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Abstract   This  paper  is  concerned  with  the  stochastic  incompressible  Navier–Stokes
equations in a layer of fluid between two flat no-slip boundaries.  The fluid is driven by
the noisy movement of the bottom boundary, where the noise is given by a Lévy process.
After establishing existence of a martingale solution, we use the background flow method
to derive an upper bound on the turbulent energy dissipation rate. Our estimate recovers
one  of  the  basic  scaling  ideas  of  turbulence  theory,  namely,  that  the  dissipation  rate  is
independent of the viscosity at high Reynolds number.
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 1.  Introduction

D = [0, L]2 × [0, h]We consider the stochastic 3D Navier–Stokes equations in the box  

du+ (u · ∇u− ν∆u+∇p) dt = 0,

∇ · u = 0,
(1.1)

f = 0which is only driven by the random motion of the bottom wall (so its body force is    ). A
random boundary condition is given by

u(x1, x2, 0, t) = (Xt, 0, 0)
⊤ and u(x1, x2, h, t) = (0, 0, 0)⊤ , (1.2)

t ∈ R+ (x1, x2) ∈ (0, L)2 X = (Xt)t∈R+

x1
x2 u

ν > 0

for all time     and   , while     is the given real-valued, square-

integrable Lévy process described below. In addition, L-periodic boundary conditions in the   
and     directions are imposed. In the above, the stochastic processes     and p are the velocity
and pressure, respectively, and the kinematic viscosity is denoted by  .
With the above boundary condition (1.2), when a fluid is enclosed between two plates and the

bottom  plate  is  moved  in  one  direction,  a  shear  flow  results.  Heuristically,  the  flow  near  the
bottom plate  is  faster  than  the  top  one,  therefore  vorticity  is  not  negligible.  When the  fluid’s
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vorticity becomes large enough, the flow becomes swirly and turbulent [26]. This flow problem is
very  close  to  flow  between  rotating  cylinders,  which  is  one  of  the  most  classical  problems  in
experimental fluid dynamics [16].

Xt

The shear flow problem with constant velocity1 is well studied in the literature [10, 21, 25, 28,
31, 41]. However, in practice, the velocity of the shear wall cannot be kept constant, due to the
randomness  of  the  background  movement.  This  randomness  can  be  caused  by  unavoidable
perturbations in the boundary conditions, or material properties [5, 34]. It is therefore natural to
add noise to the velocity of the shear wall aiming to model this randomness. For the stochastic
Navier–Stokes equations, most works focus on the motions which are derived by a stochastic force,
which  dates  back  to  the  early  1970s  with  (as  far  as  we  know)  the  paper  of  Bensoussan  and
Temam [2].  Other  than  [4]  and  [13],  to  the  best  of  our  knowledge,  there  are  not  many works
rigorously  studying  the  equations  of  the  motion  with  stochastic  boundary  conditions.  The
objective  in  this  paper  is  to  first  study  the  existence  of  global  martingale  solutions  to  the
stochastic  Navier–Stokes  equations  (1.1)  driven  by  the  random  boundary  condition  (1.2).  We
then  study  the  effect  of  the  noise  on  key  characteristics  of  turbulence  (dissipation  rate)  as
manifested by these solutions with    considered to be the Lévy noise.

 1.1  Kolmogorv dissipation law

ε

In turbulent flows, it is not feasible to obtain a detailed description of the fluid velocity since
the state of  motion is  too complex.  Experimental  or  numerical  measurements of  instantaneous
system variables appear chaotic, disorganized, and unpredictable [34]. When averaged, however,
certain  quantities  obey  robust  laws.  One  such  quantity,  the  energy  dissipation  rate,  carries
important  information  about  the  structure  and  statistical  properties  of  a  turbulent  flow.  It  is
well  known  that  the  statistical  properties  are  much  more  important,  physically  relevant,  and
stable than single trajectories [15, 38]. Based on Kolmogorov’s conventional turbulence theory at
large Reynolds number, dissipation appears to exist independently of viscosity, see [18, 22]. Hence,
by a dimensional consideration, the energy dissipation rate per unit volume,  , scales as

ε := lim sup
T→∞

1

|D|
1

T

∫ T

0

ν ∥∇u∥2L2(D) ≃ Cε
U3

h
,

Cεwhere  U  and  h  are  global  velocity  and  length  scales,  with      as  the  asymptotic  constant
(Kolmogorov 1941). This result is fundamental to an understanding of turbulence [26, 36], and
confirmed by measurements (e.g. [19, 24, 35]).
The energy dissipation rate has been widely studied in the literature in the deterministic case,

see, e.g. [3, 9, 11, 12, 18, 21, 25, 27, 28, 31–33, 41]. In the theory of turbulence, upper estimates
of  energy dissipation rates are useful  for,  in particular,  determining the overall  complexities  of
turbulent  flow  simulations.  It  also  determines  the  smallest  persistent  length  scales  and  the
dimension  of  any  global  attractor  (if  it  exists)  [7,  16,  34,  37].  Doering  and  Constantin  in  [10]
proved  rigorous  asymptotic  upper  bounds  for  the  deterministic  shear  driven  turbulence.  Their
bound is of the form

ε ≲ U3/h as Re → ∞, (1.3)
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Xt = U

u = ((h − x3) U/h, 0, 0)⊤, 0 ⩽ x3 ⩽ h, and p = constant,
   1 In the deterministic case when the bottom wall moves with a constant velocity, i.e.,    in (1.2), one can show that
　　　　　　　　　　　　 
is  a  solution  of  the  steady  Navier-Stokes  equations  for  every  Reynolds  number.  However,  for  higher  velocities U,  the
solution is not unique anymore (see, e.g. [39]) and this flow becomes unstable and it is no longer observed in physical
experiments.



Re = Uh/νwhere   .  Recently  the  authors  in  [13]  considered  a  shear  turbulence  flow  when  the
boundary moves  at  the random speed as  an Ornstein–Uhlenbeck process.  They could quantify
the effect of the noise by upper bounds on the first moment of the dissipation rate as

ε = lim sup
T→∞

E

[
1

|D|
1

T

∫ T

0

ν∥∇u(t, ·, ω)∥2L2(D) dt

]
≲ U3

h
+ CRe,θ σ

2, (1.4)

CRe,θ = O (1/Re, 1/θ)
θ

where   .  A  potential  overdissipation  is  observed  if  the  O.U.  process  were
replaced by the Wiener process,  that is,  if  the dissipation coefficient      in (1.5)  goes to 0,  the
bound in the right-hand side of (1.8) goes to infinity.

 1.2  Assumptions and setup

X
Xt

This paper generalizes the results in [13] by allowing the process    to have jumps. More precisely,
we take    to be a stochastic process that satisfies the equation

dXt = θ(U − Xt)dt+ dLt, (1.5)

θ, U > 0where    are constants, and L is a square-integrable Lévy martingale given by

Lt = σWt +

∫
E0×(0,t]

K(ξ, s)dπ̂(ξ, s), (1.6)

W = (Wt)t∈R+ σ ∈ R π

E × (0,∞) Π

(E, E) π dλ⊗ dt σ

λ (E, E) E0 ∈ E λ(E0) <∞
π̂ π̂(A× (0, t]) = π(A× (0, t])−

λ(A) t A ∈ E t > 0 π

(Ft)t⩾0 (Ω,F ,P)
(Ω,F0,P) Π (Ft)t⩾0

W (t)−W (s) Π(t)−Π(s) Fs

t ⩾ s ⩾ 0

where      is  a  Wiener  process,      is  a  constant,  and      is  a  Poisson  random
measure  on      arising  from  a  stationary  Poisson  point  process      on  a  measurable
space   .  We assume that the intensity measure of     has the form      for some    -
finite measure     on   . In equation (1.6) we fix     such that   . We denote
by      the  associated  compensated  Poisson  random  measure,  i.e.   

  for     and   . Furthermore, we assume that W is independent of   . Under this
condition it is possible to construct a right-continuous filtration    on    such that

  is complete and W and     are both    -adapted. Furthermore the filtration can
be  chosen  such  that      and      are  each  independent  of   ,  for  all

.
K : [0, T ]× E → R

K ∈ L∞([0, T ]× E) T > 0

We  will  assume  that  the  noise  coefficient  function      is  a  bounded  Borel
measurable  function;      for  any   .  The  existence  of  a  unique  strong
solution to (1.5) is well known (see, e.g. [1, Section 6.3]) and it is given by

Xt = e−θtX0 + U(1− e−θt) + e−θt

∫
(0,t]

eθs dLs. (1.7)

X0 p ∈ (0,∞)

E[X0] = U

We  assume  that  the  initial  condition      has  finite  p-th  moment  for  all      and
.

Xt

θ
1

time
σ

velocity√
time

To  make  sure  that  the  results  are  all  dimensionally  consistent  throughout  the  paper,  it  is
worth  mentioning  that  with  U  being  the  mean  velocity  of  the  bottom  wall,      has  the

dimension of velocity. Therefore,    scales as  , and    has dimension  .

 1.3  Results of this paper

ε

Beside establishing existence of a martingale (weak) solution for (1.1) and (1.2), we derive an
upper bound (see Theorem 1.1) on the expected value of the energy dissipation rate    in terms
of characteristics of the randomly moving bottom wall. Our estimate recovers (1.3) in the limit
when the variance of the noise tends to 0.
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{(
Ω, F , (Ft)t∈[0,∞), P

)
, X, u

}
Re =

U h

ν
> 1 E[X0] = U.

X0 p ∈ (0,∞) u(0)

E[∥u(0)∥2] <∞

Theorem 1.1  Suppose    is a martingale solution to (1.1)–(1.2) in

the sense of Defintition 2.2. Assume that     and     Assume also that the

initial condition    has finite p-th moment for all    and that the initial condition  
is such that   . Then the energy dissipation rate (2.13) can be bounded as follows:

ε = lim sup
T→∞

E[⟨ϵ⟩T ] ⩽ 110
U3

h
+ 12

σ2

Re
+ 48

1

Re2
hσ4

U3

+ 48
1

Re2
hθ2

U

(
3U2 +

3

2θ
(σ2 + ∥K∥2∞λ(E0))

)
+

20

hU

(
σ4 + 2∥K∥∞λ(E0) + ∥K∥4∞ λ2(E0) + ∥K∥∞λ(E0)θ

θ2

)
+

8

Re
∥K∥2∞

(
27 +

∥K∥2∞
8U2

+
50∥K∥4∞

3U4

)
λ(E0)

+ 16
1

Re2
h2 λ(E0)

3U

(
9∥K∥4∞ +

∥K∥6∞
U4

)
. (1.8)

 2.  Mathematical preliminaries

Ω

Φ = Φt(x1, x2, x3;ω)

Stochastic Background Flow. Our analysis here critically uses a construction of background flow,
which  was  initially  introduced  by  Hopf  [17]  in  the  deterministic  case.  The  key  idea  is  to
decompose the flow variables into a stochastic incompressible background field and a fluctuating
incompressible  part  and  extend  the  nonhomogeneous  boundary  conditions  into   .  As
constructed in [13], consider the stochastic background flow    given by

Φt(x1, x2, x3;ω) :=
(
ϕ(x3,Xt(ω)), 0, 0

)⊤
, (2.1)

and

ϕ(x3,Xt(ω)) =


(
1− x3

δt

)
Xt(ω), if 0 ⩽ x3 ⩽ δt,

0, if δt ⩽ x3 ⩽ h,

(2.2)

δ : R → (0,∞) δ(z) =
A

z2 +B
δt

where      is  the  function   ,  and  we  choose2  the  boundary  layer

thickness    in the background flow to be a random process

δt = δ(Xt(ω)) =
A

|Xt(ω)|2 +B
. (2.3)

A = νU B = U2 δt

δt ∈ (0, h) Re =
U h

ν
> 1

Dδ = (0, L)2 × (0, δt)

Based on the need of analysis in Lemma 3.3, we later choose    and  , so    has

the  dimension  of  a  length  and      if   .  Moreover,  the  boundary  layer  is

denoted by  .

ϕ : [0, h]× R → R
Before  proceeding  to  the  main  analysis,  we  gather  some  basic  calculations  as  follows.  With

  given as

ϕ(a, z) =

(
1− a

δ(z)

)
z 1{0⩽a⩽δ(z)},

δ(z) =
A

z2 +B
ϕ(x3,Xt(ω)) = f(Xt(ω)) f : R → Rand  , we let  , where    is the smooth function

f(z) = fx3
(z) =

(
1− x3

δ(z)

)
z. (2.4)
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PItô’s rule asserts that   -a.s. we have

df(Xt) = f ′(Xt) dXt +
σ2

2
f ′′(Xt) dt+

∫
E0

(f(Xt− +K(ξ, t))− f(Xt)− f ′(Xt)K) dπ

= Lf(Xt) dt + σf ′(Xt)dWt +

∫
E0

(f(Xt +K(ξ, t))− f(Xt)) dπ̂, (2.5)

t ⩾ 0for  , where

Lf(z(t)) = f ′(z) θ(U − z) +
σ2

2
f ′′(z) +

∫
E0

(f(z +K(ξ, t))− f(z)− f ′(z)K(ξ, t)) dλ(ξ). (2.6)

And from (2.4), we have

f ′(z) = 1− x3
δ − zδ′

δ2
,

f ′′(z) =x3
zδ2δ′′ + 2δ2δ′ − 2zδ(δ′)2

δ4
.

(2.7)

δ(z) =
A

z2 +B
f(z) = fx3(z) =

(
1− x3

δ(z)

)
zLemma 2.1  Consider    and    as above. Then,

δ′(z) =
−2Az

(z2 +B)2
and δ′′(z) =

2A(3z2 −B)

(z2 +B)3
. (2.8)

Hence from (2.7) we have

f ′(z) = 1− x3
3z2 +B

A
and f ′′(z) = −x3

6z

A
. (2.9)

L2(D) ∥ · ∥
(·, ·)
Throughout this manuscript, the    norm and inner product will be denoted by    and
,  respectively.  Concerning  the  nonhomogeneous  boundary  conditions,  we  consider  the

following velocity spaces

H = {v ∈ [L2(D)]3 : ∇ · v = 0, v3(x1, x2, 0) = v3(x1, x2, h) = 0, v · n|∂D is periodic in x1, x2},
V = {v ∈ [H1(D)]3 : ∇ · v = 0, v(x1, x2, 0) = v(x1, x2, h) = 0, v is periodic in x1, x2},
C∞

div = {v ∈ [C∞(D)]3 : ∇ · v = 0, v(x1, x2, 0) = v(x1, x2, h) = 0, v is periodic in x1, x2}.

 

 
x3 7→ ϕ(x3,Xt(ω)) δt = δ(Xt(ω))Figure 1   The graph of   , where    is the boundary layer thickness
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Martingale  solutions. We  follow  the  standard  notion  of  martingale  solutions  for  stochastic
Navier–Stokes  equations  as  initiated  by  Viot  in  [40]  and  further  developed  in  Flandoli  and
Gatarek [14, Definition 3.1] or Debussche, Glatt-Holtz, and Temam [8]. We define a martingale
solution  for  our  system  (1.1)–(1.2).  This  notion  is  the  probabilistically  weak  analogue  of  the
Leray–Hopf weak solution to the deterministic Navier–Stokes equations.

T ∈ [0,∞)

[0, T ]
(
Ω, F , (Ft)t∈[0,T ], P,W, π

)
(Ft)t∈[0,T ] (Ft)t∈[0,T ] (Xt)t∈[0,T ]

(Ft)t∈[0,T ] D(A)′

Definition  2.2  (Martingale  solution  on  compact  intervals)  Let   .  A  martingale
solution to (1.1)–(1.2) on     consists of a stochastic basis     with a
complete right-continuous filtration  , an   -adapted process , and an

 -adapted stochastic process u with càdlàg sample paths in    a.s. such that

u− Φ L∞ (0, T ; H) ∩ L2 (0, T ; V )•    has sample paths in    almost surely,

t ∈ [0, T ] φ ∈ C∞
div• for all    and all  , the following identity holds almost surely,

(u(t), φ) + ν

∫ t

0

(∇u(s),∇φ) ds+
∫ t

0

(u(s) · ∇u(s), φ) ds = (u(0), φ), (2.10)

• the following holds

E

[
sup

s∈[0,T ]

∥u(s)∥2 +
∫ T

0

∥∇u(s)∥2 dt

]
<∞. (2.11)

Definition  2.3  (Energy  Dissipation  Rate)  The  time-averaged  energy  dissipation  as  a  random
variable is given as

⟨ϵ⟩T :=
1

|D|
1

T

∫ T

0

ν∥∇u(t, ·, ω)∥2L2 dt. (2.12)

We also define the time-averaged expected energy dissipation rate for a martingale solution u of
(1.1)–(1.2) by setting

ε := lim sup
T→∞

E[⟨ϵ⟩T ] = lim sup
T→∞

E

[
1

|D|
1

T

∫ T

0

ν∥∇u(t, ·, ω)∥2L2 dt

]
. (2.13)

 3.  Existence of martingale solutions

[0, T ]In this section we prove existence of (weak) martingale solutions to (1.1)–(1.2) on  .

µ0Theorem 3.1  Assume that a given law    satisfies∫
H

|ϕ|2dµ0(ϕ) <∞. (3.1)

E[X0]
p p ∈ (0,∞) E[X0] = U

(Ω,F , (Ft)t⩾0,P,W, π) Xt (Ft)t∈[0,T ]

D(A)′ u ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω× [0, T ],

dt⊗ dP;V ) u(0) µ0

{(
Ω, F , (Ft)t∈[0,T ], P,W, π

)
, (Xt)t∈[0,T ], u

}
[0, T ]

Assume also that     is finite for any     and that    . Then there exists a
stochastic  basis    ,  a  predictable  process    ,  and  an    -adapted
process u with càdlàg sample paths in     such that   

 ,      has  law      and  such  that      is  a
martingale solution to (1.1)–(1.2) on   .

u−Φ

Φ

Proof  The  key  idea,  used  in  this  proof  and  in  what  follows,  is  to  consider      which
satisfies homogeneous boundary conditions, where    is the stochastic, incompressible background
field (2.1), carrying the inhomogeneities of the problem.
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v = u− Φ

u = v +Φ

We  present  the  rest  of  the  analysis  based  on   ,  where  v  is  a  fluctuating
incompressible field which is unforced and hence of arbitrary amplitude. Making the substitution

  in (1.1), we find that the stochastic process v satisfies

dv + dΦ = −(v · ∇v + v · ∇Φ+ Φ · ∇v +Φ · ∇Φ− ν∆v − ν∆Φ+∇p) dt,
∇ · v = 0,

(3.2)

x1 x2
x3

in the weak sense. The boundary conditions for v are periodic in the    and    directions, while
in the    direction,

v(x1, x2, 0, t) = v(x1, x2, h, t) = 0. (3.3)

(Ω,F , (Ft)t⩾0,P,W, π)
{Ft}t⩾0 Xt {Ft}t⩾0 v ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω×
[0, T ], dt⊗ dP;V ) D(A)′

We begin by proving the existence of a martingale solution to the equation (3.2) subject to the
boundary conditions (3.3). That is, we prove the existence of a basis  , an

 -adapted process   , and an    -adapted process   
  with a.s. càdlàg sample paths in    such that

v(s)− v(0) = −
∫ s

0

(B(v(t), v(t) + Φ(t)) +B(Φ(t), v(t))− νAv(t)− νAΦ(t)) dt

+ P

(∫ s

0

Lf(Xt) dt +
∫ s

0

σf ′(Xt)dWt +

∫
(0,s]

∫
E0

(f(Xt +K(ξ, t))− f(Xt))dπ̂(ξ, t), 0, 0

)T

(3.4)

P D(A)′ s ∈ [0, T ] B(u,w) = P(u · ∇w) P

Lf(Xt)

holds    -a.s.  in      for  all   .  Here,   ,  where      is  the  Leray-
projector and A is the Stokes operator and    is defined in (2.6).
In what follows, we provide detailed calculations to obtain energy estimates and then provide

a brief outline for the rest of the procedure.

ψ(u) = |u|2

r ∈ [0, T ]

To derive a priori estimates, we begin by applying Itô’s formula to (3.4). To be precise, we use
Theorem 2.19 in [6]  with the special  case in which     as  stated in Corollary 1 in [6]
(see also Theorem I.3.1 in [23] and [29] for the Itô formula in the general context of semi-martingales),
and see that almost surely and for any    we have

1

2
∥v(r)∥2 +

∫ r

0

ν∥∇v∥2 dt

= |v(0)|2 +
∫ r

0

(
− (v, dΦ)︸ ︷︷ ︸

I

+(v · ∇v, v)︸ ︷︷ ︸
II

+(v · ∇Φ, v)︸ ︷︷ ︸
III

+(Φ · ∇v, v)︸ ︷︷ ︸
IV

+(Φ · ∇Φ, v)︸ ︷︷ ︸
V

+ ν(∇v,∇Φ)︸ ︷︷ ︸
VI

)
dt

+

∫ r

0

∫
D

σ2

2
(f ′(Xt))

2 dt+
1

2

∫
(0,r]

∫
E0

∫
D

|f(Xt +K(ξ, t))− f(Xt)|2dπ̂(ξ, t).

(3.5)

Dδ = (0, L)2 × (0, δt)Here we also used the fact that that the boundary layer   .  We continue
our analysis by estimating each of the underlined terms in the above equation.

Term I.  From (2.5) it follows that∫ r

0

∫
D

v dΦ dx =

∫ r

0

∫
Dδ

v1 df(Xt) dxdt

=

∫ r

0

∫
Dδ

v1 Lf(Xt)dxdt+
∫ r

0

∫
Dδ

σv1f
′(Xt)dx dWt

+

∫
(0,r]

∫
E0

∫
Dδ

v1(f(Xt +K(ξ, t))− f(Xt))dxdπ̂(ξ, t). (3.6)
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Term II.  Using the incompressibility of v, along with integration by parts, we get

(v · ∇v, v) = 0.

x1 x2 v1v3 x3

Term  III.  Application  of  the  fundamental  theorem  of  calculus  and  the  Schwarz  inequality
shows that the    integral of the product  , is bounded uniformly in    according to∣∣∣∣∣

∫ L

0

∫ L

0

v1 v3dx1dx2

∣∣∣∣∣ =
∣∣∣∣∣
∫ L

0

∫ L

0

∫ x3

0

∂v1
∂ξ

(x1, x2, ξ) dξ
∫ x3

0

∂v3
∂η

(x1, x2, η) dη dx1dx2

∣∣∣∣∣
⩽ x3∥

∂v1
∂x3

∥ ∥ ∂v3
∂x3

∥ .

δtThe quadratic source term is then estimated in terms of noise,  , and the dissipation (for more
details see [13]) ∫ r

0

|(v · ∇Φ, v)|dt ⩽
∫ r

0

δt
2
|Xt| ∥∇v∥2dt. (3.7)

Φ · ∇v = ϕ(x3,Xt)
∂v

∂x1
,Term IV.  Since    using the periodicity of v, one can show that

(Φ · ∇v, v) = 1

2

∫
Dδ

ϕ(x3,Xt)
∂

∂x1
|v|2 dx

=
1

2

∫ δt

0

ϕ(x3,Xt)

∫ L

0

(∫ L

0

∂

∂x1
|v|2 dx1

)
dx2 dx3 = 0. (3.8)

Φ · ∇Φ = 0Term V.  A pointwise calculation leads to  , hence,

(Φ · ∇Φ, v) = 0.

∂ϕ(x3, z)

∂x3
=

−z
δ(z)

0 < x3 < δ(z)Term VI.  Direct calculation shows that    for  . Hence

∥ ∂ϕ
∂x3

∥ =
L

δ
1/2
t

|Xt|. (3.9)

Therefore, using the Cauchy–Schwarz inequality and Young’s inequality, we find∫ r

0

|ν (∇v,∇Φ)|dt ⩽
∫ r

0

ν

δt
L2|Xt|2 +

ν

4
∥∇v∥2dt. (3.10)

P r ∈ [0, T ]Using the estimates for all seven terms above in (3.5) yields,   -a.s. and for any  ,

1

2
∥v(r)∥2 +

∫ r

0

3ν

4
∥∇v∥2 dt

+

∫ r

0

∫
Dδt

v1σf
′(Xt)dxdWt +

∫
(0,r]

∫
E0

∫
Dδt

v1(f(Xt +K(ξ, t))− f(Xt))dx dπ̂(t, ξ)

⩽ 1

2
∥v(0)∥2 +

∫ r

0

∣∣∣∣∫
Dδ

v1 Lf(Xt) dx

∣∣∣∣ dt+ ∫ r

0

[
δt
2
|Xt| ∥∇v∥2 + νL2 |Xt|2

δt

]
dt

+
σ2

2

∫ r

0

∫
Dδ

(f ′(Xt))
2 dx dt+

1

2

∫
(0,r]

∫
E0

∫
Dδ

|f(Xt +K(ξ, t))− f(Xt)|2dx dπ(ξ, t), (3.11)

δt = δ(Xt) f(z) = fx3(z) =

(
1− x3

δ(z)

)
zwhere we recall  that   ,  the function      is defined in (2.4)

and therefore has derivatives given by (2.7).
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The second term on the right side of (3.11) can be bounded from above using the following lemma,
which is proved in the Appendix of [13]. □

G = (Gt)t∈R+

(Ω,F , (Ft)t⩾0,P) P t ∈ R+

Lemma  3.2  (Lemma  4.2  [13])  Let      be  a  stochastic  process  defined  on  the

probability space   . Then   -a.s., we have for all   ,∣∣∣∣∫
Dδ

v1Gt dx

∣∣∣∣ ⩽ ∥∇v(t)∥ δt L

(∫ δt

0

|Gt|2 dx3

) 1
2

.

Gt = Lf(Xt)Applying Lemma 3.2 with    and then using Young’s inequality, we have∫ r

0

∣∣∣∣∫
Dδ

v1 Lf(Xt) dx

∣∣∣∣ dt ⩽ ∫ r

0

∥∇v∥ δt L

(∫ δt

0

|Lf(Xt)|2 dx3

) 1
2

dt

⩽
∫ r

0

ν

4
∥∇v∥2dt+

∫ r

0

1

ν
δ2t L

2

(∫ δt

0

|Lf(Xt)|2 dx3

)
dt. (3.12)

∥∇v∥
0 P

Hence inserting estimate (3.12) in (3.11), collecting terms that involve   , and integrating

in time from    to T, we have the following stochastic inequality that holds    a.s.:

1

2
∥v(r)∥2 +

∫ r

0

(
1

2
− δt |Xt|

2ν

)
ν∥∇v∥2dt

+

∫ r

0

∫
Dδt

σv1 f
′(Xt)dxdWt +

∫
(0,r]

∫
E0

∫
Dδt

v1 (f(Xt +K(ξ, t))− f(Xt))dx dπ̂(t, ξ)

⩽ 1

2
∥v(0)∥2 + σ2

2

∫ r

0

∫
Dδ

(f ′(Xt))
2 dxdt+

∫ r

0

1

ν
δ2t L

2

∫ δt

0

|Lf(Xt)|2 dx3 dt

+

∫ r

0

νL2 |Xt|2

δt
dt+

1

2

∫
(0,r]

∫
E0

∫
Dδ

|f(Xt +K(ξ, t))− f(Xt)|2dx dπ(ξ, t). (3.13)

C2

δ = δ(z) δ

(
1

2
− δt |Xt|

2ν

)We  note  that  the  calculations  up  to  and  including  (3.13)  work  for  a  general      function

.  For      as  in  (2.3)  it  is  crucial  to  choose A  and B  such  that      in  the

second  term  of  (3.13)  is  positive.  Such  conditions  are  summarized  in  the  following  lemma
borrowed from [13].

δt = δ(Xt) Xt R δ(z) =
A

z2 +B
A

B
< h A ⩽ ν

√
B

t ⩾ 0 δt < h

Lemma  3.3  Let    ,  where      is  a  stochastic  process  in      and    .

Suppose A and B are positive numbers such that    and   . Then with probability one,

for all   , we have    and

1

4
⩽ 1

2
− δt |Xt|

2ν
⩽ 1

2
. (3.14)

A = νU B = U2 U h
ν > 1.These hold if, for instance,    and    and  

We derive upper bounds for the terms on the right side of (3.13) and summarize our findings
on the almost sure upper bound for the energy dissipation in the following lemma.

A

B
< h A ⩽ ν

√
B

r ∈ [0, T ], T > 0

Lemma 3.4  Suppose A and B are positive constants such that     and    . Then

with probability one, the following inequality holds a.s. for all   :
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2∥v(r)∥2 +
∫ r

0

ν∥∇v∥2dt+ 4Mr ⩽ 2∥v(0)∥2 + Yr, (3.15)

r ∈ [0, T ]where for any    we have the following definitions

Mr :=

∫ r

0

∫
Dδt

σv1 f
′(Xt)dxdWt +

∫
(0,r]

∫
E0

∫
Dδt

v1 (f(Xt +K(ξ, t))− f(Xt))dx dπ̂(t, ξ), (3.16)

and

Yr := 4σ2 L2

[
3

2

A

B
+

6

ν

(
A

B

)3
σ2

B

]
r + 4L2

∫ r

0

(
ν
|Xt|2

δt
+

6

ν

(
A

B

)3

θ2 |U − Xt|2
)
dt

+ 4L2∥K∥2∞π((0, r], E0)

(
27A

2B
+

∥K∥2∞A
8B2

+
50∥K∥4∞A

3B3

)
+

8λ(E0)

3ν

(
A

B

)3(
9∥K∥4∞ +

∥K∥6∞
B2

)
r. (3.17)

∫
Dδ

(f ′(Xt))
2 dx = L2

∫ δt
0
(f ′(Xt))

2 dx3

Proof  We  estimate  the  terms  on  the  right  side  of  (3.13).  For  the  first  term,  we  write
  and thus observe that

σ2

∫ r

0

∫
Dδ

(f ′(Xt))
2 dxdt = σ2L2

∫ r

0

∫ δt

0

(
1− x3

3X2
t +B

A

)2

dx3dt

= σ2L2

∫ r

0

δt − δ2t
3X2

t +B

A
+
δ3t
3

(
3X2

t +B

A

)2

dt

⩽ σ2L2

∫ r

0

δt − δ2t
X2

t +B

A
+
δ3t
3

9

δ2t
dt

⩽ 3A

B
σ2L2r. (3.18)

3X2
t +B

A
⩽ 3

δt
δ(z) ⩽ A

B
z ∈ RHere, we used the fact that    and    for all  . Similarly, we also obtain∫

(0,r]

∫
E0

∫
Dδ

|f(Xt +K(ξ, t))− f(Xt)|2dx dπ(ξ, t)

= L2

∫
(0,r]

∫
E0

∫ δt

0

K2(ξ, t)

(
1− x3

2X2
t + 3XtK(ξ, t) +K2(ξ, t) +B

A

)2

dx3 dπ(ξ, t).

Observe that

3X2
t + 3XtK(ξ, t) +K2(ξ, t) +B

A
=

X2
t + 2(X2

t +
3
4K(ξ, t))2 − K2(ξ,t)

8 +B

A
⩾ 1

δt
− K2(ξ, t)

8A

and
3X2

t + 3XtK(ξ, t) +K2(ξ, t) +B

A
⩽

9
2X

2
t +

5
2K

2(ξ, t) +B

A
⩽ 9

2δt
+

5K2(ξ, t)

A
.

Thus, we obtain that∫
(0,r]

∫
E0

∫
Dδ

|f(Xt +K(ξ, t))− f(Xt)|2dx dπ(ξ, t)

⩽ L2∥K∥2∞
∫
(0,r]

∫
E0

δt − δ2t

(
1

δt
− K2(ξ, t)

8A

)
+
δ3t
3

(
81

2δ2t
+

50K4(ξ, t)

A2

)
dπ(ξ, t)

⩽ L2∥K∥2∞π((0, r], E0)

(
27A

2B
+

∥K∥2∞A
8B2

+
50∥K∥4∞A

3B3

)
. (3.19)
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Lf(Xt) L
(a+ b)2 ⩽ 2(a2 + b2)

Now we consider the term involving   .  By the definition (2.6) of     and the elementary
inequality  , we obtain

Lf(Xt) = f ′(Xt)θ(U − Xt) +
σ2

2
f ′′(Xt) +

∫
E0

(f(Xt +K)− f(Xt)− f ′(Xt)K(ξ, t)) dλ(ξ),

|Lf(Xt)|2⩽2|f ′(Xt)|2θ2(U−Xt)
2+σ4 (f ′′(Xt))

2
+4

∫
E0

|f(Xt+K)−f(Xt)−f ′(Xt)K(ξ, t)|2dλ(ξ).

|f(Xt +K)− f(Xt)− f ′(Xt)K|2 =
(x3
A

)2
(3XtK

2 +K3)2Observe that  .

f ′′(Xt) = −6x3
Xt

A
So using (3.18) and the expression  , we see that for the second term on the

right of (3.13) we have∫ δt

0

|Lf(Xt)|2 dx3 ⩽ 2 θ2 (U − Xt)
2

∫ δt

0

(f ′(Xt))
2 dx3 +

σ4

2

∫ δt

0

(f ′′(Xt))
2 dx3

+

∫ δt

0

∫
E0

(x3
A

)2
(3XtK

2(ξ, t) +K3(ξ, t))2dλ(ξ)dx3

⩽ 6
A

B
θ2 (U − Xt)

2 + 6σ4 X2
t

A2
δ3t + 2λ(E0)

∫ δt

0

(x3
A

)2 (
9X2

t∥K∥4∞ + ∥K∥6∞
)
dx3

⩽ 6
A

B
θ2 (U − Xt)

2 + 6σ4 δ
2
t

A
+ 2λ(E0)

δ3t
3A2

(
9

(
A

δt

)2

∥K∥4∞ + ∥K∥6∞

)

⩽ 6
A

B
θ2 (U − Xt)

2 + 6σ4 A

B2
+

2λ(E0)

3

(
9A

B
∥K∥4∞ +

A

B3
∥K∥6∞

)
. (3.20)

|Xt|2 ⩽ A

δt
δt ⩽

A

B
In the above, we used the fact that    and  .

Applying (3.14) to the second term on the left of (3.13), and (3.18), (3.19), (3.20) to the right
of (3.13), we obtain

1

2
∥v(r)∥2 − 1

2
∥v(0)∥2 + 1

4

∫ r

0

ν∥∇v∥2dt+Mr

⩽ 3

2

A

B
L2 σ2r + L2∥K∥2∞π((0, r], E0)

(
27A

2B
+

∥K∥2∞A
8B2

+
50∥K∥4∞A

3B3

)
+ L2

∫ r

0

(
ν
|Xt|2

δt
+

6

ν

(
A

B

)3

θ2 (U − Xt)
2

)
dt

+
6

ν

(
A

B

)3
σ4

B
r +

2λ(E0)

3ν

(
A

B

)3(
9∥K∥4∞ +

∥K∥6∞
B2

)
r. (3.21)

supr∈[0,T ] ENext we take    and then    on both sides of (3.15). This gives us

E sup
r∈[0,T ]

∥v(r)∥2 + ν

2
E
∫ T

0

∥∇v(s)∥2ds ⩽ E∥v(0)∥2 + 2E sup
r∈[0,T ]

|Mr|+ E
1

2
[YT ]. (3.22)

YT
E[X0] = U E

[
|U − Xt|2

]
= E[X2

t ]− U2

We now estimate the expectation of the integral term in    defined in (3.17). Assuming that
,  we  have   .  Hence,  using  the  moment  bound (5.12),  from

the Appendix, we observe that
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E
∫ T

0

(
ν
|Xt|2

δt
+

6

ν

(
A

B

)3

θ2 |U − Xt|2
)
dt

= E
∫ T

0

(
ν
X4

t +BX2
t

A
+

6

ν

(
A

B

)3

θ2 |U − Xt|2
)
dt

= E
∫ T

0

(
νB

A
+

6θ2

ν

(
A

B

)3
)
E[X2

t ]−
6θ2U2

ν

(
A

B

)3

+
νE[X4

t ]

A
dt

⩽
(
νB

A
+

6θ2

ν

(
A

B

)3
)( 3

2θ
E[X2

0] + 3U2

(
T − 2

θ
+

1

2θ

)
+

3T

2θ
(σ2 + ∥K∥2∞λ(E0))

)
+
ν

A

(
2

θ
E[X4

0] + 8U4T + 8T

(
σ4 + 2∥K∥∞λ(E0) + ∥K∥4∞ λ2(E0) + ∥K∥∞λ(E0)θ

4θ2

))
. (3.23)

Thus thanks to (3.23), we have

1

2
E[YT ] ⩽ 2σ2 L2

[
3

2

A

B
+

6

ν

(
A

B

)3
σ2

B

]
T +

4λ(E0)

3

(
ν2

U3

)(
9∥K∥4∞ +

∥K∥6∞
B2

)
T

+ 2L2

(
U + 6θ2

(
ν2

U3

)3
)( 3

2θ
E[X2

0] + 3U2

(
T − 3

2θ

)
+

3T

2θ
(σ2 + ∥K∥2∞λ(E0))

)
+

2L2

U

(
2

θ
E[X4

0] + 8U4T + 8T

(
σ4 + 2∥K∥∞λ(E0) + ∥K∥4∞ λ2(E0) + ∥K∥∞λ(E0)θ

4θ2

))
+ 2L2∥K∥2∞λ(E0)T

(
27ν

2U
+

∥K∥2∞ν
8U3

+
50∥K∥4∞ν

3U5

)
=: K1, (3.24)

K1 > 0 A,B,U, ν, T, σ, λ(E0),E[Xk
0 ], ∥K∥∞where    depends on the given data  .

Mr

Next we use the Burkholder–Davis–Gundy (BDG) inequality to treat the two terms appearing
in the martingale  . First,

E sup
r∈[0,T ]

∣∣∣∣∣
∫ r

0

∫
Dδs

σv1 f
′(Xs)dxdW (s)

∣∣∣∣∣ ⩽ σE

(∫ T

0

∥v(s)∥2
(∫

Dδ

|f ′(Xs)|2
)
ds

) 1
2

⩽ σE

(∫ T

0

sup
r∈[0,s]

∥v(r)∥
(∫

Dδ

|f ′(Xs)|2
)
ds

) 1
2

⩽ σ2L2

(
3ν

U

)
+ CE

∫ T

0

sup
r∈[0,s]

∥v(r)∥2ds. (3.25)

C > 0

Here  we  have  also  used  the  argument  in  (3.18).  Similarly,  using  (3.19),  we  obtain  for  some
  that

E sup
r∈[0,T ]

∣∣∣∣∣
∫
(0,r]

∫
E0

∫
Dδt

v1 (f(Xt +K(ξ, t))− f(Xt))dx dπ̂(t, ξ)

∣∣∣∣∣
⩽ E

(
sup

r∈[0,T ]

∥v(r)∥2
∫
(0,T ]

∫
E0

∫
Dδ

|f(Xt +K(ξ, t))− f(Xt)|2dxdπ(ξ, t)

) 1
2

⩽ 1

4
E

(
sup

r∈[0,T ]

∥v(r)∥2
)

+ E
∫
(0,T ]

∫
E0

∫
Dδ

|f(Xt +K(ξ, t))− f(Xt)|2dxdλ(ξ)dt

⩽ 1

4
E sup

r∈[0,T ]

∥v(r)∥2 + L2∥K∥2∞λ(E0)T

(
27ν

2U
+

∥K∥2∞ν
8U3

+
50∥K∥4∞ν

3U5

)
. (3.26)
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Hence, combining (3.25) and (3.26) and substituting in (3.22), we obtain

E sup
r∈[0,T ]

∥v(r)∥2 + ν

2
E
∫ T

0

∥∇v(t)∥2dt ⩽ E∥v(0)∥2 +K2 + CE
∫ T

0

sup
r∈[0,s]

∥v(r)∥2ds, (3.27)

K2 > 0 K1

C > 0

where     depends on     given in (3.24) and other terms appearing in (3.25) and (3.26);
and    depends on the given data.

C > 0Next  we  apply  the  Grönwall  inequality  to  (3.27)  to  obtain  that  for  some  constant   

depending on the given data,

E sup
t∈[0,T ]

∥v(t)∥2 + ν

2
E
∫ T

0

∥∇v(t)∥2dt ⩽ C. (3.28)

α ∈
(
0,

1

2

)
To obtain  compactness  and  keeping  in  mind  that v  is  not  expected  to  be  differentiable,  we

look for  bounds on the fractional  time derivative of v.  To see this,  we first  note that,  for  any

, the following bounds can be obtained (see e.g Lemma 2.1 [14]):

E∥
∫ ·

0

σf ′(Xt)dWt +

∫
(0,·]

∫
E0

(f(Xt +K(ξ, t))− f(Xt))dπ̂(ξ, t)∥Hα([0,T ];L2) ⩽ C.

∥B(v, v)∥D(A)′ ⩽ C∥v∥∥∇v∥ C > 0Also observe that    (see e.g. [39]). Thus, for some  , we have

E∥
∫ ·

0

B(v, v)∥H1(0,T ;D(A)′) ⩽ CE sup
t∈[0,T ]

∥v(t)∥2 E
∫ T

0

∥∇v(t)∥2dt ⩽ C.

Similarly, we can see that

E∥
∫ ·

0

(B(v, v +Φ) +B(v,Φ)− ν∆v − ν∆Φ)dt∥H1(0,T ;D(A)′) ⩽ C

and that

E∥
∫ ·

0

Lf(Xt)∥2H1(0,T ;L2) ⩽ C.

C > 0Thus, we conclude that for some  ,

E∥v∥Hα(0,T ;D(A)′) ⩽ C. (3.29)

Having the above estimates in hand, we employ the Galerkin approximation scheme to obtain
the existence of martingale solutions using standard arguments as in [6, 8, 14, 30]. We refer the
reader to [6] for an analysis of the Navier–Stokes equations, driven by a general multiplicative
Lévy noise and specifically for a detailed argument for the passage of limit. □

 4.  Estimation of the mean value

In this section, we prove an almost sure upper bound for the energy dissipation.
E[⟨ϵ⟩T ] P

[0, T ] T → ∞ u = v +Φ

To derive  the  estimate  on   ,  we  take  the  expected  value  of  (3.15)  with  respect  to   ,
then average it over  , and finally take the limit superior as  . Since  , we obtain∫ T

0

∥∇u∥2dt =
∫ T

0

∥∇v +∇Φ∥2dt ⩽ 2

∫ T

0

∥∇v∥2 + ∥∇Φ∥2dt. (4.1)

The second term in the integrand is, from (3.9),

∥∇Φ∥2 = ∥ ∂ϕ
∂x3

∥2 =
L2

δt
X2

t = L2 X4
t +BX2

t

A
. (4.2)
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Hence,

E

[∫ T

0

∥∇Φ∥2dt

]
=

L2

A

∫ T

0

E
[
X4

t +BX2
t

]
dt, (4.3)

Xt

MT

E[MT ] = 0 for all T ∈ [0,∞). E

which  can  be  bounded  using  the  moment  bounds  for      in  (5.12)  in  the  Appendix.  We  now
estimate the first term on the right of (4.1). We know that    defined in (3.16) is a martingale
and  hence     Therefore,  taking  the  expectation      of  both  sides  of
(3.15) gives

E
∫ T

0

ν∥∇v∥2dt ⩽ E
[
2∥v(0)∥2 + YT

]
. (4.4)

YTWe use the expected value of    calculated in (3.23).
|D| = L2h

E0 π((0, T ], E0)

E
π((0, T ], E0)

T
= λ(E0) T > 0

Now we continue from (4.4);  we divide both sides by T and     and use (3.24).  We
know  that,  for  a  fixed  set   ,      is  a  Poisson  random  variable  with  intensity

. Thus, for any  , we obtain

lim sup
T→∞

1

TL2h
E
∫ T

0

ν∥∇v∥2dt ⩽ lim sup
T→∞

1

TL2h
E[YT ]

⩽ 4

h

[
3

2

A

B
+

6

ν

(
A

B

)3
σ2

B

]
σ2

+
4

h

(
νB

A
+

6θ2

ν

(
A

B

)3
)(

3U2 +
3

2θ
(σ2 + ∥K∥2∞λ(E0))

)
+

4

h

ν

A

(
8U4 + 8

(
σ4 + 2∥K∥∞λ(E0) + ∥K∥4∞ λ2(E0) + ∥K∥∞λ(E0)θ

4θ2

))
+

4

h
∥K∥2∞

(
27A

2B
+

∥K∥2∞A
8B2

+
50∥K∥4∞A

3B3

)
λ(E0)

+
8λ(E0)

3ν

(
A

B

)3(
9∥K∥4∞ +

∥K∥6∞
B2

)
. (4.5)

Similar calculations and an application of (5.12) lead us to

E

[∫ T

0

∥∇Φ∥2dt

]
=
L2

A

∫ T

0

E
[
X4

t +BX2
t

]
dt

⩽ T
BL2

A

(
3U2 +

3

2θ
(σ2 + ∥K∥2∞λ(E0))

)
+ T

L2

A

(
8U4 + 8

(
σ4 + 2∥K∥∞λ(E0) + ∥K∥4∞ λ2(E0) + ∥K∥∞λ(E0)θ

4θ2

))
.

Thus, we infer that

lim sup
T→∞

ν

TL2h
E

[∫ T

0

∥∇Φ∥2dt

]

⩽ Bν

Ah

(
3U2 +

3

2θ
(σ2 + ∥K∥2∞λ(E0))

)
+

ν

Ah

(
8U4 + 8

(
σ4 + 2∥K∥∞λ(E0) + ∥K∥4∞ λ2(E0) + ∥K∥∞λ(E0)θ

4θ2

))
. (4.6)

A = νU B = U2Finally, by (4.1), (4.5), and (4.6), and taking  ,  , one obtains the estimate
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ε ⩽ lim sup
T→∞

2

TL2h
E
∫ T

0

ν∥∇v∥2dt+ lim sup
T→∞

2

TL2h
E
∫ T

0

ν∥∇Φ∥2dt

⩽ 8

h

[
3

2

ν

U
+

6ν2σ2

U5

]
σ2 +

8

h

(
6θ2ν2

U3
+

5U

4

)(
3U2 +

3

2θ
(σ2 + ∥K∥2∞λ(E0))

)
+

10

hU

(
8U4 + 8

(
σ4 + 2∥K∥∞λ(E0) + ∥K∥4∞ λ2(E0) + ∥K∥∞λ(E0)θ

4θ2

))
+

8

h
∥K∥2∞

(
27ν

2U
+

∥K∥2∞ν
8U3

+
50∥K∥4∞ν

3U5

)
λ(E0)

+
16λ(E0)

3ν

( ν
U

)3(
9∥K∥4∞ +

∥K∥6∞
B2

)
. (4.7)

⟨ϵ⟩T

k ⩾ 1 2k ⟨ϵ⟩T

Remark 4.1 (Higher moments) One can obtain upper bounds for higher moments of     by
following our method, using the general moment bounds (5.12), and Lemma 5.1 in the Appendix.
We expect that for all integer  , the   -th moment of    satisfies

lim sup
T→∞

E[⟨ϵ⟩2kT ] ≲ U6k

h2k
+ Pk

(
σ2, ∥K∥2∞, λ(E0)

)
, (4.8)

Pk(x, y, z) (x, y, z) Pk(0, 0, 0) = 0

Pk

U, ν θ

where      is  a  polynomial  in     with   ,  so  that  (4.8)  recovering  an
upper bound in [10]  when there is  no noise.  The coefficients of     are explicit  functions of k,

, and  .

To give some details, by (5.12) and (5.5), for all even integers k, we have

lim sup
t→∞

E
[
X2k

t

]
⩽ 9kU2k + 9kC2k

([
σ2 + ∥K∥2∞ λ(E0)

]k
θk

+ 2k∥K∥2k∞
λ(E0)

4θ

)
, (4.9)

C2k

p ∈ [1,∞)

where     is the absolute constant in the Burkholder–Davis–Gundy inequality (5.4). By (4.1),
for all  ,

E

[∣∣∣∣∣
∫ T

0

∥∇u∥2dt

∣∣∣∣∣
p]

⩽ 2p E

[∣∣∣∣∣
∫ T

0

∥∇v∥2 + ∥∇Φ∥2dt

∣∣∣∣∣
p]

⩽ 4p

(
E

[∣∣∣∣∣
∫ T

0

∥∇v∥2dt

∣∣∣∣∣
p]

+ E

[∣∣∣∣∣
∫ T

0

∥∇Φ∥2dt

∣∣∣∣∣
p])

. (4.10)

To bound the second term on the right of (4.10), from Hölder’s inequality we have

E

[∣∣∣∣∣
∫ T

0

∥∇Φ∥2dt

∣∣∣∣∣
p]

⩽T p−1 E

[∫ T

0

∥∇Φ∥2pdt

]
, (4.11)

Xt

Xt

Lp

which can be bounded in terms of the 4p-th moment of  , according to (4.2). The first term on
the  right  of  (4.10)  can also  be  bounded in  terms of  the  4p-th  moment  of     by applying the
almost sure upper bound (3.15) and then Doob’s   -inequality to the martingale term.

 5.  Appendix

 5.1  OU process driven by Lévy noise

XWe obtain moment estimates for the process    solving (1.5)–(1.6).
Recall from (1.6) that L is a square-integrable Lévy martingale given by
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Lt = σWt +

∫
E0×(0,t]

K(ξ, s)dπ̂(ξ, s).

πThe Laplace functional of the Poisson random measure    is given by

E

[
exp

{
−
∫
E0×(0,∞)

F (ξ, s) dπ(ξ, s)

}]
= exp

{
−
∫
E0×(0,∞)

1− e−F (ξ,s) dλ(ξ) ds

}
. (5.1)

[L] [L]c [L]

[M ]ct = σ2t

Let      be  the  quadratic  variation  of L  and  let      be  the  continuous  part  of   .  Then
  and∫

(0,t]

ϕ(s) d[L]s =
∫
(0,t]

ϕ(s) d[L]cs +
∑

s∈(0,t]

ϕ(s) |∆Ls|2

= σ2

∫
(0,t]

ϕ(s) ds +

∫
E0×(0,t]

ϕ(s)K2(ξ, s) dπ(ξ, s) (5.2)

t ∈ (0,∞) ϕ : (0,∞) → Rfor all    and for any continuous function  .
ϕ(s) = eθsWe take    and define the stochastic integral

It :=

∫
(0,t]

eθs dLs, (5.3)

[I]t =
∫
(0,t]

e2θs d[L]s

p ⩾ 1 Cp ∈ (0,∞)

which is  a  local  martingale  with quadratic  variation   .  By the Burkholder–

Davis–Gundy inequality for general local martingales (see, for instance, [20, Theorem 26.12]), for
all  , there exists a constant    such that

C−1
p E

[
[I]

p/2
t

]
⩽ E

[(
sup

s∈[0,t]

|Is|

)p]
⩽ CpE

[
[I]

p/2
t

]
t ⩾ 0. (5.4)

p = 2kTo get a bound for the 2k-th moment of I, we take    in (5.4) and apply the lemma below.

E
[
[I]kt
]

k ∈ N k = 1 t ∈ [0,∞)Lemma 5.1     has the following upper bound for   . When   , for all   ,

E [[I]t] ⩽
(
e2θt − 1

2θ

)[
σ2 + ∥K∥2∞ λ(E0)

]
.

k = 2 C2 t ∈ [0,∞)When    and    is the constant in (5.4), for all   ,

E
[
[I]2t
]
⩽ 4

{(
e2θt − 1

2θ

)2 [
σ2 + ∥K∥2∞ λ(E0)

]2
+ C2 ∥K∥4∞ λ(E0)

e4θt − 1

4θ

}
.

k ⩾ 2 C̃k ∈ (0,∞) t >
1

2θ
For all even integers   , there exists a constant    such that, for   ,

E
[
[I]kt
]
⩽ 2k

{(
e2θt − 1

2θ

)k [
σ2 + ∥K∥2∞ λ(E0)

]k
+ C̃k ∥K∥2k∞ e2θk t λ(E0)

4θ

}
.

An immediate consequence of Lemma 5.1 is the uniform bound

lim sup
t→∞

E
[
[I]kt
]

e2θkt
⩽
[
σ2 + ∥K∥2∞ λ(E0)

]k
θk

+ 2k∥K∥2k∞
λ(E0)

4θ
<∞ (5.5)

for all even integers k.

Mt :=
∫
(0,t]

∫
E0
e2θsK2(ξ, s) dπ̂(ξ, s)Proof  of  Lemma  5.1  Let M  be  the  process   ,  which  is  a

local martingale. Then
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0 ⩽ [I]t =

∫
(0,t]

e2θs d[L]s

=
σ2

2θ
(e2θt − 1) +

∫
E0×(0,t]

e2θsK2(ξ, s) dπ(ξ, s)

⩽ σ2

2θ
(e2θt − 1) + ∥K∥2∞ λ(E0)

(
e2θt − 1

2θ

)
+ Mt

=

(
e2θt − 1

2θ

)(
σ2 + ∥K∥2∞ λ(E0)

)
+ Mt, t ∈ [0,∞). (5.6)

k = 1The desired inequality for    follows immediately.

k ⩾ 2 (a+ b)k ⩽ 2k(ak + bk) k ⩾ 1

a, b ⩾ 0

For   ,  using (5.6)  again and the simple  fact  that      for     and

, we obtain

E
[
[I]kt
]
⩽ 2k

{(
e2θt − 1

2θ

)k [
σ2 + ∥K∥2∞ λ(E0)

]k
+ E

[
Mk

t

]}
. (5.7)

Applying the BDG inequality for the local martingale M,

E
[
Mk

t

]
⩽Ck E

[
[M ]

k/2
t

]
=Ck E

(∫
E0×(0,t]

e4θsK4(ξ, s) dπ(ξ, s)

)k/2


⩽Ck ∥K∥2k∞ E

(∫
E0×(0,t]

e4θs dπ(ξ, s)

)k/2
 . (5.8)

k = 2When    the expectation in the last displayed expression is

E

[(∫
E0×(0,t]

e4θs dπ(ξ, s)

)]
= λ(E0)

e4θt − 1

4θ
,

k = 2giving the desired inequality for  .

λ(E0) <∞ {(Zi, ti)} ⊂ E0 × [0,∞)

π

Since  , there exists a countable set    whose elements are the

jump points for  . Then ∫
E0×(0,t]

Φ(ξ, s) dπ(ξ, s) =
∑

i: ti∈(0,t]

Φ(Zi, ti)

Φ : E0 × (0, t] → R t ∈ (0,∞) {ti} ∩ (0, t]

(0, t] λ(E0)

for  all  bounded  measurable  function      and   .  The  sets   

are distributed as the jump times of a Poisson process on    with intensity  . Hence

E

(∫
E0×(0,t]

e4θs dπ(ξ, s)

)k/2
 = E


 ∑

{ti}∩(0,t]

e4θti

k/2


= e−λ(E0) t
∞∑

m=0

(λ(E0) t)
m

m!
E

( m∑
i=1

e4θSi

)k/2
 , (5.9)

{Si}i⩾1 (0, t] k = 2ℓwhere    are i.i.d. uniform on  . By the multinomial theorem, for    even integers,
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E

( m∑
i=1

e4θSi

)k/2
 =

1

tm

∫
(0,t]m

(
m∑
i=1

e4θsi

)ℓ

ds1 · · · dsm

=
1

tm

∑
k1+k2+···+km=ℓ

(
ℓ

k1, k2, . . . , km

)∫
(0,t]m

m∏
i=1

e4θ ki si ds1 · · · dsm

=
1

tm

m−1∑
z=0

∑
j1+j2+···+jm−z=ℓ, j1,j2,··· ,jm−z⩾1

(
ℓ

j1, j2, . . . , jm−z

)
tz

m−z∏
i=1

e4θji t − 1

4θji

⩽ 1

tm

m−1∑
z=0

∑
j1+j2+···+jm−z=ℓ, j1,j2,··· ,jm−z⩾1

(
ℓ

j1, j2, . . . , jm−z

)
tz

e4θℓ t

(4θ)m−z

⩽ 1

tm

m−1∑
z=0

tz
e4θℓ t

(4θ)m−z
(m− z)ℓ

= e4θℓ t a

m∑
j=1

aj−1 jℓ where a = 1/(4θt)

⩽ e4θℓ t a C̃ℓm whenever a ∈ (0, 1/2], (5.10)

C̃ℓ ∈ (0,∞) a ∈ (0, 1/2] m ∈ Z+

aj−1jℓ → 0 a ∈ (0, 1/2] j → ∞
{ki}mi=1

where     is a constant that does not depend on     or   . This follows
from the fact that    uniformly for  , as  . In the third equality above,
z is the number of zeros in  .
Inserting (5.10) into (5.9) gives

E

(∫
E0×(0,t]

e4θs dπ(ξ, s)

)k/2


⩽ e4θℓ t e−λ(E0) t
∞∑

m=0

(λ(E0) t)
m

m!

[
C̃ℓma

]
whenever a = 1/(4θt) ∈ (0, 1/2)

= e4θℓ t C̃ℓ λ(E0) t a = e4θℓ t
C̃ℓ λ(E0)

4θ
, (5.11)

k = 2ℓ ⩾ 2Inserting (5.11) into (5.8) and then into (5.7) gives the desired inequality for  . □

Xt

Xt = e−θtX0 + U(1− e−θt) + e−θtIt t ∈ [0,∞)

(a+ b+ c)k ⩽ 3p(ap + bp + cp) p ⩾ 1 a, b, c ⩾ 0 p = 2k

Now an upper bound for the moments of    can be obtained from (1.7) and Lemma 5.1 as follows.
Recall  that      for  all   .  Using the simple fact that

  for    and  , and taking  , we obtain

|Xt|2k ⩽32k (e−2kθtX2k
0 + U2k (1− e−θt)2k + e−2kθtI2kt ) for t ⩾ 0, P-a.s..

Now using the BDG inequality (5.4), we obtain

E[|Xt|2k] ⩽9k
(
e−2kθtE[X2k

0 ] + U2k(1− e−θt)2k + e−2kθtC2kE
[
[I]kt
])

for t ⩾ 0. (5.12)

XtCombining (5.12) with Lemma 5.1 gives explicit moment bounds for   .  Furthermore, (5.5)
immediately gives the following uniform moment bound.

E[|X0|p] <∞ p > 0 p > 0Corollary 5.2  Assume that    for all   . Then for all   ,

lim sup
t→∞

E [|Xt|p] <∞.
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