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Abstract: The Togashi Kaneko model (TK model) is a simple stochastic reaction network that displays

discreteness-induced transitions between meta-stable patterns. Here we study a constrained Langevin

approximation (CLA) of this model. This CLA, derived under the classical scaling, is an obliquely

reflected diffusion process on the positive orthant and hence respects the constraint that chemical con-

centrations are never negative. We show that the CLA is a Feller process, is positive Harris recurrent

and converges exponentially fast to the unique stationary distribution. We also characterize the sta-

tionary distribution and show that it has finite moments. In addition, we simulate both the TK model

and its CLA in various dimensions. For example, we describe how the TK model switches between

meta-stable patterns in dimension six. Our simulations suggest that, when the volume of the vessel in

which all of the reactions that take place is large, the CLA is a good approximation of the TK model

in terms of both the stationary distribution and the transition times between patterns.

Keywords: reaction network; Langevin approximation; reflected diffusion; Feller property; stochastic

simulation; stationary distribution; Lyapunov function; Harris recurrent; exponential ergodicity

1. Introduction

In 2001, Togashi and Kaneko [1] introduced a simple model of autocatalytic reactions that displays

a peculiar ªswitching behaviorº in some regions of the parameter space. The system state switches be-

tween patterns where a few species are abundant and the remaining species are almost absent, demon-

strating multi-stability at those patterns; see the right column of Figures 1 and 2 for some sample

trajectories. Paraphrasing [2], it is believed that ªthe switching is triggered by a single molecule of a

previously extinct species that drives the system to a different pattern through a sequence of quick reac-

tionsº. The emergence of such multi-stability induced by the small number effect, called discreteness-

induced transitions (DITs) in [1], has been observed in many complicated models in physics, biology

and other scientific fields. For instance, it has been reported in catalytic chemical reactions [3±6],
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reaction-diffusion systems [7, 8], gene regulatory networks [9, 10], cancer tumor evolution [11], virus

replication [12], ecology [13].

The widespread nature of DITs has attracted many theoretical studies on the model in [1] and its

variants. These studies include analysis for the switching time [13±15], stationary distributions [2,16],

separation of time scale [6, 17] and multimodality [18, 19]. In [14, 15], the authors analyzed a mass-

conserved reaction network, namely the autocatalytic reactions (1.3) below with d ∈ {2, 3} species,

together with mutations between species,

A j

ϵ→ Ai, 1 ≤ i , j ≤ d. (1.1)

The total number N of molecules among all species remains constant in time for this model, making

it more amenable to analysis. For d = 2, by [14, Eq (7)], the mean time to move from one boundary

state to the other is approximately

1

ϵ
+

2

κ

N − 1

N
, as

ϵ

κ
→ 0. (1.2)

In [15], a similar model with d = 3 species (and more reactions) is studied, where a noise-induced

reversal of chemical currents was observed as the total number of molecules decreased.

For the model in [1], henceforth called the TK model, mass is no longer conserved. The reaction

network of the TK model consists of a cycle of autocatalytic reactions, together with inflow and outflow

reactions. When there are d species {Ai}di=1
, the reaction network is

Ai + Ai+1

κ→ 2Ai+1, i = 1, 2, · · · d, where Ad+1 = A1, (1.3)

∅
λ

⇄
δ

Ai, i = 1, 2, · · · d (1.4)

Suppose Xi
t represents the number of molecules for Ai at time t. It is standard to assume that the

vector Xt = (Xi
t)

d
i=1
∈ Zd

+ evolves according to a continuous-time Markov chain (CTMC) over time,

with transition rates specified by mass-action kinetics. More precisely, we let Xd+1 = X1 by convention,

and construct this stochastic process X = (Xt)t∈R+ as the solution to the stochastic equation

Xt = X0+

d∑

i=1

(ei+1 − ei)N κi
(
κ

∫ t

0

Xi
sX

i+1
s ds

)
(1.5)

+

d∑

i=1

eiNλi (λt) −
d∑

i=1

eiNδi
(
δ

∫ t

0

Xi
sds

)
, t ∈ R+, (1.6)

where {ei}di=1
is the standard basis of Rd and {N κ

i
,Nλ

i
,Nδ

i
}d
i=1

are independent Poisson processes with

unit rate; see the monograph [20] for basic properties of this equation. Note that the sum of all coordi-

nates
∑d

i=1 Xi is equal in distribution to the process S that solves the following equation that no longer

depends on κ:

S t = S 0 +N1(dλt) − N2

(
δ

∫ t

0

S s ds

)
, t ∈ R+,

where N1 and N2 are independent Poisson processes with unit rate. Therefore, the total mass
∑d

i=1 Xi
t

is an immigration-death process that converges, as t → ∞, to the Poisson distribution with mean dλ
δ

exponentially fast with rate δ (see [21, Chapter 9]).
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In [2, Theorem 4.1] it was shown that the CTMC described by (1.5)-(1.6) is positive recurrent and

converges exponentially fast to its stationary distribution when δ > 0 and λ > 0. For the special case

when δ = d κ
d−1

, an explicit form of the stationary distribution is known in [2, Theorem 4.3]. Beyond

these, not much is proven about (1.5)-(1.6) in general dimensions. Also, no asymptotic formula like

(1.2) is known for (1.5)-(1.6), and it is not clear how to directly compare the model described by (1.3)-

(1.4) with the model described by (1.3) and (1.1), because the reaction vector at the boundary of Zd
+

are different for the two models.

A standard model reduction technique is to look at the mean field approximation or the diffu-

sion (Langevin) approximation of (1.5)-(1.6). In these approximations, it is assumed that the initial

molecule count for each species is proportional to a parameter V which is Avogadro’s number times the

volume of the vessel in which the reactions take place. However, neither of these two approximations

is a good predictor: ordinary differential equations ODEs do not capture the DIT in (1.5)-(1.6) because

the DIT for this case is due to the successive extinction and revival of species, and the mean-field ap-

proximation breaks down when the abundance of some species are not high. Central limit theorems

and diffusion approximations [20, 22] can capture the fluctuation around the deterministic ODE for

stochastic chemical reaction networks, but they can have negative coordinates, which is unrealistic and

poses a technical issue: the diffusion process may not remain well-defined when a coordinate becomes

negative.

To address these issues, an obliquely reflected diffusion called constrained Langevin approxima-

tion (CLA) was proposed in [23,24] as a better diffusion approximation to the CTMC that arises from

chemical reaction networks. This obliquely reflected diffusion process has state space in the positive

orthant Rd
+ (where d is the number of species) and thus respects the constraint that chemical concentra-

tions are never negative. Intuitively, a CLA behaves like a diffusion process inside the strictly positive

orthant Rd
>0

and reflects instantaneously at a boundary face in the direction specified by a vector field.

Special care needs to be taken for reflection at the intersection of two or more faces. It was demon-

strated in [23] through numerical studies that, in addition to having the correct support, the stationary

distribution for CLA can capture the behavior of the CTMC more accurately than the usual diffusion

approximation.

Existing analyses of the TK model and its variants are mostly restricted to models with a small

number of species, and they do not cover the analysis of the CLA of the corresponding CTMC. In

this paper, we analyze the CLA for the TK model (1.5)-(1.6) in general dimensions, and we perform a

simulation study for both the CTMC (1.5)-(1.6) and the CLA.

Organization of this paper. In Section 2, we show that the CLA possesses the Feller property, is

positive Harris recurrent and converges exponentially fast to the unique stationary distribution π. We

also show that π has finite moments and we characterize it in terms of an elliptic partial differential

equation. The proofs of these results, heavily based on the Foster Lyapunov function approach, are

presented in Section 4. Finally, Section 3 contains our simulation study for the TK model and its CLA

in dimensions d = 2, 3 and higher. We demonstrate that, at least in dimensions d = 2 and 3, the CLA

can capture both the stationary distribution and the expected transition time of the TK model when

V is large enough and is proportional to the initial molecule count. For d = 2, the switching time

distribution of the CLA is less accurate when V is small. Stochastic simulations for some trajectories

and the stationary distribution of the TK model in dimension 6 has been carried out and are discussed

in Section 3.3.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4322±4352.
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2. Analytical results for the constrained Langevin approximation

In this section, we describe and analyze a CLA to the TK model (1.5)-(1.6). Precisely, the CLA is

the strong solution to (2.2). In the three subsections below, we first establish the wellposedness of Eq

(2.2) and the Feller property of the CLA. We then show that the CLA is positive Harris recurrent and

exponentially ergodic. Finally, we characterize the stationary distribution π and show that it has finite

moments. The proofs of these results are in Subsection 4.3.

Under the classical scaling, the initial molecule counts are proportional to a scaling parameter V

and the rate constants are of order κ = O(V−1), λ = O(V) and δ = O(1) as V → ∞. So we let

κ =
κ′

V
, δ = δ′ and λ = λ′V, (2.1)

where κ′, λ′, and δ′ are constants that will emerge in the mean-field approximation as V → ∞. In

chemical reactions, V denotes Avogadro’s number times the volume of the vessel in which all reactions

take place.

Following the general method in [23, 24], a CLA for the TK model (1.3) and (1.4) is described by

the stochastic differential equation with reflection,

dZ
(V)
t = b(Z

(V)
t ) dt +

1
√

V
σ(Z

(V)
t ) dWt +

1
√

V
γ(Z

(V)
t ) dLt, (2.2)

where W is a d-dimensional Brownian motion, b : Rd
+ → Rd

+ and γ : ∂Rd
+ → Rd

+ are functions given by

b(x) =

d∑

k=1

ek

(
κ′(xk−1 − xk+1)xk + λ

′ − δ′xk

)
and γ(x) =

b(x)

|b(x)| , (2.3)

where {ek}nk=1
is the standard basis in Rd, x = (xk)

d
k=1

and | · | is the usual Euclidean norm. The function

σ is the d × d-matrix-valued function on Rd
+ given by σ(x) =

√
Γ(x) where, by [23, Eq (29)],

Γ(x) =

d∑

k=1

ekk

(
κ′(xk−1 + xk+1)xk + λ

′ + δ′xk

) −
d∑

k=1

κ′xkxk+1(ek,k+1 + ek+1,k), (2.4)

where ei, j ∈ Rd×d is the matrix whose (i, j)-th entry is one and all other entries are zero. Note that

the matrix Γ(x) is symmetric and strictly positive definite (or uniformly elliptic) for all x ∈ Rd
+; see

Subsection 4.1 for details.

Remark 1. The square root matrix σ of Γ (σ =
√
Γ) in (2.2) is implicit and needs to be calculated in

practice. Another, more explicit equation that gives the same process Z in distribution is to use higher

dimensional Brownian motion. Namely, we first let W̃ be a 3-dimensional Brownian motion when

d = 2, and W̃ be a 2d-dimensional Brownian motion for d ≥ 3. We then replace σ(Z
(V)
t ) dWt in (2.2)

by σ̃(Zt) dW̃t, where σ̃ is an explicit d × 2d-matrix-valued function for d ≥ 3. For example, for d = 3,

W̃ is a 6-dimensional Brownian motion and

σ̃(x) =



−
√
κ′x1x2 0

√
κ′x3x1

√
λ′ + δ′x1 0 0√

κ′x1x2 −
√
κ′x2x3 0 0

√
λ′ + δ′x2 0

0
√
κ′x2x3 −

√
κ′x3x1 0 0

√
λ′ + δ′x3

 .
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For d = 2, we let

σ̃(x) =

( √
2κ′x1x2

√
λ′ + δ′x1 0

−
√

2κ′x1x2 0
√
λ′ + δ′x2

)
.

The matrix σ̃ can be obtained from (1.5)-(1.6) as in [23, Section 3], under the classical scaling given

by (2.1).

2.1. Path-wise existence and uniqueness of the CLA

The path-wise existence of obliquely reflected diffusions can fail [25]. However, for (2.2), the path-

wise existence of a solution ensured by [24, Theorem 6.1] or the argument in [26, Theorem 5.1], since

the reflection angles are nice enough.

Following [27], we say a Markov process X on Rd
+ is Feller if the map x 7→ Ex[ f (Xt)] is bounded

and continuous for any bounded continuous function f : Rd
+ → R. We cannot find any existing result

that can tell us whether the solution to (2.2) is a Feller process or not. So we give a proof of the Feller

property (see Proposition 3 in Section 4).

Theorem 1 (Path-wise solution and Feller property). For each V ∈ (0,∞) and initial condition z0 ∈ Rd
+,

there exists a unique path-wise solution to Eq (2.2). The solutions start from different points in Rd
+

forming a family of Feller continuous strong Markov processes in Rd
+.

Let Z = Z(V) be the solution to (2.2) from now on, and omit the superscript V when there is no

ambiguity. A solution Z to (2.2) is a good approximation of X
V

on any compact time interval as V → ∞
with Z0 =

X0

V
. More precisely, the CLA was obtained in [24] as the scaling limit of a sequence of jump-

diffusion processes that are believed to be good approximations of the stochastic reaction network.

These jump-diffusion processes behave like the standard Langevin approximation in the interior of

the positive orthant and a rescaled version of the CTMC on the boundary of the orthant. Although a

rigorous connection between the CLA and the CTMC is still missing, the simulation results in [23,24]

demonstrated that the CLA is a remarkably good approximation of the CTMC.

Our proofs depend heavily on the Foster-Lyapunov function approach [27]. We consider the func-

tion U : Rd
+ → R+ defined by

U(x) =

(
|x|1 −

dλ′

δ′

)2

, (2.5)

where |x|1 =
∑d

i=1 |xi|. Importantly, this function is compatible with the reflection field on the boundary

(Lemma 1 in Section 4) and leads to Lyapunov inequalities (Lemma 2 in Section 4), which enables our

stability analysis for Z that is needed to establish the Feller property positive Harris recurrence, and

exponential ergodicity of Z.

2.2. Positive Harris recurrence and exponential ergodicity of the CLA

In [2, Theorem 4.1] it was shown that the discrete TK model (1.5)-(1.6) is positive Harris recurrent

and converges exponentially fast to its stationary distribution. Here we obtain the analogous results

for the CLA. Recall from [27, Sections 3 and 4] that Z is called Harris recurrent if there exists a

σ-finite measure µ on Rd
+ such that whenever µ(A) > 0, we have Px(τA < ∞) = 1 for all x ∈ Rd

+, where

τA := inf{t ∈ R+ : Zt ∈ A} is the hitting time of a Borel set A. If a process Z is Harris recurrent, then

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4322±4352.
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there exists a unique σ-finite invariant measure [28, Theorem 1]. If, furthermore, the invariant measure

is finite, then Z is called positive Harris recurrent.

Theorem 2 (Positive recurrence). The solution Z to (2.2) is positive Harris recurrent and hence has a

unique stationary distribution π. Furthermore, all moments of π are finite.

Next, we consider the rate of convergence to stationarity. We say that Z is f -exponentially ergodic

for a function f if the law of Zt converges to π exponentially fast in the following sense: there exists a

constant β < 1 and a function B : Rd
+ → R+ such that

∥Pt(x, ·) − π∥ f ≤ B(x) βt ∀t ≥ 0, x ∈ Rd
+, (2.6)

where the ∥ · ∥ f -norm is defined as ∥µ∥ f := supg: |g|≤ f

∣∣∣∣
∫
R

d
+

gdµ
∣∣∣∣ and the supremum is taken over the space

of Borel measurable functions g on Rd
+ with |g(x)| ≤ f (x) for all x ∈ Rd

+.

Theorem 3 (Exponential ergodicity). The solution Z to (2.2) is f -exponentially ergodic with f = U+1,

where U is defined in (2.5).

Theorem 3 implies that (2.6) remains true if we replace ∥ · ∥ f by the total variation distance ∥ · ∥TV.

This is because ∥µ1 − µ2∥TV ≤ ∥µ1 − µ2∥ f when f ≥ 1.

Positive recurrence can fail for reflected diffusions on unbounded domains. For example, it fails

for the reflected Brownian motion with a positive drift on [0,∞). Hence suitable conditions on the

state-dependent coefficients and the reflection vector field are needed. In [29], the authors consider a

reflected diffusion on a convex polyhedral cone G ⊂ Rd with the vertex at the origin and the reflection

vector vi is assumed to be constant on each face Gi of the cone. Let C be the cone spanned by {−vi}i.
The main result [29, Theorem 2.2] asserts that the reflected diffusion is positive recurrent and has a

unique invariant distribution if there is a bounded set A ⊂ G such that the vector b(x) is in the cone C

and uniformly away from the boundary of C, for all x ∈ G \ A.

Unfortunately, the result in [29,30] cannot be applied to our CLA directly since the reflection vector

field for Z is state-dependent. On other hand, the papers [24,26,31] consider state-dependent reflection

vector field on non-smooth domains, but these results are not concerned with positive recurrence. We

shall prove Theorems 2 and 3 by the Foster-Lyapunov function approach in this paper.

2.3. Characterization of the stationary distribution of the CLA

Characterization of stationary distributions of a general class of reflected diffusions is given in [31].

It was shown that a stationary distribution, should it exist, must satisfy an adjoint linear elliptic partial

differential equation with oblique derivative boundary conditions. This equation is called the basic

adjoint relationship for reflected Brownian motion in [32, 33]. Here, in Subsection 4.3, we verify the

conditions in [31, Theorems 2 and 3] and apply those results to our CLA.

Following [31], we let C2
c (Rd

+) be the space of twice continuously differentiable functions on Rd
+

with compact support. We consider the space of functions

H :=
{
f ∈ C2

c

(
R

d
+

)
⊕ R : ⟨∇ f (x), γ(x)⟩ ≥ 0, ∀x ∈ ∂Rd

+

}
, (2.7)

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4322±4352.
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where C2
c (Rd

+) ⊕ R denotes the space of functions in C2
c (Rd

+) plus a constant in R. We also let L be the

differential operator:

L f (x) =
1

2V

d∑

i, j=1

Γi, j(x)
∂2 f

∂xi∂x j

(x) +

d∑

i=1

bi(x)
∂ f

∂xi

(x). (2.8)

Proposition 1. A probability measure π on Rd
+ is a stationary distribution of Z if and only if π(∂Rd

+) = 0

and
∫
R

d
+

L f (x) π(dx) ≤ 0 for all f ∈ H .

A more explicit way to characterize the stationary distribution is through a partial differential equa-

tion as in [31, Theorem 3]. For this we recall that the adjoint operator L∗ of L is

L∗ f (x) =
1

2V

d∑

i, j=1

∂2

∂xi∂x j

(
Γi, j(x) f (x)

)
−

d∑

i=1

∂

∂xi

(bi(x) f (x)) . (2.9)

Proposition 2. Suppose that there exists a nonnegative integrable function p ∈ C2(Rd
+) that satisfies

the following three relations:

1) L∗p(x) = 0 for all x ∈ Rd
+;

2) For each i ∈ {1, 2, · · · , d} and x ∈ {xi = 0} ∩
{
x j > 0, ∀ j ∈ {1, 2, · · · , d}\{i}

}
,

−2p(x)λ′ + λ′
∂p

∂xi

− λ′∇ · p(x)γ(x) +
∂p

∂xi

λ′ + p(x)
(
κ′(xi−1 + xi+1) + δ′

)
= 0;

3) For each 1 ≤ i , j ≤ d and x ∈ {xi = 0} ∩ {x j = 0} ∩ ∂Rd
+, p(x) = 0.

Then the probability measure on Rd
+ defined by

π(A) :=

∫
A

p(x)dx
∫
R

d
+

p(x)dx
, A ∈ B(Rd

+),

is a stationary distribution for the process Z.

The probability measure π in Proposition 1 exists and is unique, by Theorem 2. We do not know if

the function p ∈ C2(Rd
+) in Proposition 2 exists.

3. Simulation study for the TK model and the CLA

In this section, we present simulation results for the CTMC (1.5)-(1.6) and its associated CLA (2.2).

In particular, the dynamical properties of the CLA, including its stationary distribution π (guaranteed

in Theorem 2) and its finite time trajectory, are compared with those of the CTMC in various dimen-

sions. To begin, in Figure 1 we show some sample trajectories of the CTMC X that solves (1.5)-(1.6)

in dimensions d = 2, 3, 4, under different choices of parameters. In the left column, trajectories were

simulated with the parameters λ = 4, δ = 1/8 and κ = 1/32 in (1.3) and (1.4), where the trajectory

oscillates around the fixed line y = 32; In comparison, all trajectories in the right column were simu-

lated with the parameters λ = 1/2, δ = 1/64 and κ = 1/32, and all processes tend to spend most of the

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4322±4352.
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time on the boundary, i.e., some species are almost extinct while others are abundant. This switching

behavior can also be observed in higher dimensions, as one can see in Figure 2 for d = 5, 6 under the

conditions of λ = 1/2, δ = 1/64 and κ = 1/32.
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(f) d = 4

Figure 1. CTMC trajectories of standard TK model given by (1.5)-(1.6) were plotted for

dimensions d = 2, 3, 4 for different parameters. The trajectories in the left column are sim-

ulated under the parameter λ = 4, δ = 1/8 and κ = 1/32, and the trajectories in the right

column are simulated under the conditions λ = 1/2, δ = 1/64 and κ = 1/32. The initial

condition is (0, · · · , 0, 32d), i.e., Xd
0
= 32d and zero for all other species.
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Figure 2. CTMC trajectories of standard TK model given by (1.5)-(1.6) were plotted for

dimensions d = 5, 6 with the parameters λ = 1/2, δ = 1/64 and κ = 1/32. The initial

condition is (0, · · · , 0, 32d), i.e., Xd
0
= 32d and zero for all other species.

In Section 3.1, we simulate the CTMC and the CLA for d = 2. Our simulations suggest that the

stationary distributions of the CTMC are well approximated by those of the CLA. The hitting time

distributions of the CTMC are well approximated by those of the CLA when V is large enough; this

approximation is less accurate when V is small. In Section 3.2, similar simulations and suggestions

are obtained for d = 3; there, we also emphasize a discrepancy of the finite trajectory property of

TK models between d = 2 and d = 3. In Section 3.3, we focus on higher-dimensional TK models.

For example, we give a description of the switching behaviors between meta-stable patterns of the

6-dimensional CTMC.

Simulation schemes. All CTMCs are simulated by using the Gillespie algorithm [34]. Special care

needs to be taken when simulating the CLA, when the trajectory is near the boundary. Here all CLAs

are simulated via the modified Euler-Maruyama method proposed in [35]. An alternative simulation

scheme for the CLA may also be developed by a suitable discrete version of the local time [36, 37].

3.1. Simulation results for the 2-dimensional TK model

For the dimension d = 2, our simulations indicate that the CLA (2.2) nicely captures the stationary

distribution of the CTMC (1.5)-(1.6). Furthermore, we consider the time between the extinction events

of the two species (called the switching time). We demonstrate that the switching time distribution of

the CLA captures that of the CTMC when the volume V is large enough, and this approximation is less

accurate when V is small.

For the 2-dimensional CTMC, explicit expression of the stationary distribution was derived in [2].

For the classical scaling (2.1) with

D = λ′ = δ′,

the system exhibits different stationary behavior for different choices of D: when D > 2/V , the station-

ary distribution is unimodal; whereas when D = 2/V , stationary distribution conditioning on the level

sets x + y = n is uniform; and when D < 2/V , the stationary distribution is heavily concentrated on

both boundaries where one species is almost extinct. Such behavior can be visualized in the first row

of Figure 3, where the stationary distributions are plotted for different choices of D.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4322±4352.



4331

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Stationary distribution of the CTMC (row 1) in (1.5)-(1.6) and CLA (row 2) in

(2.2) for d = 2. All stationary quantities in Figure 3 were obtained via time averaging over

long time trajectory. The trajectory is simulated until T = 106 with V = 64, κ′ = 1 and

D = λ′ = δ′ is given by 1/16, 1/32 and 1/64 for each column, from left to right respectively.

In the second row of Figure 3, stationary densities, obtained via time averaging over long-time

trajectories of the CLA (2.2), are plotted for the same parameters as the associated CTMC. In all three

cases, the CLA in (2.2) accurately captures the stationary behavior of the CTMC in the first row of

Figure 3.

For D < 2/V , the finite trajectory of the 2-dimensional TK model can be observed in Figure 1b,

where the process spends most of its time on the boundary, i.e., one species is almost extinct. Hence,

the switching time between boundaries is an important metric describing the finite-time dynamics

of TK models. For simplicity, we will define the switching time as the first time that X2 reaches 0,

assuming the process starts initially with no A1, i.e., (X1
0
, X2

0
) = (0, 2V). Note that finite time properties,

including switching time distributions, cannot be extracted from the stationary distributions.

Note that for both the CTMC and the CLA, the trajectory will inevitably visit between boundaries

for all V > 0 (even for large V) because both stochastic models are positive recurrent. For a larger

V , the trajectory typically fluctuates around an equilibrium point for a long time before hitting the

boundary and visits between boundaries less often than that for a smaller V . In Figure 4a, we illustrate

the switching time for a range of V values that covers all three parameter regimes: D < 2/V , D = 2/V

and D > 2/V .

In an attempt to obtain an explicit formula for the switching time, we consider a 1-dimensional

approximation of the 2-dimensional CLA. Roughly, we assume that the inflow and outflow reactions

occur at a much slower rate than that of the autocatalytic reactions ( i.e., λ′, δ′ ≪ κ′). Then the total

mass evolves at a much slower time scale than that of the autocatalytic reactions (which are mass-

conserving) so that Z1
t + Z2

t ≈ Z1
0
+ Z2

0
= n for a long time period. We then approximate Z2

t by n − Z1
t
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and the equation for Z1 is given by

dS t = S 0 + (λ′ − δ′S t)dt +
1
√

V

√
2κ′S t(n − S t) + λ′ + δ′S t dW ′

t + m(S t) dLt, (3.1)

where Lt is the local time of S t on the boundary of the interval [0, n] and m is the inward normal vector

at the boundary of the interval (so m(0) = 1 and m(n) = −1). Then we let τ[0,n) = inf{t ≥ 0 : S t < [0, n)}
be the first time the process S t hits n; then, the expectation Ex

[
τ[0,n)

]
solves the boundary value problem

as in [38]: 
L f (x) = −1 if x ∈ (0, n)

f ′(0) = f (n) = 0
, (3.2)

where L is the generator of (3.1); namely, suppose f ∈ C2([0, n]); then,

L f =
1

2V

(
2κ′x(n − x) + λ′ + δ′x

)
f ′′ + (λ′ − δ′x) f ′.

Hence the expected hitting time of n can be expressed explicitly:

E0

[
τ[0,n)

]
=

∫ n

0

1

I(x)

∫ x

0

φ(y)I(y)dydx, (3.3)

where

ϕ(x) =
2V (λ′ − δ′x)

2κ′x(n − x) + λ′ + δ′x
, φ(x) =

2V

2κ′x(n − x) + λ′ + δ′x
, I(x) = exp

{∫ x

0

ϕ(z)dz

}
.

In Figure 4, the mean switching time is plotted against different parameters in (2.1), while fixing

other parameters whose values can be found within the caption. The swithcing time was computed

for the CTMC (1.5)-(1.6) as well as the CLA 2D given by (2.2), and the 1-dimensional reflected

approximation in (3.1), which is termed as CLA 1D in Figure 4.

As V → ∞ in Figure 4a, the switching time of the CTMC can be better approximated by CLA 2D

in (2.2). Such a trend can also be observed when κ < 1 in Figure 4b, whereas the CLA 1D given by

(3.1) becomes better approximations as κ → ∞. Heuristically as κ → ∞, the dynamics of the CTMC

are dominated by the autocatalytic reactions of (1.3), which coincides with the motivation of the CLA

1D given by (3.1) where the total mass evolves at a much slower time scale. This approximation is less

accurate for V < 40 in Figure 4a.
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(a) κ′ = 1 and λ′ = δ′ = 1/64.
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(b) V = 64 and λ′ = δ′ = 1/64.
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(c) V = 64, κ′ = 1 and δ′ = 1/64.
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(d) V = 64, κ′ = 1 and λ′ = 1/64.

Figure 4. Mean switching time for d = 2 was plotted against different choices of parame-

ters in (2.1) for the CTMC ((1.5)-(1.6)), 2D CLA (2.2) and 1D CLA (3.1). Throughout all

simulations, the initial condition was chosen as (X1
0
, X2

0
) = (0, 2V). The switching time for

each trajectory is then defined as the first time that X2 becomes 0. The mean switching time

is then computed by averaging over 1000 trajectories.

We compare the switching time distributions between the CTMC and the CLA via the histogram in

Figure 5. Parameters of the simulation are given by V = 64, and κ′ = 1 in (2.1) for all four figures.

In addition, in Figure 5a and 5b λ′ = δ′ = 1/32 so that the CTMC in (1.5)-(1.6) possesses a uniform

distribution when conditioned on the level sets {x + y = n}; in Figure 5a and 5b, λ′ = δ′ = 1/64, so

that the CTMC in (1.5)-(1.6) possesses a bimodal stationary distribution as mass is concentrated on the

meta-stable states near the boundary. In both cases, the mean and variance of the switching time are

quite close and the shape of the distributions is nicely recovered.
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(a) Mean = 5.42, variance = 21.54. (b) Mean = 5.62, variance = 23.33.

(c) Mean = 4.63, variance = 14.31. (d) Mean = 4.37, variance = 12.76.

Figure 5. Histograms of switching times for the 2D CTMC described by (1.5)-(1.6) and the

2D CLA (2.2) were plotted in the left and right columns, respectively, for 1000 trajectories.

Parameters of the simulation are given by V = 64 and κ′ = 1 in (2.1) for all four figures. In

addition, in Figure 5a and 5b, λ′ = δ′ = 1/32; in Figure 5c and 5d, λ′ = δ′ = 1/64.

However, as λ′ or δ′ → 0, the switching time estimates using CLA 2D (2.2) are no longer close to

the CTMC, as shown in Figure 4c and d. In Figure 6, such cases were investigated for V = 64, λ′ =

δ′ = 1/256 and κ′ = 1, where the switching time distribution of the CTMC (1.5)-(1.6) is approximated

by the CLA 1D (3.1). This approximation yields a much better result than the CLA 2D in (2.2), as

inflow and outflow reactions occur much less frequently than autocatalytic reactions. However, the

approximation via the CLA 1D (3.1) still underestimates the mean and variance of the switching time

for the exact CTMC model.
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(a) Mean = 10.05, variance = 86.79. (b) Mean = 8.52, variance = 18.39.

Figure 6. Histograms of switching times for the 2D CTMC given by (1.5)-(1.6) and the

CLA 1D (3.1) were plotted in the left and right columns, respectively, for 1000 trajectories.

Parameters for the simulation are given by V = 64, λ′ = δ′ = 1/256 and κ′ = 1 in (2.1).

3.2. Simulation result for the 3-dimensional TK model

In this section, we first explain the discrepancy between the finite time dynamics of 2-dimensional

and 3-dimensional TK models. Then, we show via simulation that the CLA in (2.2) recovers the

stationary distribution of the associated CTMC given by (1.5)-(1.6). Furthermore, we propose the

cycling time, which is analogous to switching time when d = 2, and the distribution of cycling time of

the CTMC can be well approximated via its associated CLA when V is large, and this approximation

is less accurate when V is small.

The main contrast between d = 2 and d = 3 for the CTMC, as observed in Figure 1b and 1d, is that

the transition time between meta-stable states for d = 2 is much longer than that for d = 3. A heuristic

explanation for this is that for the 2-dimensional TK model, the two autocatalytic reactions given by

(1.3) move in opposite directions while sharing the same intensity, hence making it difficult for the

process to move between meta-stable states; whereas, for higher-dimensional TK models (d ≥ 3),

autocatalytic reactions move the process in a cyclic direction, namely, A1 → A2 → · · · → Ad → A1.

More specifically, when A1 is abundant, the dynamics of A1 are mainly driven by autocatalytic reactions

Ad + A1 → 2A1 and A1 + A2 → 2A2. However, the firing of both reactions tends to decrease the rate of

Ad + A1 → 2A1 and increase the rate of A1 + A2 → 2A2, leading to an imbalance toward the gaining of

A2; hence most of A1 will be changed to A2.

Similar to 2-dimensional TK models, positive recurrence has been established for d = 3 in [2];

however, the explicit form of the stationary distribution is only derived when δ = 3
2
κ. In Figure 7, the

stationary distribution of the CTMC given by (1.5)-(1.6) is plotted on the hyperplane {x + y + z = 3V}
for δ > 3

2
κ, δ = 3

2
κ and δ < 3

2
κ in the first row. Similar multi-modalities of stationary distributions are

observed when δ < 3
2
κ. In the second row of Figure 7, the stationary distribution of the associated CLA

of (2.2) is plotted by using the densities near the hyperplane, namely
{
|x + y + z − 3| ≤ 1

128

}
. In all three

cases, the CLA captures the stationary behavior of the exact CTMC model.
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Figure 7. Stationary distribution of the CTMC given by (1.5)-(1.6) conditioning on {x+y+z =

3V}, and the CLA given by (2.2) conditioning on {|x+ y+ z− 3| ≤ 1/128} with the dimension

d = 3. All stationary quantities in Figure 7 were obtained via time-averaging over a long

time trajectory. The trajectory is simulated until T = 106 with V = 64 and κ′ = 1, and the

value of D is given by 3/64, 3/128 and 1/64 from left to right respectively.

As discussed regarding the different transition times between meta-stable states for d = 2 and

d = 3, the dominant species when d = 3 form a cycle, A1 → A2 → A3 → A1. Note that such cyclic

behavior is not exclusive to parameter regimes when stationary distributions are concentrated near the

boundaries. In Figure 8, trajectories of the 3-dimensional TK model are plotted for V = 256, κ′ = 1

and D = λ′ = δ′ given by 1/32 and 3/512 respectively. The stationary distribution is unimodal or

uniform when conditioning on the hyperplane {x + y + z = 3V} respectively. In both cases, cyclic

behavior still persists within the trajectory; hence, we propose cycling time as the analogous quantity

for describing finite-time dynamics for d ≥ 3, which can be defined as the second time that X3 reaches

peak abundance when the initial condition is given by (X1
0
, X2

0
, X3

0
) = (0, 0, 3V). Note that the switching

time is also well defined in 3-dimensional TK models; however, the switching could end up in different

regions, i.e., if initially there are only species A3, it could move to the boundary with only species A1

as well as the boundary with only species A2. In comparison, the cycling time is more straightforward

and consistently captures the average behavior of the 3-dimensional TK model.

We will simulate and compare cycling time distribution for the CTMC given by (1.5)-(1.6) and

its associated CLA given by (2.2). In Figure 9, the mean switching time is plotted against different

parameters in (2.1)and we fixed the other parameters whose values can be found within the caption.

Cycling time was computed for the CTMC as well as the CLA 3D in (2.2). Similar to the 2D results,

the mean cycling time is better captured when V → ∞, or when κ → 0.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4322±4352.



4337

0 10 20 30 40 50 60
0

200

400

600

800

C
o

u
n

ts A
1

A
2

A
3

0 10 20 30 40 50 60

Time

0

200

400

600

800

C
o

u
n

ts A
1

A
2

A
3

Figure 8. Finite time trajectory of 3-dimensional TK model for V = 256, κ′ = 1 and

D = λ′ = δ′, given by 1/32 and 3/512 respectively.
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(a) κ′ = 1 and λ′ = δ′ = 1/64.

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

M
ea

n 
cy

cl
in

g 
tim

e

CTMC

CLA3D

(b) V = 64 and λ′ = δ′ = 1/64.
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(c) V = 64, κ′ = 1 and δ′ = 1/64.
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(d) V = 64, κ′ = 1 and λ′ = 1/64.

Figure 9. Mean cycling time was plotted for the CTMC given by (1.5)-(1.6) and the CLA

(2.2) with d = 3 were plotted against different choices of parameters. Throughout all sim-

ulations, the initial condition was chosen as (X1
0
, X2

0
, X3

0
) = (0, 0, 3V). The cycling time for

each trajectory was then obtained as the first time that X3 reaches peak abundance. The mean

switching time was then computed by averaging over 1000 trajectories.
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In Figure 10, the cycling time distribution for the CTMC is compared with its associated CLA

(2.2). Simulation of the cycling time in Figure 10a and 10b was obtained by using V = 256, κ′ = 1

and λ′ = δ′ = 1/32, which corresponds to a unimodal stationary distribution. In this case, the cycling

time distribution of the CTMC, as well as its mean and variance, is nicely recovered by its associated

CLA.

In Figure 10c and 10d, we used the same V and κ′ while choosing λ′ = δ′ = 3/512, which corre-

sponds to the stationary distribution being uniform when conditioning on the hyperplane. However,

the cycling time distribution associated with CLA underestimates the mean and variance of the cycling

time associated with the original CTMC.

(a) Mean = 6.54, variance = 0.18. (b) Mean = 6.4, variance = 0.16.

(c) Mean = 9.34, Variance = 1.92. (d) Mean = 7.51, variance = 0.52.

Figure 10. Histograms of cycling time for the CTMC given by (1.5)-(1.6) and the CLA 3D

(2.2) with d = 3 were plotted in the left and right columns respectively. Parameters of the

simulation are given by V = 256 and κ′ = 1 in (2.1) for all four figures. In addition, in Figure

10a,b, λ′ = δ′ = 1/32; in Figure 10c and 10d, λ′ = δ′ = 3/512.

3.3. Simulation results for the general d-dimensional TK model

In this section, we present stochastic simulations for higher dimensional TK models. We first give

a precise description of the 6-dimensional TK model in terms of two switchings: a slow switching

between even and odd species, as well as fast switching between dominant regions near the boundary.

We then investigate the effect of the dimension d on the mean cycling time.
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The dynamics of the 4-dimensional CTMC given by (1.5)-(1.6) are elaborated in the original pub-

lication of [1]. When the system volume V is large, its trajectory fluctuates around an equilibrium

point for a long time before hitting the boundary; when V is small, random fluctuation dominates the

system. Interesting behaviors emerge when V resides in an intermediate range, where the extinction of

species slowly switches between odd and even species in auto-catalytic reaction loops. More precisely,

the model switches between states that are abundant in odd species and states that are abundant in

even species, during which the other species are almost extinct. Moreover, within a temporal domain

of abundant odd species, there are fast switches between species A1 and A3 with a large imbalance

between the two species, either X1 ≫ X3, or X1 ≪ X3.

To describe the finite time dynamics for the 6−dimensional TK model, we simulate trajectories

of the CTMC given by (1.5)-(1.6), with the parameters V = 64, λ′ = δ′ = 1/256 and κ′ = 1. To

investigate its switching behavior, we define the process B(t) below that captures the disparity between

odd species and even species:

B(t) B
1

6V

3∑

i=1

(X2i−1(t) − X2i(t)), (3.4)

with the initial condition Xi
0
= V for all i = 1, 2, · · · 6. Exponential convergence to the stationary

distribution of the CTMC, as established in [2], guarantees that the denominator 6V is approximately

the average total population when T is large. A similar expression is considered in [1] for the 4-

dimensional TK model to identify regions of V where DITs persist.

In Figure 11a, the finite time trajectory of B(t) is plotted, and B(t) switches between regions near

B(t) = 1 and B(t) = −1, which are regions with abundant odd or even species respectively. The

stationary distribution of B(t) is plotted in Figure 11b via time averaging, which also yields a bimodal

distribution having peaks near −1 and 1.
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Figure 11. Finite trajectory of B(t) and stationary distribution of B(t) were obtained by using

a trajectory 6-dimensional TK model, whose parameters are given under the classical scaling

(2.1) with V = 64, δ′ = λ′ = 1/256 and κ′ = 1.

Next, we investigate the dynamics in between slow switches by analyzing trajectories with abundant
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odd species. In particular, the joint distribution of

(ρ1(t), ρ3(t)) =

(
X1

t

X1
t + X3

t + X5
t

,
X3

t

X1
t + X3

t + X5
t

)
,

conditioned on odd species being abundant, is plotted in Figure 12a under stationarity via time averag-

ing. Throughout the simulation, the abundance condition was approximated by B(t) ≥ 0.95. The joint

distribution is concentrated within three boundary regions, which can be specified by Ωi = {ρi ≈ 0} for

i = 1, 3, 5, as each boundary implies that one odd species is almost extinct while two other odd species

are abundant. Moreover, these regions are not symmetric with respect to the two dominant species,

in the sense that (ρ1, ρ3) is on average (0.4, 0.6) when ρ5 ≈ 0. Such asymmetry exists since the states

with more A1 are sensitive with respect to the birth of A2. More specifically, gaining A2 (hence losing

A1) and losing A2 (hence gaining A3) is characterized by the autocatalytic reactions A1 + A2 → 2A2

and A2 + A3 → 2A3, the rates of which are completely determined by the relative counts of A1 and

A3. For states with ρ1 ≥ ρ3, higher counts of A1 speed up the gain of A2; hence, there is the transition

A1 → A2 → A3 into states with ρ1 ≤ ρ3; on the other hand, states with ρ1 ≤ ρ3 are likely to remain

unchanged, since A2 is more likely to be exhausted.

In addition to asymmetry, the dynamic of odd species, conditioned on odd species being abundant,

moves between three dominant regions {Ωi}i=1,3,5 in a clockwise manner as plotted in Figure 12a, Ω5 →
Ω3 → Ω1 → Ω5. More specifically in the region Ω5 where A5 is almost extinct, a birth of A4 would

transition A3 into A5, which moves the process into the region Ω3. Births of all other species can

not change the dominant molecules of A1 and A3. Similar movement applies recursively leading to a

clockwise cycle in Figure 12a.

(a) Joint distribution of (ρ1, ρ3) under stationarity.
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(b) Sample trajectory of odd species.

Figure 12. Trajectory of 6D TK model simulated until T = 106 with the classical scaling

(2.1) with V = 64, δ′ = λ′ = 1/256 and κ′ = 1, and initial condition (0, · · · , 0, 6V). Condi-

tioning on B ≥ 0.95, the joint distribution of (ρ1, ρ3) under stationarity is plotted in Figure

12a along with a sample trajectory of odd species (12b) when even species are almost extinct.

To support our claims, a sample trajectory of odd species is shown in Figure 12b, during which

we only have abundant odd species. The process stays within the region Ω5 at time t = 9000, which
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switches into the region Ω3 at the time t = 9010, and then proceeds to Ω1 around t = 9020. At time

t = 9025 the process returns to Ω5 and completes a clockwise cycle.

We summarize the dynamics for d = 6. Two types of switches can be utilized to describe the

finite time dynamics of the 6−dimensional TK model when DITs persist. In particular, abundant

molecule species switch between odd and even on a slower time scale. In between these switches, the

dynamics dominated by odd species will cycle between boundary regions as Ω5 → Ω3 → Ω1 → Ω5,

or Ω6 → Ω4 → Ω2 → Ω6 when the dynamics are dominated by even species.
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Figure 13. Mean cycling time was plotted against the dimension d, for d in the set

{3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200}. The mean cycling time was av-

eraged over 1000 samples when d ≤ 50 (and over 100 samples for d = 100, 200), and it

is determined for each CTMC trajectory with the parameters given by V = 64, κ′ = 1 and

λ′ = δ′ = 1/256. Throughout all simulations, the initial condition was chosen as Xd
0
= dV

and zero for all other species. The cycling time for each trajectory is defined as the second

time that Xd reaches peak abundance.

Last but not least, the mean cycling time is plotted against some dimension d in Figure 13. As

in previous sections, the cycling time was computed for each trajectory as the second time that Xd
t

reaches peak abundance (initially there are only species d), and the mean cycling times were averaged

over independent samples. Despite longer cycles as d increases for d ≥ 5, the cycling time decreases as

d increases from 3 to 5. This is because if the birth of species A2 occurs before the birth of species A1,

the switches from Ad → A1 and A1 → A2 would happen simultaneously, as can be observed in Figure

2. Such simultaneous switches speed up the cycling and hence reduce the cycling time, whereas these

switches are more likely to occur in higher dimensions. However as d increases further, such an effect

is properly averaged out and the mean cycling time approximately increases linearly in V .

4. Proofs

This section contains the proofs of the results stated in Section 2. The proofs will be collected in

Subsection 4.3, after we develop some preliminary estimates for the CLA in Subsections 4.1 and 4.2.
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4.1. Estimates for the coefficients of CLA

Let Γ, σ, b and γ be defined as in (2.3) and (2.4), and note that b is globally Lipschitz for the

dimension d = 2, but only locally Lipschitz for d ≥ 3 due to the terms
∑d

k=1 ek(κ
′(xk−1 − xk+1)xk.

Precisely,

|b(x) − b(y)|

≤ κ′
∣∣∣∣

d∑

k=1

ek

(
(xk−1 − xk+1)xk − (yk−1 − yk+1)yk

)∣∣∣∣ + δ′
∣∣∣∣

d∑

k=1

ek (xk − yk)
∣∣∣∣

= κ′
∣∣∣∣

d∑

k=1

ek

(
(xk−1 − yk−1)xk + yk−1(xk − yk) + (xk+1 − yk+1)xk + yk+1(xk − yk)

)∣∣∣∣ + δ′|x − y|

≤ 2κ′|x − y|∞(|x| + |y|) + δ′|x − y|
≤ |x − y|

(
δ′ + 2κ′(|x| + |y|)

)
,

where |x| =
√∑d

i=1 x2
i

is the Euclidean norm of x, and |x|∞ := max1≤i≤d |xi|.
Note also that Γ(x) is symmetric and positive for all x ∈ Rd. Precisely, for all x ∈ Rd

+ and θ ∈ Rd,

⟨θ,Γ(x)θ⟩ =
∑

1≤k≤d

(
λ′ + δ′xk

)
θ2k +

∑

1≤k≤d

(
θ2k − θkθk−1

)
xkxk−1 +

∑

1≤k≤d

(
θ2k − θkθk+1

)
xkxk+1

=
∑

1≤k≤d

(
λ′ + δ′xk

)
θ2k +

∑

1≤k≤d

(
θ2k − θkθk−1

)
xkxk−1 +

∑

1≤k≤d

(
θ2k−1 − θk−1θk

)
xk−1xk

=
∑

1≤k≤d

(
λ′ + δ′xk

)
θ2k +

∑

1≤k≤d

(θk − θk−1)2 xk−1xk

≥ λ′|θ|2. (4.1)

We can show that σ is locally Lipschitz and grows linearly. We note that

∥Γ(x)∥∞ := max
1≤i, j≤d

|Γi, j(x)| ≤ max
1≤i≤d
κ′(|xi−1| + |xi+1|)|xi| + λ′ + δ′|xi|

≤ 2κ′|x|21 + δ′|x|1 + λ′.

So the operator norm of the d × d matrix grows quadratically:

∥Γ(x)∥ := sup
y∈Rd ,|y|=1

|Γ(x)y| ≤ C
(
2κ′|x|21 + δ′|x|1 + λ′

)

for some C > 0 by the equivalence of norms in Rn. Then we have

∥σ(x)∥∞ ≤ C∥σ(x)∥ = C
√
∥Γ(x)∥ ≤ C′

√(
2κ′|x|2

1
+ δ′|x|1 + λ′

)
.

Local Lipschitzness of σ(·) is given by (4.1) and the Powers-Stormer inequality [39, Lemma 4.2]:

∥
√
Γ(x) −

√
Γ(y)∥HS ≤

1
√
λ′
∥Γ(x) − Γ(y)∥HS ,

where ∥ · ∥HS denotes the Hilbert-Schmidt norm. Since all norms are equivalent in a finite dimensional

vector space and each entry in Γ(·) is a second order polynomial, Γ(x) is locally Lipschitz; hence,√
Γ(·) = σ(·) is also locally Lipschitz.
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4.2. Lyapunov inequalities and moment estimates

Recall the Lyapunov function U defined in (2.5) and the differential operator L in (2.8). We also

write U p(x) := (U(x))p for simplicity.

Lemma 1. Let γ be as in (2.3); then, we have ∇U p(x) · γ(x) ≤ 0 for all x ∈ Rd
+ and p ∈ N.

Proof. Observe that for all x ∈ Rd
+,

∇U p(x) =

d∑

i=1

2p

(
|x|1 −

dλ′

δ′

)2p−1

ei

where {ei}di=1
is the standard basis in Rd; since γ(x) =

b(x)

|b(x)| , we only need to check ∇U p(x) · b(x) ≤ 0:

∇U p(x) · b(x) = 2p
1

δ′

d∑

i=1

(δ′|x|1 − dλ′)2p−1(κ′(xi−1 − xi+1)xi − δ′xi + λ
′)

=
−2p

δ′
(
δ′|x|1 − dλ′

)2p ≤ 0.

Lemma 2 (Lyapunov inequalities). Let U and L be defined in (2.5) and (2.8) respectively. Then for

all p ∈ N, there exist constants cp, c
′
p > 0 such that

LU p(x) ≤ −cpU p(x) + c′p (4.2)

for all x ∈ Rd
+. Furthermore, there is a compact set K ⊂ R+

d
and f : Rd

+ → [1,∞) such that

LU(x) ≤ −c′1 f (x) + 1Kc′2 (4.3)

for some positive constants c′
1

and c′
2
.

Proof. For x = (x1, · · · , xd) ∈ Rd
+ and 1 ≤ i, j ≤ d, x ∈ Rd

+, we have that

∂

∂xi

U p(x) = p

(
|x|1 −

dλ′

δ′

)p−1

;
∂2

∂xi∂x j

U p(x) = 2p(2p − 1)

(
|x|1 −

dλ′

δ′

)2p−2

.

Applying the differential operator L to U p(x),

LU p(x) =
1

2V

d∑

i, j=1

Γi, j(x)
∂2

∂xi∂x j

U p(x) +

d∑

i=1

bi(x)
∂

∂xi

U p(x)

=
p(2p − 1)

V

(
|x|1 −

dλ′

δ′

)2p−2 d∑

i, j=1

Γi, j(x) + p

(
|x|1 −

dλ′

δ′

)2p−1 d∑

i=1

bi(x)

=
p(2p − 1)

V

(
|x|1 −

dλ′

δ′

)2p−2

(δ′|x|1 + dλ′) + pδ′
(
|x|1 −

dλ′

δ′

)2p−1 (
dλ′

δ′
− |x|1

)

=
p(2p − 1)

V

(
|x|1 −

dλ′

δ′

)2p−2

(δ′|x|1 + dλ′) − pδ′
(
|x|1 −

dλ′

δ′

)2p
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= pδ′
(
|x|1 −

dλ′

δ′

)2(p−1) 
(2p − 1)

V

(
|x|1 +

dλ′

δ′

)
−

(
|x|1 −

dλ′

δ′

)2

Let cp =
pδ′

2
then

LU p(x) + cpU p(x) = pδ′
(
|x|1 −

dλ′

δ′

)2(p−1) 
2p − 1

V

(
|x|1 +

dλ′

δ′

)
− 1

2

(
|x|1 −

dλ′

δ′

)2

which is bounded above in R
d
+ by some positive constant c′p due to the fact that(

2p−1

V

(
|x|1 + dλ′

δ′

)
− 1

2

(
|x|1 − dλ′

δ′

)2
)

is quadratic with the leading coefficient being a negative number.

This proves (4.2).

To prove (4.3), we let p = 1 and f (x) := U(x) + 1 and let c′
1
= δ

′

2
; then,

LU(x) + c′1 f (x) =

(
dλ′

V
+ c′1

)
+
δ′

V
|x|1 − ��2

δ′

2
U(x). (4.4)

By the basic facts of quadratic functions, LU(x) + c′
1

f (x) is only positive on a compact set in Rd
+;

we call it K, and since it is also continuous, it is uniformly bounded by some c′
2
> 0. So (4.3) holds.

Lemma 3. Let x ∈ Rd
+ and Z be the solution to (2.2) with Z0 = x; then,

Ex

[
sup

s∈[0,t]
|Zs|p

]
< ∞, ∀p ∈ N and t ∈ R+. (4.5)

Proof. Suppose Z is the process that solves the CLA (2.2) that starts at x ∈ Rd
+ and let U be defined as

(2.5); then, by Ito’s formula, we have

U(Zt) = U(x) +

∫ t

0

LU(Zs)ds + Mt +

∫ t

0

∇U(Zs) · γ(Zs)dLs, a.s.∀t ≥ 0, (4.6)

where Mt is the local martingale term that has the following explicit expression:

Mt =
2
√

V

d∑

j=1

∫ t

0

(
|Zs|1 −

dλ′

δ′

) 
∑

i=1

σi, j(Zs)

 dW ( j)
s , (4.7)

where (σi, j)
d
i, j=1
= σ =

√
Γ is the dispersion matrix and {W ( j)}d

j=1
are independent 1-dimensional

Brownian motions. By Lemma 1, the process
∫ t

0
∇U(Zs) · γ(Zs)dLs is non-positive and decreasing

since γ(x) =
b(x)

∥b(x)∥ . Therefore we have the following almost sure inequality for all t ≥ 0:

U(Zt) ≤ U(x) +

∫ t

0

LU(Zs)ds + Mt

= U(x) +

∫ t

0

1

V

(
dλ′ + δ′|Zs|1

) − 2δ′U(Zs)ds + Mt.
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Note that
∑d

i, j=1 Γi, j(x) = dλ′ + δ′|x|1 = δ′
√

U(x) + 2dλ′ and δ′U(x) ≥ 0 for all x, therefore we can

rewrite the above inequality as

U(Zt) ≤ U(x) +
1

V

∫ t

0

δ′
√

U(Zs) + 2dλ′ds + Mt, a.s. for all t ≥ 0. (4.8)

For each m ∈ N, we let {τ′m}∞m=1
be the family of stopping times defined by τ′m = inf{t ≥ 0 : |Zt|1 ≥ m}

and let τm = τ
′
m ∧ m. Define the stopped process Z̃(m) by Z̃(m) = (Z̃(m),i

· )1≤i≤d = (Zi
·∧τm)1≤i≤d = Z·∧τm . Let

M
(m)
t = Mt∧τm and replace Zt and Mt in (4.8) by Z̃

(m)
t and M

(m)
t respectively; then, raise both sides by

a power of 2p; by Jessen’s inequality we get that, for all T > 0 and t ∈ [0,T ], there is a C depending

only on T and p such that

U2p
(
Z̃

(m)
t

)
≤ C

(
U2p(x) +

∫ t

0

δ′2pU
2p

2

(
Z̃(m)

s

)
+ (2dλ′)2pds +

(
M

(m)
t

)2p
)
.

Now take the sup over time and expectation Ex to get

Ex

[
sup

s∈[0,t]
U2p(Z̃(m)

s )

]
≤ C

(
U2p(x) +

∫ t

0

δ′2p
Ex

[
sup
τ∈[0,s]

(
U

2p

2 (Z̃(m)
τ )

)]
+ (2dλ′)2p ds + Ex

[
sup

s∈[0,t]
(M(m)

s )2p

])
.

(4.9)

We wish to obtain an inequality of the Gronwall type; note that the square root function is concave

on R+, so by Jensen’s inequality we get

Ex


(

sup
τ∈[0,s]

U
(
Z̃(m)
τ

)) 2p

2

 ≤
√
Ex

[
sup
τ∈[0,s]

U2p
(
Z̃

(m)
τ

)]
. (4.10)

Denote ⟨M⟩· as the quadratic variation of a process M. By the BDG inequality, there is an absolute

constant C > 0 that depends only on p such that

Ex

[
sup

s∈[0,t]
(M(m)

s )2p

]
≤ C Ex

[
⟨M(m)⟩pt

]
, t ∈ R+. (4.11)

Furthermore, for all T > 0, there exist constants C1, and C2 (depending on T and p) such that for

t ∈ [0,T ],

Ex

[
⟨M(m)⟩pt

]
=

1

V
Ex


∫ t

0

U
(
Z̃(m)

s

) d∑

i, j=1

Γi, j

(
Z̃(m)

s

)
ds



p

≤ C1

V

∫ t

0

Ex



U
(
Z̃(m)

s

) ∑

1≤i, j≤d

Γi, j(Z̃s)



p ds

=
C1

V

∫ t

0

Ex

[(
U(Z̃(m)

s )
(
dλ′ + δ′|Z̃(m)

s |1
))p]

ds

=
C1

V

∫ t

0

Ex

[(
U(Z̃(m)

s )

(
δ′

√
U(Z̃

(m)
s ) + 2dλ′

))p]
ds
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≤ C2

V

∫ t

0

δ′pEx

[
sup
τ∈[0,s]

U
3
2

p
(
Z̃(m)
τ

)]
+ (2dλ′)p

Ex

[
sup
τ∈[0,s]

U p
(
Z̃(m)
τ

)]
ds

where the above positive constant C2 depends only on p and T and is again independent of m. Finally,

by Jensen’s inequality again, we see that there is C0 > 0 that depends on T, p and V such that the

following inequality holds for all t ∈ [0,T ]

Ex

[
sup

s∈[0,t]
(M(m)

s )2p

]
≤ C0

∫ t

0

δ′p
(
Ex

[
sup
τ∈[0,s]

U2p(Z̃(m)
τ )

]) 3
4

+ (2dλ′)p

(
Ex

[
sup
τ∈[0,s]

U2p(Z̃(m))

]) 1
2

ds (4.12)

We let y(t) := Ex

[
sups∈[0,t] U2p(Z

(m)
s )

]
and combine the inequalities (4.9), (4.10) and (4.12) to get the

following:

y(t) ≤ C0

(
U2p(x) +

∫ t

0

(δ′2p + (2dλ′)p)
√

y(s) + (2dλ′)2p + δ′p (y(t))
3
4 ds

)
. (4.13)

We let ω(s) = (δ′2p + (2dλ′)p)
√

s + (2dλ′)2p + δ′ps
3
4 , which is positive and strictly increasing on

[0,∞). Therefore,Φ : [0,∞)→ (0,∞) defined byΦ(t) =
∫ t

0

1
ω(s)

ds is strictly increasing and continuous.

Hence Φ−1 exists and is continuous. Also, note that Ex[sups∈[0,t] U2p(Z̃
(m)
s )] is continuous in t , so by the

Gronwall-type inequality [40, Theorem 4, p3] with C0U2p(x) and C0 in the place of M and Ψ, we have

Ex

[
sup

s∈[0,t]
U2p

(
Z̃(m)

s

)]
≤ Φ−1

(
Φ

(
C0U2p(x)

)
+C0 t

)
for t ∈ [0,T ] and x ∈ Rd

+. (4.14)

Note that the right hand side does not depend on m, so by taking m → ∞ on the left hand side and

invoking Fatou’s lemma, we see that Ex[sups∈[0,t] U2p(Zs)] is finite for all t ≥ 0 which implies (4.5).

Proposition 3. The solutions to the (2.2) starting from different x ∈ Rd
+ form a Feller process.

Proof. Let τx
M
= inf{t ≥ 0 : |Zx

t |1 ≥ M} for M > M∗ = dλ′

δ′ + 1 as in [24, Eq (4.25)]; then, τx
M

is a

stopping time, where we note that u in [24, Eq (4.25)] is equal to (1, 1, · · · , 1) in our case. We will

show that for all f ∈ Cb(Rd
+) and t ≥ 0 with x ∈ Rd

+,

E
[| f (Zx) − f (Zy)|]→ 0 as y→ x, (4.15)

where Zx and Zy are strong solutions to the CLA (2.2) that start at x, y ∈ Rd
+ respectively. This implies

the Feller property since the function x 7→ E[ f (Xx
t )] is bounded.

Fixing x ∈ Rd
+, we first note that for any ϵ > 0,∃Mϵ > M∗ > 0 such that for all M ≥ Mϵ we have

sup
y∈B(x,1)

P(τ
y

M
≤ t) < ϵ. (4.16)

Indeed, by the Markov inequality, we have

sup
y∈B(x,1)

P(τ
y

M
≤ t) = sup

y∈B(x,1)

P

[
sup

s∈[0,t]
|Zy

s | ≥ M

]
≤

supy∈B(x,1) E

[
sups∈[0,t] |Z

y
t |
]

M
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and by (4.14) and continuity of Φ in the proof of Lemma 3, the map Rd
+ ∋ y 7→ E

[
sups∈[0,t] |Z

y
t |4

]
is

uniformly bounded on a compact set; hence, the numerator on the right-hand side is bounded by some

Cx > 0 depending only on x. So the right-hand side goes to zero as M → ∞.

Assume y ∈ B(x, 1) and M > Mϵ; then, we have the following decomposition of (4.15):

E

[∣∣∣ f (
Zx

t

) − f
(
Z

y
t

)∣∣∣
]
≤ E

[∣∣∣ f (
Zx

t

) − f
(
Z

y
t

)∣∣∣ 1τx
M
∧τy

M
≥t

]
+ 2∥ f ∥∞

(
P(τx

M ≤ t) + P(τ
y

M
≤ t)

)

≤ E
[∣∣∣∣ f

(
Z

x,(M)
t

)
− f

(
Z

y,(M)
t

)∣∣∣∣
]
+ 4∥ f ∥∞ϵ, (4.17)

where Zx,(M)
· denotes the stopped process Zx

t∧τx
M

. Then following the proof of Theorem 6.1 in [24], with

its modification to the proof of Theorem 5.1 of [26] to the stopped process, we obtain the following

inequality similar to [24, Eq (6.4)]: for each T > 0, there is a constant C > 0 such that for t ∈ [0,T ],

E

[
sup

s∈[0,t]

∣∣∣Zx,(M)
s − Zy,(M)

s

∣∣∣2
]
≤ C

(
|x − y|2 +

∫ t

0

E

[
sup
τ∈[0,s]

∣∣∣Zx,(M)
τ − Zy,(M)

τ

∣∣∣2
]

ds

)
. (4.18)

By the Gronwall’s inequality, as B(x, 1) ∋ y→ x, the left hand side of (4.18) goes to zero. Therefore,

from (4.17) we see that

lim
B(x,1)∋y→x

E

[∣∣∣ f (
Zx

t

) − f
(
Z

y
t

)∣∣∣
]
≤ 4∥ f ∥∞ϵ,

and since ϵ > 0 is arbitrary, we see that (4.15) holds.

4.3. Proofs for the results in Section 2

Proof of Theorem 1. The reaction network of the TK model contains inflows and outflows of all

species (1.4). Furthermore, the autocatalytic reactions given by (1.3) satisfy the mass-conserving/mass-

dissipating assumption in [24, Definition 3.1(a)] with u = (1, 1, · · · , 1) ∈ Rd. Hence [24, Assumption

3.1] is satisfied. Strong uniqueness of the CLA follows from [24, Theorem 6.1], and weak existence

follows from [24, Section 7]. Now strong existence and weak uniqueness follow from the Yamada-

Watanabe-Engelbert theorem [41].

The Feller property is given by Proposition 3; hence, it also has strong Markov property by [41].

The following result from [27, Theorem 4.2] (see also [42, Theorem 2.2.12]) provides a condition on

Lyapunov functions that guarantees the existence of a unique invariant distribution for Feller diffusions.

Note that a skeleton chain of a Feller diffusion also possesses the Feller property. By [43, Proposition

2.2], every compact subset is petite for a Feller diffusion and all of its skeleton chains.

Theorem 4. ( [27, Theorem 4.2]) Let X be a Feller diffusion. If U is a positive function such that

for some positive constants c1, c2 > 0, a function f : Rd → [1,∞) and a compact set K ⊂ Rd
+, U is

bounded on K and the following inequality holds for X:

LU(x) ≤ −c1 f (x) + c2 1K(x), ∀x ∈ Rd
+, (4.19)

then the diffusion is positive Harris recurrent and there is an invariant probability measure π for X;

also, any invariant probability π satisfies
∫
R

d
+

f (x)π(dx) < ∞.
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The following result from [27] (see also [42, Theorem 2.2.15]) provides a condition on Lyapunov

functions that guarantees exponential ergodicity of Feller diffusions.

Theorem 5. ( [27, Theorem 6.1]) Let X be a Feller diffusion. Assume that there exists a norm-like

function U and constants c1 > 0 and c2 ∈ R such that X satisfies

LU(x) ≤ −c1 U(x) + c2 (4.20)

for all x ∈ Rd
+. Then X is f -exponentially ergodic with f = U + 1.

Conditions (4.19) and (4.20) are called (CD2) and (CD3) respectively in [27], and they are satisfied

for our CLA (process Z) thanks to Lemma 2.

Proof of Theorem 2 . Note that Proposition 3 implies that Z is a Feller process. Let U be the Lya-

punov function defined as (2.5), and the inequality (4.3) implies that U satisfies the inequality (4.19).

Therefore, by Theorem 4, Z is positive Harris recurrent and hence has a unique invariant probability

measure [27, Section 4.1].

It remains to show that all moments of the stationary distribution π are finite. By Ito’s formula,

Lemmas 1 and 2, we have that for each p ∈ N, there exist some positive constants cp and c′p , and the

following inequality holds for t ∈ R+:

Ex[U
p(Zt)] ≤ U p(x) + Ex

[∫ t

0

LU p(Zs)ds

]

≤ U p(x) −
∫ t

0

cpEx [U p(Zs)] ds + c′pt.

By rearranging terms and dividing by t and cp, it follows that

Ex

(
1

t

∫ t

0

U p(Zs)ds

)
=

1

t

∫ t

0

Ex [U p(Zs)] ds ≤ U p(x)

t cp

+
c′p

cp

. (4.21)

Now, let us define U
p

M
as the truncated function of U p at M ≥ 0, that is,

U
p

M
(x) =


U p(x) U p(x) < M

M U p(x) ≥ M
.

Then U
p

M
is a bounded continuous function. Since Zt converges to π in law, we have that

lim
t→∞
Ex[U

p

M
(Zt)] =

∫

R
d
+

U
p

M
(x)π(dx). (4.22)

Therefore, by (4.22) and (4.21)
∫

R
d
+

U
p

M
(x)π(dx) = lim

t→∞

1

t

∫ t

0

Ex

[
U

p

M
(Zs)

]
ds ≤

c′p

cp

.

Now, take M → ∞ on the left hand side and by the monotone convergence theorem, we have
∫

R
d
+

U p(x)π(dx) < ∞.

Since the inequality holds for all p ∈ N, we may conclude that all moments of π are finite.
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Proof of Theorem 3. Let U be the Lyapunov function defined in (2.5). Inequality (Eq 4.2) says that U

satisfies the inequality (Eq 4.20); hence, we can apply Theorem 5 to conclude that Z is f -exponentially

ergodic with f = U + 1.

Proof of Proposition 1 . Following [31], we let n(x) = {∑i∈I(x) αiei, αi > 0} be the set of interior normal

vectors to the domain Rd
+ at x ∈ ∂Rd

+, where I(x) = {1 ≤ i ≤ d : xi = 0}. Let

U :=
{
x ∈ ∂R+d : ∃n ∈ n(x) such that n · γ(x) > 0

}
.

This definition is a bit different from that of [31, Eq (6)] where they define d(x) as a set valued

function, but since our reflection γ(x) is well defined for all x ∈ ∂Rd
+ including the non-smooth part,

we can set it to be single valued. If x = (x1, · · · , xd) ∈ ∂Rd
+, then there is some i between 1 and d such

that xi = 0; hence, ei ∈ n(x), so bi(x) = λ′ and

⟨ei, γ(x)⟩ = 1

∥b(x)∥⟨ei, b(x)⟩ = 1

∥b(x)∥λ
′ > 0.

HenceV := ∂Rd
+\U = ∅.

We prove Proposition 1 by checking all of the conditions in [31, Theorem 2]: note that Γ(x) is uni-

formly elliptic for all x ∈ Rd
+ by (4.1), and that the reflection γ is piece-wise C2(∂Rd

+). [31, Assumption

2] is satisfied since V = ∅ by [31, Remark 3.4]. The wellposedness of the submartingale problem in

the statement of [31, Theorem 2] is given by [44, Theorem 1] and Theorem 1. Now, all assumptions

of [31, Theorem 2] are satisfied, which proves our statement.

Proof of Proposition 2 . We prove the statement by checking all conditions in [31, Theorem 3]: by the

proof of Proposition 1 we see that [31, Assumption 2] is satisfied and the corresponding submartingale

problem is well posed. Furthermore, all entries of Γ(·) and b(·) are smooth since they are polynomials,

so [31, Theorem 3] holds with Rd
+, γ(x), b(x),Γ(x) in the place of G, d(x), b(x), a(x) in Eqs (12)±(16)

of [31, p. 1341].
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