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Abstract This paper is concerned with the stochastic incompressible Navier—Stokes
equations in a layer of fluid between two flat no-slip boundaries. The fluid is driven by
the noisy movement of the bottom boundary, where the noise is given by a Lévy process.
After establishing existence of a martingale solution, we use the background flow method
to derive an upper bound on the turbulent energy dissipation rate. Our estimate recovers
one of the basic scaling ideas of turbulence theory, namely, that the dissipation rate is
independent of the viscosity at high Reynolds number.
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1. Introduction

We consider the stochastic 3D Navier-Stokes equations in the box D = [0, L]? x [0, h]

du+ (u-Vu—vAu+ Vp)dt =0, (1.1)
V-u=0, .

which is only driven by the random motion of the bottom wall (so its body force is f=0). A
random boundary condition is given by

u(zy,22,0,t) = (X;,0,0)7  and  wa(zy,xs,h,t) = (0,0,0)" , (1.2)

for all time ¢ € Ry and (21,22) € (0,L)?, while X = (Xy);cr, is the given real-valued, square-
integrable Lévy process described below. In addition, L-periodic boundary conditions in the z;
and xo directions are imposed. In the above, the stochastic processes u and p are the velocity
and pressure, respectively, and the kinematic viscosity is denoted by v > 0.

With the above boundary condition (1.2), when a fluid is enclosed between two plates and the
bottom plate is moved in one direction, a shear flow results. Heuristically, the flow near the
bottom plate is faster than the top one, therefore vorticity is not negligible. When the fluid’s
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vorticity becomes large enough, the flow becomes swirly and turbulent [26]. This flow problem is
very close to flow between rotating cylinders, which is one of the most classical problems in
experimental fluid dynamics [16].

The shear flow problem with constant velocity' is well studied in the literature [10, 21, 25, 28,
31, 41]. However, in practice, the velocity of the shear wall cannot be kept constant, due to the
randomness of the background movement. This randomness can be caused by unavoidable
perturbations in the boundary conditions, or material properties [5, 34]. It is therefore natural to
add noise to the velocity of the shear wall aiming to model this randomness. For the stochastic
Navier—Stokes equations, most works focus on the motions which are derived by a stochastic force,
which dates back to the early 1970s with (as far as we know) the paper of Bensoussan and
Temam [2]. Other than [4] and [13], to the best of our knowledge, there are not many works
rigorously studying the equations of the motion with stochastic boundary conditions. The
objective in this paper is to first study the existence of global martingale solutions to the
stochastic Navier—Stokes equations (1.1) driven by the random boundary condition (1.2). We
then study the effect of the noise on key characteristics of turbulence (dissipation rate) as
manifested by these solutions with X; considered to be the Lévy noise.

1.1 Kolmogorv dissipation law

In turbulent flows, it is not feasible to obtain a detailed description of the fluid velocity since
the state of motion is too complex. Experimental or numerical measurements of instantaneous
system variables appear chaotic, disorganized, and unpredictable [34]. When averaged, however,
certain quantities obey robust laws. One such quantity, the energy dissipation rate, carries
important information about the structure and statistical properties of a turbulent flow. It is
well known that the statistical properties are much more important, physically relevant, and
stable than single trajectories [15, 38]. Based on Kolmogorov’s conventional turbulence theory at
large Reynolds number, dissipation appears to exist independently of viscosity, see [18, 22]. Hence,
by a dimensional consideration, the energy dissipation rate per unit volume, ¢, scales as

I Us
¢ = limswp o | vl 0
where U and h are global velocity and length scales, with C. as the asymptotic constant
(Kolmogorov 1941). This result is fundamental to an understanding of turbulence [26, 36], and
confirmed by measurements (e.g. [19, 24, 35]).

The energy dissipation rate has been widely studied in the literature in the deterministic case,
see, e.g. [3, 9, 11, 12, 18, 21, 25, 27, 28, 31-33, 41]. In the theory of turbulence, upper estimates
of energy dissipation rates are useful for, in particular, determining the overall complexities of
turbulent flow simulations. It also determines the smallest persistent length scales and the
dimension of any global attractor (if it exists) [7, 16, 34, 37]. Doering and Constantin in [10]
proved rigorous asymptotic upper bounds for the deterministic shear driven turbulence. Their
bound is of the form

e<U3/h as Re— oo, (1.3)

'In the deterministic case when the bottom wall moves with a constant velocity, i.e., X; = U in (1.2), one can show that
u= ((h —x3) U/h,O,O)T7 0 < z3 < h, and p = constant,
is a solution of the steady Navier-Stokes equations for every Reynolds number. However, for higher velocities U, the
solution is not unique anymore (see, e.g. [39]) and this flow becomes unstable and it is no longer observed in physical
experiments.
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where Re = Uh/v. Recently the authors in [13] considered a shear turbulence flow when the
boundary moves at the random speed as an Ornstein—Uhlenbeck process. They could quantify
the effect of the noise by upper bounds on the first moment of the dissipation rate as

1 3

1 T U
e =limsupE D] f/ v||Vu(t, ',UJ)H%z(D) dt| $ = + CReyp 02, (1.4)
0

T—o0

where Crep = O (1/Re,1/6). A potential overdissipation is observed if the O.U. process were
replaced by the Wiener process, that is, if the dissipation coefficient 6 in (1.5) goes to 0, the
bound in the right-hand side of (1.8) goes to infinity.

1.2 Assumptions and setup

This paper generalizes the results in [13] by allowing the process X to have jumps. More precisely,
we take X; to be a stochastic process that satisfies the equation

where 6,U > 0 are constants, and L is a square-integrable Lévy martingale given by
Li=oWit [ K(€s)di(e.). (16)
Ex(0,t]

where W = (W;);er, is a Wiener process, o € R is a constant, and 7 is a Poisson random
measure on FE x (0,00) arising from a stationary Poisson point process II on a measurable
space (F,E&). We assume that the intensity measure of 7 has the form d\® d¢ for some o -
finite measure A on (E,&). In equation (1.6) we fix Ey € £ such that A(Ep) < co. We denote
by 7 the associated compensated Poisson random measure, i.e. 7(A4 x (0,t]) = 7(A x (0,t])—
AMA)t for A€ & and t> 0. Furthermore, we assume that W is independent of w. Under this
condition it is possible to construct a right-continuous filtration (F%),5, on (2, F,P) such that
(Q, Fo,P) is complete and W and II are both (F;);>0-adapted. Furthermore the filtration can
be chosen such that W(t) — W(s) and II(t) —II(s) are each independent of Fj, for all
t>s2>0.

We will assume that the noise coefficient function K:[0,7] x E — R is a bounded Borel
measurable function; K € L*°([0,T] x E) for any T > 0. The existence of a unique strong
solution to (1.5) is well known (see, e.g. [1, Section 6.3]) and it is given by

Xp=e "X + U(l—e) + e—“/ e’ dLs. (1.7)
(0,1]
We assume that the initial condition X, has finite p-th moment for all p € (0,00) and
E[Xo] = U.

To make sure that the results are all dimensionally consistent throughout the paper, it is

worth mentioning that with U being the mean velocity of the bottom wall, X; has the

1 velocit
dimension of velocity. Therefore, 6 scales as ——, and ¢ has dimension Y

time Vtime

1.3 Results of this paper

Beside establishing existence of a martingale (weak) solution for (1.1) and (1.2), we derive an
upper bound (see Theorem 1.1) on the expected value of the energy dissipation rate ¢ in terms
of characteristics of the randomly moving bottom wall. Our estimate recovers (1.3) in the limit
when the variance of the noise tends to 0.
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Theorem 1.1 Suppose {(Q, F (Ft)te[0,00)» ]P’), X,hu} is a martingale solution to (1.1)—(1.2) in
the sense of Defintition 2.2. Assume that Re = - > 1 and E[Xo] =U. Assume also that the

initial condition Xo has finite p-th moment for all p € (0,00) and that the initial condition u(0)
is such that E[||u(0)]|?] < co. Then the energy dissipation rate (2.13) can be bounded as follows:
e = limsup E[(e)r] < 110U—3 + 120—2 + 48LL‘4
T—o0 = h Re Re2 U3
2
+ 48%% (3U2 + % (0% + ||K||§OA(EO))>
20 <J4 + 2| KlscA(Eo) + [ K15 A (Eo) + ||K||OOA(E0)0)
hU 02

8 1K1 BOlIE]|S
K2, (2 > =) ME
T Rel ”°°< e e ) AE)

1 h2NE K|S
161, P AE) (QK‘;O+|| ”°°>. (1.8)

Re? 3U U4
2. Mathematical preliminaries

Stochastic Background Flow. Our analysis here critically uses a construction of background flow,
which was initially introduced by Hopf [17] in the deterministic case. The key idea is to
decompose the flow variables into a stochastic incompressible background field and a fluctuating
incompressible part and extend the nonhomogeneous boundary conditions into €. As
constructed in [13], consider the stochastic background flow ® = ®;(x1, 29, 23;w) given by

Oy (21, 09, w33 w) = (B3, X, (w)), 0, 0) (2.1)

and

(1 - ”’) X, (w), if 0< a3 <oy,

P23, Xe(w)) = o (2.2)
07 if (515 < I3 < h,
A ‘
where ¢: R — (0,00) is the function §(z) = 2B and we choose’ the boundary layer
z
thickness ¢; in the background flow to be a random process
A
0 = 60(X = . 2.3
t ( t(w)) |Xt(w)|2+B ( )

Based on the need of analysis in Lemma 3.3, we later choose A =vU and B = U?, so §; has
Uh
the dimension of a length and 4§, € (0,h) if Re= - > 1. Moreover, the boundary layer is
denoted by Ds = (0, L)% x (0,8;).

Before proceeding to the main analysis, we gather some basic calculations as follows. With
¢:[0,h] x R — R given as

a
(b(a,z) = (1 — (S(Z)) z 1{0<a<§(z)}7

and d(z) = , we let ¢(z3, X4 (w)) = f(X(w)), where f: R — R is the smooth function

F(2) = fan(2) = (1 - 5”(0)> .. (2.4)

22+ B

*There can be other choices for the function 6, and our choice in (2.3) is motivated by the general analysis in (3.13).
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It6’s rule asserts that P-a.s. we have

02
df (Xe) = f'(Xe) dX + ?f//(Xt)dt""L (f(Xe— + K (&) = £(X4) = f/(Xe) K) dm

_ LR dE + of (Xo)dWs + / (F(X0 + K(6,) — £(X,)) d#, (25)

Ey
for t > 0, where
Lf(z(t)) = f'(2)0U - z) + %f”(Z) + /E (f(z+ K(&1) — f(2) = f(2) K (&) dA(E).  (2.6)

And from (2.4), we have
§—zd
f/(z) =1- Zs3 52 )
26%8" + 2628 — 226(0)*
7() =3 o200

(2.7)

Lemma 2.1 Consider 6(z) = and f(z) = fz,(2) = <1 - (;Zz)) z as above. Then,

22+ B
/ —2Az ” 2A(322 — B
0'(2) = EFYOE and §"(z) = (,z(2+B)3> (2.8)

Hence from (2.7) we have

322+ B 6z

flz)=1- Ty and f"(z) = —x3 1 (2.9)

Throughout this manuscript, the L?(D) norm and inner product will be denoted by || - || and
(+,), respectively. Concerning the nonhomogeneous boundary conditions, we consider the
following velocity spaces

H={ve[l2(D)]?: V-v=0,vs(x1,72,0) = v3(x1,22,h) = 0, v-nlsp is periodic in x1, x5},

V={ve[HD)?: V-v=0,v(z1,29,0) = v(21,29,h) = 0, v is periodic in z, s},

Cx ={ve[C®D)P: V-v=0,v(x,r2,0) =v(xy,r2,h) = 0, v is periodic in @1, w2}

o

X(@)

1) h X,

Figure 1 The graph of z3 — ¢(z3,X:(w)) , where &; = §(X¢(w)) is the boundary layer thickness
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Martingale solutions. We follow the standard notion of martingale solutions for stochastic
Navier-Stokes equations as initiated by Viot in [40] and further developed in Flandoli and
Gatarek [14, Definition 3.1] or Debussche, Glatt-Holtz, and Temam [8]. We define a martingale
solution for our system (1.1)-(1.2). This notion is the probabilistically weak analogue of the
Leray—Hopf weak solution to the deterministic Navier—Stokes equations.

Definition 2.2 (Martingale solution on compact intervals) Let T € [0,00). A martingale
solution to (1.1)-(1.2) on [0,T] consists of a stochastic basis (Q, F, (Fe)repo,r)s P W, 77) with a
complete right-continuous filtration (Fi)iepo,r); an (Ft)iejo,r)-adapted process(Xi)icjo,r), and an
(Ft)te[o,m)-adapted stochastic process u with cadlag sample paths in D(A)" a.s. such that

o u— ® has sample paths in L> (0,T; H)NL?(0,T; V) almost surely,

o forall t € [0,T] and all v € C32, the following identity holds almost surely,

(wt)p) +v [ (Vu(s), Te)ds+ [ (u(s) - Vuls), ) ds = (w(0). ) (210)
0 0
e the following holds
T
IE[ sup Hu(s)||2+/ |Vu(s)2dt] < 0. (2.11)
s€1[0,T] 0

Definition 2.3 (Energy Dissipation Rate) The time-averaged energy dissipation as a random
variable is given as

11

T
@r =5 T/o VVult, - w)|2s dt. (2.12)

We also define the time-averaged expected energy dissipation rate for a martingale solution u of
(1.1)-(1.2) by setting

I
g := limsup E[{¢)7] = limsupE Dl T/ v||Vu(t, -, w)||3e dt} . (2.13)
0

T— o0 T—o0

3. Existence of martingale solutions

In this section we prove existence of (weak) martingale solutions to (1.1)—(1.2) on [0, T.

Theorem 3.1 Assume that a given law po satisfies
/ |6]*dpo(6) < o0. (3.1)
H

Assume also that E[XolP is finite for any p € (0,00) and that E[Xo] = U . Then there exists a
stochastic basis (9, F, (ft)t>0,IP’,W7r), a predictable process X;, and an (Fi)ie(o,r) -adapted
process u with cadlag sample paths in D(A)" such that u € L*(Q;L°°(0,T; H)) N L?(Q x [0,T),
dt ® dP; V), w(0) has law po and such that {(Q, F,(F)ico,r), P,W,m), (X)eepo,r), u} is a
martingale solution to (1.1)—~(1.2) on [0,T].

Proof The key idea, used in this proof and in what follows, is to consider u—® which

satisfies homogeneous boundary conditions, where ® is the stochastic, incompressible background
field (2.1), carrying the inhomogeneities of the problem.
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We present the rest of the analysis based on v=wu—®, where v is a fluctuating
incompressible field which is unforced and hence of arbitrary amplitude. Making the substitution
u=v+ ® in (1.1), we find that the stochastic process v satisfies

dv+dP=—(v-Vo+v-VO+ & -Vo+ - VP — vAv — vAD + Vp) dt

2
V.v=0, (32)

in the weak sense. The boundary conditions for v are periodic in the z; and x, directions, while
in the z3 direction,

v(x1,2,0,t) = v(x1, 22, hyt) = 0. (3.3)
We begin by proving the existence of a martingale solution to the equation (3.2) subject to the
boundary conditions (3.3). That is, we prove the existence of a basis (Q, F, (Fi)i>0, P, W, m), an
{Fi}+>0-adapted process Xy, and an {F;}+>0-adapted process v € L?(2; L>(0,T; H)) N L*(x
[0,T],dt ® dP; V) with a.s. cadlag sample paths in D(A)" such that

v(s) —v(0) = — /OS (B(v(t),v(t) + @(t)) + B(®(t),v(t)) — vAv(t) — vAD(¢)) dt

+9< /0 LA dt + /0 o f' (%) AW, + /(0,8] /E 0<f<xt+f<<s,t>>f<xt>>dfr<s,t>,o,o>
(34)

T

holds P-a.s. in D(A)" for all s €[0,7]. Here, B(u,w)= Z(u-Vw), where & is the Leray-
projector and A is the Stokes operator and Lf(X;) is defined in (2.6).

In what follows, we provide detailed calculations to obtain energy estimates and then provide
a brief outline for the rest of the procedure.

To derive a priori estimates, we begin by applying Itd’s formula to (3.4). To be precise, we use
Theorem 2.19 in [6] with the special case in which (u) = |u|?> as stated in Corollary 1 in [6]
(see also Theorem I.3.1 in [23] and [29] for the It6 formula in the general context of semi-martingales),
and see that almost surely and for any r € [0,7] we have

1 T
Sl + [ el ar
0

= |v(0)]* + /T( (vd@)+(v~Wv)+(v-v<I>v)+(<I>-Wv)+(<I>-V<I>,v)+u(Vv,V<I>))dt

v VI

// FX))2dt + & /OT/EO/th—i—th)) FOX)[2di (€, 1).

Here we also used the fact that that the boundary layer Ds = (0, L)? x (0,6;). We continue
our analysis by estimating each of the underlined terms in the above equation.

(3.5)

Term I. From (2.5) it follows that

// d@dx—//Dvldet ) dadt
_ /0 /D " Ef(Xt)dxdtJr/OT /D oo f' (X, )da AWV,

+/ 0 /E /D o1 (F(Xe + K(€.1)) — F(X0)dadit (€, 1), (3.6)
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Term II. Using the incompressibility of v, along with integration by parts, we get
(v- Vo, v) =0.

Term III. Application of the fundamental theorem of calculus and the Schwarz inequality
shows that the x; zo integral of the product wvyvs, is bounded uniformly in z3 according to

T3
/ / vy vadzidas| = / // 8 (x1,22,& d§/ 5‘ xl,wg, n) dndzdas

61)1 8@3
< 3||7|| I3 ||

The quadratic source term is then estimated in terms of noise, J;, and the dissipation (for more
details see [13])

T T 5
/|(v.V<I>,v)|dt</ §t|XtH\VvH2dt. (3.7)
0 0

Term IV. Since ® - Vv = ¢(333,Xt)§7“
1

1 o
(@ - Vo, v) = 2/DJ 30, X0) 5ol da

1 ¢ L L b )
=5 ; ¢($3,Xt)/0 (/0 A — v dx1> dzgy dzs = 0. (3.8)

Term V. A pointwise calculation leads to ® - V& = 0, hence,

, using the periodicity of v, one can show that

(®-VP,0)=0
. . 6¢($3a Z) —Z
Term VI. Direct calculation shows that = for 0 < z3 < §(z). Hence
3333 0(2)
|| || = ﬁ Xt (3.9)

Therefore, using the Cauchy—Schwarz inequality and Young’s inequality, we find
/ v (Vo, V&)t < / £LP + 5 Vol (3.10)
Using the estimates for all seven terms above in (3.5) yields, P-a.s. and for any r € [0, 7],

S0+ [ Ivelpar

/ /D v f(Xe)dedWe + / /E /D P+ K (&) = [(X))dz da(t, )
<—||v( )12 + // vy Lf(X)dzx dt+/ [ 1X4| | Vo] + LQDZT dt

o [ fomaraasg [ [ e e - s pazante, - @

where we recall that &, = 0(X;), the function f(z) = fu,(2) = (1 - 303> z is defined in (2.4)

5(2)

and therefore has derivatives given by (2.7).
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The second term on the right side of (3.11) can be bounded from above using the following lemma,
which is proved in the Appendix of [13]. O

Lemma 3.2 (Lemma 4.2 [13]) Let G = (Gi)ier, be a stochastic process defined on the
probability space (Q, F,(Fi)i0,P). Then P-a.s., we have for all t € Ry,

5 3
/ vy Gydz| < ||[Vu(t)| 6 L (/ |Gt2dx3> .
Ds 0

Applying Lemma 3.2 with Gy = Lf(X;) and then using Young’s inequality, we have

r

/HWII& (/ |£f(Xt)2dx3> dt
0
1o ([ >

</O 4HWH dt+/0 o0i L (/O ILf(Xy)] d:c3> dt.  (3.12)

Hence inserting estimate (3.12) in (3.11), collecting terms that involve ||Vwv]|, and integrating

in time from 0 to T, we have the following stochastic inequality that holds P a.s.:

s+ [ (5= 25 vivolpar

/ /135 ovy f'(Xy)dzdW; + /O r /E /Dét FXe + K(&,1) — £(X))dz d7(t, &)

[
< 2, 9 16272 2
||v )=+ / /[)5 dxdt+/ 0; L /0 |Lf(Xe)]” desdt
2
+/O LQ‘X” dt + = /01»] [E /Dé Xy + K(&,1) — f(Xp)|?dz dr(€, t). (3.13)

We note that the calculations up to and including (3.13) work for a general C? function

1 &X
d =04(z). For ¢ as in (2.3) it is crucial to choose A and B such that | = — %]

2 2v
second term of (3.13) is positive. Such conditions are summarized in the following lemma

borrowed from [13].

/ v Lf(Xe)dz|d
Ds

in the

A
4 22+ B’
Suppose A and B are positive numbers such that B < h and A < vvVB . Then with probability one,
forall t >0, we have 6; < h and

Lemma 3.3 Let 0, = 0(X;), where X; is a stochastic process in R and §(z) =

1 61Xy

<
2 2w

<

(3.14)

e
DN | =

These hold if, for instance, A =vU and B = U? and > 1.

IS

We derive upper bounds for the terms on the right side of (3.13) and summarize our findings

on the almost sure upper bound for the energy dissipation in the following lemma.

A
Lemma 3.4 Suppose A and B are positive constants such that B <h and A<vVB. Then
with probability one, the following inequality holds a.s. for all r € [0,T], T >0 :
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2||v(r)]|? +/ v||Vo||?dt 4 4M, < 2||v(0)|* + Vs, (3.15)
0
where for any r € [0,T] we have the following definitions

M, — / /D R /H /E 0 /D o (0 K(E0) — () dR(0,8), (316)

and
3A 6 [(A\°0? X AN?
Y, =402 L2 |22+ - (5] = 4L2/ ! —) U -X? | dt
7 23+u(3) Bl 0 5, +y B | 4
27A  ||K|2,A 50| K|% A
2 2 0
car Kl B (5 + st + UL
BA(Eo) (A s IKNS
3 (B) 9| K||5 + 52 )" (3.17)
Proof We estimate the terms on the right side of (3.13). For the first term, we write
fDé )2dz = L2 (f( ¢))?dz3 and thus observe that
r o 2 2
t 3X; +B
02/ / (f'(Xy))? dzdt = 02L2/ / (1—x3t+> dzsdt
0 JDs o Jo A
" 3X2 + B | & (3% + B\’
= 2L2/ §p— 0 —t— L —) dt
A A R
r X;+B 69
< 2LQ/ 5 — 07—t L S dt
M A
A
< %UQL%. (3.18)
3X?+B _ 3 A
Here, we used the fact that 7—’— < 5 and 0(z) < <3 for all z € R. Similarly, we also obtain

//E/D J(Xe + K(& 1) = f(X)Pdwdn(E, 1)

Ot 2
0 ’I‘] EO A

Observe that
3X2 + 33X, K (1) + K2(&,t)+ B X7+ 2(X7 + 3K(&,1))? -
A o A -y 8A

and
3X2 + 3X,K (&,t) + K2(¢,t) + B - IXZ+SK2(¢t)+ B - 9  5KZ2(¢,t)
1 = >

/!
h
N
g
b

Thus, we obtain that

/(o,r] /E‘O /Dé |f(Xe + K(&:1) — f(Xe)["dadm (&, 1)

1 K%t 82 (81  B50K%(&,t)
<L2K§o/ 5—52< ’ >+t<+7>d7r§,t
I 0l O 8A 3\ 207 Az (&)

27A | |IK[3A | 50| K|S, A
2B 8B2 3B3

< LI r((0.1] Eo) (3.19)
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Now we consider the term involving Lf(X;). By the definition (2.6) of £ and the elementary
inequality (a + b)? < 2(a® + b?), we obtain
o2
LX) =f'(X)0(U - Xe) + 7f//(xt) + / (f(Xe + K) = f(X¢) = f(X)K (€, 1)) dA(E),
Ey

LF(X0)[* <2/ (X0)[0° (U =X1) +0* (f”(Xt))2+4/E [f(Xe+K) = f(Xe) = f'(X) K (&, )[PdA(€).

2
Observe that |f(X; + K) — f(X;) — f/(X)K|? = (%3) (3%, K? + K3)2.
X
76x3—t, we see that for the second term on the

So using (3.18) and the expression f”(X})
right of (3.13) we have

Ot
/ ILf(X)[2das <267 (U — Xy)? /
0 . 02
+/0 /Eo (%) (3K K2(&, ) + K2(€,1))2dN(€)ds

X? Ot a2
e [ (5) ORKIL + 1K) dos

Ot , 0.4 ¢ . 9
(PGP + G [ ()" day

A
<6l p? . 2 4

A 52 53 A\?
<6l p? . 2 4% t a 4 6
< 6B9 (U-X})* 4 60 I +2>\(E0)3A2 <9 (&) KI5 + |K|Oo>

A A 2M(Ep) (94 A
<6=02(U-Xp)? gl KA 4+ =K, ) . 2

) =

A
In the above, we used the fact that [X;|? < 5 and §; <
¢
,and (3.18), (3.19), (3.20) to the right

~

Applying (3.14) to the second term on the left of (3.13
of (3.13), we obtain
1 2 1 2, L [" 2
Sl = SI O + 5 [ vITola+ 2,

4
274 | [IK[5A | 50]K]Is.4

3A
< S L?0%r + L2 K)? Eoy) | ==
2B o°r+ ” ||OO7T((0,T], 0) 2B ]8RB2 3B3

T 2 3
+ L2/0 (V% + g (g) 0% (U — Xt)2> dt

6 (AN’ 0t  2A(E) [A\® K|S,
(5) G+ 222 () (s + L) (3.21)

B

v

Next we take sup,c(o 7] and then E on both sides of (3.15). This gives us

(3.22)

E sup |jv
rel0,T

T
1
() + 3B [ IVo(o)Pds < B[O + 28 sup (M| +E5 (vl
ref0.7) 2 Jo ] 2

We now estimate the expectation of the integral term in Yy defined in (3.17). Assuming that
E[Xo] = U, we have E[|U —X;|?| = E[X?] — U%. Hence, using the moment bound (5.12), from

the Appendix, we observe that
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26 (AN e 2
vt g) o Xt|)dt

T 4 2 3
_ Xi + BX; 6 (A 9 9
—E/O < a +V(B) 9|U Xt\ dt
+

A v \ B B

2 3 2172 3 4
vB, 8 (A) )E[X?] Sl (A> - ”Efgt]dt
v

E
vB 60 (AN /3 _ o ) 2 1 3T, , )
< | == (= = _Z il
\<A y (B> )(zeE[XoH?’U (T g+29)+29< + K2 ED)))

o 4 2| K oo M(Bo) + 1K1 A2(Eo) + “K““MW)) - (329)

v (2
E[X2 AT 4+ 8T
+— ( [Xp] + 8UT +8 ( 102

Thus thanks to (3.23), we have
34 40 6 (A’ o2
2B B B

1212 <U + 602 (UZ>3> (2391E[X2] + 302 <T - 239> + % (0® + ||K||§o/\(E0)))

2L% (2 14 2|K E K|2 N (E K E,

1
i1E[YT] <202 L2

AN(Eo) (v s IEIS
T+ (U3 KL + = | T

oTv |IK|%r 50K |4y
2L%|| K |2 N E))T | =— 0 20
22 KA (5 + gl + 2L

= Kl, (324)

where K; > 0 depends on the given data A, B,U,v,T,o, \(Ep), E[XE], || K| co-
Next we use the Burkholder-Davis—Gundy (BDG) inequality to treat the two terms appearing
in the martingale M,.. First,

b fy, o] <o (/T o (1) d8>5
ok ( /OTT;;?S] oot (/. 5 7e?) d5> ’

o’ L? (U) + CE /OT sup |lv(r)|/*ds. (3.25)

r€[0,s]

E sup
rel0,T]

Here we have also used the argument in (3.18). Similarly, using (3.19), we obtain for some
E sup

C > 0 that
€fo.7] /(0 ]/E /D . (f(Xt+K(§’t))f(Xt))dzdﬁ(t7£)|

2 2
<E <T§%pT [o(r)] /OT] /Eo /DJ (Xe + K(&,1) — f(X)] dwdﬂ(fi))

L) > )
<3 (ﬁ%pT el ) HE/O o /E /D (Xe + K(€.) — F(X0)[PdzdA(€)dt

2 K|y | S0IK]Ay
2U0 8U3 3U°

(NI

LB sup fu(rl? +L2||K||§A<EO>T(
ref0,7T]

(3.26)
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Hence, combining (3.25) and (3.26) and substituting in (3.22), we obtain
T T
B sup o)+ 5E [ [Vo@)|Pdt <EJo) + Kot CE [ sup [u(r)|Pds,  (32)
r€(0,T] 2 0 0 relo,s]

where K3 > 0 depends on K; given in (3.24) and other terms appearing in (3.25) and (3.26);
and C > 0 depends on the given data.

Next we apply the Gronwall inequality to (3.27) to obtain that for some constant C >0
depending on the given data,

T
E sup |jv(t)|* + KE/ [Vo(t)|?dt < C. (3.28)
t€[0,T] 2 Jo

To obtain compactness and keeping in mind that v is not expected to be differentiable, we
look for bounds on the fractional time derivative of v. To see this, we first note that, for any

1
a € <0 > the following bounds can be obtained (see e.g Lemma 2.1 [14]):
EH/ of'(Xe)dWy + / / (X¢ + K(&,1)) = f(Xe))da (&, )| o (0,1502) < C.
Eg
Also observe that || B(v,v)| pcay < Cllv||[[Vv|| (see e.g. [39]). Thus, for some C > 0, we have

. T
B [ B.ollmorouy < CE s [o@F E [ Vo) < C.
0 0

t€[0,T]

Similarly, we can see that

E|l / (B(v,v+ @) + B(v, ®) — vAv — vA®)dt|| g1 (0,7;p(ay) < C
0

and that
Bl | LAl oiran < C

Thus, we conclude that for some C > 0,
E”UHHQ(O,T;D(A)/) <C. (3.29)

Having the above estimates in hand, we employ the Galerkin approximation scheme to obtain
the existence of martingale solutions using standard arguments as in [6, 8, 14, 30]. We refer the
reader to [6] for an analysis of the Navier-Stokes equations, driven by a general multiplicative
Lévy noise and specifically for a detailed argument for the passage of limit. O

4. Estimation of the mean value

In this section, we prove an almost sure upper bound for the energy dissipation.
To derive the estimate on E[(e)r]|, we take the expected value of (3.15) with respect to P,
then average it over [0, T, and finally take the limit superior as T' — oco. Since u = v + ®, we obtain

T T T
/ V2t :/ Vo + Vo |?dt < 2/ V]2 + [V 2dr. (4.1)
0 0 0
The second term in the integrand is, from (3.9),
o¢ o L? o X + BX?
o = —Xj=rr=t—" 4.2
IVeIR =I5 = 5 - (42)
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Hence,

L2 T A )
E =1/ E (X} + BX?] dt, (4.3)
0

T
/ V| dt
0
which can be bounded using the moment bounds for X; in (5.12) in the Appendix. We now
estimate the first term on the right of (4.1). We know that My defined in (3.16) is a martingale
and hence E[M7p] =0 for all T € [0,00). Therefore, taking the expectation E of both sides of
(3.15) gives

T
]E/ V||Vl ?dt < E [2]u(0)]? + Y] . (4.4)
0

We use the expected value of Y calculated in (3.23).

Now we continue from (4.4); we divide both sides by T and |D|= L?h and use (3.24). We
know that, for a fixed set FEj, w((0,T],Eo) is a Poisson random variable with intensity
L r(0.T] )

T = A(Ep). Thus, for any T > 0, we obtain

1 T
hmsupTLQh / v||Vol|2dt < hmsup E[Yr]

4 3A+6 AN? o2
S h v \B B

+<”B j( >><3U2 + o (0% + K (Eo>>)
(=

L2h

0_2

LAY (o (2 2R TAE) IS 2000 + N0
462
4 e (274 IIKISA | 50K|5.A
+h||K||m(QB  IRIA | SOIRAY )
8A(Ep) (A K|S,
DD ()" (g, IR as
Similar calculations and an application of (5.12) lead us to
T L2 T
E / |V®|2dt :—/ E [X{ + BX?] dt
0 A Jo
BL? 2, 3 9 2
< =
<TEE (304 0+ IR E)
1L (s 4 s (O 2E oA Eo) + 1Kl X*(Eo) + |1 KllooA(Eo)
A 402 ’
Thus, we infer that
T
v
li ——E ol
msup ey /O [Ve[~dt
BV 2 3 o 2
< (3U + 35 0+ IKIZAED)) )
4 4 42
1 0" + 2[|KllocA(Eo) + [[ Kl5 A*(Eo) + [| K [0 A(E0)8
+ A—h (SU +8 < 205 : (4.6)

Finally, by (4.1), (4.5), and (4.6), and taking A = vU, B = U2, one obtains the estimate



Probability, Uncertainty and Quantitative Risk 89

2 r 2 r
e < limsume/ v||Vol? dt+11msup TIoh / v||Ve|2dt
0

T—o0
8 [3v 6202 , 60%v%  5U 2 3 5
O
\h{2U+ U5]U+h<U3 +4><3U 9(a+|\K|| A(E, )))
230 (o y 0% + 2| K[ o A(Eo) + [ K |5 A (Bo) + [ K]lsoA(Eo)8
N 162
27v | |K|%v | 50|K]|3v
= 2 0
* ”K” (QU sUs T 305 A(E)

. % (%)3 <9||K||io N 11(3220) . (4.7)

Remark 4.1 (Higher moments) One can obtain upper bounds for higher moments of {(e)r by
following our method, using the general moment bounds (5.12), and Lemma 5.1 in the Appendiz.
We expect that for all integer k > 1, the 2k -th moment of ()7 satisfies

timsupE((e)] < Lo+ Pe(o?, 1K, AGEy), (48)

T—o0 ~ h2k

where Py(z,y,z) is a polynomial in (x,y,z) with Px(0,0,0) =0, so that (4.8) recovering an
upper bound in [10] when there is no noise. The coefficients of Py are explicit functions of k,
U,v, and 6.

To give some details, by (5.12) and (5.5), for all even integers k, we have
o + |13 AEo)]" A(E
: Lo 2E0)) )

limsup E [ka] < 9FU + 9%y, ( ok 40

t—o0

where Cy is the absolute constant in the Burkholder-Davis—Gundy inequality (5.4). By (4.1),
p T
E ] <2PE / Vo] + |V®|2dt
0

for all p € [1,00),
p]
T p
< <]E / V|| 2dt D (4.10)
0

T
/ V| dt
0
To bound the second term on the right of (4.10), from Holder’s inequality we have

T p T
E [ / [V®|*dt / V<I>||2pdt1 , (4.11)
0 0

which can be bounded in terms of the 4p-th moment of X;, according to (4.2). The first term on
the right of (4.10) can also be bounded in terms of the 4p-th moment of X; by applying the
almost sure upper bound (3.15) and then Doob’s LP -inequality to the martingale term.

p T
| Vo|2dt

<TP'E

5. Appendix

5.1 OU process driven by Lévy noise

We obtain moment estimates for the process X solving (1.5)—(1.6).
Recall from (1.6) that L is a square-integrable Lévy martingale given by
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Li=oWit [ K(€s)die.s).
FEox (O,t]

The Laplace functional of the Poisson random measure 7 is given by

exp {—/ F(&,s)dn(E, s)}} = exp {—/ 1—e F&s) dA(¢) ds}. (5.1)
Eox(0,00) Eox(0,00)

Let [L] be the quadratic variation of L and let [L]° be the continuous part of [L]. Then
[M]¢ = 0%t and

E

¢(s)d[L]s = ¢(s)d[LIS+ > é(s)|AL?
(0,¢] (0,¢] $€(0,4]
= g2 (s)ds + / o(s) K? (& s)dn(€,s) (5.2)
(0,1] Eox(0,t]

for all ¢ € (0,00) and for any continuous function ¢ : (0,00) — R.
We take ¢(s) = e and define the stochastic integral

I .= / e dLy, (5.3)
(0.1]

which is a local martingale with quadratic variation [I]; = f(o 9 e?9s d[L],. By the Burkholder—

Davis—Gundy inequality for general local martingales (see, for instance, [20, Theorem 26.12]), for
all p > 1, there exists a constant C, € (0,00) such that

P

C,'E [[ﬂfﬂ <E [( sup Is|> 1 < C,E [[I]f”] t>0. (5.4)
s€[0,t]

To get a bound for the 2k-th moment of I, we take p = 2k in (5.4) and apply the lemma below.

Lemma 5.1 E [[I]{] has the following upper bound for k € N. When k=1, for all t € [0,00),

020t _
Bl < (S5 ) [o? + IKIE A

When k=2 and Cs is the constant in (5.4), for all t € [0,00),

629t_1 2 9 e49t_1
EHI]?]<4{( 55 )[02+||K||c2>o)\(Eo)] + 3 | KI5 A(Eo) —5 }

For all even integers k > 2, there exists a constant CN';C € (0,00) such that, for t > 20’
20t _

k
E [[1]7] <2’“{<€ T 1) (02 + | K12 AM(Eo)]" + Ci ||K||g§€zektk(4Eeo)}_

An immediate consequence of Lemma 5.1 is the uniform bound

E[11)f] _ [0 4+ K12 AEo)]*
20kt S ok

+ 28 || K ||?k MEBo) (5.5)

i
im sup 10

t—o0

for all even integers k.

Proof of Lemma 5.1 Let M be the process M; := f(o 1 on e?0s K2(¢,5)dr(€,s), which is a

local martingale. Then



Probability, Uncertainty and Quantitative Risk 91

0 < [I]s :/ e d[L],
(0.1

2
_0' ( 20t 1) + / 8208 K2(£,s) d71'(§,8)
20 Eox(0,t]
9 260t
0" 20t 2 e 1
< _
<5 1) + KA (S5 ) +
62075 —1
- ( 20 ) (0% + 1K 15 A(Eo)) + My, t € [0,00). >0

The desired inequality for k£ = 1 follows immediately.
For k> 2, using (5.6) again and the simple fact that (a+ b)* < 2F(a¥ +b*) for k> 1 and

a,b > 0, we obtain

20t

et —1 F k
E[[I]ﬂng{< o > [0 + | K12 A(Eo)] +1E[Mf]}. (5.7)

Applying the BDG inequality for the local martingale M,

E [M}] <CLE {[M]f/ﬂ

k/2
=CyE (/ M K€, 9) d7f(é38)>
EoX(O,t]

k/2
<O KA E (/ e495dw<s,s>> | 589)
E[)X(O,t]

When k =2 the expectation in the last displayed expression is

e49t -1
/ et0s dr(&,s) | | = AM(Ep) ;
Eox(0,t] 40

giving the desired inequality for k = 2.

E

Since A(Ep) < oo, there exists a countable set {(Z;,t;)} C Ep x [0,00) whose elements are the

jump points for 7. Then
®(&, s)dm(&, s) ®(Zi,ti)
/on(o,t] Z

i: t;€(0,t]

for all bounded measurable function ®: Ey x (0,¢] - R and t € (0,00). The sets {t;} N (0,

are distributed as the jump times of a Poisson process on (0,t¢] with intensity A(Ey). Hence

k/2
E / e dn (€, ) =F 0t
( Egx (O,t] Z

{t:}N(0,1]

k/2

(oo} m k/z
= MBS ()\(Eo (Z (465, ) ’ (5.9)

m=0

where {S;}i>1 are i.i.d. uniform on (0,¢]. By the multinomial theorem, for k = 2¢ even integers,
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" k/2 . - ¢
E Z 105 =— / Z e | dsy---dsm,
i " Jogm \im

) ¢ )/ CT 46k s
1 e ’ledsl...dsm
tm Z ¢ <k17 k27 ) km (0,¢]™ 741111

kitke+-tkm=

m—1 m—z 40j,t
—= Y > ( ' )tzﬂej —
tm 115025+« + s Jm— 403;

220 Grbiabebdme s =l Grdase gm—a 31 W2 dmez Gy Ji

3

Z ( Y ) " e49£t
>1 J15J25 s Jm—=2 (40)mfz

N
K
g

z2=0 jit+jot+ - +Im—2=f, j1,2, " Jm—z2>
—1
1 m e49€t
< — tP ——-—- (m—2z ¢
S m g "2
z=0

:e49£ta2aj_1jg where a = 1/(46t)
j=1

<e*taCym  whenever a € (0,1/2], (5.10)
where Cy € (0,00) is a constant that does not depend on a € (0,1/2] or m € Z,. This follows
from the fact that a/~'j¢ — 0 uniformly for a € (0,1/2], as j — oo. In the third equality above,

z is the number of zeros in {k;}I",.
Inserting (5.10) into (5.9) gives

k/2
E (/ etfs dr (e, s))
Ex(0,t]

— (A(Eo) )™ [~
L ettt oA (Eo)t Z M [Cgma] whenever a = 1/(460t) € (0,1/2)
= m!
Aot Ce A(Ep)

46
Inserting (5.11) into (5.8) and then into (5.7) gives the desired inequality for k =2¢>2. O

=Mt CyN(Eo)ta = (5.11)

Now an upper bound for the moments of X; can be obtained from (1.7) and Lemma 5.1 as follows.
Recall that X; = e %Xy + U(1 — e~ %) + e %1, for all t € [0,00). Using the simple fact that
(a+b+c)* <3P(aP +bP +cP) for p>1 and a,b,c > 0, and taking p = 2k, we obtain

|Xt|2k <32k (672k0tX02k + U2k (1 _ e*ﬁt)Qk + 672k0t1t2k) for t 2 07 P-a.s..
Now using the BDG inequality (5.4), we obtain

E[|X:[**] <9% (e 2M'E[XEH] + U (1 — )% + e 2O, E [[1]F])  for ¢ > 0. (5.12)

Combining (5.12) with Lemma 5.1 gives explicit moment bounds for X;. Furthermore, (5.5)
immediately gives the following uniform moment bound.

Corollary 5.2 Assume that E[|Xo|P] < oo for all p > 0. Then for all p >0,

limsup E [|X;]?] < 0.

t—o00
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