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A Synthesis of Fracture, Friction and Damage Processes in Earthquake Rupture Zones
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Abstract—We review properties and processes of earthquake
rupture zones based on field studies, laboratory observations, the-
oretical models and simulations, with the goal of assessing the
possible dominance of different processes in different parts of the
rupture and validity of commonly used models. Rupture zones may
be divided into front, intermediate, and tail regions that interact to
different extents. The rupture front is dominated by fracturing and
granulation processes and strong dilatation, producing faulting
products that are reworked by subsequent sliding behind. The in-
termediate region sustains primarily frictional sliding with
relatively high slip rates that produce appreciable stress transfer to
the propagating front. The fail region further behind is character-
ized by low slip rates that effectively do not influence the
propagating front, although it (and the intermediate region) can
spawn small offspring rupture fronts. Wave-mediated stress trans-
fer can also trigger failures ahead of the rupture front. Earthquake
ruptures are often spatially discontinuous and intermittent with a
hierarchy of asperity and segment sizes that radiate waves with
different tensorial compositions and frequency bands. While dif-
ferent deformation processes dominating parts of the rupture zones
can be treated effectively with existing constitutive relations, a
more appropriate analysis of earthquake processes would require a
model that combines aspects of fracture, damage-breakage, and
frictional frameworks.

keywords: Earthquake rupture zones, fracture, friction, rock
damage, shear, dilatancy.

1. Introduction

Earthquakes are manifestations of dynamic rup-
tures that release rapidly elastic strain energy stored
in the surrounding rocks (Reid, 1910). Faults are
commonly modeled as infinitely thin surfaces
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(idealized typically as planar) sustaining only shear
deformation. This classical view has been driven by
far-field observations of attenuated low-pass filtered
information. However, near-fault studies unambigu-
ously show that ruptures consist of zones that can be
tens to hundreds of meters wide with broken and
granular (damaged) materials, and that shear defor-
mation is accompanied locally by dynamic dilation
(Fig. 1). These phenomena, although localized,
strongly affect the partitioning of the stored elastic
energy between dissipation and seismic radiation,
changes of permeability and fluid flow, and other key
aspects of earthquake physics (e.g., Aben et al., 2020;
Kurzon et al., 2019; Okubo et al., 2019). Theoretical
and laboratory studies of earthquake ruptures con-
sider fracture, friction and damage processes, with
most studies in the last few decades focusing on
friction. In the present paper we attempt to clarify
how these different processes operate in different
regions of earthquake rupture zones. We focus on
brittle processes and structures in low porosity crustal
rocks and note that some modifications are needed for
high porosity rocks and soft materials that tend to fail
in a more distributed ductile fashion.

The rupture front has a process zone dominated
by fracturing processes, where stresses beyond the
elastic limit produce distributed cracking and granu-
lation/pulverization of rocks. The amount of inelastic
strain (or slip in a planar approximation) in the pro-
cess zone is negligible, so friction has little relevance
in the process zone. As the rupture propagates, the
process zones at locations passed by the rupture front
produce together a slip zone with highly cracked and
granulated materials sustaining growing amounts of
inelastic strain and frictional sliding. The rupture
speed Vj of a typical crustal earthquake is ~ 3 km/s,
although some earthquakes can propagate at supers-
hear speed (Archuleta, 1984; Rosakis, 2002) and
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there is also a class of slow slip events that propagate
much slower (Hirose & Obara, 2005; Okal & Stewart,
1982). Since particle velocity in a continuum is
proportional to stress, and the stress drops rapidly
behind the rupture front, the rate of inelastic strain (or
slip rate V) also drops rapidly behind the propagating
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dynamic stress transfer that can interact significantly
with the propagating front, but the interactions of
sliding sections further behind diminish rapidly with
increasing distance from the front. As an example, a
fault section with a slip rate of 1 cm/s can hardly
affect the rupture front that propagates in 1 s several

front (Fig. 1). Sections of the rupture zone close to km forward.
the front with slip rates of ~ 1 m/s or more produce
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Schematic representations of rupture and fault zones for dense rocks (not to scale). a Individual dynamic rupture with a process zone at the
front propagating typically at sub-Rayleigh rupture velocity (V,), followed by intermediate and tail regions dominated by frictional sliding
where some fault patches may re-rupture. The stresses are high at the front, producing fracturing in the process zone, and drop rapidly behind
to a residual frictional level. The slip velocity (V) is several orders of magnitude below the rupture velocity and decelerates rapidly from the
front to the tail. Inelastic deformation occurs in a volume that is projected on a plane in typical constitutive models. Energy dissipation
involves comminution and gouge production in the rupture zone, and frictional heat occurring primarily in the tail region (e.g., Kurzon et al.,
2019). The seismic radiation is a superposition of multi-scale processes that generate jointly broadband signals including high-frequency
isotropic radiation, and can trigger failures ahead of the front. b Schematic map view of anastomosing network of fault segments hosting
individual rupture zones as in a during single and multiple earthquakes. ¢ A planar projection of a depth section with heterogeneous rupture/
slip distribution including non-slipping patches as in slip inversions (e.g. Mai & Thingbaijam, 2014) and numerical simulations (e.g. Figure 6
of Ben-Zion & Rice, 1995). d A volumetric depth view with several rupture zones as in the field example of Fig. 3 producing a flower
structure
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The rupture zone can be separated into several
regions (Fig. 1). The rupture tip or front is dominated
by fracturing processes and controls the path of the
propagating rupture. Sliding sections of the rupture
behind the process zone with slow slip velocities, and
hence small dynamic stress transfer to the front,
belong to a fail region that does not interact effec-
tively with the rupture front. Sliding sections closer to
the front with higher slip velocities, which produce
sufficient dynamic stress transfer to affect apprecia-
bly the energy balance at the front, belong to an
intermediate region relevant for the continuing
motion of the rupture front. The extent of the inter-
mediate region depends strongly on the geometrical
properties of the rupture zone (and perhaps other
features such as rock type, existence of gouge, etc.).
The region ahead of the rupture front can also fail and
may be referred to as a wave dominated region, where
dynamic stress transfer can trigger ruptures across
unbroken barriers (Das & Aki, 1977; Rice et al.,
1994), lead to a subshear-to-supershear transition of
the rupture velocity (e.g., Andrews, 1976; Burridge,
1973) and trigger aftershocks at large distances ahead
of the rupture zone (e.g. Hill et al., 1993; Prejean
et al, 2004).

Earthquake ruptures often propagate over multiple
disconnected fault zones (e.g., 1992 Landers CA
earthquake in California, 2010 El Mayor-Cucapah
Earthquake in Baja California; 2016 Kaikoura in New
Zealand), during which the rupture fronts jump to
non-contiguous locations and abandon their tails.
Evidently, the frictional processes at the tails are not
essential for the rupture trajectories and ultimate size
of earthquakes, although they contribute significantly
to energy dissipation and changes to fault zone
structures. We also note that seismic radiation is a
superposition of contributions from different parts of
the earthquake rupture. The radiation from the pro-
cess zone can be dominated by dilatational
components generated by fracturing and reduction of
elastic moduli (e.g., Ben-Zion & Ampuero, 2009;
Kurzon et al., 2021; Lyakhovsky et al., 2016), the
radiation from the tail region involves primarily shear
motion with variable local dilatation (e.g., Aki &
Richards, 2002; Lyakhovsky & Ben-Zion, 2020), and
the general breaking of multi-scale asperities in the
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rupture zone is expected to produce enhanced radia-
tion at different frequency bands.

In the next section we describe observational
results highlighting aspects of earthquake rupture
zones and failure processes represented in Fig. 1,
starting with field studies and continuing with labo-
ratory stick—slip experiments that include fracture
and friction. In Sect. 3 we briefly discuss constitutive
laws for planar fracture and friction, along with
nucleation of dynamic failures on a plane and in a
deforming volume. In Sect. 4 we synthesize the
results and suggest future studies that can signifi-
cantly improve the understanding of earthquake and
fault processes.

2. Observations

2.1. Field Studies

Geological and seismological studies document
abundantly the ubiquitous existence in natural fault
zones of hierarchical geometrical heterogeneities
(Candela et al., 2012; Sagy et al., 2007; Wechsler
et al., 2010; Wesnousky, 1988) and hierarchical
damage zones generated by the failure events (Allam
& Ben-Zion, 2012; Dor et al., 2006; Ostermeijer
et al., 2020; Qiu et al., 2021; Rodriguez Padilla et al.,
2022). Even major faults with very large cumulative
slip have finite width, roughness, segmentation, and
varying strengths that are expected to evolve with
further deformation (e.g., Ben-Zion & Sammis, 2003;
Manighetti et al., 2007; Scholz et al., 1993). Hetero-
geneous fault properties lead to strong stress
heterogeneities that affect rupture dynamics (e.g.,
Ampuero et al., 2006; Ripperger et al., 2007;
Romanet et al., 2018) and produce variable slip
distributions in one or multiple simultaneously
occurring rupture zones (Fig. l1c, d). The general
existence of heterogeneous fault structure and pre-
existing stress may lead to multiple rupture fronts
nucleating simultaneously from several asperities
(Campillo et al., 2001; Dublanchet et al., 2013;
Lebihain et al., 2021; Mai & Beroza, 2002), complex
collective slip fronts in 3D, jumps of the rupture
front, and repeated acceleration and deceleration of
the failure process. Source time functions of
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earthquakes are frequently complex, showing multi-
ple peaks that reflect these processes. The literature
on field studies of earthquake ruptures is vast. To
illustrate key aspects of fracture and friction pro-
cesses in earthquake rupture zones, we present three
examples at different scales, starting with small-scale
field results and continuing with ruptures and fault
zones occupying larger crustal volumes. Some of the
discussed features are also observed in laboratory
experiments (Sect. 2.2).

Figure 2 shows observed damage (fracturing) and
melt (friction) products in a fossilized rupture zone of
a single earthquake in lower crust rocks in the Bergen
arc, Norway (Petley-Ragan et al., 2019). These
observations allow inferences on the space—time
evolution of rupture processes, which correspond to
Fig. la, generally not possible in large fault zones
reflecting properties of many earthquake ruptures.
The results show fragmented/pulverized particles
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surrounded by melt products within an asymmetric
damage zone, and tensile cracks normal to the main
fault, some of which have injection products. The
field and microstructural observations were inter-
preted to reflect the following evolution of processes.
Initial fragmentation with minimal shear occurred in
the process zone around the propagating rupture tip
and extended into one wall rock, followed by
comminution of the fragments with increasing shear
motion behind the tip. As shear heating progressed
with slip accumulation further behind the tip, the
cataclasites began to melt with higher melt fractions
in locations with greater volume of damaged wall
rock, and injection of melt products to some of the
fault-normal tensile cracks (Petley-Ragan et al.,
2019).

Figure 3 presents an example documenting the
activation of multiple localized slip bands, within a
fairly large normal fault zone in a deep south African

Figure 2
Multi-scale structural results of an earthquake rupture zone in the gBergen Arcs. a A damage zone on the northern side of the fault with
pseudotachylyte (Pst), wall rock minerals showing little to no shear strain, and tensile cracks/injection veins normal to the fault. Clasts of
cataclasite are entrained in the pseudotachylyte. b Backscatter electron images of cataclasite and fragmented minerals in the damage zone.
Insets show grain size distribution (probability density function; PDF) of clasts and power law exponents. ¢ Electron backscatter diffraction
results for garnet in the damage zone. The orientation map (inverse pole coloring in relation to the horizontal) indicates pulverization with no
shear. Modified from Petley-Ragan et al. (2019)
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Normal Fault M,5.1 event, 1999, Welkom Mine, South Africa

offset rockbolts show
3 active slip bands
dior = 0.44 m

Normal fault reactivation via multiple
slip bands at 1370m depth

Figure 3
Photos of exposed normal fault zone (Dagbreek fault) cut by a minilglg tunnel at 1370 m depth, Welkom, South Africa that hosted a seismic
event with Mw 5.1 in March, 1999. The fault zone includes four localized slip bands (Photo), three of which were activated during the event,
as indicated by sheared rock bolts. This observation shows that the rupture involved at that site multiple slip bands within a pre-existing
volumetric fault zone

mine, during a single earthquake rupture, correspond-
ing to the representation in Fig. 1d. The normal fault
was likely reactivated in response to mining activity,
producing a comparatively large seismic event with
Mw 5.1. This example shows that the rupture
activated three slip bands in the fault damage zone
exposed in the tunnel site shown in Fig. 3, with slip
not limited to a single planar ‘principal slip zone’.
The full extent of the rupture zone of that earthquake
is not clear but likely includes additional volumetric
components. Larger-scale activation of multiple slip
and rupture zones during single earthquakes (e.g.
Fig. 1b) has been observed in geological and seis-
mological studies of many recent large events, and
appears increasingly to be the norm rather than the
exception. One prominent example is the 2016 M7.8
Kaikoura earthquake in New Zealand, which “rup-
tured at least 17 faults, only about half of which were
recognized before.” (Clark et al., 2017; Nicol et al.,
2018). Other examples among many others include
the 2010 MW 7.2 El Mayor-Cucapah earthquake in
Baja California (e.g., Fletcher et al., 2014; Wei et al.,
2011), the 2012 MW 8.6 Indian Ocean event (e.g.,
Yue et al., 2012), the 2016 Mw 7.0 Kumamoto

earthquake in Japan (e.g., Asano & Iwata, 2016;
Shirahama et al., 2016), and the various large
earthquakes in the Eastern California Shear Zone in
the last 30 years. In addition to rupturing multiple
disconnected fault segments, earthquake ruptures
often produce significant distributed off-fault inelas-
tic strain in the surrounding volume as illustrated by
Fig. 4 in the context of the 1992 Mw?7.3 Landers
earthquake in California.

2.2. Laboratory Experiments

Laboratory fracture and friction experiments cul-
minating in a sample-size stick—slip motion and rapid
stress drop represent lab analogues for crustal earth-
quakes (Brace & Byerlee, 1966). Here we briefly
summarize some results from a series of lab tests with
different geological materials (claystone, sandstone,
quartzite, granite) performed at varying loading
conditions and confining pressures up to 150 MPa
(Goebel et al., 2012, 2017; Guerin-Marthe et al.,
2022). Depending on material and loading conditions,
the samples mostly failed in episodic stick slip events
accompanied by rapidly evolving bursts of acoustic
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Figure 4
Rupture zone of the Landers 1992 Mw 7.3 earthquake. Left: the Lan%iers rupture extended over 85 km over multiple segments with peak slip
of about 5-6 m or larger (Gombert et al., 2018). Map view of segmented rupture trace with color code indicating orientation (Fleming et al.,
1998). Right: off-fault deformation (OFD %) increases with structural complexity along the fault trace (Milliner et al., 2015). Estimates of the
maximum damage zone width range from about 200-1000 m (Gombert et al., 2018; Peng et al., 2003). Modified from Fleming et al. (1998)
and Milliner et al. (2015)

emission (AE) activity (Fig. 5). Typically, AE cumu-
lative numbers roughly follow z 7 where #,is time to
failure and p is close to unity. On rough fractured
faults, the AE activity spreads across the surface
forming a single or a few expanding clusters (Fig. 5),
while on smooth faults the AE activity is generally
low or in some cases non-existent (Dresen et al.,
2020; Guerin-Marthe et al., 2022). The AE clusters
highlight larger asperities that persist over several
stick—slip cycles. This suggests a collective failure of
growing AE clusters, with jumps of the rupture front,
finally leading to a system-size slip event (Goebel
et al., 2012, 2017). Slip rates along the faults
measured at different tests ranged from about 2 pum/
s to over 160 mm/s. Often contained or system-wide
slip events start with a single large acoustic emission.
Here macroscopic stress drop and failure were
initiated by large acoustic emissions with amplitudes

significantly larger than background events (and
partly clipped). The events occurred at peak stress
or slightly below (Fig. 5a, A—-C). The space-time
sequence of large AEs A—C (Fig. 5) indicates prop-
agation of the rupture front. AE clusters remain active
for the entire duration of the slip event after the
rupture front has passed, i.e., the rupture front and
frictional tail were ‘detached’. AE events may also
represent failures of strong brittle asperities following
slow slip (Yamashita et al., 2022) or activity in an
off-fault damage zone (Marty et al., 2019).

The elastic waves radiated from the rupture
produce strain signals in gauges attached locally at
a small distance from the fault (Guerin-Marthe et al.,
2022.) indicating a passing rupture front. The offset
time between signals from strain gauges often allows
a rough estimate of the rupture velocity. Bulk stress
drop measurements using an internal load cell
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Figure 5
Slow stick slip event (Vg = 20-40 pum/s) along a fractured surfacegof a quartzite sample (Stanchits et al., 2010). a Map view of acoustic
emission hypocenters clustered heterogeneously across the fault surface. Recurrent clusters vary in space and time (gray ellipses). Red stars
indicate a sequence of large acoustic emissions labeled A—C associated with the slip event and stress drop. Sequence A—C indicates
propagating rupture front (Vg = 0.05-0.8 m/s). b Cross section view showing finite width of active volume surrounding the fault (location
accuracy 3 mm). ¢ Stress drop and acoustic emission activity

represent an average that includes both rupture and
slip components. In contrast, the strain gauges allow
estimating local stress drops, which occur often more
abruptly and over smaller slip distances (Fig. 6). The
observations of separation of rupture front and slip
are consistent with the representation in Fig. la, and
in agreement with results from additional triaxial
tests by Passelegue et al. (2017), rotary shear tests
(Chen et al., 2021), experiments on large laboratory
faults (e.g. Kammer & McLaskey, 2019; Ke et al.,
2021; Ohnaka & Shen, 1999; Xu et al., 2018) and
experiments on analogue materials at low normals
stresses (Gvirtzman & Fineberg, 2021; Paglialunga
et al., 2022; Rubino et al., 2022).

Double direct shear tests were used to extensively
investigate frictional rock properties of planar fault
surfaces and gouge layers with evolving fabric,
spatio-temporal evolution of granular slip and the
transition from stable to slow and fast slip, covering a
wide spectrum of slip velocities (Im et al., 2020;
Marone, 1998). Frictional tests on gouges with
varying mineralogical composition show relations

between microstructural fabric evolution (i.e. local-
ization) and stability of slip (Scuderi et al.,
2017, 2020). A key observation is that a single fault
with identical constitutive properties may host both
stable slow slip and dynamic rupture events (Scuderi
et al., 2017; Ye & Ghassemi, 2020). More recently,
the interplay of slip modes from slow to fast was
studied with high-frequency (AE) signals (Bolton
et al., 2022). Complex rupture fronts were observed
to arise from local slip events across a range of slip
rates from aseismic failure to dynamic events (e.g.
Bolton et al., 2022; McLaskey, 2019), and the
combined failure of asperities of varying sizes in
the sliding region were also observed to produce new
rupture fronts (de Geus et al., 2019; Lebihain et al.,
2021). These results converge with those of triaxial
tests at high pressure with AE monitoring (Figs. 5, 6),
showing superposition of local events that range from
high-frequency AEs with source radii on the pm-mm
scale to slip events affecting the entire sample.
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Stress drop and slip from an experiment on Mont Terri claystone at 5 MPa confining pressure (Schuster, 2022; Schuster et al., 2022).

Heterogeneous stress drop of about 0.1-1 MPa from internal load cell (yellow) and strain gauges attached to the sample surface. Bulk slip

rates Vg were about 2.5 pm/s. Slip starts at the top of the sawcut with peak in top strain gauge SGF1 (blue). Macroscopic peak stress (yellow)

and onset of stress drop coincide with peak shortening and strain drop of wall rock (black). Note that local strain/stress drops differ from the
bulk sample stress drop

3. Constitutive Models

The onset and continuing motion of the rupture
front are controlled by an energy balance between the
flow of strain energy to the front and dissipation in
the process zone to fracturing the material ahead and
around the front (Freund, 1990; Kammer et al., 2015;
Svetlizky et al., 2017). As mentioned, the rupture
front can jump to one or several discontiguous loca-
tions abandoning the tail. On the other hand, the
sliding process in the tail and intermediate regions
can spawn new local rupture fronts, thus affecting the
collective rupture front. The coupled fracture-friction
nature of fault failure is reflected in classical consti-
tutive models that typically assume a planar fault
relating shear stress drop to slip and accounting for
slip- and rate-dependent aspects of the process for
defined conditions of pressure, temperature, etc. (e.g.,
Dietrich, 1972; Marone, 1998; Rice & Ruina, 1983).

These constitutive laws rest on linear elastic fracture
mechanics (LEFM), cohesive zone slip-weakening
and rate-and-state friction, as briefly described below.

Frictional slip is controlled by shear crack-like
rupture fronts propagating along a fault (Aki, 1979;
Rubinstein et al., 2004). Griffith’s energy balance
defines a condition for the stability and onset of
rupture propagation. When the stress intensity factor
reaches a critical value K, the material fails pro-
ducing rupture. For continuing rupture propagation,
the energy release rate from the bulk to the rupture
front, G, should reach a critical value G. (e.g., Ben-
Zion, 2003; Freund, 1990). Since the stress drops
rapidly behind the rupture front (Fig. 1), slip rate is
reduced with distance from the front but the slip
trailing the rupture continues to accumulate for the
duration of sliding at different positions.

The classical slip-weakening model (Ida, 1972;
Palmer & Rice, 1973) is a shear fracture variant of
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the well-known Dugdale-Barenblatt cohesive zone
fracture mechanics model. This describes the propa-
gation of a planar shear band through a finite process
zone of length L, where the peak strength of the fault
7, degrades over a critical slip distance d. to some
residual dynamic friction t,. The slip gradient u/L and
gradual strength reduction avoid the unrealistic stress
singularity at the fracture tip of LEFM. This consti-
tutive formulation on a planar surface has been used
extensively to estimate fracture energy and rupture
process zone from laboratory results (Rice, 1980;
Viesca & Garagash, 2015; Wong, 1982), as well as
from seismological data (e.g., Abercrombie & Rice,
2005; Cocco et al., 2016). We note that using this
framework for field data involves multiple assump-
tions, including that a planar projection of the natural
process to the slip-weakening diagram (ignoring, e.g.,
volumetric deformation) is valid.

The slip-weakening model does not consider
potential rate-dependence of shear strength and post-
failure strength recovery. Field evidence and experi-
ments show that faults and frictional contacts exhibit
healing and rate-dependent effects. Dieter-
ich (1972, 1978, 1979) proposed a rate-and-state
frictional model including strength recovery of fric-
tional contacts with time and dependency of the
frictional strength on slip velocity. In particular,
strength may decrease (velocity weakening) or
increase (velocity strengthening) as slip rate increa-
ses, depending on pressure, temperature and other
conditions. This model and subsequent formulations
of rate-and-state friction (e.g. Marone, 1998) can be
used to study the transition of creep to unstable slip in
terms of material-dependent parameters and bound-
ary conditions. Rotary shear experiments with slip
rates of over 1 m/s examined effects of high slip
velocities and accelerating and decelerating slip rates
on the friction, slip process, and evolving properties
of the gouge (e.g., Chen et al., 2021; Di Toro et al.,
2011; Sone & Shimamoto, 2009). Laboratory mea-
surements also show that the nominal friction
coefficient depends on changes of normal stress
(Linker & Dieterich, 1992; Prakash & Clifton, 1993).
As discussed in the next section, multiple processes
are expected to produce strong dynamic changes of
normal stress during fault failure that can signifi-
cantly affect the frictional energy.
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Slip weakening and rate-and-state friction con-
stitutive models predict a critical nucleation patch L¢
that is related to critical displacement d., stress drop
At and elastic shear modulus p of the fault sur-
roundings (Eshelby, 1957).

u

Lce=C A—Tdc, (1)
where C is a constant of order 1. For a circular shear
crack in elastic solid, a linear relation is predicted
between displacement and crack radius (Eshelby,
1957). This implies a material-specific constant strain
change and stress drop with a constant displacement-
length scaling consistent generally with observations
(Manighetti et al., 2007). Eshelby’s model also
implies that the velocity of the rupture (crack) front
vg scales with slip (particle) velocity vy (Freund &
Lee, 1990; Udias et al., 2014),

vg=C Ai'cvs' (2)

For dynamic ruptures radiating seismic waves, a
related threshold slip rate value is often assumed as
V& %cs (Rice, 1993; Wynants-Morel et al., 2020)
with a threshold slip velocity V/; of a few mm/s.

Rupture nucleation may involve collective failure
of asperities across a segmented and rough frictional
fault (e.g. Campillo et al., 2001; Dahmen et al.,
1998), and its propagation involves shear and volu-
metric deformation as the rupture accelerates and its
trace follows a tortuous path generating off-fault
damage (Gabriel et al., 2013; Goebel et al., 2014;
Poliakov et al., 2002; Renard et al., 2019). The
trailing slip motion in wake of the rupture front is
governed by frictional contact forces, re-rupturing of
asperities, comminution, granular flow and heat dis-
sipation that may cause local melting and thermal
pressurization.

In a rock volume not dominated by a pre-existing
unhealed frictional surface, the nucleation process
leading to dynamic instability is different and
involves localization of distributed cracking and
solid-granular transition (Ben-Zion, 2008). When the
density of microcracks reaches at some location a
critical level, there is dynamic instability and a phase
transition of material at the rupture front from a
damaged (cracked) rock to a granular phase. The
subsequent shear failure is associated under sufficient
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compressive stress with a granular flow in the gen-
erated finite-width “slip zone”, while under low
confining stress the material is fragmented (Lya-
khovsky & Ben-Zion, 2014a). Following failure and
stress reduction, there is a reversed transition from a
granular phase to a damaged solid (Lyakhovsky &
Ben-Zion, 2014b). A process of this type involving
localization of brittle deformation has been docu-
mented recently before several large earthquakes
(Ben-Zion & Zaliapin, 2020), and was also observed
before system-size events in laboratory fracturing
experiments (e.g., Goebel et al., 2012; Lockner et al.,
1992; McBeck et al., 2022; Stanchits et al., 20006).

4. Discussion and Conclusions

Faults are inherently heterogeneous over all
observed scales. This is seen in laboratory fracture
experiments (e.g., Goebel et al., 2012, 2017; Sharon
et al,, 1995) and amplified in the crust by the
heterogeneous geological inheritance of any natural
fault zone (e.g. Ben-Zion & Sammis, 2003; Schulte-
Pelkum et al., 2020). Laboratory experiments show
heterogeneous slip and rupture events even on pre-
existing surfaces. Earthquake rupture zones have a
finite-width that can be hundreds of meters, and they
sustain during shear-dominated failure also local
volumetric deformation that can impact significantly
the governing physics. In the present paper we
attempt to clarify whether fracture, friction and vol-
umetric damage/granulation processes are dominant
in different parts of a rupture zone, or are inseparable
and should be considered in all fault sections.
Another issue we attempt to address is for what
conditions the commonly used planar representation
of faults and associated constitutive laws provide
adequate (approximate) descriptions for natural
earthquake ruptures.

Laboratory tests with multiple rock types indicate
that Eshelby’s Eq. (1) relating slip and rupture
velocities holds for slip rates ranging over about six
orders of magnitude (um/s — m/s). For all tested fault
rheologies/materials (clay-rich rocks, sandstone,
granite), the estimated rupture velocities are about
3—4 orders larger than the directly measured slip rates
ranging between tens of um/s up to tens of cm/s. In
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experiments, rupture propagation associated with slip
events are inferred either indirectly from sequences
of large AEs (Fig. 5), spreading of AE clusters
(Wang et al., 2020), or time offset of strain signals at
different positions. Strain gauges in lab experiments
show a rapid strain/stress drop followed by a slow
decrease (Fig. 6), consistent with an initial reduction
of the stored strain energy at the rupture front and
continuing reduction by the frictional sliding in the
intermediate and tail regions.

The processes involved in frictional sliding are
assumed to dominate the overall energy balance.
Most estimates of fracture energy G based on mea-
surements of fracture and gouge surface area suggest
its contribution is < 10% and possibly < 1% of the
total strain energy released in an earthquake (Chester
et al., 2005; Olgaard & Brace, 1983; Rockwell et al.,
2009). However, recent estimates based on frag-
mented materials in the damage zone of a deeply
exhumed fault suggest that G is larger than typically
assumed (Johnson et al., 2021). Seismological esti-
mates of the fracture energy and stress drop may not
provide reliable results since they rely on model
assumptions corresponding to a far-field view and
limited resolution of the source time function at the
rupture front (Ben-Zion, 2019; Cocco et al., 2016).
Also, seismological estimates of breakdown work
(Viesca & Garagash, 2015) may include dissipation
by frictional sliding, melting and possibly arrest (Ke
et al., 2021). Numerical simulations of dynamic
rupture on a frictional interface with off-fault plas-
ticity show that early on the dominant energy
components are the stored elastic strain and kinetic
energy (radiation), but that with progressive propa-
gation the frictional heat and off-fault dissipation
become dominant (Shi et al., 2010).

While dissipation over the entire rupture zone
may dominate the total energy budget, the stress
concentration in the process zone and energy flux at
the rupture front still control rupture propagation
(Freund, 1972; Reches & Fineberg, 2022). The size
of the process zone surrounding the front (Fig. 1) is
expected to depend on rupture propagation distance,
crack vs. pulse mode, and velocity (Andrews, 2005;
Ben-Zion & Shi, 2005; Svetlizky & Fineberg, 2014).
We note that dynamic changes of normal stress in the
rupture zone can significantly reduce the frictional
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heat, as demonstrated in simulations of rupture on a
bimaterial interface (Andrews & Ben-Zion, 1997). In
addition to bimaterial ruptures, numerous other
mechanisms are expected to produce strong changes
of normal stresses in earthquake rupture zones. These
include collisions of gouge particles and rough sur-
faces (Lomnitz-Adler, 1991; Melosh, 1979), various
fluid-assisted effects (e.g., Rice, 2006; Sibson, 1973),
and isotropic radiation from source volumes (and
especially the process zone) sustaining reduction of
elastic moduli (Ben-Zion & Ampuero, 2009; Lya-
khovsky et al., 2016). It is important to study further
with laboratory experiments, field data, and model
simulations the effects of volumetric deformation on
constitutive laws, partitioning of the stored elastic
strain energy to (different forms of) dissipation and
radiation during failure, and other key aspects of
earthquake physics.

Ruptures of a planar interface in experiments with
PMMA-type materials were shown to be quantita-
tively described by fracture mechanics over a range
of rupture velocities (e.g. Svetlizky & Fineberg,
2014). If shear crack or pulse-like ruptures control the
initiation, propagation and arrest of earthquakes, this
has important consequences for the stability transition
of faults, and the potential role of friction for slip
stability analysis that is often used (Ben-Zion, 2001;
Barras et al., 2019; Brener & Bouchbinder, 2021;
Rice, 1980; Svetlitzki et al., 2019). As the elastic
strain energy is stored in the entire crustal volume,
frictional sliding in the rupture zone can interact with
the rupture front via long-range elastic stress transfer.
While this suggests “no separation of scales” in the
rupture zone (Brener & Bouchbinder, 2021; Rubino
et al., 2022), if the rate of stress transfer during
rupture propagation to the front is sufficiently small,
the interaction is minor or negligible. This allows an
effective separation of scales (Fig. 1) to the rupture
front, an intermediate region where the stress inter-
action with the front is appreciable, and a tail region
that is essentially not interacting with the front
(although it can still spawn minor offspring local
rupture fronts). The failure of rough surfaces and
gouge layers amplifying stress and strength hetero-
geneities can lead to intermittent rupture propagation
and an interplay of rupture and sliding friction pro-
cesses, which may also cause re-rupturing of
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frictional slip patches behind the initial rupture front
(Rubino et al., 2022; Xu et al., 2018). The wave
radiation during the rupture process can also trigger
failures ahead of the rupture front.

Lab experiments clearly show a hierarchical
complexity of the rupture process in space and time,
particularly on rough surfaces. Rupture of heteroge-
neous faults likely involves a hierarchy of asperity
and segment sizes, and numerous laboratory tests
show that slow and fast rupture and slip events may
coexist (Bolton et al., 2022; Dresen et al., 2020;
Yamashita et al., 2021). This implies, for example,
that the stability transition in a heterogeneous fault
can depend on the size of the event in an opposite
fashion to the nucleation of dynamic instability
beyond a critical slip patch size (e.g., Dieterich, 1992;
Rice, 1993). Specifically, stable large-scale (system-
wide) slip and unstable small-scale (grain-scale)
acoustic emissions can coexist and interact mutually
(Ben-Zion, 2008; de Geus et al., 2019; Fisher, 1998).
Classic estimates of the stability transition and
nucleation patch size based on a smooth fault model
may yield erroneous results. The fact that slow or
even stable large slip events may include dynamic
ruptures on the grain-asperity scale (AEs) is remi-
niscent of slow slip events hosting tremor. Faults may
also have slow or fast slip events depending on local
ratios of shear to normal stress, which may far exceed
the average frictional strength (Ben-David et al,,
2010; Bolton et al., 2022). Slow and fast slip events
with duration times of 0.1-10 s may be contained or
system-wide affecting the entire fault. Associated AE
bursts shorter than 107> s (Figs. 5, 6) attest to loading
and dynamic failure of grain-scale and larger asper-
ities across different length scales (Dresen et al.,
2020; Goebel et al., 2017; Ohnaka & Shen, 1999). As
AE activity relates to roughness, preparatory fault
slip on smooth faults is often dominantly aseismic
and small, involving a few and generally large AEs
close to failure at peak stress that initiate a macro-
scopic slip event (Guerin-Marthe et al., 2022).

Stick slip failure of lab faults with varying degree
of heterogeneity captures important aspects of
unstable failure in nature. However, several key
processes are not accounted for in the related con-
stitutive models used to interpret earthquake data.
These include intermittent rupture propagation,
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generation of rock damage and granulation, separa-
tion of rupture front and frictional tail, strong
dynamic changes of normal stresses during failure,
and superposition of processes in the rupture zone
radiating waves with different tensorial components
and different frequency bands. Fracture mechanics,
frictional constitutive laws, damage rheology, and
granular mechanics describe (each) certain aspects of
rupture and slip processes, but not the entire physics
of earthquake rupture zones. Elements from all these
frameworks are combined in a damage-breakage
rheology model (Lyakhovsky & Ben-Zion,
2014a, 2014b; Lyakhovsky et al., 2016). However,
the development of a more complete model for the
various processes in earthquake rupture zones that is
constrained and validated by detailed laboratory and
field data remains a fundamental challenge. Using up-
scaling methods (Kovachki et al., 2022; Matous et al.,
2017) to extrapolate results of laboratory experiments
for conditions of natural faults will aid significantly
the development of a more complete model for
earthquake and fault phenomena.
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