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Abstract. Modern data centers suffer from immense power consumption. As a result, data 
center operators have heavily invested in capacity-scaling solutions, which dynamically 
deactivate servers if the demand is low and activate them again when the workload 
increases. We analyze a continuous-time model for capacity scaling, where the goal is to 
minimize the weighted sum of flow time, switching cost, and power consumption in an 
online fashion. We propose a novel algorithm, called adaptive balanced capacity scaling 
(ABCS), that has access to black-box machine learning predictions. ABCS aims to adapt to 
the predictions and is also robust against unpredictable surges in the workload. In particu
lar, we prove that ABCS is (1 + ε) competitive if the predictions are accurate, and yet, it has 
a uniformly bounded competitive ratio even if the predictions are completely inaccurate. 
Finally, we investigate the performance of this algorithm on a real-world data set and carry 
out extensive numerical experiments, which positively support the theoretical results.
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1. Introduction
1.1. Background and Motivation
Modern data centers suffer from immense power consumption, which amounts to a massive economic and environ
mental impact. In 2014, data centers alone contributed to about 1.8% of the total U.S. electricity consumption (Shehabi 
et al. [53]), and this is projected to reach 7% in 2030 (Jones [29]). Consequently, data center providers are constantly 
striving to optimize their servers for energy efficiency, pushing the hardware’s efficiency to nearly its limit. At this 
point, algorithmic improvements appear to be critical in order to achieve substantial further gain (Shehabi et al. [53]). 
A common practice for data centers has been to reserve significant excess service capacity in the form of idle servers 
(Sverdlik [54]), even though a typical idle server still consumes about 44% of its peak power consumption (Shehabi 
et al. [53]). The recommendation from the U.S. Department of Energy (Shehabi et al. [53]), industry (Facebook [18], 
Google [26], Netflix [48]), and the academic research community (Albers and Fujiwara [1], Gandhi et al. [22], Lin et al. 
[36]) is, therefore, to implement dynamic capacity-scaling functionality based on the demand. If the demand is low, 
the service capacity should be scaled down by deactivating servers, whereas at peak times, it should be scaled up by 
increasing the number of active servers. Instead of physically toggling servers on or off, this functionality is often 
implemented by carefully allocating a fraction of servers to other lower-priority services and quickly bringing them 
back at times of high demand; see Cortez et al. [14], Rzadca et al. [52], and Tirmazi et al. [55] for a more detailed 
account. This maximizes the utilization of the system and hence, minimizes the power consumption.

The call for algorithmic solutions to capacity scaling has inspired a vibrant line of research over the last decade 
(Albers and Fujiwara [1], Augustine et al. [6], Bansal et al. [9], Gandhi et al. [20], Gandhi et al. [22], Irani et al. [28], Lin 
et al. [36], Lu et al. [37], Mukherjee and Stolyar [46], Mukherjee et al. [47]). The problem fits into the framework of 
online algorithms, where the goal is to design algorithms that dynamically scale the current service capacity based on 
the past and current system information. Here, the performance of an algorithm is captured in terms of the competitive 
ratio (CR), which is defined as the worst possible ratio between the cost incurred by the online algorithm and that by 
the offline optimum algorithm. Note that the online algorithm has information only about the past and the present, 
whereas the offline optimum has accurate information about all future input variables, such as the task-arrival process 
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in the context of the current article. The key advantage of such strong performance guarantees lies in its robustness; 
that is, the algorithm safeguards against the worst-case scenario.

However, any of today’s modern large-scale systems has access to massive historical data, which combined with 
standard machine learning (ML) algorithms, can reveal definitive patterns. In these cases, simply following the recom
mendations obtained from the ML predictions typically outperforms any competitive algorithm. Netflix is an example 
of a company implementing capacity scaling in practice. Instead of relying on competitive online algorithms, Netflix 
has implemented ML algorithms in their Scryer system (Netflix [48]). They noted that their demand usually follows 
regular patterns, allowing them to accurately predict the demand during a day based on data from previous weeks. 
Most of the time, the performance of the machine learning algorithm is, therefore, excellent. However, besides empiri
cal verification, the performance of such ML predictions is not guaranteed. In fact, repeated observations show that 
unexpected surges in the workload are not at all uncommon (Bodik [12], Lassettre et al. [34], Netflix [48]), and they 
cause a significant adverse impact on the system performance.

The contrasting approaches between academia and industry reveal a gap between what we are able to prove and 
what is desirable in practice. Although online algorithms do not require any information about future arrivals, in 
practice, these predictions are usually available. At the same time, an algorithm should not blindly trust the predic
tions because occasionally, the accuracy of the predictions can be significantly poor. The current work aims to bridge 
this gap by incorporating ML predictions directly into the competitive analysis framework. In particular, we pro
pose a novel low-complexity algorithm for capacity scaling called adaptive balanced capacity scaling (ABCS), which 
has access to a black-box predictor, lending predictions about future arrivals. Critically, not only is ABCS completely 
unaware of the prediction’s accuracy, we also restrain from making any statistical assumptions on the accuracy. 
Hence, this excludes any attempt to learn the prediction’s accuracy because accurate past predictions do not neces
sarily warrant the quality of future predictions. The main challenge, therefore, is to design near-optimal algorithms 
that intelligently accept and reject the recommendations given by the ML predictor without knowing or learning 
their accuracy. Note, however, that the performance of ABCS does depend on the (unknown) error of the prediction, 
and it ensures, among others, two desirable properties: (i) consistency (i.e., if the predictions turn out to be accurate 
in hindsight, then ABCS automatically nearly replicates the optimal solution) and (ii) competitiveness (i.e., if the pre
dictions are inaccurate in hindsight, then the performance of ABCS is at most a uniformly bounded constant factor 
times the minimum cost). The formal definitions of consistency and competitiveness are given in Section 3. It is 
worth emphasizing that this work is not concerned with how the ML predictions are obtained and uses them as a 
black box.

1.2. Our Contributions
We will use a canonical continuous-time dynamical system model that is used to analyze algorithms for energy effi
ciency; see, for example, Albers and Fujiwara [1], Bansal et al. [9], Lin et al. [36], Lu et al. [37], and Maccio and Down 
[39] for variations. Consider a system with a large number of homogeneous servers. Each server is in either of two 
states: active or inactive. Let m(t) denote the number of active servers at time t. Workload arrives into the system in con
tinuous time and gets processed at instantaneous rate m(t). The system has a buffer of infinite capacity, where the 
unprocessed workload can wait until it is executed. We will assume that there is an unknown and arbitrary arrival 
rate function λ(t) that represents the arrival process; see Section 2 for further details. We do not impose any restrictions 
on λ(·). To contrast this with the often-studied case when the workload arrival is stochastic, λ(·) can be thought of as 
an individual sample path of the corresponding stochastic arrival process. At any time, the system may decide to 
increase or decrease m(t) in an online fashion. However, it pays a switching cost each time a server is activated. This 
represents the cost of terminating the lower-priority service running at the inactive server and related migration costs 
(Lin et al. [36], Lu et al. [37], Maccio and Down [39], Rzadca et al. [52]). The goal of the system is to minimize the 
weighted sum of the flow time, the switching cost, and the power consumption (Maccio and Down [39]). The flow 
time is defined as the total time tasks spend in the system and is a measure of the response time (Albers and Fujiwara 
[1], Bansal et al. [9]). We will analyze the performance of an algorithm by its competitive ratio, the worst-case ratio 
between the cost of the online algorithm and the minimum offline cost, over all possible arrival rate functions λ(·). We 
further assume that the algorithm receives predictions about future workload through an ML oracle (Lykouris and 
Vassilvtiskii [38], Mahdian et al. [40]). More precisely, at time t � 0, the ML oracle predicts an arrival rate function λ̃(·). 
The algorithm may use these predictions to increase or decrease the number of servers accordingly. For instance, if the 
oracle predicts that the demand in the next hour will increase, then the algorithm might proactively increase the num
ber of servers. However, as mentioned before, it is crucial that the algorithm is completely oblivious to the accuracy of 
these predictions. We measure the accuracy of the predictions in terms of the mean absolute error (MAE) between the 
predicted arrival rate function λ̃ and the actual rate function λ (see Definition 1). Our contributions in the current 
paper are threefold. 
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1. Purely online algorithm with worst-case guarantees. First, we propose a novel purely online algorithm for 
capacity scaling called balanced capacity scaling (BCS). This purely online scenario, or the scenario of traditional 
competitive analysis, is equivalent to having predictions with infinite error. There are several fundamental works 
that have considered the purely online scenario for capacity scaling (Ghandi et al. [20], Lin et al. [36], Lu et al. [37], 
Mukherjee and Stolyar [46], Mukherjee et al. [47]). We extend the state of the art in this area by analyzing a general 
model in continuous time where unprocessed workload is allowed to wait. In fact, we show that a class of popular 
algorithms that were previously proposed is not constant competitive in this more general case (see Proposition 4). 
We show that BCS is five competitive in the general case (Corollary 1) and is two competitive when waiting is not 
allowed and workload must be processed immediately upon arrival (Theorem 2). BCS is easy to implement and is 
memoryless (i.e., it only depends on the current state of the system and not on the past). Also, we prove a lower- 
bound result that any deterministic online algorithm must have a competitive ratio of at least 2.549 (Proposition 2), 
which implies that the problem is strictly harder than the classical ski rental problem, a benchmark for online 
algorithms.

2. Augmenting unreliable ML predictions. When ML predictions are available, we first propose an adaptive algo
rithm called adapt to the prediction (AP), which ensures consistency. That is, we prove (Theorem 3) that the competi
tive ratio of AP is at most 1 +Θ(η), where η is a suitable measure of the prediction’s accuracy and is a function of the 
MAE between the predicted arrival rate function λ̃ and the actual rate function λ (Definition 2). AP does not follow 
the predictions blindly. Rather, it dynamically scales the number of servers in an online fashion as the past predic
tions turn out to be inaccurate. Although the performance of AP is optimal as η � 0 and it degrades gracefully with η, 
it is not constant competitive if predictions are completely inaccurate (η � ∞). Thus, it does not provide any worst- 
case guarantees. This is a feat shared by many recent adaptive algorithms in the literature (see Remark 6).

Next, we combine the ideas behind BCS and AP to propose an algorithm that is both competitive and consistent. 
This brings us to the main contribution of the paper. We propose ABCS, which uses the structure of BCS and utilizes 
AP as a subroutine. ABCS has a hyperparameter r ≥ 1, which can be fixed at any value before implementing the algo
rithm, and represents our confidence in the ML predictions. If we choose r � 1, then the algorithm works as a purely 
online one and disregards all predictions. In this case, ABCS is five competitive, as before. However, for any fixed r > 1, 
we prove (Corollary 2) that the competitive ratio of ABCS is at most

CR(η) ≤ min((1 + O(η)) · (1 + r�1 + O(r�2)),O(r7=2)), (1.1) 

where η is the prediction’s accuracy as before. There are a number of consequences of the result. We start by emphasiz
ing that although the competitive ratio is a function of the error η, the algorithm is completely oblivious to it. Now, the 
higher we fix the value of r to be, the closer the competitive ratio of ABCS gets to one if the predictions turn out to be 
accurate in hindsight. If the predictions are completely inaccurate (η � ∞), the competitive ratio is at most O(r7=2), a 
constant that depends only on r and not on η. ABCS is, therefore, robust against unpredictable surges in workload 
while providing near-optimal performance if the predictions are accurate.

Another interesting thing to note is that for r > 1, the competitive ratio in (1.1) is the minimum of two terms; the first 
term, which we call the optimistic competitive ratio (OCR), is smaller when the prediction is accurate, and the second 
term, which we call the pessimistic competitive ratio (PCR), is smaller when the prediction is inaccurate. From the algo
rithm designer’s perspective, there is a clear trade-off between OCR and PCR, which is conveniently controlled by the 
confidence hyperparameter r. It is important to note that ABCS provides performance guarantees for any fixed r ≥ 1 
irrespective of the model parameters or the accuracy of the predictions. However, the choice of r reflects the risk that 
the system designer is willing to take in the pessimistic case against the gain in the optimistic case. See Remark 10 for 
further discussion. This trade-off, however, is not specific to our algorithm. In fact, we prove a negative result in Propo
sition 3 that any algorithm that is (1 + δ) competitive in the optimistic case has a competitive ratio of at least 1=(4δ) in 
the pessimistic case.

3. Offline algorithm for regular workloads. Finally, we consider the scenario in which the workload λ(·) is 
known perfectly up front. We propose an offline algorithm that solves a linear program and prove (Theorem 5) 
that if the workload is sufficiently regular (see Assumption 1), then the offline algorithm is (1 + O(δ)) competitive 
with respect to the offline optimal algorithm. Here, δ is a hyperparameter of the algorithm that measures the 
desired accuracy. As δ decreases, the accuracy of the solution increases; however, the dimension of the linear pro
gram (in terms of the number of decision variables and constraints) increases at rate 1=δ as well. The offline algo
rithm may be used as a subroutine in AP, even if the predictions are unreliable.
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To test the performance of our algorithms in practice, we implemented them on both a real-world data set of 
domain name system (DNS) requests observed at a campus network (Manmeet et al. [41]) and a set of artificial data 
sets, and the performance turned out to be excellent. See Section 5 for details.

1.3. Related Works
Over the past two decades, the rapid growth of data centers and their immense power consumption have inspired a 
vibrant line of research in optimizing the energy efficiency of such systems (Barroso and Hölzle [11], Dayarathna et al. 
[16], Rong et al. [51], Urgaonkar et al. [56]). We provide an overview of a few influential works relevant to the current 
paper.

The capacity-scaling problem was introduced in a seminal paper by Lin et al. [36], who analyze a discrete-time 
model of a data center. At each time step t, the cost of operating m(t) servers is determined by the switching cost and 
an arbitrary convex function gt(m(t)), which for example, specifies the cost of increased power consumption versus 
response time. At time step t, the system reveals the function gt and accurate functions gt+1, gt+2, : : : , gt+w in a predic
tion window of w future time steps. Lin et al. [36] propose an algorithm, called the lazy capacity provisioning (LCP) 
algorithm, and prove that it is three competitive. Surprisingly, the performance of the LCP algorithm does not improve 
if w > 0 (i.e., if predictions are available). We consider a modified model in continuous time, where predictions are not 
necessarily accurate. Moreover, the performance of our algorithm increases provably in the presence of predictions.

Lu et al. [37] consider a scenario where tasks cannot wait in queue and must be served immediately upon arrival. 
They discover that in this case, the capacity-scaling problem reduces to solving a number of independent ski rental 
problems. The authors then propose an algorithm and prove that it is two competitive. Our model, in addition, 
includes the response time, which directly generalizes the framework of Lu et al. [37]. This flexibility introduces a 
whole new dimension in the space of possible decisions. For example, because the results of Lu et al. [37] lack any 
form of delay, tasks are processed at the same time by any algorithm. Our model allows an algorithm-dependent delay 
of serving tasks, which desynchronizes the time at which tasks are processed at a server across different algorithms and 
hence, significantly complicates the analysis. Mazzucco and Dyachuk [42] analyze a related problem, in which the 
number of servers is periodically updated and a task is lost if a server is not immediately available to serve it. The goal 
of their algorithm is to balance the power consumption and the cost of losing tasks. Galloway et al. [19] and later, Gan
dhi et al. [21] and Gandhi et al. [23] perform empirical studies of data centers. Their results show that significant power 
savings are possible while maintaining much of the latency of the network.

A well-studied problem that is somewhat related to our setup is speed scaling. Here, the goal is to optimize the pro
cessing speed of a single server and to minimize the weighted sum of the flow time and power consumption, whereas 
the switching cost is zero. The power consumption is typically cubic in the processing speed. In contrast to our model, 
the scheduling of jobs also plays a crucial role here. A seminal paper in this area is by Bansal et al. [9], who propose an 
algorithm that schedules the task with the shortest remaining processing time first and processes it at a speed such 
that the power consumption is equal to the number of waiting tasks plus one. The authors prove that this algorithm is 
(3 + ε) competitive. Later papers have extended the case of the single server to processor-sharing systems (Wierman 
et al. [57]) and parallel processors with deadline constraints (Albers et al. [2]). The problem of speed scaling has also 
been analyzed in the case that the interarrival times and required processing times are exponentially distributed (Ata 
and Shneorson [5]).

Any algorithm for the capacity-scaling problem consists of two components: first, to activate servers and second, to 
deactivate servers. For a single server, a natural abstraction of the latter problem is the famous ski rental problem, as 
first introduced by Karlin et al. [31]. The ski rental problem has been applied to cases of capital investment (Azar et al. 
[7], Damaschke [15]), TCP acknowledgement (Karlin et al. [30]), and cache coherence (Anderson and Karlin [3]). Irani 
et al. [28] analyze the ski rental problem when multiple power-down states are available, such as active, sleeping, 
hibernating, and inactive. The power consumption in each state is different, and moving between the states incurs a 
switching cost. Augustine et al. [6] generalize these results when the transition costs between the different states are 
not additive. Although the current work focuses on only two states (i.e., active and inactive), we expect that the algo
rithm and proofs are general enough to accommodate multiple power-down states, which we leave as interesting 
future work. Khanafer et al. [32] analyze the ski rental problem in a stochastic context.

Two papers are often independently credited for initiating the study of online algorithms augmented by ML predic
tions: Lykouris and Vassilvtiskii [38] in the context of caching and Mahdian et al. [40] in the context of allocation of 
online advertisement space, load balancing, and facility location. Lykouris and Vassilvtiskii [38] show how to adapt 
the marker algorithm for the caching problem to obtain a competitive ratio of two if the predictions are perfectly accu
rate and a bounded competitive ratio if the predictions are inaccurate. Mahdian et al. [40] propose an algorithm that 
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naively switches between an optimistic scheduling algorithm and a pessimistic scheduling algorithm to minimize the 
make span when routing tasks to multiple machines. We here mostly follow the terminology of Lykouris and Vassilv
tiskii [38]. Since then, the ideas have been applied to bipartite matching (Kumar et al. [33]), ski rental and scheduling 
on a single machine (Purohit et al. [49]), bloom filters (Mitzenmacher [43]), and frequency estimation (Hsu et al. [27]). 
Lee et al. [35] propose an algorithm that operates on-site generators to reduce the peak energy usage of data centers. 
Although related to the current work, their algorithm works independent to the capacity scaling happening inside the 
data center. Bamas et al. [8] discuss an algorithm augmented by predictions for the related problem of speed scaling 
discussed, in the case of parallel processors with deadline constraints. Similar to our results, Bamas et al. [8] identify a 
trade-off between what we call an optimistic competitive ratio and a pessimistic competitive ratio. We prove, for the 
capacity-scaling problem considered in the current work, that any algorithm must exhibit such a trade-off (see Proposi
tion 3 for details). Antoniadis et al. [4] discuss algorithms augmented with predictions for the general framework of 
metrical task systems. Note that the problem in the current paper cannot be described in the form of a metrical task 
system. For example, if one casts the problem in a metric space that contains both the number of servers and the work
load in the queue, then the possible transitions depend on a nontrivial combination of the arrival function, the number 
of servers, and the workload in the queue. The metrical task system allows the possible transitions to depend on either 
the metric between two points or the arrival function but not a combination thereof. However, one cannot omit the 
number of servers or the workload in the queue from the metric space either because the cost depends on both. There
fore, the workload in the queue adds a completely new way in which decisions between rounds are coupled that can
not be captured by a metric space.

Recently, the notion of a predictor has also emerged in stochastic scheduling. Mitzenmacher [44] introduces the pre
dictor as a probability density function g(x, y) for a task with actual service time x and predicted service time y. Here, 
the author analyzes the shortest predicted job first and shortest predicted remaining processing time queueing disci
plines for a single queue and determines the price of misprediction (i.e., the ratio of the cost if perfect information of 
the service time distribution is known and the cost if only predictions are available). For multiple queues, Mitzenma
cher [45] has simulated the supermarket model or the “power-of-d” model to show empirically that the availability of 
predictions greatly improves performance.

A different line of work called online algorithms with advice questions how many bits of perfect future information 
are necessary to reproduce the optimal offline algorithm (see Boyar et al. [13] for a survey). The difference with the cur
rent work is that we do not assume that the predictions are perfect but instead, have arbitrary accuracy.

When the arrival process and service times are stochastic, there are several major works that consider energy effi
ciency of the system. Gandhi et al. [20] provide an exact analysis of the M/M/k/setup system. The system is similar to 
the M/M/k class of Markov chains (i.e., tasks arrive according to a Poisson process and require an exponentially dis
tributed processing time). To process the tasks, the system has access to a maximum of k servers. According to the 
algorithm in Gandhi et al. [20], if a task arrives and there are no available servers, the system moves one server to its 
setup state, where it remains for an exponentially random time before the server becomes active. The authors provide 
a sophisticated method to analyze the system exactly. Maccio and Down [39] analyze a similar system for a broader 
class of cost functions. When each server has a dedicated separate queue, Mukherjee and Stolyar [46] and Mukherjee 
et al. [47] analyze the case where the setup times and standby times (the time a server remains idle before it is deacti
vated) are independent exponentially distributed. In this case, they propose an algorithm that achieves asymptotic 
optimality for both the response time and the power consumption in the large-system limit. Earlier research has also 
modeled the response time as a constraint rather than charging a cost for the response time (Goldman et al. [25]). 
Here, each task is presented with a deadline; the task should be served before this deadline, or it is irrevocably lost. 
The earliest deadline first queueing discipline has been proven to be effective in this case (Doytchinov et al. [17]).

1.4. Notation and Organization
The remainder of the paper is organized as follows. Section 2 describes the model. Section 3 introduces some prelimi
nary concepts and definitions related to the ML predictions, such as the error. Section 4 introduces our algorithms and 
the main results, of which the high-level proof ideas are provided in Section 6. Most of the technical proofs are given 
in the appendix. Section 5 presents extensive numerical experiments, including the performance of our algorithms on 
a real-world data set. Finally, Section 7 concludes our work and presents directions for future research.

2. Model Description
We now introduce a general model for capacity scaling. Let ω,β, and θ be fixed nonnegative parameters of the model. 
We will assume that the tasks waiting in the buffer accumulate a waiting cost at rate ω > 0, the cost of activating a 
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server is β > 0, and each active server accumulates a power consumption cost at rate θ ≥ 0. We denote the workload in 
the buffer at time t by q(t).

An instance consists of a known finite-time horizon T > 0 and an unknown and arbitrary function λ : [0, T] → R+

representing the arrival process. The model is

minimize
m:[0,T]→R+

ω ·

Z T

0
q(s)ds + β · lim sup

δ↓0

X⌊T=δ⌋

i�0
[m(iδ+ δ) � m(iδ)]+

+θ ·

Z T

0
m(s)ds

subject to q(t) �

Z t

0
(λ(s) � m(s))1{q(s) > 0 or λ(s) ≥ m(s)}ds for all t ∈ [0, T]

m(0) � 0, m(t) ≥ 0 for all t ∈ (0, T],

(2.1) 

where [x]
+

� max(x, 0). To solve the optimization problem, an algorithm needs to determine the function m(·) given 
the parameters ω,β,θ. Note that our goal is to investigate online algorithms, meaning that λ(·) is revealed to the algo
rithm in an online fashion. In other words, at time t, the algorithm must determine m(t) depending only on λ(s) for 
s ∈ [0, t]. Note that the system may equivalently reveal the total workload received before time s ∈ [0, t], as λ is simply 
its rate of increase. For an algorithm that runs m(t) servers at time t, the cost accumulated until time t is defined as

COSTλ(m, t) :� ω ·

Z t

0
q(s)ds + β · lim sup

δ↓0

X⌊t=δ⌋

i�0
[m(iδ+ δ) � m(iδ)]+

+θ ·

Z t

0
m(s)ds: (2.2) 

We will compare the total cost COSTλ(m, T) for an online algorithm with that of the offline minimum defined as

OPT :� inf
m:(0,T]→R+

COSTλ(m, T), (2.3) 

and without loss of generality, we will assume OPT < ∞ throughout the paper.

Remark 1. The minimizer of (2.3) exists, as stated by the next proposition. The proof of Proposition 1 is given in 
Appendix A.1. The difficulty in the proof is in dealing with the second term in (2.2), which makes the function 
COSTλ(m, T) discontinuous in m(·) with respect to the L1 norm.

Proposition 1. There exists m∗ : [0, T] → R+ such that COSTλ(m∗, T) � OPT.

Remark 2. The model in (2.1) assumes that m(0) � 0 for the sake of clarity of exposition. The results in this paper 
extend to any m(0) by adding an additive constant of O(β · m(0)) to each of the performance bounds. The proofs 
in the appendix are presented for this more general case.

The model in (2.1) actually combines some well-studied state-of-the-art models (Albers and Fujiwara [1], Ban
sal et al. [9], Lin et al. [36], Lu et al. [37], Maccio and Down [39]). To see how it relates to the problem of capacity 
scaling, note that the objective function in (2.1) is a weighted sum of three metrics. We clarify each of them. These 
three metrics are common performance measures of the system, such as the response time or the power con
sumption. The parameters ω, β, and θ represent the weights assigned to each of these metrics. The three metrics 
are as follows. 

i. The flow time. The flow time is defined as the total time a task spends in the system and captures the response 

time of the system. Note that the average response time per unit of workload is 
R T

0 q(s)ds
R T

0 λ(s)ds
; see also Albers and Fuji

wara [1], and Bansal et al. [9]. The weight ω is the cost attributed to the response time (e.g., in dollars per second). 
The weight ω could, for example, be determined based on loss of revenue or user dissatisfaction as a result of 
increased response time.

ii. The switching cost. As in Lin et al. [36], Lu et al. [37], and Rzadca et al. [52], the parameter β can be viewed as 
the cost to increase the number of active servers (e.g., in dollars per server). This may include, for example, the cost 
to terminate a lower-priority service and related migration costs. In practice, these costs are usually equivalent to 
the cost of running the server for multiple hours (Lin et al. [36]). The total switching cost is β times the number of 
times a server is made active.

iii. The power consumption. The power consumption is proportional to the total time servers are in the active 
state (Lu et al. [37]). The weight θ represents the cost of power (e.g., in dollars per server per second).

Also, the constraints in (2.1) model the dynamics of capacity scaling, and q(·) can be viewed as the queue- 
length process or the remaining workload process. Note that (2.1) does not require q(t) or m(t) to be integer val
ued. This is a fairly standard relaxation because a service may typically request a fraction of the server’s capacity 
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(Rzadca et al. [52], Tirmazi et al. [55]) and a single task is tiny; see, for example, Lin et al. [36] and Mukherjee et al. 
[47]. The system in (2.1) can also be interpreted as a fluid counterpart of a discrete system. Figure 1 depicts the 
model schematically.

Remark 3. The model in (2.1) assumes that the service capacity can be increased nearly instantaneously. Hence, 
it does not include the so-called setup time. Besides being a common assumption in competitive analysis (see, for 
example, Lin et al. [36] and Lu et al. [37]), this is also not completely unreasonable in practice. This is mainly 
because servers are not usually physically turned off in reality. Instead, when a server becomes “inactive,” the 
server’s capacity will be used by other low-priority services. Then, activating a server means quickly terminating 
such low-priority services; see Rzadca et al. [52] and Tirmazi et al. [55] for a more detailed account. From a theo
retical standpoint, the assumption of a zero setup time is also necessary to get a uniformly bounded competitive 
ratio, as stated in the next lemma. For the sake of Lemma 1, let us assume that in the capacity-scaling problem in 
(2.1), there is an additional setup time t0 > 0 before the number of servers can be increased. In other words, if the 
online algorithm decides to turn on a server at time t, then the number of servers is increased at time t + t0. The 
proof of Lemma 1 is provided in Appendix A.2.

Lemma 1. Let A be any deterministic algorithm for the capacity-scaling problem in (2.1), and assume that there is an addi
tional setup time t0 > 0 before the number of servers can be increased. Also, let CR denote the competitive ratio of A (see 
Definition 3 for a formal definition of the competitive ratio). Then, there exists θ such that CR ≥

ωt2
0

2β : In short, there does not 
exist any deterministic online algorithm with a uniformly bounded competitive ratio.

Formulation (2.1) is fairly easy to solve as an offline optimization problem. Section 4.3 presents a linear program that 
solves the offline problem. However, as mentioned earlier, we are interested in an online algorithm. Specifically, we 
distinguish two scenarios. 

1. Purely online scenario. The system reveals ω, β, θ, and at time t, also λ(s) for s ∈ [0, t] to the online algorithm 
but not λ(s) for any s > t. The purely online scenario corresponds to the setting where predictions may not be avail
able and provides a natural starting point of our investigation. We discuss a competitive algorithm for the purely 
online scenario in Section 4.1. Additionally, in this purely online scenario, our algorithm does not require the sys
tem to reveal the finite-time horizon T up front.

2. Machine learning scenario. In addition to the assumptions in the purely online scenario, at time t � 0, an ML 
predictor predicts the arrival rate function of the entire interval; that is, it predicts the arrival rate function to be 
λ̃ : [0, T] → R+. The ML predictor may, for example, be trained on the past observed workload on a day. For the 
purpose of the current work, we treat the predictor as a black box. We discuss a consistent algorithm for the 
machine learning scenario in Section 4.2.1, for which the competitive ratio degrades gracefully with the prediction’s 
accuracy. However, the algorithm is not competitive in the worst case. Finally, in Section 4.2.2, we discuss an algo
rithm for the machine learning scenario, which is simultaneously competitive and consistent, by combining the 
algorithms from Sections 4.1 and 4.2.1.

The idea of using online algorithms with unreliable machine-learned advice was first introduced in Mahdian et al. 
[40] in the context of allocation of online advertisement space, load balancing, and facility location and in Lykouris and 
Vassilvtiskii [38] in the context of competitive caching. The next section provides the necessary details of the frame
work of Lykouris and Vassilvtiskii [38].

3. Preliminary Concepts
This section briefly presents the competitive analysis framework for algorithms that have access to ML predictions. 
We mostly follow the setup as introduced in Lykouris and Vassilvtiskii [38] and adapt it here for the current scenario. 

Figure 1. The system receives tasks at rate λ(t) and operates m(t) servers. The workload is q(t). 
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We measure the errors in predictions by the MAE between the true and predicted label, which is commonly used in 
state-of-the-art machine learning algorithms (Gao [24], Qi et al. [50]).

Definition 1. The error in the prediction λ̃(·) with respect to the actual arrival rate λ(·) is

‖λ̃�λ‖MAE �
1
T

Z T

0
| λ̃(t) �λ(t) |dt: (3.1) 

To measure the performance of an algorithm augmented by an ML predictor, we will define the competitive ratio 
as a function of the prediction’s accuracy. However, before stating the definition of competitive ratio, we intro
duce the level of accuracy of a prediction.

Definition 2. Fix a finite-time horizon T and arrival rate function λ(·). Let OPT be as defined in (2.3). For η > 0, we 
say that a prediction λ̃ is η accurate for the instance (T,λ) if

‖λ̃�λ‖MAE ≤ η ·
OPT

T
: (3.2) 

The definition of the prediction’s accuracy is intimately tied to the cost of the optimal solution. As already argued 
in Lykouris and Vassilvtiskii [38], because OPT is a linear functional of λ, normalizing the error by the cost of the 
optimal solution is necessary. This is because the definition should be invariant to scaling and padding argu
ments. For example, if we double both λ(·) and λ̃(·), then the prediction’s accuracy should still be the same.

Let A be any algorithm for (2.1). The performance of A is measured by the competitive ratio CR(η), which itself 
is a function of the accuracy η. The following definition is an adaptation of Lykouris and Vassilvtiskii [38, defini
tion 3] for the current setup.

Definition 3. Fix a finite-time horizon T and arrival rate function λ(·). Let A be any algorithm for (2.1), and let 
m(t) denote its number of servers when it has access to a prediction λ̃ and OPT be as defined in (2.3). We say that 
A has a competitive ratio at most CR for the instance (T,λ) and prediction λ̃ if

COSTλ(m, T) ≤ CR · OPT: (3.3) 

We say that the competitive ratio of A is at most CR(η) if the competitive ratio is at most CR(η) for all instances 
(T,λ) and any η-accurate prediction λ̃. By convention, we say that CR(η) � ∞ if such a finite CR(η) does not exist.

Note that although the competitive ratio depends on the prediction’s accuracy, the algorithm is oblivious to this 
accuracy. We desire three properties of an online algorithm that has access to a prediction. The algorithm’s perfor
mance should (i) be close to the optimal solution if the prediction is perfect, (ii) degrade gracefully with the predic
tion’s error, and (iii) be bounded regardless of the prediction’s accuracy. The definitions of consistency, robustness, 
and competitiveness summarize these desiderata; see also Lykouris and Vassilvtiskii [38, definitions 4–6].

Definition 4. Let A be any algorithm for (2.1) and CR(η) denote its competitive ratio when it has access to an 
η-accurate prediction. Then, we say that 

i. Algorithm A is ρ consistent if CR(0) � ρ,
ii. Algorithm A is α robust if CR(η) � O(α(η)), and
iii. Algorithm A is γ competitive if CR(η) ≤ γ for all η ∈ [0, ∞].

4. Main Results
4.1. Balanced Capacity-Scaling Algorithm
We first discuss a competitive algorithm in the purely online scenario. Recall that in this case, the system reveals ω, β, 
θ, and at time t, also λ(s) for s ∈ [0, t] to the algorithm but not λ(s) for any s > t. Moreover, as mentioned earlier, the 
results in this section also hold when the finite-time horizon T is not revealed up front. The BCS algorithm that we pro
pose is parameterized by two nonnegative numbers r1 and r2. Algorithm 1 describes BCS for any fixed choices of r1 
and r2.

Algorithm 1 (BCS (r1, r2))
Choose m(·) such that at each time t ≥ 0,

dm(t)
dt

�
r1ω · q(t) � r2θ · m(t)

β
: (4.1) 
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We start by briefly discussing the intuition behind BCS. At each time t ≥ 0, BCS computes the derivative of the num
ber of servers (i.e., how fast the system should increase or decrease the service capacity). Note that if we solve Equation 
(4.1), then we obtain the number of servers m(t), which is differentiable for all t ≥ 0. The two parameters r1 and r2 con
trol how fast the algorithm reacts by increasing or decreasing the number of servers, respectively. If the workload q(t) 
is nonzero, then the first term in the right-hand side of Equation (4.1) increases the number of servers at rate r1. 
The second term is an “inertia term,” which decreases the number of servers at rate r2. Note that if we integrate 
Equation (4.1), we obtain

Z t

0
r1ω · q(s)ds �

Z t

0
β ·

dm(s)

ds ds +

Z t

0
r2θ · m(s)ds: (4.2) 

This means that BCS aims to carefully balance the flow time with the switching cost plus the power consumption. BCS 
is memoryless and computationally cheap. The derivative of the number of servers depends only on the current work
load and number of servers, without requiring knowledge about the past workload, number of servers, or arrival rate. 
BCS can, therefore, be implemented without any memory requirements.

We are able to characterize the performance of BCS analytically for any fixed choices of r1 and r2. Theorem 1 charac
terizes the competitive ratio of BCS. The proof of Theorem 1 is provided in Section 6.1.

Theorem 1. Let CR denote the competitive ratio of BCS (Algorithm 1). Then,

CR ≤ 1 +
1
r1

+
1
r2

� �

max(2, r1, 2r2): (4.3) 

The optimal choice of the parameters is r1 � 2 and r2 � 1. Corollary 1 states that BCS is five competitive in this case.

Corollary 1. Let CR denote the competitive ratio of BCS (Algorithm 1). If r1 � 2 and r2 � 1, then CR ≤ 5.

Moreover, in the special case when tasks are not allowed to wait and must be served immediately upon arrival 
(ω � ∞), BCS turns out to be two competitive, as stated in Theorem 2. Note that the algorithm introduced by Lu et al. 
[37] in the special case ω � ∞ is also two competitive and that the authors prove that this is, in fact, optimal. The proof 
of Theorem 2 is given in Appendix A.4.

Theorem 2. Let CR denote the competitive ratio of BCS (Algorithm 1). If r1 � 2, r2 � 1, and ω � ∞, then CR ≤ 2.

Note that the capacity-scaling problem has previously been related to the classical ski rental problem (Augustine 
et al. [6], Irani et al. [28], Lu et al. [37]), which is two competitive. As it turns out, when tasks are allowed to wait, the 
formulation in (2.1) of the capacity-scaling problem is strictly harder than the ski rental problem, as Proposition 2
states. Proposition 2 is proved in Appendix A.5.

Proposition 2. Let A be any deterministic algorithm for the capacity-scaling problem in (2.1) in the purely online scenario, 
and CR denotes its competitive ratio. There exist choices for ω, β, and θ such that CR ≥ 2:549. In other words, any deter
ministic algorithm is at least 2.549 competitive.

Remark 4. We should note that the proof of Proposition 2 assumes that the finite-time horizon T is not revealed 
up front. We leave it to future work to identify a (possibly weaker) lower bound if T is known to the algorithm.

4.2. Augmenting Unreliable ML Predictions
To augment BCS with machine learning predictions, we proceed in two steps. First, in Section 4.2.1, we introduce AP. 
We prove that the competitive ratio of AP degrades gracefully with the prediction’s accuracy, although AP is not com
petitive. Second, in Section 4.2.2, we discuss how to combine BCS and AP to obtain ABCS, which follows the predic
tions but is robust against inaccurate predictions and therefore, competitive.

4.2.1. Adapt to the Prediction Algorithm. We will now turn our attention to the machine learning scenario. Recall 
that in this case, at time t � 0, the algorithm receives a predicted arrival rate function λ̃ : [0, T] → R+. Note that a trivial 
way to implement the predictions is to blindly trust the predictions: that is, to let

m ∈ arg min
m:(0,T]→R+

COSTλ̃(m, T): (4.4) 

The minimum exists (see Remark 1). However, in this case, the performance decays drastically even for relatively small 
prediction errors. Indeed, if the actual arrival rate λ(·) is higher than the predicted arrival rate λ̃(·) at the start, then the 
associated workload could stay in the queue until the end of the time horizon [0, T] and incur a significant waiting 
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cost. We instead propose AP, which consists of an offline component and an online component. The offline component 
computes an estimate for the number of servers up front based on λ̃(·). The online component follows the offline esti
mate but dynamically adapts the number of servers based on discrepancies between the predicted and actual arrival 
rates. Let us define

∆λ(t) :�

�
λ(t) � λ̃(t)

�+

for t ≥ 0

0 for t < 0:

8
<

:

Algorithm 2 describes AP.

Algorithm 2 (AP)
Choose m(·) such that at each time t ≥ 0,

m(t) � m1(t) + m2(t), (4.5) 

where

m1 ∈ arg min
m:(0,T]→R+

COSTλ̃(m, T), (4.6) 

dm2(t)
dt �

ffiffiffiffiffi
ω

2β

r

·
�

∆λ(t) � ∆λ t �

ffiffiffiffiffiffiffiffiffiffiffi

2β=ω
q� ��

: (4.7) 

The number of servers under AP consists of two components, an offline component m1 and an online component m2. 
The offline component m1 is determined up front by the optimal number of servers to handle the predicted arrival rate 
λ̃. The online component m2 is determined in an online manner, and it reacts if the actual arrival rate turns out to be 
higher than the predicted arrival rate. Note that if we solve Equation (4.7), then we obtain the number of servers m2(t), 
which is differentiable for all t ≥ 0. The online component works as follows. If ∆λ(t) > 0, then the online component 
increases the service capacity at rate 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=(2β)

p
. In other words, for each additional unit of workload received, the num

ber of servers is increased by 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=(2β)

p
. After a fixed time of 

ffiffiffiffiffiffiffiffiffiffiffi
2β=ω

p
, the number of servers is decreased again. Intui

tively, if ω≫ β, then the online component turns on many servers for a short period of time, whereas if β≫ ω, then 
the online component turns on a few servers for a longer period of time.

Remark 5. The constants 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=(2β)

p
and 

ffiffiffiffiffiffiffiffiffiffiffi
2β=ω

p
in (4.7) are chosen to minimize the competitive ratio of AP. More 

specifically, one can prove a similar performance guarantee as in Theorem 3 but for any arbitrary choice of these 
constants. The choice of 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=(2β)

p
and 

ffiffiffiffiffiffiffiffiffiffiffi
2β=ω

p
is the unique minimizer of the competitive ratio. Hence, AP in its 

current form outperforms any other choice of constants in the worst case.
Although the optimization in the offline component might be expensive, it has to be performed only once at 

the start. To solve the minimization problem, one could, for example, use the offline approximation technique, 
which we describe in Section 4.3. Moreover, if the predictions are based on historical data, the offline component 
m1 might even be precomputed and retrieved from memory at the start. The online component, in contrast, is 
computationally cheap.

The competitive ratio of AP, of course, depends on the accuracy of the predictions. Theorem 3 characterizes 
the performance of AP. Recall the definition of the competitive ratio CR(η) from Section 3.

Theorem 3. Fix any finite-time horizon T, arrival rate function λ(·), and prediction λ̃(·). Let m(t) be the number of servers 
of AP (Algorithm 2) and OPT be as defined in (2.3). Then,

COSTλ(m, T) ≤ OPT + (
ffiffiffiffiffiffiffiffiffi
2ωβ

p
+θ)T · ‖λ̃�λ‖MAE: (4.8) 

Let CR(η) denote the competitive ratio of AP (Algorithm 2) when it has access to an η-accurate prediction. Then, as a result 
of this,

CR(η) ≤ 1 + (
ffiffiffiffiffiffiffiffiffi
2ωβ

p
+θ)η: (4.9) 

The proof of Theorem 3 is provided in Appendix A.6. If η is small, then the competitive ratio is close to one. In fact, AP 
replicates the optimal solution exactly if the predictions turn out to be accurate and hence, is one consistent. Moreover, 
the competitive ratio also degrades gracefully in the prediction’s accuracy, which as discussed earlier, is not achieved 
by the offline component m1 alone.
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Remark 6. Although AP does not follow the predictions blindly, AP is not competitive because it is not hard to 
verify that CR(η) → ∞ as η→ ∞ (e.g., let λ̃(t) → ∞ uniformly for all t ∈ [0, T]). Note that earlier algorithms pro
posed in the literature, such as the receding horizon control and LCP algorithms from Lin et al. [36], are proven 
to be competitive only if predictions are accurate (i.e., consistent in the terminology of the current paper). As 
these algorithms follow the predictions blindly, these algorithms are, therefore, not competitive if predictions are 
inaccurate. Hence, the goal in the next subsection is to combine the approaches of BCS and AP to obtain an algo
rithm that follows the predictions most of the time but ignores the predictions when appropriate.

Remark 7. The competitive ratio bound is scale invariant in the weights ω, β, and θ. For example, if each of the 
weights ω, β, and θ is doubled, then the factor 

ffiffiffiffiffiffiffiffiffi
2ωβ

p
+θ doubles as well. However, because OPT doubles, the 

accuracy η is halved (recall Definition 2).

4.2.2. Adaptive Balanced Capacity Scaling. We now answer the question of how to follow the predictions most of 
the time without trusting them blindly. The ABCS algorithm we propose strategically combines BCS and AP intro
duced earlier. Let m̃(·) be the number of servers as turned on by AP (Algorithm 2). Let q̃(·) be the queue-length process 
under AP: that is,

q̃(t) �

Z t

0
(λ(s) � m̃(s))1{q̃(s) > 0 or λ(s) ≥ m̃(s)}ds for all t ≥ 0: (4.10) 

ABCS is parameterized by four nonnegative numbers R1 ≥ r1 ≥ 0 and R2 ≥ r2 ≥ 0. Algorithm 3 describes ABCS for 
any fixed choices of R1, r1, R2, r2.

Algorithm 3 (ABCS (r1, r2,R1,R2))
Choose m(·) such that at each time t ≥ 0,

dm(t)
dt

�
r̂1(t)ω · q(t) � r̂2(t)θ · m(t)

β
, (4.11) 

where

r̂1(t) �

r1 if m(t) � m̃(t) > [q(t) � q̃(t)]+
·

ffiffiffiffiffi
ω

2β

r

,

R1 if m(t) � m̃(t) ≤ [q(t) � q̃(t)]+
·

ffiffiffiffiffi
ω

2β

r

,

8
>>>><

>>>>:

r̂2(t) �
R2 if m(t) > m̃(t) and q(t) ≤ q̃(t),
r2 if m(t) ≤ m̃(t) or q(t) > q̃(t):

�

(4.12) 

Remark 8. It is worthwhile to highlight that ABCS is oblivious to the choice of AP as the source of the advised 
number of servers m̃(·). Therefore, if there exists an algorithm similar to AP but with a better error dependence, 
then it is straightforward to extend ABCS to use this algorithm as the source for the advised number of servers 
instead. The improved error dependence carries over immediately into the competitive ratio of ABCS (see also 
Proposition 6).

In spirit, ABCS works similarly to BCS. In fact, if R1 � r1 and R2 � r2, then ABCS is equivalent to BCS and disre
gards predictions altogether. However, in contrast to the constant rates r1 and r2 of BCS, the rates at which ABCS 
reacts are captured by the state-dependent rate functions r̂1(t) and r̂2(t). The reason behind the precise choices of 
r̂1(t) and r̂2(t) will be clear later from the performance of the algorithm. From a high-level perspective, these are 
chosen to approach the behavior of the advised number of servers m̃(t) of AP. Indeed, if ABCS has less than the 
advised number of servers m̃(t), then it increases m(t) at the higher rate R1 and decreases it at the lower rate r2. 
Similarly, if ABCS has “sufficiently more” servers than the advised number m̃(t), then it increases m(t) at the 
lower rate r1 and decreases it at the higher rate R2. The number of servers of ABCS,, therefore judiciously 
approaches the number of advised servers. However, it does not blindly follow m̃(t) to protect against inaccurate 
predictions. For example, if the workload q(t) is significantly higher than the current number of servers m(t), then 
ABCS will always increase the number of servers at a nonzero rate.

Our main result characterizes the performance of ABCS analytically, which is presented in Theorem 4. The 
proof of Theorem 4 is provided in Section 6.3. Recall the definition of the competitive ratio CR(η) from Section 3.
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Theorem 4. Let CR(η) denote the competitive ratio of ABCS (Algorithm 3) when it has access to an η-accurate prediction. 
Then, for any R1 ≥ r1 ≥ 0 and R2 ≥ r2 ≥ 0,

CR(η) ≤ min
�

(1 + (
ffiffiffiffiffiffiffiffiffi
2ωβ

p
+θ)η) · OCR,PCR

�
, (4.13) 

where

OCR � max c1r1, c2R1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2R1

√ , c2 + c3, c4

� �

, PCR � max c5R1, 2c6, 2c6R2 + 1 �
R2

r2

� �

, 

c1 � 1 +
1
r1

+
1

R2
, c2 �

c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2r1

√
� c1 + c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2R1

√ , c3 � 1 +
1

R1
+

1
R2

, 

c4 � 1 + r2 +
r2

R1
+ c2r2, c5 � 1 +

1
r1

+
1
r2

, c6 � c5

ffiffiffiffiffiffi

R1

r1

s

: (4.14) 

Theorem 4 characterizes the competitive ratio of ABCS explicitly for any choices of the parameters. Note that for any 
value of η, the competitive ratio is at most PCR. Moreover, if η is small, then the competitive ratio is close to OCR. It is 
straightforward to check from Theorem 4 that ABCS satisfies the three desiderata of Definition 4. In particular, ABCS 
is OCR consistent and PCR competitive. The constants OCR and PCR, of course, depend on the parameters R1, r1, R2, 
and r2. Corollary 2 provides guidance on how to choose these parameters asymptotically optimally.

Corollary 2. Let r ≥ 1 be a hyperparameter, representing the confidence in the predictions. Let CR(η) denote the competitive 
ratio of ABCS (Algorithm 3) when it has access to an η-accurate prediction. If R1 � 8(r � 1)

2
+ 2, r1 � (r � 0:5)

�1, 
R2 � 2r � 1, and r2 � r�1, then

CR(η) ≤ min((1 + (
ffiffiffiffiffiffiffiffiffi
2ωβ

p
+θ)η) · 1 +

1
r +

9
8r2 + O

1
r3

� �� �

,

(2r � 1)(4r + 1)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2r � 1)(4r(r � 2) + 5)

p
): (4.15) 

Corollary 2 characterizes the trade-off between the OCR and the PCR. If the confidence in the predictions r is set at a 
high value, then the OCR tends to one. However, the value of PCR tends to become large in this case, even though 
importantly, it remains uniformly bounded as η→ ∞. Figure 2(a) plots the competitive ratio as a function of η and the 
confidence hyperparameter r. For fixed r, the competitive ratio increases linearly in η (note that the x axis is on log 
scale). However, if η is large, the competitive ratio remains constant in η at a value of PCR. Note that, for any η, the 
competitive ratio is always five in the case of zero confidence (R1 � r1 and R2 � r2).

Figure 2. (Color online) The analytical performance of ABCS (Algorithm 3). (a) The competitive ratio as a function of the nor
malized accuracy of the predictions (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωβ+θ

p
)η for varying values of the confidence r. The competitive ratio increases as pre

dictions are less accurate but remains bounded. (b) The PCR and the OCR as a function of the confidence r. The figure 
interpolates between the purely online scenario (OCR � PCR � 5) and the machine learning scenario (OCR � 1 and PCR � ∞). 
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Remark 9. The fact that ABCS achieves a consistency close to one, albeit in a trade-off with robustness, is quite 
unique. For example, the seminal paper by Lykouris and Vassilvtiskii [38] provides an algorithm in the context 
of caching that is at most two consistent. Also, Antoniadis et al. [4] provide a nine-consistent deterministic algo
rithm for the problem of metrical task systems. The randomized algorithm introduced in the same paper is (1 + ε)
consistent but has a large additive factor. Corollary 2 shows that ABCS achieves (1 + ε) consistency without any 
additive factor.

Remark 10. Figure 2(b) plots the values of PCR and OCR as a function of the confidence hyperparameter r. It 
depicts the interpolation between the purely online scenario (OCR � PCR � 5) and the machine learning scenario 
(OCR � 1 and PCR � ∞). The current work generalizes these two extremes to any scenario in between. As men
tioned in Section 1, we provide performance guarantees for ABCS for any value of the confidence hyperpara
meter r ≥ 1. However, the specific choice of r would depend on where the system designer wants to place the 
system on the red and blue curves in Figure 2(b); view it as a risk-versus-gain curve. For example, the figure 
shows that if one chooses a value of r so that if the predictions turn out to be accurate, ABCS would be 3 competi
tive, then that would put the system at the risk of being up to about 18 competitive if the predictions turn out to 
be completely wrong. Later, in Proposition 3, we show that the trade-off between OCR versus PCR that we 
obtain for ABCS is necessary in the sense that any algorithm that is (1 + δ) competitive in the optimistic case 
must be at least 1=(4δ) competitive in the pessimistic case.

Remark 11. Recently, there has been some interest in understanding the performance of algorithms when an esti
mate of the prediction’s accuracy η is available in terms of some probability distribution (Mitzenmacher [44], 
Mitzenmacher [45]). In such cases, Theorem 4 allows one to calculate the optimal choice of confidence hyperpara
meter r that minimizes the expected competitive ratio. Assume that the prediction’s accuracy η follows some dis
tribution µ(·). The distribution µ(·) might, for example, be estimated based on historically observed data. For a 
fixed r, note that OCR and PCR are functions of r. Denote

ζ(r) :�
PCR � OCR

2OCR :

The expected value of the random competitive ratio of ABCS is then

Eη~µ[CR(η)] �

Z ∞

0
min((1 + 2η) · OCR, PCR)dµ(η)

� 2OCR ·

Z ζ(r)

0
ηdµ(η) + OCR ·

Z ζ(r)

0
dµ(η) + PCR ·

Z ∞

ζ(r)

dµ(η)

� 2OCR · E[η1{η ≤ ζ(r)}] + OCR · P(η ≤ ζ(r)) + PCR · P(η > ζ(r)): (4.16) 

Therefore, if either the distribution or an estimate thereof is known, then the parameters of ABCS can be chosen 
to minimize the expected competitive ratio.

Theorem 4 and Corollary 2 demonstrate that there is a trade-off between the OCR and the PCR. The following 
proposition shows that this trade-off is, in fact, inherent to the problem and is not an artifact of the algorithm.

Proposition 3. Let A be any deterministic algorithm for the capacity-scaling problem in (2.1) and CR(η) denote its com
petitive ratio when it is has access to an η-accurate prediction. There exist choices of ω, β, and θ such that for any δ > 0, if 
CR(0) ≤ 1 + δ, then

CR 1
δ

� �

≥
1
4δ : (4.17) 

In short, any deterministic algorithm that is (1 + δ) consistent must be Ω(1=δ) competitive.

Proposition 3 is proved in Appendix A.7. In comparing Corollary 2 and Proposition 3, one may notice that there is a 
gap between the consistency-competitiveness trade-off achieved by ABCS and the provable lower bound on this 
trade-off. Improving the lower-bound result in Proposition 3 or designing an algorithm with a better trade-off is left as 
an interesting future research direction.

As mentioned earlier, an algorithm for capacity scaling must consist of two components; one component decides 
when to activate a server, and the other component decides when to deactivate a server. For the latter problem, a popular 
state-of-the-art approach is to implement a power-down timer (Augustine et al. [6], Gandhi et al. [20], Irani et al. [28], 

Rutten and Mukherjee: Capacity Scaling with Unreliable Machine Learning Prediction 
Mathematics of Operations Research, Articles in Advance, pp. 1–33, © 2023 INFORMS 13 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

60
0:

17
00

:f7
90

:1
f0

0:
cc

5e
:1

5d
7:

6c
a:

e3
58

] o
n 

12
 Ju

ne
 2

02
3,

 a
t 1

0:
04

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Karlin et al. [31], Lu et al. [37], Mukherjee et al. [47]). The power-down timer works as follows; each time a server 
becomes idle, the system starts a timer corresponding to that server. If the server remains idle after the timer expires, 
then the server is deactivated. Algorithm 4 shows the timer algorithm for any choice of power-down timer 
τ : R3

+ → (0, ∞).

Algorithm 4 (The Timer Algorithm (τ))
At each time t ≥ 0:

Turn off a server if the server has been idle for more than τ(ω,β,θ) time.

We end this section by pointing out that, although the timer algorithm has proven to be successful under specific 
(especially stochastic) scenarios, the worst-case performance of the algorithm in the current context is poor as the follow
ing proposition shows. In fact, Proposition 4 shows that there do not exist any choices of ω, β, and θ such that the timer 
algorithm has a bounded competitive ratio. To the best of our knowledge, there does not exist any competitive algorithm 
for the capacity-scaling problem where ω is finite, until in the current work. Proposition 4 is proved in Appendix A.8.

Proposition 4. Let τ : R3
+ → (0, ∞) be any arbitrary function. For any fixed ω,β,θ > 0, let CR be the competitive ratio of 

the timer algorithm (Algorithm 4) with power-down timer τ(ω,β,θ). Then, CR � ∞.

4.3. Offline Algorithm
We end the main results by providing an approximation algorithm for the offline problem. Although finding an efficient 
solution to the offline problem is not the main focus of the current paper, the results in this section will be used to run 
the numerical experiments in Section 5. Also, the algorithm may be used by AP to compute the optimal number of ser
vers given the predicted arrival function (see Section 4.2.1). Moreover, the approximation algorithm raises a question about 
the trade-off between the numerical complexity and the accuracy of the solution, which might be of independent interest.

As a measure of numerical complexity, let us introduce the following regularity assumption on the arrival rate 
function.

Assumption 1 (Regular). We say that a function λ : [0, T] → R+ is δ regular if λ(iδ+ s) � λ(iδ) for all s ∈ [0,δ) and 
i � 0, 1, : : : , ⌊T=δ⌋.

The regularity assumption is a reasonable approximation for any arrival rate function occurring in practice for δ suf
ficiently small. Now, we state the proposed offline approximation algorithm. For the sake of notation, assume that T is 
divisible by δ. Let n � T=δ, q1 � 0, and m0 � 0. The offline algorithm solves the following linear program:

minimize
m,d∈Rn,q∈Rn+1

ωδ ·
Xn

i�1

qi + qi+1

2 + β ·
Xn

i�1
di +θδ ·

Xn

i�1
mi

subject to qi+1 ≥ qi +

Z iδ

(i�1)δ
λ(t)dt � δmi for all i � 1, : : : , n

di ≥ mi � mi�1 for all i � 1, : : : , n
qi+1, di, mi ≥ 0 for all i � 1, : : : , n

: (4.18) 

The linear program is a discretization of the problem in (2.1). The vectors q and m represent the workload in the 
buffer and the number of servers, respectively. To obtain a solution from (4.18) for the original problem in (2.1), set 
m(iδ+ s) � mi+1 for all s ∈ [0,δ) and i � 0, 1, : : : , T=δ� 1. Hence, the linear program in (2.1) computes the number of 
servers that would minimize the cost but where the number of servers is restricted to be δ regular. The constraints and 
objective value in (2.1) then directly reduce to the constraints and objective value in (4.18). Theorem 5 characterizes the 
competitive ratio of the solution to the linear program with respect to the offline optimum OPT in (2.3) for any fixed 
choice of δ > 0. The proof of Theorem 5 is given in Appendix A.3.

Theorem 5. Let CR denote the competitive ratio of the solution to the linear program (4.18). If λ is δ regular, then

CR ≤ 1 +
ωδ

2θ

� �

1 +
ωδ2

β

� �

: (4.19) 

5. Numerical Experiments
We implemented the algorithms proposed in the current paper and evaluated their performance on both a real-world 
data set of internet traffic and two artificially generated workloads. The real-world data set consists of DNS requests 
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observed at a campus network across four consecutive days in April 2016 (Manmeet et al. [41]). The data set represents 
the typical intensity of internet traffic in this network, and we consider a data center that serves this traffic. The use of 
internet traffic data sets was common practice in earlier empirical studies (Bamas et al. [8], Gandhi et al. [21]). We let 
λ(t) be the number of requests per second according to this data set. To empirically verify the performance of our algo
rithms against extreme cases, we also tested the algorithms on two artificially generated arrival rate functions. The 
arrival rate functions present highly stylized versions of particular patterns that may occur in real-world traffic. Here, 
we let λ(t) be either sinusoidal or a step function. The weights β, θ, and ω are modeled after realistic parameters (Lin 
et al. [36], Shehabi et al. [53]). In particular, we assume that each server consumes 850 W at a price of 0.15 cents per 1 
kWh, β is equal to the power cost of running a server for four hours, and ω � 0.1 cents.

5.1. Purely Online Scenario
We first test the AP, BCS, and timer algorithms that do not require predictions (for the AP algorithm, we let λ̃(t) � 0 
for all t). The timer algorithm has a threshold of τ(ω,β,θ) � β=θ and turns servers on whenever λ(t) > m(t), which is 
typically used in the literature (Augustine et al. [6], Gandhi et al. [20], Irani et al. [28], Karlin et al. [31], Lu et al. [37], 
Mukherjee et al. [47]). Figure 3 shows the number of servers on the real-world data set and the artificial patterns. 
Table 1 summarizes the competitive ratios in each scenario.

The performance of BCS on the real-world data set is excellent, only 20% more than the offline optimal solution, 
even without predictions. On the artificial patterns, BCS is outperformed by both AP and timer algorithms. AP and 
timer algorithms seem to work well if the data do not contain any sudden spikes of workload. Also, note that the com
petitive ratio of BCS in both cases is significantly lower than the worst-case competitive ratio of five.

5.2. Machine Learning Scenario
Next, we test the algorithms AP and ABCS in the case that predictions are provided. For the real-world data set, we 
evaluate three types of predictions. 

• Type 1. The system does not reveal any predictions (i.e., λ̃(t) � 0 for all t ∈ [0, T]).
• Type 2. The system reports the moving average across three hours (i.e., λ̃(t) � (min(t, 1:5) + min(T � t, 1:5))

�1 
R min(t+1:5,T)

max(t�1:5,0)
λ(t)dt for all t ∈ [0, T]).

• Type 3. The system provides perfect predictions (i.e., λ̃(t) � λ(t) for all t ∈ [0, T]).
For the artificial patterns, we evaluate four types of predictions. 
• Type 1. The system does not reveal any predictions (i.e., λ̃(t) � 0 for all t ∈ [0, T]).
• Type 2. The system predicts only the average of the arrival rate (i.e., λ̃(t) � 500 for all t ∈ [0, T]).
• Type 3. The system predicts the opposite of the arrival rate (i.e., λ̃(t) � 1, 000 �λ(t) for all t ∈ [0, T]).
• Type 4. The system provides perfect predictions (i.e., λ̃(t) � λ(t) for all t ∈ [0, T]).
Table 2 summarizes the competitive ratios in each scenario, where ABCS is evaluated for three choices of the confi

dence hyperparameter (low confidence (r � 1), medium confidence (r � 3), and high confidence (r � 5)).
The performance of ABCS on the real-world data set is excellent. ABCS even reproduces an optimal solution in the 

case that perfect predictions are available and the confidence is medium or larger. The performance generally 

Figure 3. (Color online) The real-world arrival pattern and two artificial arrival patterns considered and the number of servers 
of OPT, AP, BCS, and timer algorithms. (a) Real world. (b) Sinusoidal. (c) Step function. 
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improves as more accurate predictions are available. Moreover, in contrast to AP, ABCS is robust against inaccurate 
predictions. The competitive ratio of ABCS is close to one for type 1 predictions (and type 3 predictions for the artificial 
patterns), even in the case of high confidence. Hence, in practice, ABCS is able to reproduce the optimal solution if suf
ficiently accurate predictions are provided while maintaining a competitive ratio close to one, even if the predictions 
are completely inaccurate.

6. Proofs
6.1. Proof of Theorem 1
We will provide a high-level overview of the proof of Theorem 1 and refer to the appendix for the details. Recall that 
BCS is a special case of ABCS (let R1 � r1, R2 � r2). To prove Theorem 1, we will, in fact, establish a more general result 
in Proposition 5, where the rates r1 and r2 may vary as rate functions over time. Proposition 5 states that the competi
tive ratio of ABCS never exceeds PCR irrespective of the magnitude of the error in prediction. Theorem 1 thus follows 
immediately by letting R1 � r1 and R2 � r2.

Proposition 5. Fix a finite-time horizon T and arrival rate function λ(·). Let OPT be as defined in (2.3) and m(t) be the 
number of servers of ABCS (Algorithm 3) when it has access to a prediction λ̃. Then,

COSTλ(m, T) ≤ PCR · OPT (6.1) 

for all instances (T,λ) and predictions λ̃, where PCR is as defined in (4.14).

The proof of Proposition 5 is based on a potential function argument and is provided in Appendix A.9. We end this 
section by giving a proof sketch of Proposition 5.

Proof Sketch of Proposition 5. Let m(·) be the number of servers of ABCS and m∗(·) be a differentiable optimal 
solution to the offline optimization Problem (2.1). Appendix A.9 shows how to extend this to arbitrary nondiffer
entiable solutions. Let Φ(·) be a nonnegative potential function such that

dΦ(t)
dt +

∂COSTλ(m, t)
∂t ≤ PCR ·

∂COSTλ(m∗, t)
∂t (6.2) 

and Φ(0) � 0, assuming, for now, that such a Φ(·) exists. We integrate Equation (6.2) from time t � 0 to t � T to obtain

COSTλ(m, T) ≤ PCR · COSTλ(m∗, T) +Φ(0) �Φ(T) ≤ PCR · COSTλ(m∗, T), (6.3) 

Table 1. The competitive ratios of AP, BCS, and timer algorithms without predictions.

CR AP BCS Timer

Real world 27.7 1.2 3.1
Sinusoidal 1.1 1.4 1.2
Step function 1.8 2.2 1.3

Table 2. The competitive ratios of AP and ABCS for different values of the confidence 
hyperparameter in the presence of predictions.

CR(η) AP ABCS (low confidence) ABCS (medium confidence) ABCS (high confidence)

Real world
Type 1 27.7 1.19 1.00 1.00
Type 2 14.2 1.19 1.07 1.38
Type 3 1.00 1.19 1.00 1.00

Sinusoidal
Type 1 1.10 1.43 1.16 1.12
Type 2 1.21 1.43 1.18 1.14
Type 3 1.46 1.43 1.17 1.17
Type 4 1.00 1.43 1.11 1.15

Step function
Type 1 1.85 2.17 1.68 1.64
Type 2 1.72 2.17 1.61 1.56
Type 3 1.90 2.17 1.68 1.63
Type 4 1.00 2.17 1.37 1.15
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where the last step follows because Φ(T) is nonnegative and Φ(0) � 0. The proof of Proposition 5 is, therefore, com
pleted if we manage to find a potential function Φ(t) satisfying Equation (6.2) and Φ(0) � 0. Define the potential func
tion Φ(t) such that

Φ(t) �
c5β ·

�
dR1 (t) � m(t) + m∗(t)

�
, if m(t) > m∗(t)

c6β ·
�

dr1 (t) � m(t) + m∗(t)
�

if m(t) ≤ m∗(t)

8
><

>:

+
β · m(t)

r2
+ c6R2θ · [q(t) � q∗(t)]+,

(6.4) 

where c5 and c6 are as defined in Equation (4.14) and

dr(t) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rω · ([q(t) � q∗(t)]+
)
2

β
+ (m(t) � m∗(t))2

s

: (6.5) 

Some intuitions on the construction of this potential function are given in Section 6.2. Note that Φ(t) is nonnega
tive and Φ(0) � 0. It remains to show that Φ(t) satisfies Equation (6.2), which profoundly relies on dr(t). The full 
argument involves a case distinction and is provided in Appendix A.9. For this proof sketch, let us only consider 
the case that m(t) > m∗(t), q(t) > q∗(t), dm

dt ≥ 0, and dm∗

dt ≥ 0. Recall that by the definition of ABCS,
dq(t)

dt � λ(t) � m(t), dm(t)
dt �

r̂1(t)ω · q(t) � r̂2(t)θ · m(t)
β

≤
R1ω · q(t)
β

: (6.6) 

The derivative of dR1 (t) is at most

β ·
ddR1

dt
≤ dR1 (t)�1

·

R1ω · (q(t) � q∗(t))(λ(t) � m(t))

+ R1ω · (q∗(t) � q(t))(λ(t) � m∗(t))

+ R1ω · q(t) · (m(t) � m∗(t))

+β ·
dm∗

dt
· (m∗(t) � m(t))

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

� dR1 (t)�1
· (m(t) � m∗(t)) R1ω · q∗(t) � β ·

dm∗

dt

� �

≤ R1ω · q∗(t): (6.7) 

Crucially, the derivative does not contain any terms involving m(t) or q(t) but only q∗(t), which is easy to bound 
by the cost of the optimal solution. Thus, the derivative of Φ(t) can be upper bounded as follows:

dΦ(t)
dt ≤ c5R1ω · q∗(t) � 1 +

1
r1

� �

β ·
dm
dt + c5β ·

dm∗

dt + 1 +
R2

r1

� �

θ · (m∗(t) � m(t)), (6.8) 

where the constants c5 and c6 have been expanded according to their definitions in (4.14). Observe that the derivative 
of the potential function Φ(t) exactly cancels the cost of ABCS because ω · q(t) ≤

β
r1

·
dm(t)

dt +
R2θm(t)

r1
. We, therefore, obtain

dΦ(t)
dt +

∂COSTλ(m, t)
∂t ≤ c5R1ω · q∗(t) + c5β ·

dm∗

dt + 1 +
R2

r1

� �

θ · m∗(t)

≤ max c5R1, c5, 1 +
R2

r1

� �

·
∂COSTλ(m∗, t)

∂t
: (6.9) 

Note that removing the term dr(t) from Φ(t) would yield a similar form as Equation (6.8). However, the resulting 
potential function is not nonnegative, hence the need for the term dr(t). w

6.2. Intuition on the Potential Function
The potential function is the most important ingredient in the proof of Proposition 5, which then boils down to verifi
cation of (6.2). We discuss the intuition behind the choice of the potential function Φ(t) here.

First, from a high-level perspective, the terms of this function are chosen such that their derivative cancels the 
terms in the derivative of the cost of ABCS in verification of (6.2). The term c6R2θq(t) is designed to bound the 
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power consumption of ABCS. The derivative of this term equals �c6R2θm(t), which cancels the power consump
tion θm(t) of ABCS. The term �(ci � 1=r2)βm(t) is designed to bound the switching cost (for i � 5, 6). The deriva
tive of this term equals �(ci � 1=r2)β dm

dt , which cancels the switching cost β dm
dt of ABCS. The waiting cost is the 

most subtle to bound because it cannot be written as the derivative of a first-order property of the system. It fol
lows by the property of ABCS that ωq(t) ≤

β
r1

·
dm(t)

dt +
R2θm(t)

r1
. In words, the waiting cost is bounded by a weighted 

sum of the switching cost and the power consumption. The choice of the constants, therefore, ensures that the 
derivative of potential function also cancels the waiting cost of ABCS. Finally, the term dr(t) is required to ensure 
that Φ(t) is nonnegative. Although we need a term of the form m∗(t) � m(t), we cannot simply add this to the 
potential function because this can make the potential function negative if m(t) > m∗(t). The term dr(t) ensures that 
the potential function is nonnegative, and this particular choice of dr(t) also guarantees that the derivative is 
bounded by quantities of the optimal solution, such as q∗(t) (see, for example, (6.7)).

Quantitatively, the term dr(t) consists of the difference [q(t) � q∗(t)]+, which is zero if q(t) ≤ q∗(t) and strictly posi
tive otherwise. Clearly, if q(t) > q∗(t), then ABCS needs to spend more in the future to reduce the additional work
load. The workload difference is enclosed in an ℓ2 metric together with the difference in the number of servers. This 
is the crux of the potential function and leads to a diminishing marginal penalty of the difference in queue lengths. 
The larger the difference m(t) � m∗(t), the less influence a unit increase of [q(t) � q∗(t)]+ has on the potential function. 
Hence, the penalty of the queue-length difference is measured relative to the difference in the number of servers, 
which is natural and essential in the proof.

6.3. Proof of Theorem 4
Theorem 4 states that the competitive ratio is at most the minimum of the OCR and the PCR. Proposition 5 in the pre
vious section showed that the competitive ratio of ABCS is at most PCR. To prove the bound on the competitive ratio 
by OCR, we will relate the performance of ABCS to the cost achieved by the subroutine AP. Proposition 6 states that 
the cost of ABCS differs by at most a factor of OCR from the cost of AP.

Proposition 6. Fix a finite-time horizon T and arrival rate function λ(·). Let OPT be as defined in (2.3) and m(t) be the 
number of servers of BCS (Algorithm 1) when it has access to a prediction λ̃. Then,

COSTλ(m, T) ≤ OCR · COSTλ(m̃, T) (6.10) 

for all instances (T,λ) and predictions λ̃, where m̃(t) represents the advised number of servers of AP and OCR is as defined in (4.14).

As already hinted at in Remark 11, Proposition 6 is independent of the source of the advice and holds for any func
tion m̃(·). Therefore, if there exists another algorithm that provides advice besides AP, then this advice may be readily 
used in ABCS, and the competitive ratio of ABCS with respect to the new advice is again at most OCR. The proof of 
Proposition 6 is based on a potential function argument and is provided in Appendix A.10. The proof follows a similar 
structure as the proof of Proposition 5. We now have all the ingredients to prove Theorem 4.
Proof of Theorem 4. The proof follows almost immediately from Propositions 5 and 6. Note that CR(η) ≤ PCR because

COSTλ(m, T) ≤ PCR · OPT (6.11) 

by Proposition 5. Next, CR(η) ≤ (1 + (
ffiffiffiffiffiffiffiffiffi
2ωβ

p
+θ)η) · OCR because

COSTλ(m, T) ≤ OCR · COSTλ(m̃, T) ≤ (1 + (
ffiffiffiffiffiffiffiffiffi
2ωβ

p
+θ)η) · OCR · OPT (6.12) 

by Proposition 6 and Theorem 3. w

7. Conclusion
In this paper, we explored how ML predictions can be used to improve the performance of capacity-scaling solutions 
without sacrificing robustness. We extend the state of the art in capacity scaling by analyzing a more general model in 
continuous time where tasks are allowed to wait, in which case popular earlier proposed algorithms are not competi
tive. The BCS algorithm we proposed is five competitive in the general case. We also introduced AP, which is one 
competitive if the ML predictions are accurate. Finally, we proposed ABCS, which combines the ideas behind BCS and 
AP. We proved that in the presence of accurate ML predictions, ABCS is (1 + ε) competitive and that its performance 
degrades gracefully in the prediction’s accuracy. Moreover, the competitive ratio of ABCS is at most O(ε�7=2) when 
ML predictions are inaccurate. Although the competitive ratio of ABCS depends on the accuracy, the algorithm is 
oblivious to it. In the context of data centers, because real-world internet traffic is erratic, any implemented capacity- 

Rutten and Mukherjee: Capacity Scaling with Unreliable Machine Learning Prediction 
18 Mathematics of Operations Research, Articles in Advance, pp. 1–33, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

60
0:

17
00

:f7
90

:1
f0

0:
cc

5e
:1

5d
7:

6c
a:

e3
58

] o
n 

12
 Ju

ne
 2

02
3,

 a
t 1

0:
04

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



scaling solution must be robust against sudden unpredictable surges in workload. Our results yield significant reduc
tions in power consumption while maintaining robustness against these sudden spikes.

An interesting yet challenging direction for future work is to restrict the number of servers to be integer valued. A 
common approach is to randomly round a fractional solution, such as the one returned by ABCS, and prove that the 
increase in competitive ratio because of the random rounding is at most a constant factor in expectation. Apart from 
the fact that one cannot expect (1 + ε) consistency by this procedure, the integrality gap is in fact unbounded for this 
problem, as shown by Lemma 2. The proof of Lemma 2 is provided in Appendix A.11.

Lemma 2. Let OPTint be the offline minimum cost where m(·) is restricted to be integer valued: that is,

OPTint :� inf
m:(0,T]→N

COSTλ(m, T): (7.1) 

Also, let CR denote the competitive ratio of OPTint with respect to OPT in (2.3). Then, CR � ∞.

Lemma 2 forbids any rounding procedure from being competitive, and we, therefore, leave the integral case as an 
open question. Finally, in an ongoing work, we are exploring how the confidence hyperparameter of ABCS can be 
learned over time if there are statistical guarantees on the prediction’s accuracy.
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Appendix. Proofs
This section provides the proofs that have been omitted from the main text.

A.1. Proof of Proposition 1

Proof of Proposition 1. Fix a finite-time horizon T, arrival rate function λ(·), and initial number of servers m(0). Let

V+(f ) � lim sup
δ↓0

X⌊T=δ⌋

i�0
[f (iδ+ δ) � f (iδ)]+ (A.1) 

for a function f : [0, T] → R. The definition of V+(f ) is closely related to the notion of bounded variation. The bounded variation 
of a function f : [0, T] → R is defined as

V(f ) � sup
�

Xn

i�1
| f (zi) � f (zi�1) | such that {zi}

n
i�0 is a partition of [0, T]

�

: (A.2) 

Let mn be a sequence of functions such that COSTλ(mn, T) → OPT as n → ∞. There exists N ∈ N such that COSTλ(mn, T) ≤

2 · OPT for all n ≥ N. As a result, V+(mn) is uniformly bounded for n ≥ N. Note that without increasing the cost, we can 
set mn(T) � 0. The bounded variation and V+(mn) are then related as

V(mn) � 2V+(mn) + m(0): (A.3) 

The rest of the proof depends on the following compactness theorem (Barbu and Precupanu [10]).

Theorem A.1 (Helly’s Selection Theorem). Let fn : [0, T] → R be a sequence of functions, and suppose that the next two condi
tions hold. 

i. The sequence fn has uniformly bounded variation (i.e., supn∈N
V(fn) < ∞).

ii. The sequence fn is uniformly bounded at a point (i.e., there exists t ∈ [0, T] such that {fn(t)}∞
n�1 is a bounded set).

Then, there exists a subsequence fnk of fn and a function f : [0, T] → R such that 
i. fnk converges to f pointwise as k → ∞,
ii. fnk converges to f in L1 as k → ∞, and
iii. V(f ) ≤ lim infk→∞V(fnk ).

Recall the infinite sequence mN, mN+1, : : : introduced. Condition (i) in Theorem A.1 holds because

V(mn) � 2V+(mn) + m(0) ≤
4OPT

β
+ m(0) (A.4) 

for all n ≥ N. Moreover, condition (ii) in Theorem A.1 holds for t � 0 because mn(0) � m(0) for all n ∈ N. Hence, there exists a 
subsequence mnk of mn and a function m∗ : [0, T] → R such that mnk → m∗ pointwise and in the L1 norm, as k → ∞, and

V+(m∗) � (V(m∗) � m(0))=2 ≤ lim inf
k→∞

(V(mnk ) � m(0))=2 � lim inf
k→∞

V+(mnk ): (A.5) 
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Therefore, because the flow time and the power cost are continuous in m with respect to the L1 norm,

COSTλ(m∗, T) � ω ·

Z T

0
q∗(t)dt + β · V+(m∗) + θ ·

Z T

0
m∗(t)dt

≤ ω · lim
k→∞

Z T

0
qnk (t)dt + β · lim inf

k→∞
V+(mnk ) + θ · lim

k→∞

Z T

0
mnk (t)dt

≤ lim
k→∞

COSTλ(mnk , T) � OPT, (A.6) 

which completes the proof of the proposition. w

A.2. Proof of Lemma 1

Proof of Lemma 1. Fix any online algorithm A and parameters ω and β. We will construct an instance for which 
COSTλ(m, T) ≥

ωt2
0

2β · OPT.
Let λ(t) � 0 for t ∈ [0, t0] and λ(t) � ρ for t ∈ (t0, 2t0], where the value of ρ will be chosen (adversarially) later. Let the 

finite-time horizon T � 2t0 and θ � 0. Let m(t) be the number of servers of A for the instance. We distinguish two cases 
depending on m :� supt∈(t0,2t0]

m(t). Crucially, note that any decision to increase m(t) during the interval [t0, 2t0] must be 
taken during the interval [0, t0] because t0 is the setup time. 

1. First, consider the case when m > 0. The increment in m(t) must have been initiated during [0, t0]. In that case, fix ρ � 0. 
One possible solution of (2.1) is m∗(t) � 0 for t ∈ [0, T], and the cost of the optimal solution is, therefore, at most OPT � 0. How
ever, the cost of A is at least COSTλ(m, T) ≥ βm > 0. Therefore, there does not exist a constant CR such that COSTλ(m, T) ≤ CR · OPT 

and hence, CR � ∞ by definition.
2. Next, consider the case when m � 0 (i.e., no increment in m(t) has been initiated during [0, t0]). In that case, fix ρ � 1. One 

possible solution of (2.1) is m∗(t) � 1 for t ∈ [0, T]. This solution does not incur any waiting cost, and the cost of the optimal solu
tion is, therefore, at most OPT ≤ β. However, the cost of A is COSTλ(m, T) � ω ·

R t0
0 ρs ds �

ωt2
0

2 ≥
ωt2

0
2β · OPT.

This completes the proof of the lemma. w

A.3. Proof of Theorem 5

Proof of Theorem 5. Fix a finite-time horizon T, arrival rate function λ(·), and initial number of servers m(0). Assume 
that T is divisible by δ, and let n � T=δ. Let

C :� {f : [0, T] → R+ | f (iδ+ s) � f (iδ) for all s ∈ [0,δ) and i � 0, 1, : : : , n � 1} (A.7) 

be the subspace of the space of functions that are constant in each δ interval. Recall that by assumption, λ ∈ C. We note that 
each f ∈ C is equivalently represented by a vector f � (f (0), f (δ), : : : , f (n � 1))∈ Rn and vice versa. We will, therefore, interchange
ably use vector notation to denote an element from C.

Claim A.1. We claim that

inf
m∈C

COSTλ(m, T) ≤ 1 +
ωδ2

β

� �

inf
m:[0, T]→R+

COSTλ(m, T) +
ωδ2 · m(0)

2 : (A.8) 

Proof. Let m∗ : [0, T] → R+ be arbitrary, and let mi � 1
δ

R iδ
(i�1)δm

∗(t)dt. We will prove that

COSTλ(m, T) ≤ 1 +
ωδ2

β

� �

COSTλ(m∗, T) +
ωδ2 · m(0)

2 , (A.9) 

which finishes the proof of the claim. Note that it follows immediately by construction that the switching cost of m is at most 
the switching cost of m∗ and that the power cost of m is equal to the power cost of m∗. We will, therefore, focus on the flow- 
time cost. The queue length of m∗ at the end points of each δ interval is at least the queue length of m as follows:

q∗(iδ) � q∗((i � 1)δ) +

Z iδ

(i�1)δ

�
λi � m∗(s)

�
1{q∗(s) > 0 or λi ≥ m∗(s)}ds

≥ q∗((i � 1)δ) +

Z iδ

(i�1)δ

�
λi � m∗(s)

�
ds

� �+

≥ [q((i � 1)δ) + δλi � δmi]
+

� q(iδ), (A.10) 

where the inequality q∗((i � 1)δ) ≥ q((i � 1)δ) follows by induction on i. Define
∆i � sup

t∈[(i�1)δ, iδ]
m∗(t) � inf

t∈[(i�1)δ, iδ]
m∗(t), (A.11) 
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and observe that

Xn

i�1
∆i ≤ m(0) + 2 lim

ε↓0

X⌊T=ε⌋

i�0
[m∗(iε+ ε) � m∗(iε)]+

≤ m(0) +
2COSTλ(m∗, T)

β
: (A.12) 

Then, the flow-time cost of m∗ in each δ interval is at least
Z iδ

(i�1)δ
q∗(t)dt �

Z iδ

(i�1)δ
q∗((i � 1)δ) +

Z t

(i�1)δ
(λi � m(s))1{q∗(s) > 0 or λi ≥ m(s)}ds

� �

dt

≥

Z iδ

(i�1)δ
q∗((i � 1)δ) +

Z t

(i�1)δ
(λi � m(s))ds

� �+

dt

≥

Z iδ

(i�1)δ
q((i � 1)δ) +

Z t

(i�1)δ
(λi � mi � ∆i)ds

� �+

dt

�

Z iδ

(i�1)δ
[q(t) � (t � (i � 1)δ)∆i]

+dt ≥

Z iδ

(i�1)δ
q(t)dt �

δ2∆i

2 , (A.13) 

where the second inequality uses (A.10). Therefore,

ω ·

Z T

0
q(t)dt �ω ·

Z T

0
q∗(t)dt ≤

ωδ2

2 ·
Xn

i�1
∆i ≤

ωδ2 · m(0)

2 +
ωδ2 · COSTλ(m∗, T)

β
, (A.14) 

where the second inequality follows by (A.12). This completes the proof of the claim. w

Let OBJλ(m, T) denote the value of the objective in (4.18) for m ∈ C.

Claim A.2. We claim that

OBJλ(m, T) � COSTλ(m, T) + ω ·
Xn

i�1
δ ·

qi

2 �
q2

i
2(mi � λi)

� �

1{qi > 0 and qi+1 � 0}

≤ 1 +
ωδ

2θ

� �

COSTλ(m, T) (A.15) 
for any m ∈ C.

Proof. Let m ∈ C be arbitrary. Note that because m ∈ C, the switching cost is 
Pn

i�1 [mi � mi�1]
+, and the power cost is 

Pn
i�1 δmi, 

which matches the terms in OBJλ(m, T). We will, therefore, focus on the flow-time cost. Denote q � (q(0), q(δ), : : : , q(n))∈ Rn+1. The 
flow time is equal to

Z iδ

(i�1)δ
q(t)dt �

Z δ

0
[qi + (λi � mi)t]+dt

� δ ·
qi + qi+1

2 1{qi � 0 or qi+1 > 0} +
q2

i
2(mi �λi)

1{qi > 0 and qi+1 � 0} (A.16) 

because q(·) increases or decreases linearly. This completes the equality in the claim. To see why the inequality holds, note that
Xn

i�1
δ ·

qi

2 �
q2

i
2(mi �λi)

� �

1 qi > 0 and qi+1 � 0
� �

≤
δ

2 ·
Xn

i�1
qi1 qi > 0 and qi+1 � 0

� �

≤
δ

2 ·
Xn

i�1
δmi, ≤

δ · COSTλ(m, T)

2θ , (A.17) 

where the second inequality follows because δ(mi �λi) ≥ qi. This completes the proof of the claim. w

We now finish the proof of Theorem 5. Let m ∈ C be an optimal solution to (4.18). Moreover, define

m∗ � arg min
m∈C

COSTλ(m, T): (A.18) 

Then, the cost of m is at most

COSTλ(m, T) ≤ OBJλ(m, T) ≤ OBJλ(m∗, T)

≤ 1 +
ωδ

2θ

� �

COSTλ(m∗, T)

≤ 1 +
ωδ

2θ

� �

1 +
ωδ2

β

� �

OPT +
ωδ2m(0)

2

� �

, (A.19) 
which completes the proof of the theorem. w
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A.4. Proof of Theorem 2

Proof of Theorem 2. Fix a finite-time horizon T, arrival rate function λ(·), and initial number of servers m(0). Let m∗(t) be 
a solution of the offline optimization Problem (2.1) and m(t) be the number of servers of BCS (Algorithm 1). We will 
prove that

COST(m, T) ≤ 2 · COST(m∗, T) + β · m(0), (A.20) 

where we have omitted λ from the notation COSTλ(m, T).

A.4.1. Overview of the Proof. Let t1 ≤ t2 ≤ : : : be a partitioning of the interval [0, T] such that (i) m(t) is monotone in 
[tk, tk+1] and (ii) either m(t) > m∗(t) or m(t) ≤ m∗(t) in [tk, tk+1] for all k ∈ N. The goal of the proof will be to find a nonnega
tive potential function Φ(t) such that

Φ(tk+1) �Φ(tk) + COST(m, tk+1) � COST(m, tk) ≤ 2 · (COST(m∗, tk+1) � COST(m∗, tk)) (A.21) 

for all k ∈ N. We sum Equation (A.21) over k ∈ N to obtain
COST(m, T) ≤ 2 · COST(m∗, T) +Φ(0) �Φ(T) ≤ 2 · COST(m∗, T) +Φ(0), (A.22) 

where the last step follows because Φ(T) is nonnegative. The proof of Theorem 2 is, therefore, completed if we manage to find 
a nonnegative potential function Φ(t) satisfying Equation (A.21) and Φ(0) � β · m(0).

A.4.2. Choice of F(t). Define the potential function Φ(t) such that

Φ(t) �
β · m(t), if m(t) > m∗(t)
2β · m∗(t) � β · m(t) if m(t) ≤ m∗(t)

:

(

(A.23) 

Note that Φ(t) is nonnegative and Φ(0) � β · m(0).

A.4.3. Verification of (A.21). We continue by verifying Equation (A.21). Fix k ∈ N. We distinguish two cases depending 
on whether m(t) is decreasing or nondecreasing in [tk, tk+1]. 

i. Assume that m(s) is decreasing for s ∈ [tk, tk+1]. Recall that by definition,
dm(t)

dt � �
θ · m(t)
β

(A.24) 
for t ∈ [tk, tk+1] and therefore,

m(tk + s) � m(tk) · exp �
θ · s
β

� �

(A.25) 
for s ∈ [0, tk+1 � tk]; hence,

θ ·

Z tk+1

tk

m(s)ds � β · m(tk) 1 � exp �
θ · (tk+1 � tk)

β

� �� �

� β · (m(tk) � m(tk+1)): (A.26) 

We further distinguish two cases depending on whether m(t) > m∗(t) or m(t) ≤ m∗(t) in [tk, tk+1]. First, consider the case that 
m(s) > m∗(s) for s ∈ [tk, tk+1]. Then,

Φ(tk+1) �Φ(tk) + COST(m, tk+1) � COST(m, tk)

� β · (m(tk+1) � m(tk)) + β · (m(tk) � m(tk+1))

� 0 ≤ 2(COST(m∗, tk+1) � COST(m∗, tk)): (A.27) 

Next, consider the case that m(s) ≤ m∗(s) for s ∈ [tk, tk+1]. Then,

Φ(tk+1) �Φ(tk) + COST(m, tk+1) � COST(m, tk)

� 2β · (m∗(tk+1) � m∗(tk)) � β · (m(tk+1) � m(tk)) + β · (m(tk) � m(tk+1))

� 2β · (m∗(tk+1) � m∗(tk)) + 2θ ·

Z tk+1

tk

m(s) ds

≤ 2β · (m∗(tk+1) � m∗(tk)) + 2θ ·

Z tk+1

tk

m∗(s) ds

≤ 2(COST(m∗, tk+1) � COST(m∗, tk)): (A.28) 

ii. Assume that m(s) is nondecreasing for s ∈ [tk, tk+1]. Note that because tasks are not allowed to wait, m∗(t) ≥ λ(t) for all 
t ∈ [0, T]. Recall that by definition, if the arrival rate λ(t) is higher than the number of servers m(t), then BCS increases the 
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number of servers to match the arrival rate. Therefore, m(s) � λ(s) for s ∈ [tk, tk+1] because m(t) is nondecreasing in [tk, tk+1]. 
Hence, m∗(s) ≥ m(s) � λ(s) for s ∈ [tk, tk+1] and

Φ(tk+1) �Φ(tk) + COST(m, tk+1) � COST(m, tk)

� 2β · (m∗(tk+1) � m∗(tk)) � β · (m(tk+1) � m(tk))

+ β · (m(tk+1) � m(tk)) +θ ·

Z tk+1

tk

m(s) ds

≤ 2β · (m∗(tk+1) � m∗(tk)) +θ ·

Z tk+1

tk

m∗(s) ds

≤ 2(COST(m∗, tk+1) � COST(m∗, tk)): (A.29) 

w

A.5. Proof of Proposition 2

Proof of Proposition 2. Fix any algorithm A, and let m(t) denote its number of servers. We will construct an instance 
(T,λ), for which COSTλ(m, T) ≥ 2:549 · OPT.

Let λ(t) � 1 for t ∈ [0, T]. The time horizon T will be specified later. Fix β � ω � 1 and θ � 0. Let the prediction λ̃(t) � 0 
for all t and as a result, the advised number of servers m̃(t) � 0 for all t. Let m(t) be the number of servers of A for the 
instance. Define τ :� inf{t |m(t) > 0:885t2} or τ � ∞ if the infimum does not exist. We distinguish two cases depending on 
the value of τ. 

1. First, consider the case when τ ≤ 1:225. Fix T � τ. The optimal solution to (2.1) is m∗(t) � 0 for t ∈ [0, T]. The value of the 
optimal solution is purely because of flow time and is equal to OPT � τ2=2. 

At time t � τ, algorithm A has at least m(τ) > 0:885τ2 servers. The flow time is at least 
R τ

0 q(t)dt ≥
R τ

0
R t

01 � 0:885s2dsdt ≥

τ2=2 � 0:885τ4=12 because m(t) ≤ 0:885t2 for t ∈ [0,τ). The cost of A is, therefore, at least COSTλ(m, T) ≥ 0:885τ2 +

τ2=2 � 0:885τ4=12 ≥ 2:549 · τ2=2 � 2:549 · OPT, where the second inequality follows because τ ≤ 1:225.
2. Next, consider the case when τ > 1:225. Fix T � 3. The optimal solution to (2.1) is m∗(t) � 1 for t ∈ [0, T]. The value of the 

optimal solution is purely because of switching cost and is equal to OPT � 1. 
At time t � 1.225, the queue length of A is at least q(1:225) ≥

R 1:225
0 1 � 0:885t2dt � 0:682. The optimal solution starting from 

time t � 1.225 is m(t) � 1 + q(1:225)=
ffiffiffi
2

√
≥ 1:483 for t ∈ (1:225, T]. The flow time is, therefore, at least 

R T
0 q(t)dt ≥

R 1:225
0 R s

01 � 0:885s2dsdt + q(1:225)=
ffiffiffi
2

√
≥ 1:067, again because m(t) ≤ 0:885t2 for t ∈ [0,τ). The cost of A is, therefore, at least 

COSTλ(m, T) ≥ 2:549 ≥ 2:549 · OPT.
Hence, the statement follows. w

A.6. Proof of Theorem 3

Proof of Theorem 3. Fix a finite-time horizon T, arrival rate function λ(·), and initial number of servers m(0). Let λ̃(·) be 
the predicted arrival rate. The idea to the proof is to separate the cost into the cost of the offline component and the 
online component. More specifically, we claim that

COSTλ(m, T) ≤ COSTλ̃ (m1, T) + (
ffiffiffiffiffiffiffiffiffi
2ωβ

p
+θ)T · ‖∆λ‖MAE: (A.30) 

To see why, note that

q(t) �

Z t

0
(λ(s) � m(s))1{q(s) > 0 or λ(s) ≥ m(s)}ds

≤

Z t

0
(λ̃(s) � m1(s))1{q(s) > 0 or λ(s) ≥ m(s)}ds

+

Z t

0
(∆λ(s) � m2(s))1{q(s) > 0 or λ(s) ≥ m(s)}ds

≤

Z t

0
(λ̃(s) � m1(s))1{q1(s) > 0 or λ(s) ≥ m1(s)}ds

+

Z t

0
(∆λ(s) � m2(s))1{q2(s) > 0 or λ(s) ≥ m2(s)}ds � q1(t) + q2(t): (A.31) 

Therefore, the flow time of the algorithm is at most the sum of the flow time of the offline component on λ̃ and the 
online component on ∆λ. Similarly, because the switching cost and the power cost are linear in the number of servers 
m(·), the cost of the algorithm is at most

COSTλ(m, T) ≤ COSTλ̃ (m1, T) + COST∆λ(m2, T): (A.32) 
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We will further bound the cost of the online component m2. Let [t, t + δ) ⊆ [0, T] be an arbitrary time interval for δ > 0 
small, and let ∆q(t) �

R t+δ
t ∆λ(s)ds. We will bound the cost because of the ∆q(t) workload received in this time interval. 

The number of servers m2(t) increases by 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=(2β)

p
· ∆q(t) in the interval. Moreover, after a time of 

ffiffiffiffiffiffiffiffiffiffiffi
2β=ω

p
, the number of 

servers m2(t) decreases again by 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=(2β)

p
· ∆q(t). Throughout [t, t +

ffiffiffiffiffiffiffiffiffiffiffi
2β=ω

p
), the queue length because of this fraction of 

the workload decreases linearly as q(t + s) � ∆q(t) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=(2β)

p
· ∆q(t) · s until the workload is completely handled. The cost 

because of waiting is, therefore,

ω ·

Z
ffiffiffi
2β
ω

p

0
∆q(t) �

ffiffiffiffiffi
ω

2β

r

· ∆q(t) · s
� �

ds � ω ·

ffiffiffiffiffiffi
β

2ω

r

· ∆q(t): (A.33) 

Note that because δ can be chosen arbitrarily small, the waiting cost in the interval [t, t + δ) is negligible. The switching 
cost is β ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=(2β)

p
· ∆q(t), and the power cost is θ ·

ffiffiffiffiffiffiffiffiffiffiffi
2β=ω

p
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=(2β)

p
· ∆q(t) � θ · ∆q(t). The cost of the online component is, 

therefore,

COST∆λ(m2, T) ≤ lim
δ↓0

X⌊T=δ⌋

i�0

ffiffiffiffiffiffiffiffiffi
2ωβ

p
+θ

� �
· ∆q(iδ) �

ffiffiffiffiffiffiffiffiffi
2ωβ

p
+θ

� �
T · ‖∆λ‖MAE, (A.34) 

which proves Equation (A.30) by combining (A.32) and (A.34). Similarly, let ∆λ∗(t) � (λ̃(t) �λ(t))+. Then, by interchanging the 
actual arrival rate λ and the predicted arrival rate λ̃ in Equation (A.30), we find that

COSTλ̃ (m∗, T) ≤ COSTλ(m∗1, T) + (
ffiffiffiffiffiffiffiffiffi
2ωβ

p
+θ)T · ‖∆λ‖MAE, (A.35) 

where m∗(t) � m∗1(t) + m∗2(t) and

m∗1 ∈ arg min
m:(0,T]→R+

COSTλ(m, T), (A.36) 

dm∗2(t)
dt

�

ffiffiffiffiffi
ω

2β

r

·
�

∆λ∗(t) � ∆λ∗ t �

ffiffiffiffiffiffiffiffiffiffiffi

2β=ω
q� ��

: (A.37) 

Finally, we combine (A.30) and (A.35) to find that

COSTλ(m, T) ≤ COSTλ̃ (m1, T) +
ffiffiffiffiffiffiffiffiffi
2ωβ

p
+ θ

� �
T · ‖∆λ‖MAE

≤ COSTλ̃ (m∗, T) +
ffiffiffiffiffiffiffiffiffi
2ωβ

p
+ θ

� �
T · ‖∆λ‖MAE

≤ COSTλ(m∗1, T) +
ffiffiffiffiffiffiffiffiffi
2ωβ

p
+ θ

� �
T · ‖λ̃ � λ‖MAE, (A.38) 

where the first inequality follows by (A.30), the second inequality follows because m1 achieves the minimum cost on λ̃, and the 
third inequality follows by (A.35). This completes the proof because m∗1 is the optimal offline solution on λ. w

A.7. Proof of Proposition 3

Proof of Proposition 3. Fix any algorithm A, and let CR(η) denote its competitive ratio when it has access to an η-accurate pre
diction. Fix δ > 0, and assume that CR(0) ≤ 1 + δ. We will construct an instance for which COSTλ(m, T) ≥ OPT=(4δ).

Let T � 2 +
ffiffiffi
2

√
δ and λ(t) � 2 for t ∈ [0,

ffiffiffi
2

√
δ). The value of λ(t) for t ∈ [

ffiffiffi
2

√
δ, T] will be specified later. Fix β � ω � 1 and 

θ � 0. Let the prediction λ̃(t) � 2 for t ∈ [0, T], and let m(t) be the number of servers of A for the instance. We distinguish 
two cases depending on the value of m :� supt∈[0,

ffiffi
2

√
δ)m(t). 

1. First, consider the case when m < 1. Fix λ(t) � 2 for t ∈ [
ffiffiffi
2

√
δ, T]. One feasible solution of (2.1) is m∗(t) � 2 for t ∈ (0, T]. The 

cost of this solution is purely because of switching cost and therefore, OPT ≤ 2. As λ̃(t) � λ(t), the prediction λ̃ is perfect. Hence, 
by the assumption that A is (1 + δ) consistent, we must have COSTλ(m, T) ≤ (1 + δ) · OPT for this instance. We will see that this 
cannot be achieved under the case m < 1. 

Note at time t �
ffiffiffi
2

√
δ, the queue length of A is at least q(

ffiffiffi
2

√
δ) ≥

R ffiffi
2

√
δ

0 (2 � m)dt >
ffiffiffi
2

√
δ. The optimal solution starting from time 

t �
ffiffiffi
2

√
δ is m(t) � 2 + q(

ffiffiffi
2

√
δ)=

ffiffiffi
2

√
> 4 + δ for t ∈ (

ffiffiffi
2

√
δ, T]. As a result, the flow time is at least 

R T
0 q(t)dt ≥ q(

ffiffiffi
2

√
δ)=

ffiffiffi
2

√
> δ. The cost of 

A is, therefore, at least COSTλ(m, T) > 2 + 2δ ≥ (1 + δ) · OPT. This is a contradiction with our assumption that A is (1 + δ) consis
tent, and hence, the next case must occur.

2. Next, consider the case when m ≥ 1. Fix λ(t) � 0 for t ∈ [
ffiffiffi
2

√
δ, T]. One feasible solution of (2.1) is m∗(t) � 2δ for t ∈ [0, T]. The cost 

of the optimal solution is, therefore, at most OPT ≤ 4δ� 2δ2 ≤ 4δ. Now, the cost of A is at least COSTλ(m, T) ≥ 1 ≥ OPT=(4δ) because of 
switching cost. Moreover, the MAE is T · ‖λ̃ �λ‖MAE �

R T
0 | λ̃(t) �λ(t) |dt � 4, and hence, the prediction is 1=δ accurate.

Hence, Equation (4.17) follows. w

A.8. Proof of Proposition 4

Proof of Proposition 4. Fix any ω,β,θ > 0 and any function τ : R3
+ → (0, ∞). Let m(t) be the number of servers of the 

timer algorithm for the current instance. We will construct a sequence of instances for which COSTλ(m, T)=OPT → ∞.
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Let τ � τ(ω,β,θ), and fix 0 < ε < τ. Let λ(t) � 2 for t ∈ [0, t0] and λ(t0 + iτ+ s) � 1{s ∈ (0,ε]} for s ∈ (0,τ] and i ∈ N ∩ [0, T], 
where t0 � inf{t ∈ R |m(t) ≥ 1} or t0 � ∞ if the infimum does not exist. We let T be sufficiently large. Let us distinguish 
two cases depending on the value of t0. 

1. First, consider the case when t0 � ∞. One feasible solution of (2.1) is m∗(t) � 2. This solution does not incur any waiting 
cost, and the cost of the optimal solution is, therefore, at most OPT ≤ 2β+θT. However, because m(t) < 1, the cost of the timer 
algorithm is at least COSTλ(m, T) � ω ·

R T
0 sds � ωT2

2 . Then, COSTλ(m, T)=OPT ≥ ωT2

4β+2θT → ∞ as T → ∞.
2. Next, consider the case when t0 < ∞. One possible solution of (2.1) is m∗(t) � 2 for t ∈ [0, t0] and m∗(t) � ε=τ for t ∈ (t0, T]. 

The cost of the optimal solution is, therefore, at most OPT ≤ 2β+ 2θt0 + εθT=τ+ωT=τ ·
R ε

0 (1 � ε=τ)sds +ωT=τ ·
R τ
ε (ε� εs=τ)ds 

≤ 2β+ 2θt0 + εθT=τ+ εωT=2. However, note that after time t ≥ t0, a server idles for at most τ� ε < τ time, which means that the 
timer algorithm maintains at least one server throughout [t0, T]. Therefore, the cost of the timer algorithm is at least 
COSTλ(m, T) � β+θ(T � t0). Then, COSTλ(m, T)=OPT ≥

β+θ(T�t0)

2β+2θt0+εθT=τ+εωT=2 → ∞ as T → ∞ and ε→ 0. w

A.9. Proof of Proposition 5

Proof of Proposition 5. Fix a finite-time horizon T, arrival rate function λ(·), and initial number of servers m(0). Let m∗(t)
be a solution of the offline optimization Problem (2.1) and q∗(t) the corresponding workload. Assume that the solution 
achieves a finite cost. If there does not exist a solution that achieves finite cost, then Proposition 5 follows immediately. 
Without loss of generality, assume that m∗(t) is differentiable. To see why this is possible, assume that m∗(t) is not differ
entiable. Define the interpolation m∗

δ(t) of m∗(t) such that

m∗
δ(t) �

Z t+δ

t

m∗(s)

δ
ds, (A.39) 

which is differentiable for all δ > 0. Also, note that
Z t2

t1

m∗
δ(t)dt �

Z t2

t1

Z t+δ

t

m∗(s)

δ
ds dt →

Z t2

t1

m∗(t) dt as δ→ 0 (A.40) 

for any 0 ≤ t1 ≤ t2 ≤ ∞. The cost of m∗(t) and m∗
δ(t), therefore, coincides asymptotically as δ→ 0. As a result, each function m∗(·)

can be written as the limit of a sequence of differentiable functions m∗
δ(·), and we, therefore, assume that m∗(t) is differentiable 

without loss of generality.
A.9.1. Overview of the Proof. Let m(t) be the number of servers of ABCS (Algorithm 3) and q(t) be the corresponding 
workload. The goal of the proof will be to find a nonnegative potential function Φ(t) such that

dΦ(t)
dt

+
∂COST(m, t)

∂t
≤ PCR ·

∂COST(m∗, t)
∂t

, (A.41) 

where we have omitted λ from the notation COSTλ(m, t). Note that COST(m, t) and COST(m∗, t) are differentiable because m(t) and 
m∗(t) are differentiable. We integrate Equation (A.41) from time t � 0 to t � T to obtain

COST(m, T) ≤ PCR · COST(m∗, T) +Φ(0) �Φ(T) ≤ PCR · COST(m∗, T) +Φ(0), (A.42) 

where the last step follows because Φ(T) is nonnegative. The proof of Proposition 5 is, therefore, completed if we manage to 
find a differentiable potential function Φ(t) satisfying Equation (A.41) and Φ(0) �

β·m(0)

r2
� 0. If m(0) > 0 instead, then a similar 

statement as in Proposition 5 holds but with an additive term of β·m(0)

r2
.

A.9.2. Choice of F(t). Define the potential function Φ(t) such that

Φ(t) �
c5β · (dR1 (t) � m(t) + m∗(t)), if m(t) > m∗(t)
c6β · (dr1 (t) � m(t) + m∗(t)) if m(t) ≤ m∗(t)

�

+
β · m(t)

r2
+ c6R2θ · [q(t) � q∗(t)]+, (A.43) 

where

dr(t) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rω · ([q(t) � q∗(t)]+
)
2

β
+ (m(t) � m∗(t))2

s

: (A.44) 

Note that Φ(t) is nonnegative and Φ(0) �
β·m(0)

r2
. The sophisticated reader might remark that there are points in the domain 

for which Φ(t) is not differentiable. As there can only be countably many of these points, these points do not influence 
the integral of Equation (A.41), and we simply ignore these points in the analysis.

A.9.3. Verification of (A.41). We continue by verifying Equation (A.41). We distinguish four cases, depending on 
whether q(t) > q∗(t) or q(t) ≤ q∗(t) and m(t) > m∗(t) or m(t) ≤ m∗(t). 
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i. Assume that q(t) > q∗(t) and m(t) > m∗(t). Recall that by definition,
dq
dt

� λ(t) � m(t), dm
dt

�
r̂1(t)ω · q(t) � r̂2(t)θ · m(t)

β
≤

R1ω · q(t)
β

: (A.45) 

The derivative of dR1 (t) is, therefore, at most

β ·
ddR1 (t)

dt
≤ dR1 (t)�1

·

R1ω · (q(t) � q∗(t))(λ(t) � m(t))
+R1ω · (q∗(t) � q(t))(λ(t) � m∗(t))
+R1ω · q(t) · (m(t) � m∗(t))

+β ·
dm∗

dt · (m∗(t) � m(t))

0

B
B
B
B
B
@

1

C
C
C
C
C
A

� dR1 (t)�1
· (m(t) � m∗(t)) R1ω · q∗(t) � β ·

dm∗

dt

� �

≤ R1ω · q∗(t) + β · �
dm∗

dt

� �+

: (A.46) 

The derivative of the potential function Φ(t) is then

dΦ(t)
dt

≤ c5R1ω · q∗(t) + c5β · �
dm∗

dt

� �+

+
dm∗

dt

� �

� c5 �
1
r2

� �

β ·
dm
dt

+ c6R2θ · (λ(t) � m(t) �λ(t) + m∗(t))

≤ c5R1ω · q∗(t) + c5β ·
dm∗

dt

� �+

� 1 +
1
r1

� �

β ·
dm
dt

+ 1 + R2 +
R2

r1

� �

θ · (m∗(t) � m(t)): (A.47) 

The derivative of the cumulative cost COST(m, t) is

∂COST(m, t)
∂t

� ω · q(t) + β ·
dm
dt

� �+

+θ · m(t)

≤
β

r1
·
dm
dt + β ·

dm
dt

� �+

+ 1 +
R2

r1

� �

θ · m(t): (A.48) 

We sum Equations (A.47) and (A.48) and cancel terms to obtain

dΦ(t)
dt

+
∂COST(m, t)

∂t
≤ c5R1ω · q∗(t) + c5β ·

dm∗

dt

� �+

+ 1 + R2 +
R2

r1

� �

θ · m∗(t)

≤ PCR ·
∂COST(m∗, t)

∂t
: (A.49) 

Note that if dm
dt ≥ 0, then the sum follows immediately. If dm

dt < 0, we apply the bound

�β ·
dm
dt ≤ R2θ · m(t) � r1ω · q(t) ≤ R2θ · m(t): (A.50) 

ii. Assume that q(t) ≤ q∗(t) and m(t) > m∗(t). The potential function Φ(t) simplifies to

Φ(t) �
β · m(t)

r2
: (A.51) 

The derivative of the potential function Φ(t) is then
dΦ(t)

dt �
β

r2
·
dm
dt ≤

R1ω

r2
· q∗(t) �θ · m(t): (A.52) 

The derivative of the cumulative cost COST(m, t) is

∂COST(m, t)
∂t

� ω · q(t) + β ·
dm
dt

� �+

+θ · m(t)

≤ ω · q(t) + β · [R1ω · q(t) � r2θ · m(t)]+
+θ · m(t)

≤ (1 + R1)ω · q∗(t) +θ · m(t) : (A.53) 
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We sum Equations (A.52) and (A.53) and cancel terms to obtain

dΦ(t)
dt +

∂COST(m, t)
∂t ≤ 1 + R1 +

R1

r2

� �

ω · q∗(t) ≤ PCR ·
∂COST(m∗, t)

∂t : (A.54) 

iii. Assume that q(t) > q∗(t) and m(t) ≤ m∗(t). Recall that, by definition,
dq
dt

� λ(t) � m(t), dm
dt

�
r̂1(t)ω · q(t) � r̂2(t)θ · m(t)

β
≥

r1ω · q(t) � R2θ · m(t)
β

: (A.55) 

The derivative of dr1 (t) is, therefore, at most

β ·
ddr1 (t)

dt ≤ dr1 (t)�1
·

r1ω · (q(t) � q∗(t))(λ(t) � m(t))
+ r1ω · (q∗(t) � q(t))(λ(t) � m∗(t))
+ (r1ω · q(t) � R2θ · m(t))(m(t) � m∗(t))

+ β ·
dm∗

dt
· (m∗(t) � m(t))

0

B
B
B
B
B
@

1

C
C
C
C
C
A

≤ dr1 (t)�1
· (m∗(t) � m(t)) R2θ · m(t) + β ·

dm∗

dt

� �

≤ R2θ · m(t) + β ·
dm∗

dt

� �+

: (A.56) 

The derivative of the potential function Φ(t) is then

dΦ(t)
dt ≤ c6R2θ · m(t) + c6β ·

dm∗

dt

� �+

+
dm∗

dt

� �

� c6 �
1
r2

� �

β ·
dm
dt

+ c6R2θ · (λ(t) � m(t) �λ(t) + m∗(t))

≤ c6R2θ · m∗(t) + 2c6β ·
dm∗

dt

� �+

� c6 �
1
r2

� �

β ·
dm
dt : (A.57) 

Similar to before, the derivative of the cumulative cost COST(m, t) is

∂COST(m, t)
∂t ≤

β

r1
·
dm
dt + β ·

dm
dt

� �+

+ 1 +
R2

r1

� �

θ · m(t): (A.58) 

We sum Equations (A.57) and (A.58) and cancel terms to obtain

dΦ(t)
dt +

∂COST(m, t)
∂t ≤ 2c6β ·

dm∗

dt

� �+

+ 2c6R2 + 1 �
R2

r2

� �

θ · m∗(t)

≤ PCR ·
∂COST(m∗, t)

∂t : (A.59) 

iv. Assume that q(t) ≤ q∗(t) and m(t) ≤ m∗(t). The potential function Φ(t) simplifies to

Φ(t) � 2c6β · (m∗(t) � m(t)) +
β · m(t)

r2
: (A.60) 

The derivative of the potential function Φ(t) is then

dΦ(t)
dt � 2c6β ·

dm∗

dt � 2c6 �
1
r2

� �

β ·
dm
dt : (A.61) 

Similar to before, the derivative of the cumulative cost COST(m, t) is

∂COST(m, t)
∂t ≤

β

r1
·
dm
dt + β ·

dm
dt

� �+

+ 1 +
R2

r1

� �

θ · m(t): (A.62) 

We sum Equations (A.61) and (A.62) and cancel terms to obtain

dΦ(t)
dt +

∂COST(m, t)
∂t ≤ 2c6β ·

dm∗

dt

� �+

+ 2c6R2 + 1 �
R2

r2

� �

θ · m∗(t)

≤ PCR ·
∂COST(m∗, t)

∂t : (A.63) 

w

A.10. Proof of Proposition 6

Proof of Proposition 6. Fix a finite-time horizon T, arrival rate function λ(·), and initial number of servers m(0). Let m̃(·)

be the number of advised servers of AP and q̃(·) be the corresponding workload. Assume that the advised number of 
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servers achieves finite cost. If the advised number of servers does not achieve finite cost, then Proposition 6 follows 
immediately. Without loss of generality, similar to the proof of Proposition 5, assume that m̃(t) is differentiable.

A.10.1. Overview of the Proof. As argued before (see the proof of Proposition 5), the proof of Proposition 6 requires us 
to find a nonnegative potential function Φ(t) such that

dΦ(t)
dt

+
∂COST(m, t)

∂t
≤ OCR ·

∂COST(m̃, t)
∂t

, (A.64) 

where we have omitted λ from the notation COSTλ(m, t).

A.10.2. Choice of F(t). Define the potential function Φ(t) such that

Φ(t) �
c1β · (dr1 (t) � m(t) + m̃(t)) if r̂1(t) � r1,
c2β · dR1 (t) � c3β · (m(t) � m̃(t)) if r̂1(t) � R1,

�

+
β · m(t)

R2
+ c4θ · [q(t) � q̃(t)]+, (A.65) 

where

dr(t) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rω · ([q(t) � q̃(t)]+
)
2

β
+ (m(t) � m̃(t))2

s

: (A.66) 

Note that Φ(0) �
β·m(0)

R2
� 0. If m(0) > 0 instead, then a similar statement as in Proposition 6 holds but with an additive term 

of β·m(0)

R2
. If r̂1(t) � r1 or m(t) ≤ m̃(t), then Φ(t) is trivially nonnegative. Assume that r̂1(t) � R1 and m(t) > m̃(t). Then,

Φ(t) ≥ c2β · dR1 (t) � c3β · (m(t) � m̃(t)) ≥ (c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2R1

√
� c3)β · (m(t) � m̃(t)) ≥ 0, (A.67) 

and hence, Φ(t) is nonnegative. The sophisticated reader might remark that there are points in the domain for which Φ(t) is not 
differentiable. As there can only be countably many of these points, these points do not influence the integral of Equation 
(A.64), and we simply ignore these points in the analysis.

A.10.3. Verification of (A.64). We continue by verifying Equation (A.64). We distinguish eight cases depending on 
whether q(t) > q̃(t) or q(t) ≤ q̃(t), m(t) > m̃(t) or m(t) ≤ m̃(t), and r̂1(t) � r1 or r̂1(t) � R1. 

i, a. Assume that q(t) > q̃(t), m(t) > m̃(t), and r̂1(t) � r1. Note that r̂2(t) � r2 because q(t) > q̃(t). Recall that by definition,
dq(t)

dt � λ(t) � m(t), dm(t)
dt �

r1ω · q(t) � r2θ · m(t)
β

: (A.68) 

The derivative of dr1 (t) is, therefore, at most

β ·
ddr1 (t)

dt
≤ dr1 (t)�1

·

r1ω · (q(t) � q̃(t))(λ(t) � m(t))

+r1ω · (q̃(t) � q(t))(λ(t) � m̃(t))

+(r1ω · q(t) � r2θ · m(t))(m(t) � m̃(t))

+β ·
dm̃
dt · (m̃(t) � m(t))

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

� dr1 (t)�1
· (m(t) � m̃(t)) r1ω · q̃(t) � r2θ · m(t) � β ·

dm̃
dt

� �

≤ r1ω · q̃(t) �
r2θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2r1

√ · m(t) + β · �
dm̃
dt

� �+

�
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2r1

√ ·
dm̃
dt

� �+

: (A.69) 

The derivative of the potential function Φ(t) is then
dΦ(t)

dt ≤ c1r1ω · q̃(t) �
c1r2θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2r1

√ · m(t)

+ c1β · �
dm̃
dt

� �+

�
c1β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2r1

√ ·
dm̃
dt

� �+

+ c1β ·
dm̃
dt

� c1 �
1

R2

� �

β ·
dm
dt + c4θ · (λ(t) � m(t) �λ(t) + m̃(t))

≤ c1r1ω · q̃(t) �
r2θ

r1
· m(t) + 1 +

1
R2

� �

β ·
dm̃
dt

� �+

� 1 +
1
r1

� �

β ·
dm
dt + c4θ · (m̃(t) � m(t)): (A.70) 

Rutten and Mukherjee: Capacity Scaling with Unreliable Machine Learning Prediction 
28 Mathematics of Operations Research, Articles in Advance, pp. 1–33, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

60
0:

17
00

:f7
90

:1
f0

0:
cc

5e
:1

5d
7:

6c
a:

e3
58

] o
n 

12
 Ju

ne
 2

02
3,

 a
t 1

0:
04

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



The derivative of the cumulative cost COST(m, t) is

∂COST(m, t)
∂t � ω · q(t) + β ·

dm
dt

� �+

+θ · m(t)

�
β

r1
·
dm
dt + β ·

dm
dt

� �+

+ 1 +
r2

r1

� �

θ · m(t): (A.71) 

We sum Equations (A.70) and (A.71) and cancel terms to obtain

dΦ(t)
dt

+
∂COST(m, t)

∂t
≤ c1r1ω · q̃(t) + 1 +

1
R2

� �

β ·
dm̃
dt

� �+

+ c4θ · m̃(t)

≤ OCR ·
∂COST(m̃, t)

∂t : (A.72) 

Note that if dm(t)
dt ≥ 0, then the sum follows immediately. If dm(t)

dt < 0, we apply the bound

�β ·
dm(t)

dt � r2θ · m(t) � r1ω · q(t) ≤ r2θ · m(t): (A.73) 

i, b. Assume that q(t) > q̃(t), m(t) > m̃(t), and r̂1(t) � R1. Note that r̂2(t) � r2 because q(t) > q̃(t). The derivative of dR1 (t) is, 
therefore, at most

β ·
ddR1 (t)

dt ≤ dR1 (t)�1
·

R1ω · (q(t) � q̃(t))(λ(t) � m(t))

+R1ω · (q̃(t) � q(t))(λ(t) � m̃(t))

+R1ω · q(t) · (m(t) � m̃(t))

+ β ·
dm̃
dt

· (m̃(t) � m(t))

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

� dR1 (t)�1
· (m(t) � m̃(t)) R1ω · q̃(t) � β ·

dm̃
dt

� �

≤
R1ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2R1

√ · q̃(t) +
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2R1

√ · �
dm̃
dt

� �+

: (A.74) 

The derivative of the potential function Φ(t) is then

dΦ(t)
dt

≤
c2R1ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2R1

√ · q̃(t) +
c2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2R1

√ · �
dm̃
dt

� �+

+ c3β ·
dm̃
dt

� c3 �
1

R2

� �
dm
dt + c4θ · (λ(t) � m(t) �λ(t) + m̃(t))

≤
c2R1ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2R1

√ · q̃(t) + c3β ·
dm̃
dt

� �+

� 1 +
1

R1

� �

β ·
dm
dt

+ c4θ · (m̃(t) � m(t)): (A.75) 

The derivative of the cumulative cost COST(m, t) is

∂COST(m, t)
∂t �

β

R1
·
dm
dt + β ·

dm
dt

� �+

+ 1 +
r2

R1

� �

θ · m(t): (A.76) 

We sum Equations (A.75) and (A.76) and cancel terms to obtain

dΦ(t)
dt +

∂COST(m, t)
∂t ≤

c2R1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2R1

√ ω · q̃(t) + c3β ·
dm̃
dt

� �+

+ c4θ · m̃(t)

≤ OCR ·
∂COST(m̃, t)

∂t
: (A.77) 
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ii, a. Assume that q(t) ≤ q̃(t), m(t) > m̃(t), and r̂1(t) � r1. Note that r̂2(t) � R2 because m(t) > m̃(t) and q(t) ≤ q̃(t). The potential 
function Φ(t) simplifies to

Φ(t) �
β · m(t)

R2
: (A.78) 

The derivative of the potential function Φ(t) is then
dΦ(t)

dt
�
β

R2
·
dm
dt

�
r1ω

R2
· q(t) �θ · m(t): (A.79) 

The derivative of the cumulative cost COST(m, t) is

∂COST(m, t)
∂t � ω · q(t) + β ·

dm
dt

� �

+θ · m(t)

� ω · q(t) + β ·
r1ω · q(t)
β

�
R2θ · m(t)
β

� �+

+θ · m(t)

≤ (1 + r1)ω · q(t) +θ · m(t): (A.80) 

We sum Equations (A.79) and (A.80) and cancel terms to obtain

dΦ(t)
dt +

∂COST(m, t)
∂t ≤ 1 + r1 +

r1

R2

� �

ω · q̃(t) ≤ OCR ·
∂COST(m̃, t)

∂t : (A.81) 

ii, b. Assume that q(t) ≤ q̃(t), m(t) > m̃(t), and r̂1(t) � R1. However, r̂1(t) � R1 implies that m(t) � m̃(t) ≤ [q(t) � q̃(t)]+
·

ffiffiffiffi
ω
2β

q
� 0, 

which contradicts our assumption.
iii, a. Assume that q(t) > q̃(t), m(t) ≤ m̃(t), and r̂1(t) � r1. However, r̂1(t) � r1 implies that m(t) � m̃(t) > [q(t) � q̃(t)] ·

ffiffiffiffi
ω
2β

q
≥ 0, 

which contradicts our assumption.
iii, b. Assume that q(t) > q̃(t), m(t) ≤ m̃(t), and r̂1(t) � R1. Note that r̂2(t) � r2 because m(t) ≤ m̃(t). The derivative of dR1 (t) is, 

therefore, at most

β ·
ddR1 (t)

dt
≤ dR1 (t)�1

·

R1ω · (q(t) � q̃(t))(λ(t) � m(t))
+R1ω · (q̃(t) � q(t))(λ(t) � m̃(t))
+(R1ω · q(t) � r2θ · m(t))(m(t) � m̃(t))

+β ·
dm̃
dt · (m̃(t) � m(t))

0

B
B
B
B
B
@

1

C
C
C
C
C
A

≤ dR1 (t)�1
· (m̃(t) � m(t)) r2θ · m(t) + β ·

dm̃
dt

� �

≤ r2θ · m(t) + β ·
dm̃
dt

� �+

: (A.82) 

The derivative of the potential function Φ(t) is then

dΦ(t)
dt ≤ c2r2θ · m(t) + c2β ·

dm̃
dt

� �+

+ c3β ·
dm̃
dt

� c3 �
1

R2

� �

β ·
dm
dt + c4θ · (λ(t) � m(t) �λ(t) + m̃(t))

≤ c2r2θ · m(t) + (c2 + c3)β ·
dm̃
dt

� �+

� 1 +
1

R1

� �

β ·
dm
dt + c4θ · (m̃(t) � m(t)): (A.83) 

The derivative of the cumulative cost COST(m, t) is

∂COST(m, t)
∂t �

β

R1
·
dm
dt + β ·

dm
dt

� �+

+ 1 +
r2

R1

� �

θ · m(t): (A.84) 
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We sum Equations (A.83) and (A.84) and cancel terms to obtain

dΦ(t)
dt

+
∂COST(m, t)

∂t
≤ (c2 + c3)β ·

dm̃
dt

� �+

+ c4θ · m̃(t)

≤ OCR ·
∂COST(m̃, t)

∂t : (A.85) 

iv, a. Assume that q(t) ≤ q̃(t), m(t) ≤ m̃(t), and r̂1(t) � r1. However, r̂1(t) � r1 implies that m(t) � m̃(t) > [q(t) � q̃(t)]+
·

ffiffiffiffi
ω
2β

q
� 0, 

which contradicts our assumption. 
iv, b. Assume that q(t) ≤ q̃(t), m(t) ≤ m̃(t), and r̂1(t) � R1. Note that r̂2(t) � r2 because m(t) ≤ m̃(t). The potential function Φ(t)

simplifies to

Φ(t) � (c2 + c3)β · (m̃(t) � m(t)) +
β · m(t)

R2
: (A.86) 

The derivative of the potential function Φ(t) is then

dΦ(t)
dt

� (c2 + c3)β ·
dm̃
dt

� c2 + 1 +
1

R1

� �

β ·
dm
dt

: (A.87) 

The derivative of the cumulative cost COST(m, t) is

∂COST(m, t)
∂t

�
β

R1
·
dm
dt

+ β ·
dm
dt

� �+

+ 1 +
r2

R1

� �

θ · m(t): (A.88) 

We sum Equations (A.87) and (A.88) and cancel terms to obtain

dΦ(t)
dt +

∂COST(m, t)
∂t ≤ (c2 + c3)β ·

dm̃
dt

� �+

+ c4θ · m̃(t)

≤ OCR ·
∂COST(m̃, t)

∂t
: (A.89) 

w

A.11. Proof of Lemma 2

Proof of Lemma 2. We will construct a sequence of instances for which OPTint=OPT → ∞.
Let m(t) be the number of servers of OPTint. Fix 0 < ε < 1, and let λ(t) � ε for t ∈ [0, T], where the finite-time horizon 

T � 1=ε. Let β � 0, ω � ∞, and θ � 1. Then, because ω � ∞, m(t) ≥ 1 for t ∈ [0, T]. Therefore, OPTint ≥ 1=ε. However, one 
possible fractional solution turns on m∗(t) � ε servers for t ∈ [0, T], and therefore, the value of the optimal solution is at 
most OPT ≤ 1. Thus, OPTint=OPT � 1=ε→ ∞ as ε→ 0. w
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