger mobility M = 10. Initial conditions are again chosen to be a
random dispersion of oil and water droplets in a ‘continuous’ surfactant media and
these initial conditions are chosen to guarantee the satisfaction of the conditions (2).
We note that the profile of the initial conditions in this experiment differs from those
chosen in the above experiment. The initial conditions are displayed in row 1, entry
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FIGURE 3. The time evolution of ¢y, for A = 1071, M = 1072, 7 =
0.01/128 and h = 10v2/12s.

1 of Figure 4, and the ensuing phase transition dynamics of ¢, are shown in the
remaining snapshots present in Figure 4. Figure 4 is consistent with the previous
numerical experiment in that we again observe the appearance of homogeneous
regions of oil and water which form complicated, intertwined structures. However,
the “meandering” regions of pure oil and pure water phases appear to have a more
definite microstructure with a “thinning effect”. In the next few examples, we
investigate the possible cause for this effect by keeping the mobility fixed at M = 10
and varying A = 1072,1073.

4.3.3. Microemulsions Example 3. For the third microemulsions experiment,
we keep the same spacial domain Q = (—5,5)? and the same final time 7' = 0.1 as
well as the same mesh parameters: 7 = 0.01/128 and h = 10v2/12s, fix the mobility
at M = 10 but choose A = 1072. The same initial conditions as the previous
experiment are considered and are displayed in row 1, entry 1 of Figure 5 with the
evolution of the phases shown in the remaining snapshots of Figure 5. We notice
that the decrease in A impacts the “thinning effect” as noticed when comparing the
snapshots of row 3 of Figure 5 and the snapshots of row 2 in Figure 4.

4.3.4. Microemulsions Example 4. In the fourth microemulsions experiment,
we observe the phase transition dynamics by further decreasing A to A = 1073
with the rest of the parameters staying unchanged from the previous example.
The impact of reducing A does not result in a definite microstructure as seen in
the snapshots presented in row 2 of Figure 6. We note that the lack of a definite
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t=18

FIGURE 4. The time evolution of ¢, for A = 107!, M =10, 7 =
0.01/128 and h = 10v2/12s.

t=74 t=158 t=511

FIGURE 5. The time evolution of ¢, for A = 1072, M =10, 7 =
0.01/128 and h = 10v2/12s.

structure is likely due to the choice of A being small enough to violate the hypothesis
of Lemma 3.1.

4.4. Mass Dynamics Example. For the previous 3 experiments with fixed mo-
bility M = 10 but varying A = 10~%,1072,1073, we present the evolution of the
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mass dynamics in comparison to the initial mass in Figure 7. The discrete mass
conservation property is observed.

4.5. Parameter Constraint Example. We close this section by demonstrating
in Figure 8 that if we take A small enough, then we violate the hypotheses of
Lemma 3.3 and we lose energy stability. This demonstrates that the conditions
on A stated in Lemma 3.3 are necessary. We take the same initial conditions,
domain, mesh size, and time-step size as in the previous numerical experiment
above. Specifically, we set the domain as Q = (—5,5)2, the final stopping time as
T = 0.1, and the mesh parameters as 7 = 0.01/128 and h = 10v2/128. We then set
A = 1073. The energy profiles presented in Figure 8 clearly illustrate the loss of
energy stability for two different choices of mobility constant, M = 1 and M = 10.

5. Conclusion

In this paper, we have developed an unconditionally stable numerical scheme
for solving a sixth-order Cahn-Hilliard type equation that models the interfacial
dynamics in ternary mixtures. We show that by using a CO interior penalty finite
element approximation for the spacial discretization and choosing a suitable tem-
poral discretization, we have a uniquely solvable and unconditional energy stable
scheme. We also demonstrate the performance of our scheme with several numeri-
cal experiments demonstrating the unconditional stability and first-order accuracy
of the proposed method.
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