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Abstract. In this survey we provide an overview of recent advances on scalable load balancing schemes
which provide favorable delay performance and yet require minimal implementation over-
head. The basic load balancing scenario involves a single dispatcher where tasks arrive that
must immediately be forwarded to one of N single-server queues. The join-the-shortest-
queue (JSQ) policy yields vanishing delays as N grows large, as in a centralized queu-
ing arrangement, but involves a prohibitive communication burden. In contrast, JSQ(d)
schemes that assign an incoming task to a server with the shortest queue among d servers
selected uniformly at random require little communication, but lead to constant delays.
In order to examine this fundamental trade-off between delay performance and implemen-
tation overhead, we discuss a body of recent research on JSQ(d(N)) schemes in which the
diversity parameter d(N) depends on N and investigate the growth rate of d(N) required
to match the optimal JSQ performance on fluid and diffusion scales.

Stochastic coupling techniques and scaling limits play an instrumental role in estab-
lishing this asymptotic optimality. We demonstrate how this methodology carries over
to infinite-server settings, finite buffers, multiple dispatchers, servers arranged on graph
topologies, and token-based load balancing schemes such as join-the-idle-queue (JIQ), thus
providing a broad overview of the main trends in the field.
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1. Introduction. In this survey we review scalable load balancing algorithms
(LBAs) which achieve excellent delay performance in large-scale systems and yet have
a low implementation overhead. LBAs play a critical role in distributing service re-
quests or tasks (e.g., computing jobs, database look-ups, file transfers) among servers
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or distributed resources in parallel processing systems. The analysis and design of
LBAs has attracted significant attention in recent years, mainly spurred on by crucial
scalability challenges arising in cloud networks and data centers with massive numbers
of servers. LBAs can be broadly categorized as static, dynamic, or some intermediate
blend, depending on the amount of feedback or state information (e.g., congestion
levels) that is used in allocating tasks. The use of state information naturally allows
dynamic policies to achieve better delay performance, but also involves higher im-
plementation complexity and a substantial communication burden. The latter issue
is particularly pertinent in cloud networks and data centers with immense numbers
of servers handling a huge influx of service requests. In order to understand the
large-system characteristics, we examine scalability properties through the prism of
asymptotic scalings where the system size grows large and identify LBAs that strike
a balance between delay performance and implementation overhead.

The most basic load balancing scenario consists of N identical parallel servers
and a dispatcher where tasks arrive sequentially. Arriving tasks must immediately be
forwarded to one of the servers. Tasks are assumed to have unit-mean exponentially
distributed service requirements, and the service discipline at each server is supposed
to be oblivious to the actual service requirements. These assumptions, in conjunction
with a Poisson arrival process, permit a Markovian state description for the evolution
of the queue length process. Moreover, the symmetry arising from the homogeneity
of tasks and exchangeability of the servers provides a particularly convenient basis
for stochastic coupling arguments and scaling limits. In the early parts of this survey
we will focus on this basic setup, which has been prevalent in the literature, but
in later sections of the paper we will also discuss graph-based versions where the
servers are no longer statistically identical. In addition, we will touch on scenarios
with heterogeneous tasks, extensions to general service requirement distributions, and
situations where advance knowledge of the service requirements is available.

In the above-described basic setup, the celebrated join-the-shortest-queue (JSQ)
policy has several important stochastic optimality properties. In particular, the JSQ
policy achieves the minimum mean overall delay among all nonanticipating policies
that do not have any advance knowledge of the service requirements [34, 172]. In
order to implement the JSQ policy, however, a dispatcher requires instantaneous
knowledge of all the queue lengths, which may involve a prohibitive communication
burden for a large number of servers N . This poor scalability has motivated the
consideration of JSQ(d) policies, where an incoming task is assigned to a server with
the shortest queue among d \geq 2 servers selected uniformly at random. Note that this
involves an exchange of 2d messages per task, irrespective of the number of servers N .
Seminal results in [114, 163] imply that even sampling as few as d = 2 servers yields
significant performance enhancements over purely random assignment (d = 1) as N
grows large, which is commonly referred to as the power-of-two or power-of-choice
effect. In particular, when tasks arrive at rate \lambda N , the queue length distribution at
each individual server exhibits superexponential decay for any fixed \lambda < 1 as N grows
large, a considerable improvement compared to exponential decay for purely random
assignment.

The diversity parameter d thus induces a fundamental trade-off between the
amount of communication overhead and the delay performance. Specifically, a ran-
dom assignment policy does not entail any communication burden, but the mean
waiting time remains constant as N grows large for any fixed \lambda > 0. In contrast, a
nominal implementation of the JSQ policy (without maintaining state information at
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the dispatcher) involves 2N messages per task, but the mean waiting time vanishes as
N grows large for any fixed \lambda < 1. Although JSQ(d) policies with d \geq 2 yield major
performance improvements over purely random assignment while reducing the com-
munication burden by a factor O(N) compared to the JSQ policy, the mean waiting
time does not vanish in the limit. Hence, no fixed value of d will provide asymptot-
ically optimal delay performance. This is evidenced by powerful results [50, 51, 52]
indicating that in the absence of any memory at the dispatcher, the communication
overhead per task must increase with N in order for any scheme to achieve a zero
mean waiting time in the limit.

In the context of JSQ(d) policies, scalability specifically pertains to the intrinsic
trade-off between delay performance and communication overhead as governed by the
diversity parameter d, in conjunction with the relative load \lambda . In this survey we review
scaling results which offer detailed insight into the latter trade-off in a regime where
not only is the overall task arrival rate assumed to grow with N , but also the diversity
parameter is allowed to depend on N . We write \lambda (N) and d(N) to explicitly reflect
that, and we provide a sketch of the analysis in [119] which identifies the growth rate
of d(N) required in order to achieve a zero mean waiting time in the limit, depending
on the scaling of \lambda (N). This involves both fluid-scaled and diffusion-scaled versions of
the queue length process in regimes where \lambda (N)/N \rightarrow \lambda < 1 and (N  - \lambda (N))/

\surd 
N \rightarrow 

\beta > 0 as N \rightarrow \infty , respectively; see section 3.1 for definitions of these objects. As will
be discussed in detail there, the limiting processes are insensitive to the exact growth
rate of d(N), as long as the latter is sufficiently fast, and in particular they coincide
with the limiting processes for the JSQ policy. This demonstrates that the optimality
of the JSQ policy can be preserved asymptotically while dramatically lowering the
communication overhead.

As mentioned above, we will also consider network scenarios where the N servers
are assumed to be interconnected by some underlying graph topology GN . Tasks
arrive at the various servers as independent Poisson processes of rate \lambda , and each
incoming task is assigned to whichever server has the shortest queue among the one
where it appears and its neighbors in GN . Such network scenarios are not only of
theoretical interest, but also of major practical relevance since they emerge in the
modeling of so-called affinity relations and compatibility constraints between tasks
and servers. Such features are increasingly common in data centers and cloud net-
works due to heterogeneity and data locality issues, and they also relate to scalability
considerations; see section 6 for a further discussion and specific literature pointers.
In the case that GN is a clique (fully connected graph), each incoming task is assigned
to the server with the shortest queue across the entire system, and the behavior is
equivalent to that under the JSQ policy. The stochastic optimality properties of the
JSQ policy thus imply that the queue length process in a clique will be ``better"" than
in an arbitrary graph GN . We will present sufficient conditions formulated in [116]
for the fluid-scaled and diffusion-scaled versions of the queue length process in an
arbitrary graph to be equivalent to the limiting processes in a clique as N \rightarrow \infty .
The conditions demonstrate that the optimality of a clique can be asymptotically
preserved while dramatically reducing the number of connections, provided the graph
GN is ``suitably random""; see section 6 for a more formal statement.

While a zero waiting time can be achieved in the limit by sampling only d(N) \ll N
servers, the amount of communication overhead in terms of d(N) must still grow
with N . This can be explained using the fact that a large number of servers need
to be sampled for each incoming task to ensure that at least one of them is found
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idle with high probability. This can be avoided by introducing memory at the dis-
patcher, in particular maintaining a record of vacant servers, and assigning tasks to
idle servers, if there are any. This so-called join-the-idle-queue (JIQ) scheme [11, 101]
has gained huge popularity recently and can be implemented through a simple token-
based mechanism generating at most one message per task. The JIQ scheme is thus
quite appealing from a scalability perspective, which raises the question of what the
corresponding delay performance is in large-scale systems. We will therefore also re-
view results implying not only that the fluid-scaled queue length process under the
JIQ scheme asymptotically coincides with that under the JSQ policy as shown in [141],
but also that this equivalence property extends to the diffusion-scaled queue length
process as established in [118]. Thus, the use of memory allows the JIQ scheme to
achieve asymptotically optimal delay performance with minimal communication over-
head (at least in the idealized setting with statistically identical servers and homoge-
neous tasks). In particular, ensuring that tasks are assigned to idle servers whenever
available is sufficient to achieve asymptotic optimality, and using any additional queue
length information yields no meaningful performance benefits on the fluid or diffusion
levels. It is worth pointing out though that the JIQ scheme is not optimal in certain
asymptotic regimes such as the nondegenerate slow-down regime; see section 2.2 for a
formal definition. In [73] it was shown that a minor modification of the JIQ scheme,
called idle-one-first, which besides idle servers also keeps track of queues of length
one, is asymptotically optimal; see section 8.3 for a detailed discussion.

On a methodological note, it is worth observing that a direct derivation of the
fluid and diffusion limits in the above scenarios is quite challenging. Instead, the
asymptotic equivalence results in [116, 118, 119] are derived by relating the relevant
system occupancy processes to the corresponding processes under a JSQ policy, and
showing that the deviation among these processes is asymptotically negligible on
either fluid scale or diffusion scale under suitable assumptions on d(N) or GN . The
known fluid and diffusion limits for the JSQ policy thus yield the corresponding limit
process for the JSQ(d(N )) policy, a load balancing graph GN , and the JIQ scheme as
by-products.

In this survey we highlight the stochastic coupling techniques that played an
instrumental role in proving the asymptotic equivalence results in [116, 118, 119]. Al-
though the stochastic coupling concepts provide an effective and overarching approach,
they defy a systematic recipe and involve some degree of ingenuity and customiza-
tion. Indeed, the specific coupling arguments that were developed in [116, 118, 119]
are different from those that were originally used in establishing the stochastic opti-
mality properties of the JSQ policy. Moreover, the specific coupling approaches differ
in sometimes subtle but critical ways between a JSQ(d(N )) policy, a load balanc-
ing graph GN , and the JIQ scheme, which all require the arguments to be suitably
tailored. We also review further stochastic coupling constructions that were devised
in [120] for scenarios with infinite-server dynamics.

While the results for load balancing graphs illustrate that the stochastic coupling
techniques can be applied in ``asymmetric"" situations, it is fair to say that this ap-
proach is at its strongest in scenarios where all the servers are exchangeable and the
evolution of the system occupancy can be represented in terms of a density-dependent
Markov process. In these cases, the approach is particularly powerful in analyzing
the system occupancy process on fluid or diffusion scale, where for many policies the
behavior can be shown to asymptotically coincide with that of JSQ, for which fairly
explicit characterizations are known.
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Stochastic coupling does not seem to provide a directly useful approach for other
functionals of the system occupancy process, such as the maximum queue length,
where asymptotic equivalence with JSQ on fluid or diffusion scale does not provide
any information, and in fact even asymptotically the behavior for many schemes is
different. Applying stochastic coupling techniques in highly heterogeneous settings
is also difficult since the lack of symmetry tends to break its underpinnings, and
establishing scaling results for such scenarios remains as a particularly challenging
subject for further research, as is further discussed in section 9.

A final caveat is in order. Load balancing is a broad subject which has been ac-
tively pursued for decades and has been investigated from a variety of perspectives in
several communities (algorithm design, applied probability, complexity theory, per-
formance evaluation). While this survey aims to touch on many of these aspects,
reflecting historical developments and connecting various threads, it is impossible to
exhaustively cover the load balancing literature in full detail. Rather than provide
an encyclopedic overview, we therefore focus on scalability in terms of delay perfor-
mance and implementation overhead in large-scale systems as the overarching theme,
and highlight the combined power of stochastic coupling methods and scaling limits.

The survey is organized as follows. In section 2 we discuss various LBAs and
evaluate their scalability properties. In section 3 we introduce some useful prelimi-
nary concepts, and then review fluid and diffusion limits for the JSQ policy as well as
JSQ(d) policies with a fixed value of d. In section 4 we discuss the trade-off between
delay performance and communication overhead as a function of the diversity param-
eter d, in conjunction with the relative load. In particular, we formulate asymptotic
universality properties for JSQ(d) policies, which are extended to systems with server
pools and network scenarios in sections 5 and 6, respectively. Section 7 is devoted to
asymptotic optimality properties for the JIQ scheme. We discuss somewhat related
redundancy policies and alternative scaling regimes and performance metrics in sec-
tion 8. The survey is concluded in section 9 with a discussion of yet further extensions
and several open problems and emerging research directions.

2. Scalability Spectrum. In this section we review a wide spectrum of LBAs
and examine scalability properties in terms of their delay performance vis-\`a-vis their
associated implementation overhead in large-scale systems.

2.1. Basic Model. Throughout this section and most of the paper, we focus on
a basic scenario with N parallel single-server infinite-buffer queues and a single dis-
patcher where tasks arrive as a Poisson process with rate \lambda (N), as depicted in Fig-
ure 1. Arriving tasks cannot be queued at the dispatcher and must immediately be
forwarded to one of the servers. This canonical setup is commonly dubbed the su-
permarket model, in loose analogy with the everyday situation of choosing between
parallel checkout lanes in supermarkets. Tasks are assumed to have unit-mean expo-
nentially distributed service requirements, and the service discipline at each server is
supposed to be oblivious to the actual service requirements.

When tasks do not get served and never depart, but simply accumulate, the above
setup corresponds to a so-called balls-and-bins model, and we will further elaborate
on the connections and differences with work in that domain in section 8.5.

2.2. Asymptotic Scaling Regimes. An exact analysis of the delay performance is
quite involved, if not intractable, for all but the simplest LBAs. Numerical evaluation
or simulation is not straightforward either, especially for high load levels and large
system sizes. A common approach is therefore to consider various limit regimes, which
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\lambda (N)

1

2

3

...

N

Fig. 1 Tasks arrive at the dispatcher as a Poisson process of rate \lambda (N) and are forwarded to one
of the N servers according to some specific LBA.

not only provide mathematical tractability and illuminate the fundamental properties,
but are also natural in view of the typical conditions in which cloud networks and
data centers operate. One can distinguish several asymptotic scalings that have been
used for these purposes:
(i) In the classical heavy-traffic regime, \lambda (N) = \lambda N with a fixed number of serversN

and a relative load \lambda that tends to one in the limit.
(ii) In the conventional large-capacity or many-server regime, the relative load

\lambda (N)/N approaches a constant \lambda < 1 as the number of servers N grows large.
(iii) The popular Halfin--Whitt regime, named after the authors of the seminal pa-

per [74] where it was introduced and first analyzed, combines heavy traffic with
a large capacity with

(2.1)
N  - \lambda (N)\surd 

N
\rightarrow \beta > 0 as N \rightarrow \infty ,

so the relative capacity slack behaves as \beta /
\surd 
N as the number of servers N grows

large.
(iv) The so-called nondegenerate slow-down regime [8, 73] involves N  - \lambda (N) \rightarrow \gamma >

0, so the relative capacity slack shrinks as \gamma /N as the number of servers N grows
large.

The term nondegenerate slow-down refers to the fact that in the context of a
centralized multiserver queue (where load balancing between servers occurs implic-
itly), the mean waiting time in regime (iv) tends to a strictly positive constant as
N \rightarrow \infty , and is thus of similar magnitude to the mean service requirement. In con-
trast, in regimes (ii) and (iii), the mean waiting time in a multiserver queue decays
exponentially fast in N or is of the order 1/

\surd 
N , respectively, as N \rightarrow \infty , while in

regime (i) the mean waiting time grows arbitrarily large relative to the mean service
requirement.

In the context of a centralized M/M/N queue, scalings (ii), (iii), and (iv) are
commonly referred to as quality-driven (QD), quality-and-efficiency-driven (QED),
and efficiency-driven (ED) regimes. These terms reflect that (ii) offers excellent service
quality (vanishing waiting time), (iv) provides high resource efficiency (utilization
approaching one), and (iii) achieves a combination of these two, providing the best of
both worlds.

In the remainder of the paper we will focus on scalings (ii) and (iii) and refer to
them as fluid and diffusion scalings, since it is natural to analyze the relevant system
occupancy processes on fluid scale (1/N ) and diffusion scale (1/

\surd 
N) in these regimes,
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respectively. In line with the central theme of this survey, we will not provide a de-
tailed account of scalings (i) and (iv), which do not capture the large-scale perspective
and do not allow for low delays, respectively. However, we will briefly mention some
results for these regimes in sections 8.2 and 8.3.

2.3. Basic Load Balancing Algorithms.

2.3.1. Random Assignment: \bfitN Independent M/M/1 Queues. One of the most
basic LBAs is to assign each arriving task to a server selected uniformly at ran-
dom. In that case, the various queues collectively behave as N independent M/M/1
queues, each with arrival rate \lambda (N)/N and unit service rate. In particular, at each
of the queues, the total number of tasks in stationarity has a geometric distribu-
tion with parameter \lambda (N)/N . By virtue of the Poisson Arrivals See Time Averages
(PASTA) property, the probability that an arriving task incurs a nonzero waiting
time is \lambda (N)/N . The mean number of waiting tasks (excluding the possible task in

service) at each of the queues is \lambda (N)2

N(N - \lambda (N)) , so the total mean number of waiting

tasks is \lambda (N)2

N - \lambda (N) , which by Little's law implies that the mean waiting time is \lambda (N)
N - \lambda (N) .

In particular, when \lambda (N) = N\lambda , the probability that a task incurs a nonzero waiting
time is \lambda and the mean waiting time of a task is \lambda 

1 - \lambda , independent of N , reflecting
the independence of the various queues.

As we will see later, a broad range of queue-aware LBAs can deliver a probability
of a nonzero waiting time and a mean waiting time that vanish asymptotically. While
a random assignment policy is evidently not competitive with such queue-aware LBAs,
it still plays a relevant role due to its strong degree of mathematical tractability. For
example, the queue process under purely random assignment can be shown to provide
an upper bound (in a stochastic majorization sense) for various more involved queue-
aware LBAs for which even stability may be difficult to establish directly, yielding
conservative performance bounds and stability guarantees.

A slightly better LBA is to assign tasks to the servers in a round-robin manner,
dispatching every Nth task to the same server. In the fluid regime (ii), the inter-
arrival time of tasks at each given queue will then converge to a constant 1/\lambda as
N \rightarrow \infty . Thus each of the queues will behave as a D/M/1 queue in the limit, and the
probability of a nonzero waiting time and the mean waiting time will be somewhat
lower than under purely random assignment. However, both the probability of a
nonzero waiting time and the mean waiting time will still tend to strictly positive
values and not vanish as N \rightarrow \infty .

2.3.2. Join-the-Shortest Queue (JSQ). Under the JSQ policy, each arriving task
is assigned to the server with the currently shortest queue (ties are broken arbitrarily).
In the basic model described above, the JSQ policy has several stochastic optimal-
ity properties and yields the ``most balanced and smallest"" queue process among all
nonanticipating policies that do not have any advance knowledge of the service re-
quirements [34, 172].

2.3.3. Join-the-Smallest-Workload (JSW): Centralized M/M/N Queue. Under
the JSW policy, each arriving task is assigned to the server with the currently smallest
workload. Note that this is an anticipating policy, since it requires advance knowledge
of the service requirements of all the tasks in the system. Further observe that this
policy (myopically) minimizes the waiting time for each incoming task and mimics
the operation of a centralized N -server queue with an FCFS (first come, first served)
discipline. The equivalence with a centralized N -server queue with an FCFS disci-
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pline yields an additional optimality property of the JSW policy: The vector of joint
workloads at the various servers observed by each incoming task is smaller in the
Schur convex sense than under any alternative admissible policy [43].

It is worth observing that the above optimality properties do not in fact rely
on Poisson arrival processes or exponential service requirement distributions. At the
same time, these optimality properties do not imply that the JSW policy minimizes
the mean stationary waiting time. In our setting with Poisson arrivals and exponen-
tial service requirements, however, it can be shown through direct means that the
total number of tasks under the JSW policy is stochastically smaller than under the
JSQ policy. Indeed, in view of the equivalence with a centralized M/M/N queue, the
total service completion rate under the JSW policy is given by min\{ L,N\} when there
are L tasks in total in the system, while under the JSQ policy the total service com-
pletion rate is at most equal to min\{ L,N\} , and may be lower than that when some
servers are idle while tasks are queued up at other servers. Even though the JSW
policy requires similar excessive communication overhead, aside from its anticipating
nature, the above-mentioned equivalence in fact means that the total number of tasks
behaves as a birth-death process, which renders it far more tractable than the JSQ
policy. Specifically, it follows from textbook results for the centralized M/M/N queue
that, given that all the servers are busy, the total number of waiting tasks is geomet-
rically distributed with parameter \lambda (N)/N . The total mean number of waiting tasks

is then \Pi W (N,\lambda (N)) \lambda (N)
N - \lambda (N) , and the mean waiting time is \Pi W (N,\lambda (N)) 1

N - \lambda (N) ,

with \Pi W (N,\lambda (N)) denoting the probability of the total occupancy in an M/M/N
queue being N or larger, i.e., the probability of all servers being occupied and a task
incurring a nonzero waiting time. The probability \Pi W (N,\lambda (N)) can be obtained
from the stationary distribution of the birth-death process representing the system
occupancy and is described by the so-called Erlang-C formula as a function of the
load and number of servers. The latter function can be expressed in semiexplicit well-
approximated ``closed form"" in terms of a normalizing constant which is the sum of
an explicit infinite series. Standard results for the M/M/1 queue imply that the mean

waiting time is \lambda (N)
N - \lambda (N) for the random assignment policy considered in section 2.3.1.

Thus it can immediately be concluded that the mean waiting time under the JSW
policy is smaller by at least a factor of \lambda (N).

In the fluid regime \lambda (N) = N\lambda , it can be shown that the probability \Pi W (N,\lambda (N))
of a nonzero waiting time decays exponentially fast in N (see, for instance, [74]), and
hence so does the mean waiting time. The pivotal results in [74] further demonstrate
that in the diffusion regime (2.1), the probability \Pi W (N,\lambda (N)) of a nonzero waiting
time converges to a finite constant \Pi \ast W (\beta ). This implies that the mean waiting time

of is of the order 1/
\surd 
N and hence vanishes as N \rightarrow \infty .

2.3.4. Power-of-\bfitd Load Balancing (JSQ(\bfitd )). We have seen that the Achilles'
heel of the JSQ policy is its excessive communication overhead in large-scale systems.
This poor scalability has motivated consideration of so-called JSQ(d) policies, where
an incoming task is assigned to a server with the shortest queue among d servers
selected uniformly at random. The seminal results in [114, 163] demonstrate that in
the fluid regime (ii), the stationary probability that there are i or more tasks at a

given queue is proportional to \lambda (di - 1)/(d - 1) as N \rightarrow \infty , and thus it exhibits super-
exponential decay as opposed to exponential decay for the random assignment policy
considered in section 2.3.1.

As alluded to in section 1, the diversity parameter d thus induces a fundamental
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trade-off between the amount of communication overhead and the performance in
terms of queue lengths and delays. A rudimentary implementation of the JSQ policy
(d = N , without replacement) involves O(N) communication overhead per task, but
it can be shown that the probability of a nonzero waiting time and the mean waiting
vanish as N \rightarrow \infty in both the fluid and the diffusion regimes; see sections 3.3 and
3.4. Although JSQ(d) policies with a fixed parameter d \geq 2 yield major performance
improvements over purely random assignment, as implied by the results in [114, 163],
these results at the same time show that even in the fluid regime, the probability of
a nonzero waiting time and the mean waiting time do not vanish as N \rightarrow \infty .

2.3.5. Token-Based Mechanisms: Join-the-Idle-Queue (JIQ). While a zero wait-
ing time can be achieved in the limit by sampling only d(N) \ll N servers, the amount
of communication overhead in terms of d(N) must still grow withN . This can be coun-
tered by introducing memory at the dispatcher, in particular, maintaining a record
of vacant servers, and assigning tasks to idle servers as long as there are any, or to
a uniformly at random selected server otherwise. This so-called join-the-idle-queue
(JIQ) scheme [11, 101] has received keen interest recently and can be implemented
through a simple token-based mechanism. Specifically, idle servers send tokens to the
dispatcher to advertise their availability, and when a task arrives and the dispatcher
has tokens available, it assigns the task to one of the corresponding servers (and dis-
poses of the token). Note that a server only issues a token when a task completion
leaves its queue empty, thus generating at most one message per task. Surprisingly,
the mean waiting time and the probability of a nonzero waiting time vanish under the
JIQ scheme in both the fluid and the diffusion regimes, as we will further discuss in
section 7. Thus, the use of memory allows the JIQ scheme to achieve asymptotically
optimal delay performance with minimal communication overhead.

2.4. Performance Comparison. We now present some simulation results to
compare the above-described LBAs in terms of delay performance. Specifically, we
evaluate the mean waiting time and the probability of a nonzero waiting time in both
a fluid regime (\lambda (N) = 0.9N) and a diffusion regime (\lambda (N) = N  - 

\surd 
N). The sim-

ulations are conducted for N = 10, 20, . . . , 200 servers and run for 10000 time units.
Each simulation starts with an empty system, but only jobs that leave after 2500
time units are counted in order to avoid transient effects. The probability of waiting
and mean waiting time are computed using the empirical averages over all jobs that
leave after 2500 time units. This procedure is repeated 20 times, and the results in
Figure 2 show the mean waiting time and probability of waiting averaged across these
20 runs. An overview of the asymptotic delay performance and overhead associated
with various LBAs is provided in Table 1.

We are specifically interested in distinguishing two classes of LBAs---those de-
livering a mean waiting time and probability of a nonzero waiting time that vanish
asymptotically, and those that fail to do so---and relating that dichotomy to the asso-
ciated communication overhead and memory requirement at the dispatcher. We give
these classifications for both the fluid and the diffusion regimes.

JSQ, JIQ, and JSW. As mentioned earlier, JSQ, JIQ, and JSW have vanishing
mean waiting times in both the fluid and the diffusion regimes, and this is supported
by the figures, which further reflect the optimality of JSW in terms of mean waiting
time. We can also observe a crucial difference, however, between JSW and JSQ/JIQ.
Somewhat surprisingly, the probability of a nonzero waiting time does not vanish
for JSW in the diffusion regime, while it does vanish for JSQ/JIQ. Since the mean
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Fig. 2 Simulation results for mean waiting time E[WN ] and probability of a nonzero waiting time
pNwait for both a fluid and a diffusion regime.

waiting time for JSW is smaller than for JSQ/JIQ, this implies that the mean of all
nonzero waiting times (i.e., the mean waiting time conditional on having to wait) is
an order of magnitude larger in JSQ/JIQ compared to JSW. This difference can be
explained by the fact that JSW uses knowledge of the service requirements, whereas
JSQ/JIQ do not. Indeed, when a task is placed in a queue under JSQ/JIQ, it will
need to wait for a ``normal"" residual service time, whereas JSW exploits knowledge of
that residual service time being relatively short among all N queues. Alternatively,
taking the equivalent view of JSW as a centralized M/M/N queue, a task that needs
to wait may find several tasks ahead of it in the queue, but this queue is served
by N servers combined, whereas in JSQ/JIQ each queue is handled by just a single
server. Conversely, when there are N or more tasks in the system in total, an arriving
task will need to wait under JSW, while in JSQ/JIQ some of the servers may have
several tasks in the queue, and the arriving task may still find an idle server with high
probability. We will revisit the comparison between JSQ and a centralized M/M/N
queue in section 3.4.

Random and Round-Robin. The mean waiting time does not vanish for random
and round-robin in the fluid regime, as already mentioned in section 2.3.1. Moreover,
the mean waiting time grows without bound in the diffusion regime for these two
schemes. This is because the system can still be decomposed into single-server queues,
and the loads of the individual M/M/1 and D/M/1 queues tend to 1.

JSQ(\bfitd ) Policies. Three versions of JSQ(d) are included in Figure 2; d(N) = 2,

d(N) = \lfloor log(N)\rfloor \rightarrow \infty , and d(N) = N2/3 for which d(N)\surd 
N log(N)

\rightarrow \infty . Note that the

graph for JSQ(log(N )), where the diversity parameter grows logarithmically in N ,
shows kneepoints due to the slow growth rate of log(N) and the fact that the actual
integer value d(N) = \lfloor log(N)\rfloor occasionally jumps by 1. As can be seen in Figure 2,
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Table 1 Queue length distribution, waiting times, and communication overhead for various LBAs.

Scheme Queue length
Waiting time
(fixed \lambda < 1)

Waiting time
(1 - \lambda \sim 1/

\surd 
N)

Overhead
per task

Random q \star i = \lambda i \lambda 
1 - \lambda 

\Theta (
\surd 
N) 0

JSQ(d) q \star i = \lambda (di - 1)/(d - 1) \Theta (1) \Omega (logN) 2d

d(N) \rightarrow \infty same as JSQ same as JSQ ?? 2d(N)

d(N)\surd 
N log(N)

\rightarrow \infty same as JSQ same as JSQ same as JSQ 2d(N)

JSQ q \star 1 = \lambda , q \star 2 = o(1) o(1) \Theta (1/
\surd 
N) 2N

JIQ same as JSQ same as JSQ same as JSQ \leq 1

the choices for which d(N) \rightarrow \infty have vanishing wait in the fluid regime, while d = 2
has not. Overall, we see that JSQ(d) policies clearly outperform random and round-
robin dispatching, while JSQ, JIQ, and JSW are better in terms of mean wait.

3. Preliminaries, JSQ Policy, and JSQ(\bfitd ) Policies. In this section we first intro-
duce some notation and preliminary concepts, and then we review fluid and diffusion
limits for the JSQ policy as well as JSQ(d) policies with a fixed value of d.

3.1. Definitions, Limit Sequences, and Convergence Issues. We continue to
focus on the basic scenario where all the servers are homogeneous, the service re-
quirements are exponentially distributed, and the service discipline at each server
is oblivious to the actual service requirements. Moreover, most of the LBAs under
consideration do not distinguish between servers with equal queue lengths. Conse-
quently, the queue length process is Markov on an enlarged filtration, allowing for
random draws to resolve ties. In order to obtain a Markovian state description, it
therefore suffices to only track the number of tasks, and in fact we do not need to
keep a record of the number of tasks at each individual server, but only count the
number of servers with a given number of tasks. Specifically, we represent the state
of the system by a vector

Q(t) := (Q1(t), Q2(t), . . . ) ,

with Qi(t) denoting the number of servers with i or more tasks at time t, including
the possible task in service, i = 1, 2 . . . . Note that if we represent the queues at the
various servers as (vertical) stacks, and arrange these from left to right in ascending
order, then the value of Qi corresponds to the width of the ith (horizontal) row, as
depicted in the schematic diagram in Figure 3.

In order to examine the fluid and diffusion limits in regimes where the number of
servers N grows large, we consider a sequence of systems indexed by N and attach
a superscript N to the associated state variables. The fluid-scaled occupancy state
is denoted by qN (t) := (qN1 (t), qN2 (t), . . . ), with qNi (t) = QN

i (t)/N representing the
fraction of servers in the Nth system with i or more tasks as time t, i = 1, 2, . . . . Let

\scrS =

\biggl\{ 
q \in [0, 1]\infty : qi \leq qi - 1 \forall i = 2, 3, . . . , and

\infty \sum 
i=1

qi < \infty 
\biggr\} 

be the set of all possible fluid-scaled states equipped with the \ell 1 topology. Any (weak)
limit q(\cdot ) of the sequence of processes \{ qN (t)\} t\geq 0 in the conventional large-capacity
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10987654321

\leftarrow Q1 = 10

\leftarrow Q2 = 10
\cdot 
\cdot 
\cdot 

\leftarrow Q6 = 7

\cdot 
\cdot 
\cdot 

Fig. 3 The value of Qi represents the width of the ith row, when the servers are arranged in
nondescending order of their queue lengths.

regime (ii) as N \rightarrow \infty (in a suitable topology on the space of functions on [0, T ]
taking values in \scrS ) is called a fluid limit. In some frameworks in the literature this is
also commonly referred to as a mean-field limit when the occupancy process is viewed
as the (density-dependent) state evolution of a population of randomly interacting
nodes or particles [15, 32, 91, 92]. Whenever we consider fluid limits, we assume the
sequence of initial states is such that qN (0) \rightarrow q\infty \in \scrS as N \rightarrow \infty .

The diffusion-scaled occupancy state is defined as \=QN (t) = ( \=QN
1 (t), \=QN

2 (t), . . . ),
with

(3.1) \=QN
1 (t) =  - N  - QN

1 (t)\surd 
N

, \=QN
i (t) =

QN
i (t)\surd 
N

, i = 2, 3, . . . ,

where we include a minus sign in the definition of \=QN
1 (t) so as to adhere to the

notation adopted in [36] which is the basis for the results that will be presented in
section 3.4. Any (weak) limit Q(\cdot ) of the sequence of processes \{ QN (t)\} t\geq 0 in the
Halfin--Whitt heavy-traffic regime (iii) as N \rightarrow \infty , once again in a suitable topology,
is called a diffusion limit. Note that  - \=QN

1 (t) corresponds to the number of vacant
servers, normalized by

\surd 
N . The reason whyQN

1 (t) is centered aroundN , whileQN
i (t),

i = 2, 3, . . . , are not, is that for the scalable LBAs that we consider the fraction of
servers with exactly one task tends to one, whereas the fraction of servers with two
or more tasks tends to zero as N \rightarrow \infty . For convenience, we will assume that each
server has an infinite-capacity buffer, but all the results extend to the finite-buffer
case; see, for instance, [36, 117, 118, 119, 120].

We conclude this subsection with a discussion of two important convergence issues
associated with the above-defined scaling limits.

Accuracy of Asymptotic Approximations. A critical issue in the context of
scaling limits is the rate of convergence and accuracy for finite-size systems. Some
interesting results for the accuracy of mean-field approximations for interacting par-
ticle systems including load balancing models may be found in [62, 175, 176]. These
results can be leveraged to develop refined approximations and improve the accuracy
by adding expansion terms as demonstrated in [63, 64, 65].

Global Asymptotic Stability, Stationary Distributions, and Interchange of
Limits. A further crucial issue in the context of scaling limits is whether limit pro-
cesses that arise as N \rightarrow \infty themselves have (unique) subsequential limits or limiting
distributions as t \rightarrow \infty , and if so, how the stationary distributions of the prelimit pro-
cesses (assuming they exist) relate to those limits. For fluid limits, which are usually
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described in terms of a system of differential equations, the first question translates
to the existence of a unique invariant point (fixed point) of these equations. While in
most cases of practical interest such a unique invariant point tends to exist, this may
be nontrivial to prove, and the existence of multiple invariant points cannot a pri-
ori be ruled out in general. In fact, existence of multiple invariant points has been
shown in specific scenarios and is an indication of oscillatory behavior and so-called
bistability issues in the original stochastic process for large N [66, 109]. Even when
it can be established that a unique invariant point exists, the next question pertains
to global attraction or global asymptotic stability. Specifically, the invariant point
is said to be a global attractor, or globally asymptotically stable, if the fluid-limit
process converges to this point for any initial condition. Global asymptotic stability
has been established for various particular model instances, including the supermar-
ket model with JSQ(d) load balancing strategies [114, 154, 163]. Common proof
methodologies involve Lyapunov constructions [26, 47, 61], monotonicity properties
[113, 145, 154, 163], and reversibility concepts [93], but there is no systematic recipe
available, and the specific proof arguments tend to be highly tailored to the particular
system under consideration. If global asymptotic stability of the invariant point can
be established, then along with tightness this ensures that the sequence of stationary
distributions of the prelimit process (assuming these exist) converge to this point;
see, for instance, [16], with some of the key ideas and results dating back to much
earlier work [79, 170]. This provides justification for an interchange of the large-scale
(N \rightarrow \infty ) and stationary (t \rightarrow \infty ) limits, indicating that the invariant point provides
a suitable approximation for the stationary distribution of the original stochastic pro-
cess for sufficiently large values of N . In addition, the interchange of limits tends
to furnish asymptotic independence among any finite subset of the queues [69]. Re-
lated results, convergence rates, and error probabilities are established in [104, 108].
Somewhat similar issues and observations apply for diffusion limits [53, 88].

3.2. Fluid Limit for JSQ(\bfitd ) Policies. We first consider the fluid limit for JSQ(d)
policies with an arbitrary but fixed value of d as characterized by the seminal results
in [113, 163]. The result below is paraphrased from [113, 163].

Fluid Limit for JSQ(\bfitd ). The sequence of processes \{ qN (t)\} t\geq 0 has a weak limit
\{ q(t)\} t\geq 0 that satisfies the system of differential equations

(3.2)
dqi(t)

dt
= \lambda (qdi - 1(t) - qdi (t)) - (qi(t) - qi+1(t)), i = 1, 2, . . . ,

with q0(t) \equiv 1 for all t \geq 0. The fluid-limit equations may be interpreted as follows.
The first term represents the rate of increase in the fraction of servers with i or more
tasks due to arriving tasks that are assigned to a server with exactly i  - 1 tasks.
Note that the latter occurs in fluid state q \in \scrS with probability qdi - 1  - qdi , i.e., the
probability that all d sampled servers have i - 1 or more tasks, but not all of them have
i or more tasks. The second term corresponds to the rate of decrease in the fraction
of servers with i or more tasks due to service completions from servers with exactly
i tasks, and the latter rate is given by qi  - qi+1. The system in (3.2) characterizes
the functional law of large numbers (FLLN) behavior of systems in regime (ii) under
the JSQ(d) scheme. Weak convergence of the diffusion-scaled variation around the
fluid-limit path to a certain Ornstein--Uhlenbeck process in the same load regime
(both the transient behavior and in steady state) was shown in [70], establishing a
functional central limit theorem (FCLT) result. Strong approximations for systems
under the JSQ(d) scheme on any finite time interval by the deterministic system
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in (3.2), a certain infinite-dimensional jump process, and a diffusion approximation
were established in [107].

Now, assume \lambda \in (0, 1) for ergodicity of the queue length process. When the
derivatives in (3.2) are set equal to zero for all i, the unique fixed point for any d \geq 2
is obtained as [113, 163]

(3.3) q\ast i = \lambda 
di - 1
d - 1 , i = 1, 2, . . . .

It can be shown that the fixed point is asymptotically stable in the sense that q(t) \rightarrow 
q\ast as t \rightarrow \infty for any initial fluid state q\infty with

\sum \infty 
i=1 q

\infty 
i < \infty . As mentioned earlier,

the fixed point reveals that the stationary queue length distribution at each individual
server exhibits superexponential decay as N \rightarrow \infty , as opposed to exponential decay
for a random assignment policy. As described above, this involves an interchange
of the many-server (N \rightarrow \infty ) and stationary (t \rightarrow \infty ) limits. The justification
is provided by the asymptotic stability of the fixed point along with a few further
technical conditions.

3.3. Fluid Limit for JSQ Policy. We now turn to the fluid limit for the ordi-
nary JSQ policy, which rather surprisingly was not rigorously established until fairly
recently in [119], leveraging martingale functional limit theorems and time-scale sep-
aration arguments [80].

In order to state the fluid limit starting from an arbitrary fluid-scaled occupancy
state, we first introduce some additional notation. For any fluid state q \in \scrS , denote
by m(q) = min\{ i \geq 0 : qi+1 < 1\} the minimum queue length among all servers. Now
if m(q) = 0, then define p0(q) = 1 and pi(q) = 0 for all i = 1, 2, . . . . Otherwise, in
the case that m(q) > 0, define

(3.4) pi(q) =

\left\{     
min

\bigl\{ 
(1 - qm(\bfq )+1)/\lambda , 1

\bigr\} 
for i = m(q) - 1,

1 - pm(\bfq ) - 1(q) for i = m(q),

0 otherwise.

The fluid-limit result below is paraphrased from [119].

Fluid Limit of JSQ. For \lambda \in (0, 1), the weak limit of the sequence of processes
\{ qN (t)\} t\geq 0 is given by a deterministic system \{ q(t)\} t\geq 0 that satisfies the system of
differential equations

(3.5)
d+qi(t)

dt
= \lambda pi - 1(q(t)) - (qi(t) - qi+1(t)), i = 1, 2, . . . ,

where d+/dt denotes the right-derivative. The reason we have used the derivative
in (3.2) and the right-derivative in (3.5) is that the limiting trajectory for the JSQ
policy may not be differentiable at all time points. In fact, one of the major technical
challenges in proving the fluid limit for the JSQ policy is that the drift of the process
is not continuous, which leads to nonsmooth limiting trajectories; see [119] for further
details. The uniqueness of the above weak limit was not established in [119] but
follows from the recent result in [19, Theorem 2.1].

The fluid-limit trajectory in (3.5) can be interpreted as follows. The coefficient
pi(q) represents the instantaneous fraction of incoming tasks assigned to servers with
a queue length of exactly i in the fluid state q \in \scrS . Note that a strictly positive
fraction 1  - qm(\bfq )+1 of the servers has a queue length of exactly m(q). Clearly the
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fraction of incoming tasks that gets assigned to servers with a queue length of m(q)+1
or larger is zero: pi(q) = 0 for all i = m(q) + 1, . . . . Also, tasks at servers with a
queue length of exactly i are completed at (normalized) rate qi  - qi+1, which is zero
for all i = 0, . . . ,m(q) - 1, and hence the fraction of incoming tasks that get assigned
to servers with a queue length of m(q)  - 2 or less is zero as well: pi(q) = 0 for all
i = 0, . . . ,m(q)  - 2. This only leaves the fractions pm(\bfq ) - 1(q) and pm(\bfq )(q) to be
determined. Now observe that the fraction of servers with a queue length of exactly
m(q) - 1 is zero. Ifm(q) = 0, then clearly the incoming tasks will join an empty queue,
and thus pm(\bfq ) = 1 and pi(q) = 0 for all i \not = m(q). Furthermore, if m(q) \geq 1, since
tasks at servers with a queue length of exactly m(q) are completed at (normalized)
rate 1  - qm(\bfq )+1 > 0, incoming tasks can be assigned to servers with a queue length
of exactly m(q)  - 1 at that rate. We thus need to distinguish between two cases,
depending on whether or not the normalized arrival rate \lambda is larger than 1 - qm(\bfq )+1.
If \lambda < 1  - qm(\bfq )+1, then all the incoming tasks can be assigned to a server with a
queue length of exactly m(q)  - 1, so that pm(\bfq ) - 1(q) = 1 and pm(\bfq )(q) = 0. On the
other hand, if \lambda > 1 - qm(\bfq )+1, then not all incoming tasks can be assigned to servers
with a queue length of exactly m(q)  - 1 active tasks, and a positive fraction will be
assigned to servers with a queue length of exactly m(q): pm(\bfq ) - 1(q) = (1 - qm(\bfq )+1)/\lambda 
and pm(\bfq )(q) = 1 - pm(\bfq ) - 1(q).

In the case that \lambda \in (0, 1), the unique fixed point q \star = (q \star 1 , q
 \star 
2 , . . .) of the dynam-

ical system in (3.5) is given by

(3.6) q\ast i =

\biggl\{ 
\lambda , i = 1,
0, i = 2, 3, . . . .

Note that the fixed point naturally emerges when d \rightarrow \infty in the fixed point expres-
sion (3.3) for fixed d. However, the process-level results in [114, 163] for fixed d
cannot be readily used to handle joint scalings of d and N and do not yield the en-
tire fluid-scaled sample path for arbitrary initial states as given by (3.5). The fixed
point in (3.6), in conjunction with an interchange of limits argument, indicates that
in stationarity the fraction of servers with a queue length of two or more under the
JSQ policy is negligible as N \rightarrow \infty .

3.4. Diffusion Limit for JSQ Policy. We next describe the diffusion limit for the
JSQ policy in the Halfin--Whitt heavy-traffic regime (2.1), as derived in [36]. The
statement below is paraphrased from [36]. Recall the centered and diffusion-scaled
processes in (3.1).

Diffusion Limit for JSQ. For suitable initial conditions, the sequence of processes\bigl\{ 
\=QN (t)

\bigr\} 
t\geq 0 converges weakly to the limit

\bigl\{ 
\=Q(t)

\bigr\} 
t\geq 0, where ( \=Q1(t), \=Q2(t), . . .) is the

unique solution to the system of SDEs

d \=Q1(t) =
\surd 
2dW (t) - \beta dt - \=Q1(t) + \=Q2(t) - dU1(t),

d \=Q2(t) = dU1(t) - \=Q2(t),
(3.7)

and \=Qi(t) = 0, i \geq 3, for t \geq 0, where W is standard Brownian motion and U1 is the
unique continuous nondecreasing nonnegative process satisfying

\int \infty 
0
1[ \=Q1(t)<0]dU1(t)

= 0 and U1(0) = 0.
The diffusion-limit characterization in (3.7) may be interpreted as follows. First,

recall that  - \=Q1 corresponds to the number of vacant servers (normalized by
\surd 
N),

and observe that this number is governed by the number of arriving tasks on the one
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hand (as long as the number of vacant servers is nonzero), with associated exponential
rate \lambda (N), and on the other hand the number of service completions at servers with
exactly one task, with associated exponential rate QN

1  - QN
2 . Noting that (N  - 

\lambda (N))/
\surd 
N \rightarrow \beta , \=QN

1 =  - (N  - QN
1 )/

\surd 
N , and \=QN

2 = QN
2 /

\surd 
N , we recognize that

these dynamics are reflected in the equation for d \=Q1(t), with
\surd 
2dW (t) an additional

diffusion term corresponding to the variation in the number of arrivals and service
completions around the drift terms and dU1(t) a reflection term accounting for the
fact that the number of vacant servers cannot be negative. More specifically, the
term dU1(t) tracks the number of arriving tasks assigned to busy servers when there
are no vacant servers, which explains why the derivative can only be positive when
\=Q1 < 0. Now observe that, for suitable initial conditions, since \beta < 0, it is highly
unlikely that all servers have two or more tasks, and the number of servers with three
or more tasks is negligible on diffusion scale, as reflected in the fact that \=Qi = 0, i \geq 3.
Also, the dynamics of the number of servers with two or more tasks are governed by
the assignment of tasks to busy servers captured by the term dU1(t) and the service
completions at servers with exactly two tasks, which is equal to \=Q2 on diffusion scale
since the number of servers with three or more tasks is negligible, explaining the
equation for d \=Q2(t).

The above convergence of the scaled occupancy measure was established in [36]
for any finite time interval. The tightness of the sequence of diffusion-scaled steady-
state occupancy measures \{ ( \=QN

1 (\infty ), \=QN
2 (\infty ))\} N\geq 1 and the ergodicity of the limiting

diffusion process (3.7), and hence the interchange of limits, were open problems until
[24] further established that the weak-convergence result extends to the steady state as
well, i.e., \=QN (\infty ) converges weakly to the random variable ( \=Q1(\infty ), \=Q2(\infty ), 0, 0, . . .)
as N \rightarrow \infty , where ( \=Q1(\infty ), \=Q2(\infty )) has the stationary distribution of the process
( \=Q1, \=Q2). Thus, the steady state of the diffusion process in (3.7) is proved to capture
the asymptotic behavior of large-scale systems under the JSQ policy.

In [24] a Lyapunov function is obtained via a generator expansion framework us-
ing Stein's method, which establishes exponential ergodicity of ( \=Q1, \=Q2). Although
this approach gives a good handle on the rate of convergence to stationarity, it sheds
little light on the form of the stationary distribution of the limiting diffusion pro-
cess (3.7) itself. In two companion papers [13, 14] the authors perform a detailed
analysis of the steady state of this diffusion process. Using a classical regenerative
process construction of the diffusion process in (3.7), [13] establishes that \=Q1(\infty ) has
a Gaussian tail and the tail exponent is uniformly bounded by constants which do not
depend on \beta , whereas \=Q2(\infty ) has an exponentially decaying tail and the coefficient
in the exponent is linear in \beta . More precisely, for any \beta > 0 there exist positive
constants C1, C2, D1, D2 not depending on \beta and positive constants Cl(\beta ), Cu(\beta ),
Dl(\beta ), Du(\beta ), CR(\beta ), DR(\beta ) depending only on \beta such that

Cl(\beta )e - C1x
2

\leq P( \=Q1(\infty ) <  - x) \leq Cu(\beta )e - C2x
2

, x \geq CR(\beta ),

Dl(\beta )e - D1\beta y \leq P( \=Q2(\infty ) > y) \leq Du(\beta )e - D2\beta y, y \geq DR(\beta ).
(3.8)

It was further shown in [13] that there exists a positive constant \scrC \ast not depending
on \beta such that almost surely along any sample path,

 - 2
\surd 
2 \leq lim inf

t\rightarrow \infty 

\=Q1(t)\surd 
log t

\leq  - 1,

1

\beta 
\leq lim sup

t\rightarrow \infty 

\=Q2(t)

log t
\leq 2

\scrC \ast \beta 
.
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Notice that the width of fluctuation of \=Q1 does not depend on the value of \beta , whereas
that of \=Q2 is linear in \beta  - 1.

Since the Nth system is ergodic and its arrival rate is N  - \beta 
\surd 
N , it is straightfor-

ward to see that E( \=QN
1 (\infty )) =  - \beta for all N , and hence it can also be derived from the

evolution of the limiting diffusion process that E( \=Q1(\infty )) =  - \beta . Thus, intuitively, for
large enough \beta , the system has mostly many idle servers, and the number of servers
with queue length at least two diminishes. But the manner in which \=Q2(\infty ) scales as
\beta becomes large is highly nontrivial. Specifically, it was shown in [14] that there exist
\beta 0 \geq 1 and positive constants C1, C2, D1, D2 such that, for all \beta \geq \beta 0,

e - C1\beta 
2

\leq E
\bigl( 
\=Q2(\infty )

\bigr) 
\leq e - C2\beta 

2

,

P
\Bigl( 
\=Q2(\infty ) \geq e - e

D1\beta 2\Bigr) 
\leq e - D2\beta 

2

,
(3.9)

i.e., the steady-state mean is of order e - C\beta 2

, but most of the steady-state mass concen-

trates at a much smaller scale e - e
D1\beta 2

. This suggests intermittency in the behavior of

the \=Q2 process, namely, \=Q2 is typically of order e - e
D1\beta 2

, but during rare events when
it achieves higher values, it takes a long time to decay. However, for small enough \beta ,
the behavior is qualitatively different. Since E( \=Q1(\infty )) =  - \beta , the system is expected
to become more congested as \beta becomes smaller. As a result, intuitively, \=Q2 should
increase in the distributional sense. In this regime as well, \=Q2 exhibits some striking
behavior. Specifically, it was shown in [14] that there exist positive constants \beta \ast , M1,
and M2 such that, for all \beta \leq \beta \ast ,

M1

\beta 
\leq E( \=Q2(\infty )) \leq M2

\beta 
.(3.10)

Comparison with M/M/\bfitN Queue. The M/M/N queue in the Halfin--Whitt
heavy-traffic regime has been studied quite extensively (see [46, 48, 49, 74, 155, 156,
157] and the references therein). In this case, the centered and scaled total number of
tasks in the system ( \=SN (t) - N)/

\surd 
N converges weakly to a diffusion process \{ \=S(t)\} t\geq 0

[74, Theorem 2] with

(3.11) d \=S(t) =
\surd 
2dW (t) - \beta dt - d \=S(t)1[ \=S(t)\leq 0],

whereW is standard Brownian motion. As reflected in (3.7) and (3.11), the JSQ policy
and the M/M/N system share some striking similarities in terms of the qualitative
behavior of the total number of tasks in the system. In particular, both the number
of idle servers and the number of waiting tasks are of the order \Theta (

\surd 
N). This shows

that, despite the distributed queuing operation, a suitable load balancing policy can
deliver a similar combination of excellent service quality and high resource utilization
efficiency in the QED regime (cf. section 2.2) as in a centralized queuing arrangement.
Moreover, the interchange of limits result in [24] implies that for systems under the
JSQ policy, \=QN

tot(\infty ) :=
\sum \infty 

i=1 Q
N
i (\infty ) converges weakly to \=Q1(\infty ) + \=Q2(\infty ), which

has an exponential upper tail (large positive deviation) and a Gaussian lower tail
(large negative deviation); see (3.8). This is again reminiscent of the corresponding
tail asymptotics for the M/M/N queue. Note that since \=S(\cdot ) is a simple combination
of a Brownian motion with a negative drift (when all servers are fully occupied)
and an Ornstein--Uhlenbeck process (when there are idle servers), the steady-state
distribution \=S(\infty ) can be computed explicitly and is indeed a combination of an
exponential distribution and a Gaussian distribution.
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There are, however, some clear differences between the diffusions in (3.7) and
(3.11):
(i) Observe that in the case of M/M/N systems, whenever there are waiting tasks

(equivalent to Q2 being positive in our case), the queue length has a constant
negative drift towards zero. This leads to the exponential upper tail of \=S(\infty ),
by comparison with the stationary distribution of a reflected Brownian motion
with constant negative drift. In the JSQ case, however, the rate of decrease of
Q2 is always proportional to itself, which makes it somewhat counterintuitive
that its stationary distribution has an exponential tail.

(ii) In the M/M/N system, the number of idle servers can be nonzero only when
the number of waiting tasks is zero. Thus, the dynamics of both the number of
idle servers and the number of waiting tasks are completely captured by the one-
dimensional process \=SN and by the one-dimensional diffusion \=S in the limit. But
in the JSQ case, \=Q2 is never zero, and the dynamics of ( \=Q1, \=Q2) are truly two-
dimensional (although the diffusion is nonelliptic) with \=Q1 and \=Q2 interacting
with each other in an intricate manner.

(iii) From (3.7) we see that \=Q2 never hits zero. Thus, in steady state, there is no
mass at \=Q2 = 0, and the system always has waiting tasks. This is in sharp
contrast to the M/M/N case, where the system has no waiting tasks in steady
state with positive probability.

(iv) In the M/M/N system, a positive fraction of the tasks incurs a nonzero waiting
time as N \rightarrow \infty , but a nonzero waiting time is only of length 1/(\beta 

\surd 
N) in

expectation. In contrast, in the JSQ case, it is easy to see that \=Q1 (the limit of
the scaled number of idle servers) spends zero time at the origin, i.e., in steady
state the fraction of arriving tasks that finds all servers busy vanishes in the
large-N limit (in fact, this is of order 1/

\surd 
N ; see [24]). However, such tasks will

have to wait for the duration of a residual service time, implying that a nonzero
waiting time is of order O(1) and does not vanish.

(v) As \beta \rightarrow 0, [74, Proposition 2] implies that \beta \=S(\infty ) for the M/M/N queue con-
verges weakly to a unit-mean exponential distribution. In contrast, results in [14]
show that \beta ( \=Q1(\infty )+ \=Q2(\infty )) converges weakly to a Gamma(2) random variable.
This indicates that despite similar order of performance, due to the distributed
operation, in terms of the number of waiting tasks JSQ is a factor 2 worse in
expectation than the corresponding centralized system.

3.5. JSQ(\bfitd ) Policies in Heavy-Traffic Regime. Finally, we briefly discuss the
behavior of JSQ(d) policies with a fixed value of d in the Halfin--Whitt heavy-traffic
regime (2.1). While a complete characterization of the occupancy process for fixed d
has remained elusive so far, significant partial results were obtained in [35]. In order
to describe the transient asymptotics, introduce the following rescaled processes:

(3.12) \=QN
i (t) :=

N  - QN
i (t)\surd 

N
, i = 1, 2, . . . .

Note that in contrast to (3.1), in (3.12) all components are centered by N . Also note
that the sign of the first coordinate in (3.12) is the opposite of that in (3.1). The
statement below is paraphrased from [35].

Process-Level Limit of JSQ(\bfitd ) Policy in Halfin–Whitt Regime. Assuming that
the initial states converge with respect to the product topology under the above scaling,
[35, Theorem 2] establishes that on any finite time interval, \=QN (\cdot ) converges weakly
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to a deterministic system \=Q(\cdot ) that satisfies the system of ODEs

d \=Qi(t) =  - d( \=Qi(t) - \=Qi - 1(t)) + \=Qi+1(t) - \=Qi(t), i = 1, 2, . . . ,

with the convention that \=Q0(t) \equiv 0. It is noteworthy that the scaled occupancy
process loses its diffusive behavior for fixed d. It is further shown in [35] that with high
probability the steady-state fraction of queues with length at least logd(

\surd 
N/\beta ) - o(1)

tasks approaches unity, which in turn implies that with high probability the steady-
state delay is at least logd(

\surd 
N/\beta ) - O(1) as N \rightarrow \infty . The diffusion approximation of

the JSQ(d) policy in the Halfin--Whitt regime (2.1), starting from a different initial
state, has been studied in [27].

In [176] a broad framework involving Stein's method was introduced to analyze
the rate of convergence of the stationary distribution under the JSQ(2) policy in a
heavy-traffic regime, where (N  - \lambda (N))/\eta (N) \rightarrow \beta > 0 as N \rightarrow \infty , with \eta (N) a
positive function diverging to infinity as N \rightarrow \infty . Note that the case \eta (N) =

\surd 
N

corresponds to the Halfin--Whitt heavy-traffic regime (2.1). Using this framework, it
was proved that when \eta (N) = N\alpha with some 4/5 < \alpha \leq 1,

(3.13) E
\Bigl( \infty \sum 

i=1

\bigm| \bigm| \bigm| qNi (\infty ) - qN, \star 
i

\bigm| \bigm| \bigm| \Bigr) \leq 1

N2\alpha  - 1 - \xi , where qN, \star 
i =

\Bigl( \lambda (N)

N

\Bigr) 2i - 1
,

and \xi > 0 is an arbitrarily small constant. Equation (3.13) not only shows that asymp-
totically the stationary occupancy measure concentrates at qN, \star , but also provides
the rate of convergence.

4. Universality of JSQ(\bfitd ) Policies. In this section we will further explore the
trade-off between delay performance and communication overhead as a function of
the diversity parameter d, in conjunction with the relative load. The latter trade-off
will be examined in an asymptotic regime where not only does the total task arrival
rate \lambda (N) grow with N , but also the diversity parameter depends on N , and we
write d(N) to explicitly reflect this dependence. We will specifically investigate what
growth rate of d(N), depending on the scaling behavior of \lambda (N), is required in order
to asymptotically match the optimal performance of the JSQ policy and achieve a zero
mean waiting time in the limit. The results presented in the remainder of the section
are based on [119], where full proofs are also provided, unless specified otherwise.

Theorem 4.1 (universality of fluid limit for JSQ(d(N))). If d(N) \rightarrow \infty as N \rightarrow 
\infty , then any fluid limit of the JSQ(d(N)) scheme coincides with that of the ordinary
JSQ policy and, in particular, satisfies the system of differential equations in (3.5).
Consequently, the stationary occupancy states converge to the unique fixed point as
in (3.6).

Theorem 4.2 (universality of diffusion limit for JSQ(d(N))). If d(N)/(
\surd 
N logN)

\rightarrow \infty as N \rightarrow \infty , then for suitable initial conditions the weak limit of the sequence
of processes

\bigl\{ 
\=QN (t)

\bigr\} 
t\geq 0, under the JSQ(d(N)) policy, coincides with that of the or-

dinary JSQ policy and, in particular, is given by the system of SDEs in (3.7).

The above universality properties indicate that the JSQ overhead can be lowered
by almost factors of O(N) and O(

\surd 
N/ logN) while retaining fluid- and diffusion-level

optimality, respectively. In other words, Theorem 4.1 or 4.2 reveals that it is sufficient
for d(N) to grow at any rate, or faster than

\surd 
N logN , in order to observe scaling

benefits similar to those of a pooled system with N parallel single-server queues on
fluid scale and diffusion scale, respectively. The stated conditions are in fact close to
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necessary, in the sense that if d(N) is uniformly bounded or d(N)/(
\surd 
N logN) \rightarrow 0

as N \rightarrow \infty , then, respectively, the fluid-limit and diffusion-limit paths under the
JSQ(d(N)) scheme differ from those under the ordinary JSQ policy. In particular, if
d(N) is uniformly bounded, the mean steady-state waiting time does not vanish as
N \rightarrow \infty .

Remark 4.3. One implication of Theorem 4.1 is that in the subcritical regime
any growth rate of d(N) is sufficient to achieve asymptotically vanishing steady-state
probability of wait. This result is complemented by the results in [25, 97], where the
steady-state analysis is extended in the heavy-traffic regime with N\alpha (1 - \lambda (N)/N) \rightarrow 
\beta > 0 as N \rightarrow \infty with \alpha \in (0, 1/2). Note that the system approaches heavy traffic
as the number of servers N grows large, but that the load is lighter than that in
the Halfin--Whitt regime, which corresponds to \alpha = 1/2. Specifically, it is established
in [97] that the steady-state probability of wait for the JSQ(d(N)) policy with d(N) \geq 
1
\beta N

\alpha logN vanishes asN \rightarrow \infty . The results of [25] imply that when \beta = 1 and d(N) =

\lfloor N\gamma \rfloor with \alpha , \gamma \in (0, 1], k = \lceil (1 - \alpha )/\gamma \rceil , and 2\alpha +\gamma (k - 1) > 1, with probability tending
to 1 as N \rightarrow \infty , the proportion of queues with queue length equal to k is at least
1 - 2N - 1+\alpha +(k - 1)\gamma and there are no longer queues. A crucial distinction between the
result stated in Theorem 4.2 and the results in [25, 97] is that the former analyzes the
system on diffusion scale (and describes its behavior in terms of a limiting diffusion
process), whereas [25, 97] analyze the system on fluid scale (and characterize its
behavior in terms of a limiting fluid-scaled occupancy state). Much less is known when
the asymptotic load is higher than the Halfin--Whitt regime, that is, when N\alpha (1  - 
\lambda (N)/N) \rightarrow \beta > 0 as N \rightarrow \infty with \alpha \in (1/2, 1). This is also known as the super-
Halfin--Whitt regime. In this regime, when the system has a finite buffer capacity,
[96] identifies a broad class of load balancing policies including the JSQ policy, idle-
one-first (I1F) policy, and the JSQ(d(N)) policy with d(N) \geq N\alpha log2 N , for which,
in steady state, E(QN

2 (\infty )) is O
\bigl( 
N\alpha logN

\bigr) 
and E(QN

3 (\infty )) is O
\bigl( 
N - r(1 - \alpha ) - 1

\bigr) 
, where

r > 0 can be any constant independent of N . Further, [179] analyzes the process-level
and steady-state limits of the occupancy process under the JSQ policy in the super-
Halfin--Whitt regime and, in particular, shows that QN

2 (\infty )/N\alpha converges weakly to
a Gamma(2, \beta ) distribution (sum of two independent Exponential(\beta ) distributions).
Results in [19] allow for arbitrary growth rate of d(N) in the analysis of the JSQ(d(N))
policy in the heavy-traffic regime. In that paper, the authors establish a process-level
diffusion limit of the occupancy process under the JSQ(d(N )) policy for certain ranges
of \lambda (N) that depend on d(N). In particular, they include an alternative proof of the
universality result in Theorem 4.2.

4.1. High-Level Outline of Proof Approach. The proofs of Theorems 4.1 and 4.2
rely on a stochastic coupling construction to bound the difference in the queue length
processes between the JSQ policy and a scheme with an arbitrary value of d(N). This
coupling is then exploited to obtain the fluid and diffusion limits of the JSQ(d(N))
policy, along with the associated fixed point, under the conditions stated in Theo-
rems 4.1 and 4.2. Moreover, we will also allow the possibility that the servers have a
finite buffer capacity B. In that case, whenever a task is assigned to a server that has
B tasks in the queue (including the one currently in service), that task is lost forever.
For an LBA \Pi , we will denote the total number of tasks lost up to time t by L\Pi (t).

A direct comparison between the JSQ(d(N)) scheme and the ordinary JSQ policy
is not straightforward, which is why the CJSQ(n(N )) class of schemes is introduced as
an intermediate scenario to establish the universality results. Just like the JSQ(d(N))
scheme, the schemes in the class CJSQ(n(N )) may be thought of as ``sloppy"" versions

D
ow

nl
oa

de
d 

06
/1

2/
23

 to
 1

43
.2

15
.1

6.
16

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALABLE LOAD BALANCING IN NETWORKED SYSTEMS 575

(a) CJSQ(n(N)) scheme

(b) Asymptotic equivalence relations

Fig. 4 (a) High-level view of the CJSQ(n(N)) class of schemes, where, as in Figure 3, the servers
are arranged in nondecreasing order of their queue lengths, and the arrival must be as-
signed through the green shaded region on the left. (b) The equivalence structure is depicted
for various intermediate load balancing schemes to facilitate the comparison between the
JSQ(d(N)) scheme and the ordinary JSQ policy.

of the JSQ policy, in the sense that tasks are not necessarily assigned to a server with
the shortest queue length but to one of the n(N) + 1 lowest ordered servers, as is
illustrated in Figure 4(a). In particular, for n(N) = 0, the class only includes the
ordinary JSQ policy. Note that the JSQ(d(N )) scheme is guaranteed to identify the
lowest-ordered server, but only among a randomly sampled subset of d(N) servers. In
contrast, a scheme in the CJSQ(n(N )) class only guarantees that one of the n(N) +
1 lowest-ordered servers is selected, but across the entire pool of N servers. It is
worthwhile to note that CJSQ(n(N )) is a class of policies, and that any policy which
ensures that tasks are always assigned to one of the n(N) + 1 lowest ordered servers,
no matter what the exact mechanism of the policy is, belongs to this class. The proof
of the universality results in Theorems 4.1 and 4.2 has two parts, as further described
below. The proof strategy is schematically represented in Figure 4(b).

Step 1. Performance of Schemes in CJSQ(\bfitn (\bfitN )) Class. The first step is to
show that for sufficiently small n(N), any scheme from the class CJSQ(n(N)) is still
``close"" to the ordinary JSQ policy. To achieve this, another type of sloppiness will be
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introduced. Let MJSQ(n(N )) be a particular scheme that always assigns incoming
tasks to precisely the (n(N)+1)th ordered server. Notice that this scheme is effectively
the JSQ policy when the system always maintains n(N) idle servers or, equivalently,
uses only N  - n(N) servers, and MJSQ(n(N )) \in CJSQ(n(N)). For brevity, we will
often suppress n(N) in the notation where it is clear from the context. We call any
two systems S-coupled if they have synchronized arrival clocks and departure clocks
of the kth longest queue for 1 \leq k \leq N (``S"" in the name of the coupling stands
for ``server""). Note that the S-coupling between two systems with identical arrival
and service rates always exists. Indeed, since tasks have identically and exponentially
distributed service time requirements, synchronizing the departure clocks of the kth
longest queue for k = 1, . . . , N preserves the marginal dynamics of each system.
Consider three S-coupled systems following, respectively, the JSQ policy, any scheme
from the class CJSQ, and the MJSQ scheme. Recall that Q\Pi 

i (t) is the number of
servers with at least i tasks at time t and L\Pi (t) is the total number of lost tasks up to
time t, for the schemes \Pi = JSQ, CJSQ, MJSQ. The following proposition provides
a stochastic ordering for any scheme in the class CJSQ with respect to the ordinary
JSQ policy and the MJSQ scheme.

Proposition 4.4. Fix any N \geq 1, 1 \leq B \leq \infty , and 0 \leq n(N) \leq N  - 1. Then,
in the joint probability space constructed by the S-coupling of the three systems under,
respectively, JSQ, MJSQ, and any scheme from the class CJSQ, the following ordering
is preserved almost surely throughout the sample path: for all 1 \leq m \leq B and t \geq 0,
(i)

\bigl\{ \sum B
i=m QJSQ

i (t) + LJSQ(t)
\bigr\} 
t\geq 0 \leq 

\bigl\{ \sum B
i=m QCJSQ

i (t) + LCJSQ(t)
\bigr\} 
t\geq 0,

(ii)
\bigl\{ \sum B

i=m QCJSQ
i (t) + LCJSQ(t)

\bigr\} 
t\geq 0 \leq 

\bigl\{ \sum B
i=m QMJSQ

i (t) + LMJSQ(t)
\bigr\} 
t\geq 0,

provided the inequalities hold at time t = 0.

Corollary 4.5. Under the conditions of Proposition 4.4, for all 1 \leq m \leq B and
t \geq 0,
(i) QCJSQ

m (t) \geq 
\sum B

i=m QJSQ
i (t) - 

\sum B
i=m+1 Q

MJSQ
i (t) + LJSQ(t) - LMJSQ(t),

(ii) QCJSQ
m (t) \leq 

\sum B
i=m QMJSQ

i (t) - 
\sum B

i=m+1 Q
JSQ
i (t) + LMJSQ(t) - LJSQ(t),

provided the inequalities hold at time t = 0.

It can be shown that if n(N)/N \rightarrow 0 as N \rightarrow \infty , then the MJSQ(n(N)) scheme
has the same fluid limit along any subsequence as the ordinary JSQ policy, whenever
the latter exists. Corollary 4.5 then implies that as long as n(N)/N \rightarrow 0, any scheme
from the class CJSQ(n(N )) has the same fluid limit along any subsequence as the
ordinary JSQ policy, whenever the latter exists.

Step 2. JSQ(\bfitd (\bfitN )) Has Same Limit as a Particular Scheme in CJSQ(\bfitn (\bfitN )).
The next step is to prove that for sufficiently large d(N) relative to n(N), one
can construct a scheme belonging to the CJSQ(n(N)) class that differs ``negligibly""
from the JSQ(d(N)) scheme. Specifically, consider the JSQ(n(N), d(N)) scheme with
n(N), d(N) \leq N , which is an intermediate blend between the CJSQ(n(N )) schemes
and the JSQ(d(N )) scheme. At its first step, just as in the JSQ(d(N)) scheme, the
JSQ(d(N), n(N)) scheme first chooses the shortest of d(N) random candidates but
only sends the arriving task to that server's queue if it is one of the n(N)+1 shortest
queues. If it is not, then at the second step it picks any of the n(N) + 1 shortest
queues uniformly at random and then sends the task to that server's queue. Note
that by construction, JSQ(d(N ), n(N)) is a scheme in CJSQ(n(N )). Consider two
S-coupled systems with a JSQ(d(N)) and a JSQ(n(N), d(N)) scheme. Assume that
at some specific arrival epoch, the incoming task is dispatched to the kth ordered
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server in the system under the JSQ(d(N)) scheme. If k \in \{ 1, 2, . . . , n(N) + 1\} , then
the system under the JSQ(n(N ), d(N)) scheme also assigns the arriving task to the
kth ordered server. Otherwise, it dispatches the arriving task uniformly at random
among the first (n(N) + 1) ordered servers.

Next, it is established that if d(N) \rightarrow \infty , then for some n(N) with n(N)/N \rightarrow 0,
the JSQ(d(N)) scheme and the JSQ(n(N ), d(N)) scheme have the same fluid limit.
Theorem 4.1 then follows by Step 1 and observing that the JSQ(n(N), d(N)) scheme
belongs to the class CJSQ(n(N )).

The proof of Theorem 4.2 follows the same arguments as the proof of Theorem 4.1,
but uses the candidate n(N)/

\surd 
N \rightarrow 0 (instead of n(N)/N \rightarrow 0) in Step 1, and the

candidate d(N)/(
\surd 
N log(N)) \rightarrow \infty (instead of d(N) \rightarrow \infty ) in Step 2.

4.2. Extension to Batch Arrivals. Consider an extension of the model in which
tasks arrive in batches. We assume that the batches arrive as a Poisson process of rate
\lambda (N)/\ell (N) and have fixed size \ell (N) > 0, so that the effective total task arrival rate
remains \lambda (N). We will show that for any growing batch size, fluid-level optimality
can be achieved with O(1) communication overhead per task. For that, we define the
JSQ(d(N)) scheme adapted for batch arrivals: When a batch arrives, the dispatcher
samples d(N) \geq \ell (N) servers without replacement and assigns the tasks to the \ell (N)
servers with the smallest queue lengths among the sampled servers.

Theorem 4.6 (batch arrivals). Consider the batch arrival scenario with growing
batch size \ell (N) \rightarrow \infty and \lambda (N)/N \rightarrow \lambda < 1 as N \rightarrow \infty . For the JSQ(d(N)) scheme
with d(N) \geq \ell (N)/(1 - \lambda  - \varepsilon ) for any fixed \varepsilon > 0, if qN1 (0) \rightarrow q1(0) \leq \lambda and qNi (0) \rightarrow 0
for all i \geq 2, then any (subsequent) weak limit of the sequence of processes

\bigl\{ 
qN (t)

\bigr\} 
t\geq 0

coincides with that of the ordinary JSQ policy and, in particular, is given by the system
in (3.5).

Observe that for a fixed \varepsilon > 0, the communication overhead per task is on average
given by (1  - \lambda  - \varepsilon ) - 1, which is O(1). Thus Theorem 4.6 ensures that in the case
of batch arrivals with growing batch size, fluid-level optimality can be achieved with
O(1) communication overhead per task. The result for the fluid-level optimality in
stationarity can also be obtained indirectly by exploiting the fluid-limit result in [177].
Specifically, it can be deduced from the result in [177] that for batch arrivals with
growing batch size, the JSQ(d(N)) scheme with suitably growing d(N) yields the
same fixed point of the fluid limit as described in (3.6).

5. Blocking and Infinite-Server Dynamics. The basic scenario that we have
focused on so far involves single-server queues. In this section we turn our attention
to a system with parallel server pools, each with a fixed number B servers, where B
can be either finite or infinite. As before, tasks arrive at a single dispatcher and must
immediately be forwarded to one of the server pools, but they must also directly start
execution or be discarded otherwise. As before, under the JSQ(d) policy, at each task
arrival, the dispatcher selects d random server pools and assigns the task to the one
with the lowest number of active tasks. When B is finite, a task that happens to land
on a server pool with B active tasks is lost forever. In that case, the maximum total
rate at which tasks can be processed in the system is BN , which we assume to be
higher than the total arrival rate \lambda (N). In other words, when \lambda (N)/N = \lambda \in R+,
we assume \lambda < B. The execution times are assumed to be exponentially distributed
and do not depend on the number of other tasks receiving service simultaneously. In
order to distinguish it from the single-server queuing dynamics considered earlier, the
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current scenario will henceforth be referred to as the ``infinite-server dynamics.""
As it turns out, the JSQ policy has similar stochastic optimality properties as

in the case of single-server queues and, in particular, stochastically minimizes the
cumulative number of discarded tasks [82, 111, 112, 139]. However, the JSQ policy also
suffers from a similar scalability issue due to the excessive communication overhead in
large-scale systems, which can be mitigated through JSQ(d) policies. Results in [147]
and the more recent papers [89, 124, 127, 173] indicate that JSQ(d) policies provide
similar power-of-choice gains for loss probabilities. It can be shown though that the
optimal performance of the JSQ policy cannot be matched for any fixed value of d.

Motivated by these observations, we explore the trade-off between performance
and communication overhead for infinite-server dynamics. We will demonstrate that
the optimal performance of the JSQ policy can be asymptotically retained while dras-
tically reducing the communication burden, mirroring the universality properties de-
scribed in section 4 for single-server queues. The results presented in the remainder of
the section are extracted from [120], where complete proofs are also provided, unless
indicated otherwise.

5.1. Fluid Limit for JSQ Policy. Analogous to the single-server case, we repre-
sent the state of the Nth system by the vector QN (t) := (QN

1 (t), QN
2 (t), . . .), with

QN
i (t) denoting the number of server pools with i or more active tasks at time t;

the fluid-scaled occupancy state is denoted by qN (t) := (qN1 (t), qN2 (t), . . .), with
qNi (t) = QN

i (t)/N for i \geq 1. Also, as in subsection 3.3, for any fluid state q \in \scrS ,
denote by m(q) = min\{ i \geq 0 : qi+1 < 1\} the minimum number of active tasks among
all server pools with the convention that qB+1 = 0 if B < \infty . Now if m(q) = 0, then
define p0(q) = 1 and pi(q) = 0 for all i = 1, 2, . . . . Otherwise, in the case m(q) > 0,
define

(5.1) pi(q) =

\left\{     
min

\bigl\{ 
m(q)(1 - qm(\bfq )+1)/\lambda , 1

\bigr\} 
for i = m(q) - 1,

1 - pm(\bfq ) - 1(q) for i = m(q),

0 otherwise.

Any weak limit of the sequence of processes \{ qN (t)\} t\geq 0 is given by a deterministic
system \{ q(t)\} t\geq 0 satisfying the differential equations

(5.2)
d+qi(t)

dt
= \lambda pi - 1(q(t)) - i(qi(t) - qi+1(t)), i = 1, 2, . . . , B,

where d+/dt denotes the right-derivative.
Equations (5.1) and (5.2) are to be contrasted with (3.4) and (3.5). While the

form of the evolution equations (5.2) of the limiting dynamical system remains similar
to (3.5), the rate of decrease of qi is now i(qi  - qi+1), reflecting the infinite-server
dynamics.

Let K := \lfloor \lambda \rfloor and f := \lambda  - K denote the integral and fractional parts of \lambda ,
respectively. Assuming \lambda < B, the unique fixed point of the dynamical system in (5.2)
is given by

(5.3) q \star i =

\left\{   1, i = 1, . . . ,K,
f, i = K + 1,
0, i = K + 2, . . . , B,

and thus
\sum B

i=1 q
 \star 
i = \lambda . This is consistent with the results in [124, 127, 173] for

fixed d, where taking d \rightarrow \infty yields the same fixed point. However, the results in
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[124, 127, 173] cannot be used directly to handle joint scalings and do not yield the
universality of the entire fluid-scaled sample path for arbitrary initial states. The
fixed point in (5.3), in conjunction with an interchange of limits argument, indicates
that in stationarity the fraction of server pools with at least K+2 and at most K - 1
active tasks is negligible as N \rightarrow \infty .

5.2. Diffusion Limit for JSQ Policy. As it turns out, the diffusion-limit results
may be qualitatively different, depending on whether f = 0 or f > 0, and we will
distinguish between these two cases accordingly. Observe that for any assignment
scheme, in the absence of overflow events, the total number of active tasks evolves
as the number of jobs in an M/M/\infty system with arrival rate \lambda (N) and unit service
rate, for which the diffusion limit is well known [135]. For the JSQ policy we can
establish, for suitable initial conditions, that the total number of server pools with
K  - 2 or fewer and K + 2 or more tasks is negligible on the diffusion scale. If f > 0,
the number of server pools with K - 1 tasks is negligible as well, and the dynamics of
the number of server pools with K or K+1 tasks can then be derived from the known
diffusion limit of the total number of tasks mentioned above. In contrast, if f = 0,
the number of server pools with K  - 1 tasks is not negligible on the diffusion scale,
and the limiting behavior is qualitatively different, but can still be characterized.

5.2.1. Diffusion-Limit Results for Nonintegral \bfitlambda . We first consider the case
f > 0 and define f(N) := \lambda (N)  - KN . Based on the above observations, we define
the following centered and scaled processes:

\=QN
i (t) = N  - QN

i (t) \geq 0 for i \leq K  - 1,

\=QN
K(t) :=

N  - QN
K(t)

log(N)
\geq 0,

\=QN
K+1(t) :=

QN
K+1(t) - f(N)

\surd 
N

\in R,

\=QN
i (t) := QN

i (t) \geq 0 for i \geq K + 2.

(5.4)

Theorem 5.1 (diffusion limit for JSQ policy; f > 0). Assume \=QN
i (0) converges

to \=Qi(0) in R, i \geq 1, and \lambda (N)/N \rightarrow \lambda > 0 as N \rightarrow \infty . Then
(i) limN\rightarrow \infty P

\bigl( 
supt\in [0,T ]

\=QN
K - 1(t) \leq 1

\bigr) 
= 1 and

\bigl\{ 
\=QN
i (t)

\bigr\} 
t\geq 0 converges weakly to\bigl\{ 

\=Qi(t)
\bigr\} 
t\geq 0, where \=Qi(t) \equiv 0, provided limN\rightarrow \infty P

\bigl( 
\=QN
K - 1(0) \leq 1

\bigr) 
= 1, and

\=QN
i (0)

P - \rightarrow 0 for i \leq K  - 2;
(ii)

\bigl\{ 
\=QN
K(t)

\bigr\} 
t\geq 0 is a stochastically bounded sequence of processes;

(iii)
\bigl\{ 
\=QN
K+1(t)

\bigr\} 
t\geq 0 converges weakly to

\bigl\{ 
\=QK+1(t)

\bigr\} 
t\geq 0, where \=QK+1(t) is given by

the Ornstein--Uhlenbeck process satisfying the SDE

d \=QK+1(t) =  - \=QK+1(t)dt+
\surd 
2\lambda dW (t),

where W (t) is standard Brownian motion, provided \=QN
K+1(0) converges to

\=QK+1(0)
in R;

(iv) for i \geq K + 2,
\bigl\{ 
\=QN
i (t)

\bigr\} 
t\geq 0 converges weakly to

\bigl\{ 
\=Qi(t)

\bigr\} 
t\geq 0, where

\=Qi(t) \equiv 0,

provided \=QN
i (0) converges to 0 in R.

Theorem 5.1 implies that for suitable initial states, for large N , there will be
almost no server pool with K - 2 or fewer tasks and K+2 or more tasks on any finite
time interval. Also, the number of server pools having fewer than K tasks is of order
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log(N), and there are fN +OP (
\surd 
N) server pools with precisely K + 1 active tasks.

Below we present some high-level intuition behind the scaling limits in Theorem 5.1.

High-Level Proof Idea. Observe that
\sum K

i=1(N  - QN
i (\cdot )) increases by one at rate

K\sum 
i=1

i(Qi(t) - Qi+1(t)) =
K\sum 
i=1

(Qi(t) - QK+1(t)) \approx K(1 - f)N,

which is when there is a departure from some server pool with at most K active
tasks, and if positive, it decreases by one at constant rate \lambda (N) = (K + f)N + o(N),

which is whenever there is an arrival. Thus,
\sum K

i=1(N  - QN
i (\cdot )) roughly behaves as a

birth-and-death process with birth rate K(1 - f)N and death rate (K + f)N . Since
f > 0, we have K + f > K(1  - f), and on any finite time interval the maximum of
such a birth-and-death process scales as log(N ).

Similar to the argument above, the process
\sum K - 1

i=1
\=QN
i (\cdot ) increases by one at rate

K - 1\sum 
i=1

i(QN
i (t) - QN

i+1(t)) =

K - 1\sum 
i=1

QN
i (t) - (K  - 1)QN

K(t)

\leq (K  - 1)(N  - QN
K(t)) = O(log(N)),

which is when there is a departure from some server pool with at most K  - 1 active
tasks, and if positive, it decreases by one at rate \lambda (N), which is whenever there is

an arrival. Thus,
\sum K - 1

i=1
\=QN
i (\cdot ) roughly behaves as a birth-and-death process with

birth rate O(log(N)) and death rate O(N). This leads to the asymptotic result for\sum K - 1
i=1

\=QN
i (\cdot ) and, in particular, for \=QN

K - 1(\cdot ). This completes the proof of parts (i)
and (ii) of Theorem 5.1.

Furthermore, since \lambda < K + 1, the number of tasks that are assigned to server
pools with at least K + 1 tasks converges to zero in probability, and this completes
the proof of part (iv) of Theorem 5.1.

Finally, all the above combined also means that on any finite time interval the
total number of tasks in the system behaves with high probability as the total number
of jobs in an M/M/\infty system. Therefore, with the help of the diffusion-limit result
for the M/M/\infty system in [135, Theorem 6.14], we conclude the proof of part (iii) of
Theorem 5.1.

5.2.2. Diffusion-Limit Results for Integral \bfitlambda . We now turn to the case f = 0
and assume that

(5.5)
KN  - \lambda (N)\surd 

N
\rightarrow \beta \in R as N \rightarrow \infty ,

which can be thought of as an analogue of the Halfin--Whitt regime in (2.1). We now
consider the following scaled quantities:

\zeta N1 (t) :=
1\surd 
N

K\sum 
i=1

(N  - QN
i (t)), \zeta N2 (t) :=

QN
K+1(t)\surd 

N
.(5.6)

Theorem 5.2. Assuming the convergence of initial states, the process\bigl\{ 
(\zeta N1 (t), \zeta N2 (t))

\bigr\} 
t\geq 0 converges weakly to the process

\bigl\{ 
(\zeta 1(t), \zeta 2(t))

\bigr\} 
t\geq 0 governed by
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the system of SDEs

d\zeta 1(t) =
\surd 
2KdW (t) - (\zeta 1(t) +K\zeta 2(t)) + \beta dt+ dV1(t),

d\zeta 2(t) = dV1(t) - (K + 1)\zeta 2(t),

where W is standard Brownian motion, and V1(t) is the unique continuous nonde-

creasing process satisfying
\int t

0
1[\zeta 1(s)>0]dV1(s) = 0 and V1(0) = 0.

Unlike the f > 0 case, the theorem above says that if f = 0, then over any finite
time horizon, there will be OP (

\surd 
N) server pools with fewer than K or more than

K active tasks, and hence most of the server pools have precisely K active tasks.
The proof of Theorem 5.2 uses the reflection argument developed in [36]. Indeed, the
proof follows by observing that the dynamics of

\bigl\{ 
(\zeta N1 (t), \zeta N2 (t))

\bigr\} 
t\geq 0 resembles the

dynamics of the JSQ policy in the Halfin--Whitt regime.

5.3. Universality of JSQ(\bfitd ) Policies in Infinite-Server Dynamics. As in sec-
tion 4, we now further explore the trade-off between performance and communication
overhead as a function of the diversity parameter d(N), in conjunction with the load.
We will specifically investigate what growth rate of d(N), depending on the scaling be-
havior of \lambda (N), is required in order to asymptotically match the optimal performance
of the JSQ policy.

Theorem 5.3 (universality of fluid limit for JSQ(d(N)) and infinite-server dy-
namics). If d(N) \rightarrow \infty as N \rightarrow \infty , then any (subsequent) fluid limit of the JSQ(d(N))
scheme coincides with that of the ordinary JSQ policy and, in particular, satisfies the
system of differential equations in (5.2). Consequently, the stationary occupancy states
converge to the unique fixed point as in (5.3).

In order to state the universality result on diffusion scale, define in the case f > 0

\=Q
d(N)
i (t) :=

N  - Q
d(N)
i (t)\surd 
N

\geq 0, i \leq K,

\=Q
d(N)
K+1(t) :=

Q
d(N)
K+1(t) - f(N)

\surd 
N

\in R,

\=Q
d(N)
i (t) :=

Q
d(N)
i (t)\surd 

N
\geq 0 for i \geq K + 2,

(5.7)

and, otherwise, if f = 0,

\^Q
d(N)
K - 1(t) :=

K - 1\sum 
i=1

N  - Q
d(N)
i (t)\surd 
N

\geq 0,

\^Q
d(N)
K (t) :=

N  - Q
d(N)
K (t)\surd 
N

\geq 0,

\^Q
d(N)
i (t) :=

Q
d(N)
i (t)\surd 

N
\geq 0 for i \geq K + 1.

(5.8)

The scaling in (5.7) and (5.8) should be contrasted with (5.4) and (5.6), respectively.

Theorem 5.4 (universality of diffusion limit for JSQ(d(N)) and infinite-server
dynamics). Assume d(N)/(

\surd 
N logN) \rightarrow \infty . Under suitable initial conditions,
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(i) if f > 0, then \=Q
d(N)
i (\cdot ) converges to the zero process for i \not = K +1 and \=Q

d(N)
K+1(\cdot )

converges weakly to the Ornstein--Uhlenbeck process satisfying the SDE

d \=QK+1(t) =  - \=QK+1(t)dt+
\surd 
2\lambda dW (t),

where W (t) is standard Brownian motion;

(ii) if f = 0, then \^Q
d(N)
K - 1(\cdot ) converges weakly to the zero process and ( \^Q

d(N)
K (\cdot ),

\^Q
d(N)
K+1(\cdot )) converges weakly to ( \^QK(\cdot ), \^QK+1(\cdot )), described by the unique solution

of the system of SDEs

d \^QK(t) =
\surd 
2KdW (t) - ( \^QK(t) +K \^QK+1(t)) + \beta dt+ dV1(t),

d \^QK+1(t) = dV1(t) - (K + 1) \^QK+1(t),

where W is standard Brownian motion, and V1(t) is the unique continuous non-

decreasing process satisfying
\int t

0
1[ \^QK(s)\geq 0]dV1(s) = 0 and V1(0) = 0.

Having established the asymptotic results for the JSQ policy in sections 5.1
and 5.2, the proofs of the asymptotic results for the JSQ(d(N)) scheme in Theo-
rems 5.3 and 5.4 involve establishing a universality result that shows that the limiting
processes for the JSQ(d(N)) scheme are ``asymptotically equivalent"" to those for the
ordinary JSQ policy for suitably large values of d(N). The notion of asymptotic
equivalence between different schemes is formalized in the next definition.

Definition 5.5. Let \Pi 1 and \Pi 2 be two schemes parameterized by the number of
server pools N . For any positive function g : N \rightarrow R+, we say that \Pi 1 and \Pi 2 are
``g(N)-alike"" if there exists a common probability space such that for any fixed T \geq 0,
for all i \geq 1,

sup
t\in [0,T ]

(g(N)) - 1| Q\Pi 1
i (t) - Q\Pi 2

i (t)| P - \rightarrow 0 as N \rightarrow \infty .

Intuitively speaking, if two schemes are g(N)-alike, then in some sense, the associated
system occupancy states are indistinguishable on g(N)-scale. For brevity, for two
schemes \Pi 1 and \Pi 2 that are g(N)-alike, we will often say that \Pi 1 and \Pi 2 have the
same process-level limits on g(N)-scale. The next theorem states a sufficient criterion
for the JSQ(d(N)) scheme and the ordinary JSQ policy to be g(N)-alike and, thus,
it provides the key vehicle in establishing the universality result.

Theorem 5.6. Let g : N\rightarrow R+ be a function diverging to infinity. Then the JSQ
policy and the JSQ(d(N)) scheme are g(N)-alike, with g(N) \leq N , if

(i) d(N) \rightarrow \infty for g(N) = O(N),(5.9)

(ii) d(N)

\biggl( 
N

g(N)
log

\biggl( 
N

g(N)

\biggr) \biggr)  - 1
\rightarrow \infty for g(N) = o(N).(5.10)

Theorem 5.6 yields the following two immediate corollaries.

Corollary 5.7. If d(N) \rightarrow \infty as N \rightarrow \infty , then the JSQ(d(N)) scheme and the
ordinary JSQ policy are N -alike.

Corollary 5.8. If d(N)/(
\surd 
N log(N)) \rightarrow \infty as N \rightarrow \infty , then the JSQ(d(N))

scheme and the ordinary JSQ policy are
\surd 
N -alike.
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Observe that Corollaries 5.7 and 5.8 together with the asymptotic results for the
JSQ policy in sections 5.1 and 5.2 imply Theorems 5.3 and 5.4. The rest of the section
will be devoted to the proof of Theorem 5.6. The proof relies crucially on a novel
coupling construction, which will be used to (lower and upper) bound the difference
in occupancy states of two arbitrary schemes.

The Coupling Construction. Throughout the description of the coupling, we
fix N and suppress the superscript N in the notation. Let Q\Pi 1

i (t) and Q\Pi 2
i (t) de-

note the number of server pools with at least i active tasks at time t in two systems
following schemes \Pi 1 and \Pi 2, respectively. With a slight abuse of terminology, we
occasionally use \Pi 1 and \Pi 2 to refer to systems following schemes \Pi 1 and \Pi 2, re-
spectively. To couple the two systems, we synchronize the arrival epochs and main-
tain a single exponential departure clock with instantaneous rate at time t given by
M(t) := max

\bigl\{ \sum B
i=1 Q

\Pi 1
i (t),

\sum B
i=1 Q

\Pi 2
i (t)

\bigr\} 
. We couple the arrivals and departures in

the various server pools as follows:

Arrival: At each arrival epoch, assign the incoming task in each system to one of the
server pools according to the respective schemes.

Departure: Define

H(t) :=

B\sum 
i=1

min
\Bigl\{ 
Q\Pi 1

i (t), Q\Pi 2
i (t)

\Bigr\} 
and

p(t) :=

\left\{   
H(t)

M(t)
if M(t) > 0,

0 otherwise.

At each departure epoch tk (say), draw a uniform[0, 1] random variable U(tk). The
departures occur in a coupled way based upon the value of U(tk). In either of the
systems, assign an active task index (i, j) if it is the jth task (in order of arrival) of
the ith ordered server pool. Let \scrA 1(t) and \scrA 2(t) denote the set of all task indices
present at time t in systems \Pi 1 and \Pi 2, respectively. Color the indices (or tasks)
in \scrA 1 \cap \scrA 2, \scrA 1 \setminus \scrA 2, and \scrA 2 \setminus \scrA 1 to be green, blue, and red, respectively, and
note that | \scrA 1 \cap \scrA 2| = H(t). Define a total order on the set of indices as follows:
(i1, j1) < (i2, j2) if i1 < i2, or i1 = i2 and j1 < j2. Now, if U(tk) \leq p(tk - ), then
select one green index uniformly at random and remove the corresponding tasks from
both systems. Otherwise, if U(tk) > p(tk - ), then choose one integer m, uniformly
at random from all the integers between 1 and M(t)  - H(t) = M(t)(1  - p(t)), and
remove the tasks corresponding to the mth smallest (according to the order defined
above) red and blue indices in the corresponding systems. If the number of red (or
blue) tasks is less than m, then do nothing in the corresponding system.

The above coupling has been schematically represented in Figure 5(a) and will
henceforth be referred to as T-coupling, where T stands for ``task-based."" Now we
need to show that, under the T-coupling, the two systems, considered independently,
evolve according to their respective marginal statistical laws. This can be seen in
several steps. Indeed, the T-coupling basically makes the departure rate uniform by
the maximum number of tasks present in either of the two systems. Then, informally
speaking, the green region signifies the common portion of tasks, and the red and blue
regions represent the separate contributions. Without loss of generality, we assume
that | \scrA 1| \geq | \scrA 2| . We make the following observations:
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(a) T-coupling

JSQ(n(N), d(N)) CJSQ(n(N))

JSQ(d(N)) JSQ
Theorem 5.6

P
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it
io

n
5
.1

2

S
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le

n
(
N

)
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r
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io

n
5
.1

3

S
u
it
a
b
le

d
(
N

)

Belongs to

the class

(b) Asymptotic equivalence relations

Fig. 5 (a) Superposition of the occupancy states at some particular time instant of schemes \Pi 1

and \Pi 2 when the server pools in both systems are arranged in nondecreasing order of the
number of active tasks. The \Pi 1 system is the union of the green and blue tasks, and the
\Pi 2 system is the union of the green and red tasks. (b) The equivalence structure is depicted
for various intermediate load balancing schemes to facilitate the comparison between the
JSQ(d(N)) scheme and the ordinary JSQ policy.

(i) The total departure rate from \Pi i is

M(t)

\biggl[ 
p(t) + (1 - p(t))

| \scrA i \setminus \scrA 3 - i| 
M(t) - H(t)

\biggr] 
= | \scrA 1 \cap \scrA 2| + | \scrA i \setminus \scrA 3 - i| = | \scrA i| , i = 1, 2.

(ii) Since | \scrA 1| \geq | \scrA 2| , each task in \Pi 1 is equally likely to depart.
(iii) Each task in \Pi 2 within \scrA 1 \cap \scrA 2 and each task within \scrA 2 \setminus \scrA 1 is equally likely

to depart, and the probabilities of departures are proportional to | \scrA 1 \cap \scrA 2| and
| \scrA 2 \setminus \scrA 1| , respectively.

The T-coupling can be used to derive several stochastic inequality results that will
play an instrumental role in proving Theorem 5.6. Recall the CJSQ(n(N )) class of
schemes from section 4.1. From a high-level perspective, the proof follows a somewhat
similar structure as in section 4.1.

Step 1. Condition for \bfitg (\bfitN )-Alikeness of Schemes in CJSQ(\bfitn (\bfitN )) Class. The
next lemma uses T-coupling to compare the occupancy processes of the JSQ policy
with any scheme from the CJSQ(n(N)) class.

Lemma 5.9. Let Q\Pi 1
i (t) and Q\Pi 2

i (t) denote the number of server pools with at
least i tasks in two T-coupled systems under the JSQ policy and a scheme in the
CJSQ(n(N)) class, respectively. Then, for any k \in 

\bigl\{ 
1, 2, . . . , B

\bigr\} 
,

(5.11)

\Biggl\{ 
k\sum 

i=1

Q\Pi 1
i (t) - kn(N)

\Biggr\} 
t\geq 0

\leq 

\Biggl\{ 
k\sum 

i=1

Q\Pi 2
i (t)

\Biggr\} 
t\geq 0

\leq 

\Biggl\{ 
k\sum 

i=1

Q\Pi 1
i (t)

\Biggr\} 
t\geq 0

,

provided the two systems start from the same occupancy states at t = 0. In particular,
for all k \geq 1,

(5.12) sup
t\geq 0

\bigm| \bigm| Q\Pi 2

k (t) - Q\Pi 1

k (t)
\bigm| \bigm| \leq kn(N).

Remark 5.10. The stochastic ordering in Lemma 5.9 is to be contrasted with the
weak majorization results in [140, 143, 144, 167, 172] in the context of the ordinary
JSQ policy in the single-server queuing scenario, and in [82, 111, 112, 139] in the
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scenario of state-dependent service rates, nondecreasing with the number of active
tasks. In the current infinite-server scenario, the results in [82, 111, 112, 139] imply
that for any nonanticipating scheme \Pi taking assignment decisions based on the
number of active tasks only, for all t \geq 0,

\ell \sum 
m=1

XJSQ
(m) (t) \leq st

\ell \sum 
m=1

X\Pi 
(m)(t) for \ell = 1, 2, . . . , N,(5.13) \bigl\{ 

LJSQ(t)
\bigr\} 
t\geq 0 \leq st

\bigl\{ 
L\Pi (t)

\bigr\} 
t\geq 0 ,(5.14)

where X\Pi 
(m)(t) is the number of tasks in the mth ordered server pool at time t in the

system following scheme \Pi and L\Pi (t) is the total number of overflow events under
policy \Pi up to time t. Observe that X\Pi 

(m) can be visualized as the mth largest

(rightmost) vertical bar (or stack) in Figure 3. Thus (5.13) says that the sum of
the lengths of the \ell largest vertical stacks in a system following any scheme \Pi is
stochastically larger than or equal to that following the ordinary JSQ policy for any
\ell = 1, 2, . . . , N . Mathematically, this ordering can be equivalently written as

(5.15)
B\sum 
i=1

min
\bigl\{ 
\ell ,QJSQ

i (t)
\bigr\} 
\leq st

B\sum 
i=1

min
\bigl\{ 
\ell ,Q\Pi 

i (t)
\bigr\} 

for all \ell = 1, . . . , N . In contrast, in order to show asymptotic equivalence on var-
ious scales, we need to both upper and lower bound the occupancy states of the
CJSQ(n(N)) schemes in terms of the JSQ policy, and therefore need a much stronger
hold on the departure process. The T-coupling provides us just that, and has several
useful properties that are crucial for our proof technique. For example, the T-coupling
has an important feature that if two systems are T-coupled, then departures cannot
increase the sum of the absolute differences of the Qi-values, which is not true for the
coupling considered in the above-mentioned literature. The left stochastic ordering
in (5.11) also does not remain valid in those cases. Furthermore, observe that the right
inequality in (5.11) (i.e., Qi's) implies the stochastic inequality is reversed in (5.15),
which is counterintuitive in view of the well-established optimality properties of the
ordinary JSQ policy. In the current infinite-server scenario where there is no queu-
ing, this can be understood from the intuition that a better LBA has more tasks in
service instead of fewer tasks in the queue. The fundamental distinction between the
two coupling techniques is also reflected by the fact that the T-coupling does not al-
low for arbitrary nondecreasing state-dependent departure rate functions, unlike the
couplings in [82, 111, 112, 139].

Remark 5.11 (comparison of T-coupling and S-coupling). As briefly mentioned
earlier, in the current infinite-server scenario, the departures of the ordered server
pools cannot be coupled, mainly since the departure rate at the mth ordered server
pool, for some m = 1, 2, . . . , N , depends on its number of active tasks. It is worthwhile
to mention that the T-coupling in the current section is stronger than the S-coupling
used in section 4 in the single-server queuing scenario. Observe that due to Lemma 5.9,
the absolute difference of the occupancy states of the JSQ policy and any scheme from
the CJSQ class at any time point can be bounded deterministically (without any
terms involving the cumulative number of lost tasks). It is worth emphasizing that
the universality result on some specific scale, stated in Theorem 5.6, does not depend
on the behavior of the JSQ policy on that scale, whereas in the single-server queuing
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scenario it does, mainly because the upper and lower bounds in Corollary 4.5 involve
tail sums of two different policies. More specifically, in the single-server queuing
scenario the fluid and diffusion limit results of CJSQ(n(N )) class crucially use those
of the MJSQ(n(N )) scheme, while in the current scenario it does not---the results for
the MJSQ(n(N )) scheme come as a consequence of those for the CJSQ(n(N )) class of
schemes. Also, the bounds in Lemma 5.9 do not depend on t, and hence apply in the
steady state as well. Moreover, the S-coupling compares the k highest horizontal bars,
whereas the T-coupling in the current section compares the k lowest horizontal bars.
As a result, the bounds on the occupancy states established in Corollary 4.5 involve tail
sums of the occupancy states of the ordinary JSQ policy, which necessitates proving
the convergence of tail sums of the occupancy states of the ordinary JSQ policy. In
contrast, the bound in the infinite-server scenario involves only a single component
(see (5.12)), thus proving convergence of each component suffices.

The goal in the first step is to show that for a suitable choice of n(N), the schemes
in the CJSQ(n(N )) class are indistinguishable on suitable scales. This is formalized
in Proposition 5.12 below, which follows immediately from Lemma 5.9.

Proposition 5.12. For any function g : N \rightarrow R+ diverging to infinity, if
n(N)/g(N) \rightarrow 0 as N \rightarrow \infty , then the JSQ policy and the CJSQ(n(N )) schemes
are g(N)-alike.

Step 2. \bfitg (\bfitN )-Alikeness of JSQ(\bfitd (\bfitN )) and a Scheme in CJSQ(\bfitn (\bfitN )). Next
we compare the CJSQ(n(N)) schemes with the JSQ(d(N)) scheme. The compar-
ison follows a somewhat similar line of argument as in section 4.1 and involves a
JSQ(n(N), d(N)) scheme which is an intermediate blend between the CJSQ(n(N ))
schemes and the JSQ(d(N)) scheme. Specifically, the JSQ(n(N), d(N)) scheme selects
a candidate server pool in the same way as the JSQ(d(N)) scheme. However, it only
assigns the task to that server pool if it belongs to the n(N) + 1 lowest-ordered ones,
and to a randomly selected server pool among them otherwise. By construction, the
JSQ(n(N), d(N)) scheme belongs to the class CJSQ(n(N )).

The next proposition establishes a sufficient criterion on d(N) in order for the
JSQ(d(N)) scheme and the JSQ(n(N ), d(N)) scheme to be close in terms of g(N)-
alikeness.

Proposition 5.13. Assume n(N)/g(N) \rightarrow 0 as N \rightarrow \infty for some function g :
N \rightarrow R+ diverging to infinity. The JSQ(n(N), d(N)) scheme and the JSQ(d(N))
scheme are g(N)-alike if the following condition holds:

(5.16)
n(N)

N
d(N) - log

N

g(N)
\rightarrow \infty as N \rightarrow \infty .

Finally, Proposition 5.13 in conjunction with Proposition 5.12 yields Theorem 5.6.
The overall proof strategy as described above is schematically represented in Fig-
ure 5(b).

6. Load Balancing in Graph Topologies. In this section we return to the single-
server queuing dynamics and extend the universality properties to network scenarios,
where the N servers are assumed to be interconnected by some underlying graph
topology GN . Tasks arrive at the various servers as independent Poisson processes of
rate \lambda , and each incoming task is assigned to whichever server has the smallest number
of tasks among the one where it arrives and its neighbors in GN . Ties are broken
arbitrarily. Thus, in the case that GN is a clique, each incoming task is assigned
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to the server with the shortest queue across the entire system, and the behavior is
equivalent to that under the JSQ policy. The stochastic optimality properties of the
JSQ policy thus imply that the queue length process in a clique will be better balanced
and smaller (in a majorization sense) than in an arbitrary graph GN .

As stated in the introduction, network scenarios are not only of mathematical
interest, but also of major relevance from an application perspective. For example,
they emerge in modeling connectivity properties, geographic restrictions, and proxim-
ity relations in spatial network settings. Besides capturing such physical concepts in
infrastructure networks, network scenarios also arise due to ``logical relationships,"" in
particular, so-called affinity notions and compatibility constraints between tasks and
servers. Such features are increasingly common in data centers and cloud networks
due to heterogeneity and data locality issues; see, for instance, [136, 169]. They also
relate to the scalability considerations that are important in load balancing, as further
explained below.

Sparse Graph Topologies. Besides the prohibitive communication overhead dis-
cussed earlier, a further scalability issue of the JSQ policy arises when executing a
task that involves the use of some data. Storing such data for all possible tasks on
all servers will typically require an excessive amount of storage capacity. These two
burdens can be effectively mitigated in sparser graph topologies where tasks that ar-
rive at a specific server i are only allowed to be forwarded to a subset of the servers
\scrN i. For the tasks that arrive at server i, queue length information then only needs to
be obtained from servers in \scrN i, and it suffices to store replicas of the required data
on the servers in \scrN i. The subset \scrN i containing the peers of server i can be naturally
viewed as its neighbors in some graph topology GN . Here we consider the case of
undirected graphs, but most of the analysis can be extended to directed graphs.

While sparser graph topologies relieve the scalability issues associated with a
clique, the queue length process will be worse (in the majorization sense) because of
the limited connectivity. Surprisingly, however, even quite sparse graphs can asymp-
totically match the optimal performance of a clique, provided they are suitably ran-
dom, as we will further describe below.

The above model has been studied in [61, 147], focusing on certain fixed-degree
graphs and, in particular, the ring topologies for which [113] has already presented
simulation results. The results demonstrate that the flexibility to forward tasks to a
few neighbors, or even just one, with possibly shorter queues significantly improves the
performance in terms of the waiting time and tail distribution of the queue length.
This resembles the power-of-choice gains observed for JSQ(d) policies in complete
graphs.

However, the results in [61, 147] also establish that the performance sensitively
depends on the underlying graph topology, and that selecting from a fixed set of d - 1
neighbors typically does not match the performance of resampling d  - 1 alternate
servers for each incoming task from the entire population, as in the power-of-d scheme
in a complete graph. Further interesting results for the performance of LBAs in a
network context, with a focus on tail asymptotics, may be found in [38, 110].

Supermarket Model on Graphs. For the case when each arriving task is routed
to the shortest of d \geq 2 randomly selected neighboring queues, the process-level
convergence over any finite time interval has been established recently in [28]. In this
work, the authors analyze the evolution of the queue length process at an arbitrary
tagged server as the system size becomes large. The main ingredient is a careful
analysis of local occupancy measures associated with the neighborhood of each server
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and the argument that under suitable conditions their asymptotic behavior is the
same for all servers. Under mild conditions on the graph topology GN (diverging
minimum degree and the ratio between minimum degree and maximum degree in
each connected component converges to 1), for a suitable initial occupancy measure,
[28, Theorem 2.1] establishes that for any fixed d \geq 2, the global occupancy state
process for the JSQ(d) scheme on GN has the same weak limit in (3.2) as that on a
clique, as the number of vertices N becomes large. Further, a propagation of chaos
property was shown to hold for this system, in the sense that the queue lengths
at any finite collection of tagged servers are asymptotically independent, and the
queue length process for each server converges in distribution (in the path space) to
a certain McKean--Vlasov process [28, Theorem 2.2]. Furthermore, when the graph
sequence is random, with the Nth graph given as an Erd\H os--R\'enyi random graph
(ERRG) on N vertices with average degree d(N), note that there are two types of
randomness that drive the dynamics of the process, one being the randomness of
the underlying graph and the other being the randomness of the arrival/departure
processes given the graph. This setup falls under the framework of random processes
in a random environment. Here one is typically interested in two types of convergence
results: (1) annealed convergence, where one looks at the dynamics of the sequence of
occupancy processes averaged over the randomness of the underlying graph, and (2)
quenched convergence, where one samples a sequence of random graphs with increasing
N and, given that sequence, considers the dynamics of the sequence of occupancy
process. In [28] annealed convergence is established under the condition d(N) \rightarrow \infty ,
and the quenched convergence is shown under a stronger condition d(N)/ logN \rightarrow \infty .

Asymptotic Optimality on Graphs. We return to the case when each incoming
task is assigned to whichever server has the smallest number of tasks among the one
where it arrives and its neighbors in GN . The results presented in the remainder of
the section are based on [116], where full proofs are also provided, unless indicated
otherwise. As mentioned earlier, the queue length process in a clique will be bet-
ter balanced and smaller (in a majorization sense) than in an arbitrary graph GN .
Accordingly, a graph GN is said to be N -optimal or

\surd 
N -optimal when the queue

length process on GN is equivalent to that on a clique on an N -scale or
\surd 
N -scale,

respectively. Roughly speaking, a graph is N -optimal if the fraction of nodes with
i tasks for i = 0, 1, . . . behaves as in a clique as N \rightarrow \infty . The fluid-limit results for the
JSQ policy discussed in section 3.3 imply that the latter fraction is zero in the limit
for all i \geq 2 in a clique in stationarity, i.e., the fraction of servers with two or more
tasks vanishes in any graph that is N -optimal, and consequently the mean waiting
time vanishes as well as N \rightarrow \infty . Furthermore, the diffusion-limit results of [36] for
the JSQ policy discussed in section 3.4 imply that the number of nodes with zero
tasks and the number with two tasks both scale as

\surd 
N as N \rightarrow \infty . Again, loosely

speaking, a graph is
\surd 
N -optimal if in the heavy-traffic regime the number of nodes

with zero tasks and the number with two tasks when scaled by
\surd 
N both evolve as

in a clique as N \rightarrow \infty . Formal definitions of asymptotic optimality on an N -scale or\surd 
N -scale will be introduced in Definition 6.1 below.
As one of the main results, we will demonstrate that, remarkably, asymptotic

optimality can be achieved in quite sparse ERRGs. We prove that a sequence of
ERRGs indexed by the number of vertices N with d(N) \rightarrow \infty asN \rightarrow \infty isN -optimal.
We further establish that the latter growth condition for the average degree is in fact
necessary in the sense that any graph sequence that contains \Theta (N ) bounded-degree
vertices cannot be N -optimal. This implies that a sequence of ERRGs with finite
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average degree cannot be N -optimal. The growth rate condition is more stringent
for optimality on

\surd 
N -scale in the heavy-traffic regime. Specifically, we prove that a

sequence of ERRGs indexed by the number of vertices N with d(N)/(
\surd 
N log(N)) \rightarrow 

\infty as N \rightarrow \infty is
\surd 
N -optimal.

The above results demonstrate that the asymptotic optimality of cliques on an
N -scale and a

\surd 
N -scale can be achieved in far sparser graphs, where the number of

connections is reduced by nearly a factor N and
\surd 
N/ log(N), respectively, provided

the topologies are suitably random in the ERRG sense. This translates into equally
significant reductions in communication overhead and storage capacity, since both are
roughly proportional to the number of connections.

Arbitrary Graph Topologies. The key challenge in the analysis of load balancing
on arbitrary graph topologies is that one needs to keep track of the evolution of
the number of tasks at each vertex along with their corresponding neighborhood
relationship. This creates a major problem in constructing a tractable Markovian
state descriptor and renders a direct analysis of such processes highly intractable, as
already alluded to in [113]. Consequently, even asymptotic results for load balancing
processes on an arbitrary graph have remained scarce so far. We take a radically
different approach and aim to compare the load balancing process on an arbitrary
graph with that on a clique. Specifically, rather than analyze the behavior for a
given class of graphs or degree value, we explore the types of topologies and degree
properties for which the performance is asymptotically similar to that in a clique.

Stochastic Coupling for Graphs. Our proof arguments build on the stochastic
coupling constructions developed in section 4 for JSQ(d) policies. Specifically, we view
the load balancing process on an arbitrary graph as a ``sloppy"" version of that on a
clique, and thus construct several other intermediate sloppy versions. By constructing
novel couplings, we develop a method of comparing the load balancing process on an
arbitrary graph with that on a clique. In particular, we bound the difference between
the fraction of vertices with i or more tasks in the two systems for i = 1, 2, . . . ,
to obtain asymptotic optimality results. From a high-level viewpoint, conceptually
related graph conditions for asymptotic optimality were examined using quite different
techniques in [145, 146] in a dynamic scheduling framework (as opposed to the load
balancing context).

Notation. For k = 1, . . . , N , denote by Xk(GN , t) the queue length at the kth
server at time t (including the task possibly in service), and by X(k)(GN , t) the queue
length at the kth ordered server at time t when the servers are arranged in nonde-
creasing order of their queue lengths (ties can be broken in some way that will be
evident from the context). Let Qi(GN , t) denote the number of servers with queue
length at least i at time t and qi(GN , t) = Qi(GN , t)/N , i = 1, 2, . . . . It is important
to note that (qi(GN , t))i\geq 1 is itself not a Markov process. Given the graph GN , the
queue length process (Xk(GN , t))Nk=1 is Markovian under the model assumptions and
(qi(GN , t)i\geq 1) is a function of (Xk(GN , t))Nk=1. Also, in the Halfin--Whitt heavy-traffic
regime (2.1), define the centered and scaled processes

(6.1) \=Q1(GN , t) =  - N  - Q1(GN , t)\surd 
N

, \=Qi(GN , t) =
Qi(GN , t)\surd 

N
,

analogously to (3.1).

Asymptotic Optimality. In general, the optimality of the clique topology is
strict, but it turns out that near-optimality can be achieved asymptotically in a broad
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class of other graph topologies. Therefore, we now introduce two notions of asymptotic
optimality that will be useful to characterize the performance in large-scale systems.

Definition 6.1 (asymptotic optimality). A graph sequence G = \{ GN\} N\geq 1 is
called ``asymptotically optimal on N -scale"" or ``N -optimal"" if, for any \lambda < 1, the
process (q1(GN , \cdot ), q2(GN , \cdot ), . . .) converges weakly, on any finite time interval, to a
process (q1(\cdot ), q2(\cdot ), . . .) satisfying (3.5).

Moreover, a graph sequence G = \{ GN\} N\geq 1 is called ``asymptotically optimal on\surd 
N -scale"" or ``

\surd 
N -optimal"" if, in the Halfin-Whitt heavy-traffic regime (2.1), on

any finite time interval, the process ( \=Q1(GN , \cdot ), \=Q2(GN , \cdot ), . . .) as in (6.1) converges
weakly to the process ( \=Q1(\cdot ), \=Q2(\cdot ), . . .) given by (3.7).

Intuitively speaking, if a graph sequence is N -optimal or
\surd 
N -optimal, then in

some sense, the associated occupancy processes are indistinguishable from those of the
sequence of cliques on N -scale or

\surd 
N -scale. In other words, on any finite time interval

their occupancy processes can differ from those in cliques by at most o(N ) or o(
\surd 
N),

respectively. We will interchangeably use the terms fluid scale and diffusion scale to
refer to N -scale and

\surd 
N -scale, respectively. In particular, exploiting interchange of

the stationary (t \rightarrow \infty ) and many-server (N \rightarrow \infty ) limits, we obtain that for any
N -optimal graph sequence \{ GN\} N\geq 1, as N \rightarrow \infty ,

q1(GN ,\infty ) \rightarrow \lambda and qi(GN ,\infty ) \rightarrow 0 for all i = 2, . . . , B,

implying that the stationary fraction of servers with queue length two or larger and
the mean waiting time vanish. It is worthwhile to point out that the above interchange
of limits requires the ergodicity of the queue length process for each fixed N , a certain
tightness of the sequence \{ (q1(GN ,\infty ), q2(GN ,\infty ), . . .)\} N\geq 1, and the global stability
of the fluid limits.

6.1. Asymptotic Optimality Criteria for Deterministic Graph Sequences. We
now proceed to develop a criterion for asymptotic optimality of an arbitrary deter-
ministic graph sequence on different scales. Next this criterion will be leveraged to
establish optimality of a sequence of random graphs. We start by introducing some
useful notation and two measures of well-connectedness. Let G = (V,E) be any
graph. For a subset U \subseteq V , define com(U) := | V \setminus N [U ]| to be the cardinality of
the set of all vertices that are disjoint from U and its immediate neighbors, where
N [U ] := U \cup \{ v \in V : \exists u \in U with (u, v) \in E\} . For any fixed \varepsilon > 0 define

(6.2) dis1(G, \varepsilon ) := sup
U\subseteq V,| U | \geq \varepsilon | V | 

com(U), dis2(G, \varepsilon ) := sup
U\subseteq V,| U | \geq \varepsilon 

\surd 
| V | 

com(U).

The next theorem provides sufficient conditions for asymptotic optimality on N -
scale and

\surd 
N -scale in terms of the above two well-connectedness measures.

Theorem 6.2. For any graph sequence G = \{ GN\} N\geq 1,
(i) G is N -optimal if, for any \varepsilon > 0, dis1(GN , \varepsilon )/N \rightarrow 0 as N \rightarrow \infty ;
(ii) G is

\surd 
N -optimal if, for any \varepsilon > 0, dis2(GN , \varepsilon )/

\surd 
N \rightarrow 0 as N \rightarrow \infty .

From a high-level perspective, the conditions in Theorem 6.2 (i) and (ii) require
that neighborhoods of any \Theta (N ) and \Theta (

\surd 
N) vertices contain at least N  - o(N) and

N  - o(
\surd 
N) vertices, respectively. As we will see below in Theorems 6.8 and 6.10,

the conditions in Theorem 6.2 impose suitable levels of connectivity in the graph
topology in order for it to be asymptotically optimal on fluid and diffusion scales,
while significantly reducing the total number of connections. The next corollary is an
immediate consequence of Theorem 6.2.
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Corollary 6.3. Let G = \{ GN\} N\geq 1 be any graph sequence. Then (i) if the
minimum degree in GN equals N - o(N), then G is N -optimal, and (ii) if the minimum
degree in GN equals N  - o(

\surd 
N), then G is

\surd 
N -optimal.

The rest of the subsection is devoted to a discussion of the main proof arguments
for Theorem 6.2, focusing on the proof of N -optimality. The proof of

\surd 
N -optimality

follows along similar lines. We establish in Proposition 6.4 that if a system is able to
assign each task to a server in the set, denoted by \scrS N (n(N)), of the n(N) + 1 nodes
with shortest queues, where n(N) is o(N), then it is N -optimal. Since the underlying
graph is not a clique, however (otherwise there is nothing to prove), for any n(N) not
every arriving task can be assigned to a server in \scrS N (n(N)). Hence we further prove
in Proposition 6.5 a stochastic comparison property implying that if on any finite
time interval of length t, the number of tasks \Delta N (t) that are not assigned to a server
in \scrS N (n(N)) is oP (N), then the system is N -optimal as well. The N -optimality can
then be concluded when \Delta N (t) is oP (N), which we establish in Proposition 6.6 under
the condition that dis1(GN , \varepsilon )/N \rightarrow 0 as N \rightarrow \infty as stated in Theorem 6.2.

To further explain the idea described in the above proof outline, it is useful to
adopt a slightly different point of view toward load balancing processes on graphs.
From a high-level viewpoint, a load balancing process can be thought of as follows:
there are N servers, which are assigned incoming tasks by some scheme. The assign-
ment scheme can arise from some topological structure, in which case we will call it
topological load balancing, or it can arise from some other property of the occupancy
process, in which case we will call it nontopological load balancing. As mentioned
earlier, the JSQ policy on the clique is optimal among the set of all nonanticipating
schemes, irrespective of being topological or nontopological. Also, load balancing on
graph topologies other than a clique can be thought of as a ``sloppy"" version of that
on a clique, when each server only has access to partial information on the occupancy
state. Below we first introduce a different type of sloppiness in the task assignment
scheme and show that under a limited amount of sloppiness, optimality is retained
on a suitable scale. Next we will construct a scheme, which is a hybrid of topological
and nontopological schemes, whose behavior is simultaneously close to both the load
balancing process on a suitable graph and that on a clique.

A Class of Sloppy Load Balancing Schemes. Fix some function n : N\rightarrow N and
recall the set \scrS N (n(N)) from before as well as the class CJSQ(n(N )) from section 4.1,
where each arriving task is assigned to one of the servers in \scrS N (n(N)). It should be
emphasized that for any scheme in CJSQ(n(N)), we are not imposing any restrictions
on how the incoming task should be assigned to a server in \scrS N (n(N)). The scheme
only needs to ensure that the arriving task is assigned to some server in \scrS N (n(N))
with respect to some tie-breaking mechanism. Observe that using Corollary 4.5 and
following arguments as in the proofs of Theorems 4.1 and 4.2, we obtain the next
proposition, which provides a sufficient criterion for asymptotic optimality of any
scheme in CJSQ(n(N )).

Proposition 6.4. For 0 \leq n(N) < N , let \Pi \in CJSQ(n(N)) be any scheme. (i)
If n(N)/N \rightarrow 0 as N \rightarrow \infty , then \Pi is N -optimal. (ii) If n(N)/

\surd 
N \rightarrow 0 as N \rightarrow \infty ,

then \Pi is
\surd 
N -optimal.

A Bridge between Topological and Nontopological Load Balancing. For any
graph GN and n \leq N , we first construct a scheme called I(GN , n), which is an
intermediate blend between the topological load balancing process on GN and some
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kind of nontopological load balancing on N servers. The choice of n = n(N) will be
clear from the context.

To describe the scheme I(GN , n), first synchronize the arrival epochs at server v
in both systems, v = 1, 2, . . . , N . Further, synchronize the departure epochs at the
kth ordered server with the kth smallest number of tasks in the two systems, k =
1, 2, . . . , N . When a task arrives at server v at time t, say, it is assigned in the graph
GN to a server v\prime \in N [v] according to its own statistical law. For the assignment
under the scheme I(GN , n), first observe that if

(6.3) min
u\in N [v]

Xu(GN , t) \leq max
u\in \scrS (n)

Xu(GN , t),

then there exists some tie-breaking mechanism for which v\prime \in N [v] belongs to \scrS (n)
under GN . Pick such an ordering of the servers, and assume that v\prime is the kth ordered
server in that ordering for some k \leq n + 1. Under I(GN , n) assign the arriving task
to the kth ordered server (breaking ties arbitrarily in this case). Otherwise, if (6.3)
does not hold, then the task is assigned to one of the n + 1 servers with minimum
queue lengths under GN uniformly at random.

Denote by \Delta N (I(GN , n), T ) the cumulative number of arriving tasks up to time
T \geq 0 for which (6.3) is violated under the above coupling. The next proposition
shows that the load balancing process under the scheme I(GN , n) is close to that on
the graph GN in terms of the random variable \Delta N (I(GN , n), T ).

Proposition 6.5. The inequality

(6.4)
B\sum 
i=1

| Qi(GN , t) - Qi(I(GN , n), t)| \leq 2\Delta N (I(GN , n), t) \forall t \geq 0

is preserved almost surely, provided the two systems start from the same occupancy
state at t = 0.

In order to conclude optimality on N -scale or
\surd 
N -scale, it remains to be shown

that the term \Delta N (I(GN , n), T ) is sufficiently small. The next proposition provides
suitable asymptotic bounds for \Delta N (I(GN , n), T ) under the conditions on dis1(GN , \varepsilon )
and dis2(GN , \varepsilon ) stated in Theorem 6.2. For N -optimality, the idea is that since for all
\varepsilon > 0, dis1(GN , \varepsilon ) is o(N), one can show that there is a number n\varepsilon (N) = o(N) such
that com(U) = o(N) uniformly over all U \subseteq VN with | U | \geq n\varepsilon (N). Consequently,
this can be used to show that on any finite time interval, ``most of the tasks"" will be
assigned to one of the n\varepsilon (N) servers with smallest queue lengths. This enables us to
couple the system with a scheme from the class CJSQ(n\varepsilon (N)). The idea is similar
when we consider

\surd 
N -optimality.

Proposition 6.6.
(i) For any \varepsilon > 0, there exist \varepsilon \prime > 0 and n\varepsilon \prime (N) with n\varepsilon \prime (N)/N \rightarrow 0 as N \rightarrow \infty ,

such that if dis1(GN , \varepsilon \prime )/N \rightarrow 0 as N \rightarrow \infty , then for all T > 0,

P
\bigl( 
\Delta N (I(GN , n\varepsilon \prime ), T )/N > \varepsilon 

\bigr) 
\rightarrow 0.

(ii) For any \varepsilon > 0, there exist \varepsilon \prime > 0 and m\varepsilon \prime (N) with m\varepsilon \prime (N)/
\surd 
N \rightarrow 0 as N \rightarrow \infty ,

such that if dis2(GN , \varepsilon \prime )/
\surd 
N \rightarrow 0 as N \rightarrow \infty , then for all T > 0,

P

\Bigl( 
\Delta N (I(GN ,m\varepsilon \prime ), T )/

\surd 
N > \varepsilon 

\Bigr) 
\rightarrow 0.
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The proof of Theorem 6.2 then readily follows by combining Propositions 6.4--6.6
and observing that the scheme I(GN , n) belongs to the class CJSQ(n) by construction.

From the conditions of Theorem 6.2, it follows that if for all \varepsilon > 0, dis1(GN , \varepsilon )
and dis2(GN , \varepsilon ) are o(N) and o(

\surd 
N), respectively, then the total number of edges in

GN must be \omega (N) and \omega (N
\surd 
N), respectively. Theorem 6.7 states that the superlinear

growth rate of the total number of edges is not only sufficient, but also necessary in
the sense that any graph with O(N) edges is asymptotically suboptimal on N -scale.

Theorem 6.7. Let G = \{ GN\} N\geq 1 be any graph sequence, such that there exists
a fixed integer M < \infty with

(6.5) lim sup
N\rightarrow \infty 

\#
\bigl\{ 
v \in VN : dv \leq M

\bigr\} 
N

> 0,

where dv is the degree of the vertex v. Then G is suboptimal on N -scale.

To prove Theorem 6.7, we show that starting from an all-empty state, in finite
time, a positive fraction of servers in GN will have at least two tasks. This estab-
lishes that the occupancy processes when scaled by N cannot agree with those in
the sequence of cliques, and hence \{ GN\} N\geq 1 cannot be N -optimal. The idea of the
proof can be explained as follows: If a system contains \Theta (N ) bounded-degree vertices,
then starting from an all-empty state, in any finite time interval there will be \Theta (N)
servers u, say, for which all the servers in N [u] have at least one task. For all such
servers an arrival at u must produce a server with queue length two. It follows that
the instantaneous rate at which servers of queue length two are formed is bounded
away from zero, and hence \Theta (N ) servers of queue length two are produced in finite
time.

6.2. Asymptotic Optimality of Random Graph Sequences. Next we investi-
gate how the load balancing process behaves on random graph topologies. Specifically,
we aim to understand what types of graphs are asymptotically optimal in the pres-
ence of randomness (i.e., in an average-case sense). Theorem 6.8 establishes sufficient
conditions for asymptotic optimality of a sequence of inhomogeneous random graphs.
Recall that a graph G\prime = (V \prime , E\prime ) is called a supergraph of G = (V,E) if V = V \prime and
E \subseteq E\prime .

Theorem 6.8. Let G = \{ GN\} N\geq 1 be a graph sequence such that, for each N ,
GN = (VN , EN ) is a supergraph of the inhomogeneous random graph G\prime N where any
two vertices u, v \in VN share an edge with probability pNuv, independently of each other.
(i) If inf \{ pNuv : u, v \in VN\} is \omega (1/N), then G is N -optimal.
(ii) If inf \{ pNuv : u, v \in VN\} is \omega (log(N)/

\surd 
N), then G is

\surd 
N -optimal.

The proof of Theorem 6.8 relies on Theorem 6.2. Specifically, if GN satisfies
conditions (i) and (ii) in Theorem 6.8, then the corresponding conditions (i) and (ii)
in Theorem 6.2 hold.

As an immediate corollary of Theorem 6.8 we obtain an optimality result for the
sequence of ERRGs. Let ERRG(N, p(N)) denote a graph on N vertices, such that
any pair of vertices share an edge with probability p(N).

Corollary 6.9. Let G = \{ GN\} N\geq 1 be a graph sequence such that, for each N ,
GN is a supergraph of ERRG(N, p(N)) and d(N) = (N - 1)p(N). Then (i) if d(N) \rightarrow 
\infty as N \rightarrow \infty , then G is N -optimal; (ii) if d(N)/(

\surd 
N log(N)) \rightarrow \infty as N \rightarrow \infty ,

then G is
\surd 
N -optimal.
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Theorem 6.2 can be further leveraged to establish the optimality of the following
sequence of random graphs. For any N \geq 1 and d(N) \leq N  - 1 such that Nd(N) is
even, construct the erased random regular graph on N vertices as follows: Initially,
attach d(N) half-edges to each vertex. Call all such half-edges unpaired. At each step,
pick one half-edge arbitrarily and pair it to another half-edge uniformly at random
among all unpaired half-edges to form an edge, until all the half-edges have been
paired. Thus, note that there can be more than one edge between two vertices (i.e.,
multiedge) or a half-edge of a vertex can be paired with another half-edge of the same
vertex (self-loops). Such a graph is known as a regular multigraph. In fact, it is
known [153, Proposition 7.7] that the above pairing procedure results in a random
graph that has a uniform distribution over all regular multigraphs with degree d(N).
Now the erased random regular graph is formed by erasing all the self-loops and
collapsing the multiple edges to a single edge, which thus produces a simple graph.

Theorem 6.10. Let G = \{ GN\} N\geq 1 be a sequence of erased random regular
graphs with degree d(N). Then (i) if d(N) \rightarrow \infty as N \rightarrow \infty , then G is N -optimal;
(ii) if d(N)/(

\surd 
N log(N)) \rightarrow \infty as N \rightarrow \infty , then G is

\surd 
N -optimal.

Note that, due to Theorem 6.7, we can conclude that the growth rate condition
for N -optimality in Corollary 6.9 (i) and Theorem 6.10 (i) is not only sufficient, but
necessary as well. Thus, informally speaking, N -optimality is achieved under the
minimum condition required as long as the underlying topology is suitably random.

7. Token-Based Load Balancing. While a zero waiting time can be achieved
in the limit by sampling only d(N) = o(N) servers, as sections 4 and 6 showed,
even in network scenarios, the amount of communication overhead in terms of d(N)
must still grow with N . As mentioned earlier, this can be avoided by introducing
memory at the dispatcher, in particular, maintaining a record of only vacant servers
and assigning tasks to idle servers, if there are any, or to a uniformly at random
selected server otherwise. This so-called join-the-idle-queue (JIQ) scheme [11, 101]
can be implemented through a simple token-based mechanism generating at most one
message per task. Remarkably enough, even with such low communication overhead,
the mean waiting time and the probability of a nonzero waiting time vanish under
the JIQ scheme in both the fluid and diffusion regimes, as we will discuss in the next
two subsections. It is worth emphasizing, though, that the JIQ scheme is not optimal
in the nondegenerate slow-down regime, which was introduced in section 2.2 and will
be further discussed in section 8.3.

7.1. Fluid-Level Optimality of JIQ Scheme. We first consider the fluid limit
of the JIQ policy. It is not hard to show that the number of busy servers under
the JIQ scheme is stochastically larger (in the path space) than that for the JSQ(1)
policy (tasks assigned uniformly at random). Consequently, the JIQ scheme is stable
whenever \lambda < 1. Recall that qNi (\infty ) is a random variable denoting the process
qNi (\cdot ) in steady state. Under significantly more general conditions (in the presence
of finitely many heterogeneous server pools and for general service time distributions
with decreasing hazard rate) it was proved in [141] that under the JIQ scheme,

(7.1) qN1 (\infty ) \rightarrow \lambda , qNi (\infty ) \rightarrow 0 for all i \geq 2, as N \rightarrow \infty .

The above equation in conjunction with the PASTA property yields that the steady-
state probability of a nonzero wait vanishes as N \rightarrow \infty , thus exhibiting asymptotic
optimality of the JIQ policy on fluid scale.
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High-Level Outline of Proof Idea. Loosely speaking, the proof of (7.1) consists
of three principal components:
(i) Starting from an all-empty state, the asymptotic rate of increase of q1 is given

by the arrival rate \lambda . Also, the rate of decrease is q1. Thus, on a small time
interval dt, the rate of change of q1 is given by

(7.2)
dq1(t)

dt
= \lambda  - q1(t).

Under the above dynamics, the system occupancy states converge to the unique
fixed point of the above ODE, given by the point (\lambda , 0, 0, . . .).

(ii) The occupancy process is monotone, in the sense that (a) starting from an
all-empty state, the occupancy process is componentwise stochastically nonde-
creasing in time (in the sense of stochastic dominance), and (b) the occupancy
process at any fixed time t, starting from an arbitrary state, componentwise
stochastically dominates the occupancy process at time t, starting from an all-
empty state.

(iii) Under the JIQ scheme, the system is stable, and hence the occupancy process
is ergodic. Since q1(t) is the instantaneous rate of departure from the system,
ergodicity implies that in steady state there can be at most \lambda fraction of busy
servers (containing at least one task). In fact, it further establishes that the
steady-state fraction of servers with more than one tasks vanishes asymptotically.

Points (i) and (ii) above imply that starting from any state the system must have
at least \lambda fraction of busy servers, and finally this along with point (iii) establishes
that the steady-state occupancy process must converge to (\lambda , 0, 0, . . .).

7.2. Diffusion-Level Optimality of JIQ Scheme. We now turn to the diffusion
limit of the JIQ scheme established in [118]. Recall the centered and scaled occupancy
process as in (3.1) and the Halfin--Whitt heavy-traffic regime in (2.1).

Theorem 7.1 (diffusion limit for JIQ). Assume that \lambda (N) satisfies (2.1). Under
suitable initial conditions the weak limit of the sequence of centered and diffusion-
scaled occupancy processes in (3.1) coincides with that of the ordinary JSQ policy
and, in particular, is given by the system of SDEs in (3.7).

The above theorem implies that for suitable states, on any finite time interval,
the occupancy process of a system under the JIQ policy is indistinguishable from that
under the JSQ policy.

High-Level Outline of Proof Idea. The proof of Theorem 7.1 relies on a novel
coupling construction introduced in [118] and described below in detail. The idea is
to compare the occupancy processes of two systems following JIQ and JSQ policies,
respectively. Comparing the JIQ and JSQ policies is facilitated when viewed as fol-
lows: (i) If there is an idle server in the system, both JIQ and JSQ perform similarly.
(ii) Also, when there is no idle server and only O(

\surd 
N) servers with queue length two

or more, JSQ assigns the arriving task to a server with queue length one. In that
case, since JIQ assigns at random, the probability that the task will land on a server
with queue length two or more, and thus JIQ acts differently than JSQ, is O(1/

\surd 
N).

Since on any finite time interval the number of times an arrival finds all servers busy
is at most O(

\surd 
N), all the arrivals except O(1) of them are assigned in exactly the

same manner in both JIQ and JSQ, which then leads to the same scaling limit for
both policies.
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The diffusion limit result in Theorem 7.1 is in fact true for an even broader class of
load balancing schemes. As in section 4.1, let B denote the buffer capacity (possibly
infinite) of each server, and in the case B < \infty , if a task is assigned to a server with
B outstanding tasks, it is instantly discarded. For an LBA \Pi , we will denote the total
number of tasks lost up to time t by L\Pi (t). Define the class of schemes

\Pi (N) := \{ \Pi (d0, d1, . . . , dB - 1) : d0 = N, 1 \leq di \leq N, 1 \leq i \leq B  - 1, B \geq 2\} ,

where in the scheme \Pi (d0, d1, . . . , dB - 1) with buffer capacity B, the dispatcher assigns
an incoming task to the server with the minimum queue length among dk (possibly
function of N) servers selected uniformly at random when the minimum queue length
across the system is k, k = 0, 1, . . . , B  - 1. The system analyzed in [36] (JSQ with
B = 2) can be written as \Pi (N,N ), JIQ can be expressed as \Pi (N, 1, 1, . . .), and JIQ
with a buffer capacity B = 2 is \Pi (N, 1).

The crux of the argument in proving diffusion-level optimality for any scheme in
\Pi (N) goes as follows: First, the occupancy process under the scheme \Pi (N, d1, . . . , dB - 1)
is sandwiched between those under \Pi (N, 1) and \Pi (N, d1). More specifically, the \ell 1-
distance between the occupancy processes under \Pi (N, d1, . . . , dB - 1) and \Pi (N, 1) is
bounded by the number of items lost due to full buffers. Next, this loss is bounded
using the number of servers with queue length 2 in \Pi (N,N). This allows the use
of the results in [36] and yields that on any finite time interval with high probabil-
ity an O(1) number of items is lost due to full buffers, which is negligible on

\surd 
N

scale. Specifically, this shows that for suitable initial states, the schemes \Pi (N, 1)
and \Pi (N, d1), along with any scheme in the class \Pi (N), have the same diffusion limit
in the Halfin--Whitt heavy-traffic regime. We conclude this subsection by describing
the coupling construction stating the stochastic inequalities and giving a brief proof
sketch for Theorem 7.1.

The Coupling Construction. We now construct a coupling between two sys-
tems following any two schemes, say, \Pi 1 = \Pi (l0, l1, . . . , lB - 1) and \Pi 2 = \Pi (d0, d1,
. . . , dB\prime  - 1) in \Pi (N), respectively, to establish the desired stochastic ordering results.
Note that \Pi 1 and \Pi 2 have (possibly different) buffer capacities B and B\prime , respectively.
With slight abuse of notation we will denote by \Pi i the system following scheme \Pi i,
i = 1, 2.

For the arrival process we couple the two systems as follows. First, we synchronize
the arrival epochs of the two systems. Now assume that in the systems \Pi 1 and \Pi 2, the
minimum queue lengths are k and m, respectively, for some k \leq B  - 1, m \leq B\prime  - 1.
Therefore, when a task arrives, the dispatchers in \Pi 1 and \Pi 2 have to select lk and dm
servers, respectively, and then have to send the task to the server with the minimum
queue length among the respectively selected servers. Since the servers are being
selected uniformly at random, we can assume without loss of generality, as in the
stack construction, that the servers are arranged in nondecreasing order of their queue
lengths and are indexed in increasing order. Hence, observe that when a few server
indices are selected, the server having the minimum of those indices will be the server
with the minimum queue length among them. Thus, in this case the dispatchers in \Pi 1

and \Pi 2 select lk and dm random numbers (without replacement) from \{ 1, 2, . . . , N\} 
and then send the incoming task to the servers having indices that are the minimum
of those selected numbers. Now, note that selecting lk (or dm) random servers is
equivalent to selecting a random permutation of \{ 1, 2, . . . , N\} , say, (\sigma 1, \sigma 2, . . . , \sigma N ),
and selecting first lk (or dm) indices. To couple the assignment decisions of the two
systems, at each arrival epoch a single random permutation of \{ 1, 2, . . . , N\} is drawn,
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denoted by \Sigma (N) := (\sigma 1, \sigma 2, . . . , \sigma N ). Define \sigma (i) := minj\leq i \sigma j . Then observe that
system \Pi 1 sends the task to the server with the index \sigma (lk) and system \Pi 2 sends the
task to the server with the index \sigma (dm). Since at each arrival epoch both systems use
a common random permutation, they take decisions in a coupled manner.

For the potential departure process, couple the service completion times of the kth
queue in both scenarios, k = 1, 2, . . . , N . More precisely, for the potential departure
process assume that we have a single synchronized exp(N ) clock independent of arrival
epochs for both systems. Now when this clock alarm rings, a number k is uniformly
selected from \{ 1, 2, . . . , N\} and a potential departure occurs from the kth queue in
both systems. If, at a potential departure epoch, an empty queue is selected, then we
do nothing. Since the service time requirements are i.i.d. exponentially distributed,
the memoryless property ensures that the two schemes, considered independently, still
evolve according to their appropriate statistical laws under the above coupling.

Proposition 7.2. For two schemes \Pi 1 = \Pi (l0, l1, . . . , lB - 1) and \Pi 2 = \Pi (d0, d1,
. . . , dB\prime  - 1) with B \leq B\prime , assume l0 = \cdot \cdot \cdot = lB - 2 = d0 = \cdot \cdot \cdot = dB - 2 = d, lB - 1 \leq 
dB - 1, and either d = N or d \leq dB - 1. Then the following hold:
(i) \{ Q\Pi 1

i (t)\} t\geq 0 \leq st \{ Q\Pi 2
i (t)\} t\geq 0 for i = 1, 2, . . . , B,

(ii) \{ 
\sum B

i=1 Q
\Pi 1
i (t) + L\Pi 1(t)\} t\geq 0 \geq st \{ 

\sum B\prime 

i=1 Q
\Pi 2
i (t) + L\Pi 2(t)\} t\geq 0,

(iii) \{ \Delta (t)\} t\geq 0 \geq \{ 
\sum B\prime 

i=B+1 Q
\Pi 2
i (t)\} t\geq 0 almost surely under the coupling defined above,

for any fixed N \in N where \Delta (t) := L\Pi 1(t)  - L\Pi 2(t), provided that at time t = 0 the
above ordering holds.

Proof of Theorem 7.1. Let \Pi = \Pi (N, d1, . . . , dB - 1) be a load balancing scheme
in the class \Pi (N). Denote by \Pi 1 the scheme \Pi (N, d1) with buffer size B = 2 and let
\Pi 2 denote the JIQ policy \Pi (N, 1) with buffer size B = 2.

Observe that from Proposition 7.2 we have, under the coupling defined above,

| Q\Pi 
i (t) - Q\Pi 2

i (t)| \leq | Q\Pi 
i (t) - Q\Pi 1

i (t)| + | Q\Pi 1
i (t) - Q\Pi 2

i (t)| 
\leq | L\Pi 1(t) - L\Pi (t)| + | L\Pi 2(t) - L\Pi 1(t)| \leq 2L\Pi 2(t)

(7.3)

for all i \geq 1 and t \geq 0 with the understanding that Qj(t) = 0 for all j > B, for
a scheme with buffer capacity B. The third inequality above is due to Proposition
7.2 (iii), which in particular says that \{ L\Pi 2(t)\} t\geq 0 \geq \{ L\Pi 1(t)\} t\geq 0 \geq \{ L\Pi (t)\} t\geq 0
almost surely under the coupling. Now we have the following lemma.

Lemma 7.3. For all t \geq 0, under the assumptions of Theorem 7.1, \{ L\Pi 2(t)\} N\geq 1
forms a tight sequence.

Since L\Pi 2(t) is nondecreasing in t, the above lemma in particular implies that

(7.4) sup
t\in [0,T ]

L\Pi 2(t)\surd 
N

P - \rightarrow 0.

For any scheme \Pi \in \Pi (N), from (7.3) we know that

\{ Q\Pi 2
i (t) - 2L\Pi 2(t)\} t\geq 0 \leq \{ Q\Pi 

i (t)\} t\geq 0 \leq \{ Q\Pi 2
i (t) + 2L\Pi 2(t)\} t\geq 0.

Combining (7.3) and (7.4) shows that if the weak limits under the
\surd 
N scaling exist,

they must be the same for all the schemes in the class \Pi (N). Also, as described
in section 3, the weak limit for \Pi (N,N ) exists and the common weak limit can be
described by the unique solution of the SDEs in (3.7). Hence, the proof of Theorem 7.1
is complete.
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1 2 R

α1λN α2λN αRλN

1 2 i N

1

Fig. 6 Schematic view of the model with R dispatchers and N servers.

7.3. Multiple Dispatchers. So far we have focused on a basic scenario with a
single dispatcher, but it is not uncommon for LBAs to operate across multiple dis-
patchers. While the presence of multiple dispatchers does not affect the queuing
dynamics of JSQ(d) policies, it does matter for the JIQ scheme, which uses memory
at the dispatcher. In order to examine the impact, we consider in this subsection
a scenario with N parallel identical servers as before and R \geq 1 dispatchers, as de-
picted in Figure 6. Tasks arrive at dispatcher r as a Poisson process of rate \alpha r\lambda N ,
with \alpha r > 0, r = 1, . . . , R,

\sum R
r=1 \alpha r = 1, and \lambda denoting the task arrival rate per

server. For conciseness, we denote \alpha = (\alpha 1, . . . , \alpha R), and without loss of generality
we assume that the dispatchers are indexed such that \alpha 1 \geq \alpha 2 \geq \cdot \cdot \cdot \geq \alpha R.

When a server becomes idle, it sends a token to one of the dispatchers selected
uniformly at random, advertising its availability. When a task arrives at a dispatcher
which has tokens available, one of the tokens is selected, and the task is immediately
forwarded to the corresponding server.

We distinguish two scenarios when a task arrives at a dispatcher which has no
tokens available, referred to as the blocking and queuing scenarios, respectively. In
the blocking scenario, the incoming task is blocked and instantly discarded. In the
queuing scenario, the arriving task is forwarded to one of the servers selected uniformly
at random. If the selected server happens to be idle, then the outstanding token at
one of the other dispatchers is revoked.

In the queuing scenario we assume \lambda < 1, which is not only necessary but also
sufficient for stability. It is not difficult to show that the joint queue length process
is stochastically majorized by a scheme that assigns each task to a server chosen
uniformly at random. In the latter case, the system decomposes into N independent
M/M/1 queues, each of which has load \lambda < 1 and is stable.

Scenarios with multiple dispatchers have received limited attention in the litera-
ture, and the scant papers that exist [101, 115, 142] almost exclusively assume that
the loads at the various dispatchers are strictly equal, i.e., \alpha 1 = \cdot \cdot \cdot = \alpha R = 1/R.
In these cases the fluid limit, for suitable initial states, is the same as in (7.2) for a
single dispatcher and, in particular, the fixed point is the same, hence the JIQ scheme
continues to achieve asymptotically optimal delay performance with minimal com-
munication overhead. The results in [142] in fact show that the JIQ scheme remains
asymptotically optimal even when the servers are heterogeneous, while it is readily
seen that JSQ(d) policies cannot even provide maximum stability (i.e., achieve sta-
bility whenever feasible) in that case for any fixed value of d. As one of the few
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exceptions, [149] allows the loads at the various dispatchers to be different. It is not
uncommon for such skewed load patterns to arise, for example, when the various dis-
patchers receive tasks from external sources, making it difficult to perfectly balance
the task arrival rates.

Results for Blocking Scenario. For the blocking scenario, denote by B(R,N, \lambda , \alpha )
the steady-state blocking probability of an arbitrary task. It is established in [149]
that

B(R,N, \lambda , \alpha ) \rightarrow max\{ 1 - R\alpha R, 1 - 1/\lambda \} as N \rightarrow \infty .

This result shows that in the many-server limit the system performance in terms of
blocking is determined either by the relative load of the least-loaded dispatcher or
by the aggregate load. This may be explained informally as follows. Let \=x0 be the
expected fraction of busy servers in steady state, so that each dispatcher receives
tokens on average at a rate \=x0N/R. We distinguish two cases, depending on whether
or not a positive fraction of the tokens reside at the least-loaded dispatcher R in the
limit. If that is the case, then the task arrival rate \alpha R\lambda N at dispatcher R must equal
the rate \=x0N/R at which it receives tokens, i.e., \=x0/R = \alpha R\lambda . Otherwise, the task
arrival rate \alpha R\lambda N at dispatcher R must be no less than the rate \=x0N/R at which
it receives tokens, i.e., \=x0/R \leq \alpha R\lambda . Since dispatcher R is the least loaded, it then
follows that \=x0/R \leq \alpha r\lambda for all r = 1, . . . , R, which means that the task arrival
rate at all the dispatchers is higher that the rate at which tokens are received. Thus
the fraction of tokens at each dispatcher is zero in the limit, i.e., the fraction of idle
servers is zero, implying \=x0 = 1. Combining the two cases, and observing that \=x0 \leq 1,
we conclude that \=x0 = min\{ R\alpha R\lambda , 1\} . Because of Little's law, \=x0 is related to the
blocking probability B as \=x0 = \lambda (1  - B). This yields 1  - B = min\{ R\alpha R\lambda , 1/\lambda \} or,
equivalently, B = max\{ 1 - R\alpha R, 1 - 1/\lambda \} .

The above explanation also reveals that, somewhat counterintuitively, it is the
least-loaded dispatcher that throttles tokens and leaves idle servers stranded, thus
acting as a bottleneck. Specifically, in the limit, dispatcher R (or the set of least-
loaded dispatchers in the case of ties) inevitably ends up with all the available tokens,
if any. The accumulation of tokens hampers the visibility of idle servers to the heavier-
loaded dispatchers, and it leaves idle servers stranded while tasks queue up at other
servers.

Results for Queuing Scenario. For the queuing scenario, denote by W (R,N,
\lambda , \alpha ) a random variable with the steady-state waiting-time distribution of an arbitrary
task. It is shown in [149] that, for a fixed \lambda < 1 and N \rightarrow \infty ,

E[W (R,N, \lambda , \alpha )] \rightarrow \lambda 2(R, \lambda , \alpha )

1 - \lambda 2(R, \lambda , \alpha )
,

where

\lambda 2(R, \lambda , \alpha ) = 1 - 
1 - \lambda 

\sum r\ast 

i=1 \alpha i

1 - \lambda r\ast /R

with

r\ast = sup

\biggl\{ 
r
\bigm| \bigm| \alpha r >

1

R

1 - \lambda 
\sum r

i=1 \alpha i

1 - \lambda r/R

\biggr\} 
and the convention that r\ast = 0 if \alpha 1 = \cdot \cdot \cdot = \alpha R = 1/R. In particular,

\lambda 2(2, \lambda , (1 - \alpha 2, \alpha 2)) = \lambda 
1 - 2\alpha 2

2 - \lambda 
,
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so that

E[W (2, N, \lambda , (1 - \alpha 2, \alpha 2))] \rightarrow 
\lambda (1 - 2\alpha 2)

2 - 2\lambda (1 - \alpha 2)
.

Here \lambda 2 can be interpreted as the rate at which tasks are forwarded to randomly
selected servers. Furthermore, dispatchers 1, . . . , r\ast receive tokens at a lower rate
than the incoming tasks and, in particular, \lambda \ast 2 = 0 if and only if r\ast = 0.

When the arrival rates at all dispatchers are strictly equal, i.e., \alpha 1 = \cdot \cdot \cdot =
\alpha R = 1/R, the above results indicate that the stationary blocking probability and the
mean waiting time asymptotically vanish as N \rightarrow \infty , which is in agreement with the
observations in [142] mentioned above. However, when the arrival rates at the various
dispatchers are not perfectly equal, so that \alpha R < 1/R, the blocking probability and
mean waiting time are strictly positive in the limit, even for arbitrarily low overall load
and an arbitrarily small degree of skewness in the arrival rates. Thus, the ordinary
JIQ scheme fails to achieve asymptotically optimal performance for heterogeneous
dispatcher loads.

Enhancements. In order to counter the above-described performance degrada-
tion for asymmetric dispatcher loads, [149] proposes two enhancements.

Enhancement 1 (nonuniform token allotment). When a server becomes idle, it
sends a token to dispatcher r with probability \beta r.

Enhancement 2 (token exchange mechanism). Any token is transferred to a
uniformly randomly selected dispatcher at rate \nu .

Note that the token exchange mechanism only creates a constant communication
overhead per task as long as the rate \nu does not depend on the number of servers N ,
and thus preserves the scalability of the basic JIQ scheme. The above enhancements
can achieve asymptotically optimal performance for suitable values of the \beta r param-
eters and the exchange rate \nu .

Large Number of Dispatchers. In the above setup we assumed the number of
dispatchers to remain fixed as the number of servers grows large, but a further natural
scenario would be for the number of dispatchers R(N) to scale with the number of
servers, as considered in [115], where the author analyzes the case R(N) = rN for
some constant r, so that the relative load of each dispatcher is \lambda r. The term ``I-
queue"" is used for the queue of (idle) servers that is known by one of the dispatchers.
A server is added to an I-queue when it becomes idle. With fluid limits and fixed-point
calculations, the analysis in [115] determines the fraction of I-queues with i queued
servers and the fraction of servers with i tasks in queue that are in the jth position
in one of the I-queues. The fixed point can be computed numerically.

Anticipation. In [115] it is also proposed that servers issue their availability
tokens to the dispatchers before they are idle, e.g., when they have just one task
remaining. This appears beneficial at very high load when there are (on average) fewer
idle servers than dispatchers, and tasks would frequently be assigned to uniformly at
random selected servers otherwise. Two variants are introduced. First, an LCFS (last
come, first served) scheme in which the server that is in the I-queue the least amount
of time is chosen for the incoming task. Second, a server that became idle may probe
d I-queues, after which it chooses the least loaded among the d selected servers. Both
variants lead to small performance improvements.

7.4. Joint Load Balancing and Autoscaling. Besides delay performance and im-
plementation overhead, a further key attribute in the context of large-scale cloud
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networks and data centers is energy consumption. So-called autoscaling algorithms
have emerged as a popular mechanism for adjusting service capacity in response to
varying demand levels, to minimize energy consumption while meeting performance
targets, but have mostly been investigated in settings with a centralized queue, and
queue-driven autoscaling techniques have been widely investigated in the literature
[7, 54, 94, 95, 98, 99, 100, 132, 148, 171]. In systems with a centralized queue it
is common to put servers to ``sleep"" while the demand is low, since servers in sleep
mode consume much less energy than active servers. Under Markovian assumptions,
the behavior of these mechanisms can be described in terms of various incarnations
of M/M/N queues with setup times. There are several further recent papers that
examine on-demand server addition/removal in a somewhat different vein [128, 130].
Unfortunately, data centers and cloud networks with massive numbers of servers are
too complex to maintain any centralized queue, which involves a prohibitively high
communication burden to obtain instantaneous state information.

Motivated by these observations, the authors of [121] propose a joint load bal-
ancing and autoscaling strategy, which retains the excellent delay performance and
low implementation overhead of the ordinary JIQ scheme and at the same time min-
imizes the energy consumption. The strategy is referred to as TABS (token-based
auto-balance scaling) and operates as follows:

\bullet When a server becomes idle, it sends a ``green"" message to the dispatcher,
waits for an exp(\mu ) time (standby period), and turns itself off by sending
a ``red"" message to the dispatcher (the corresponding green message is de-
stroyed).

\bullet When a task arrives, the dispatcher selects a green message at random if there
are any and assigns the task to the corresponding server (the corresponding
green message is replaced by a ``yellow"" message). Otherwise, the task is
assigned to an arbitrary busy server, and if at that arrival epoch there is a
red message at the dispatcher, then it selects one at random and the setup
procedure of the corresponding server is initiated, replacing its red message
with an ``orange"" message. The setup procedure takes exp(\nu ) time after which
the server becomes active.

\bullet Any server which activates due to the latter event sends a green message to
the dispatcher (the corresponding orange message is replaced), waits for an
exp(\mu ) time for a possible assignment of a task, and again turns itself off by
sending a red message to the dispatcher.

The TABS scheme gives rise to a distributed operation in which servers are in
one of four states (busy, idle-on, idle-off, or standby) and advertise their state to
the dispatcher via exchange of tokens. Figure 7 illustrates this token-based exchange
protocol. Note that setup procedures are never aborted and continue even when idle-
on servers do become available. Recently, dynamic scaling and load balancing with
variable service capacity and on-demand agents has been further examined in [67].

To describe systems under the TABS scheme, we use QN (t) := (QN
1 (t), QN

2 (t),
. . . , QN

B (t)) to denote the system occupancy state at time t as before, where B \geq 1 is a
finite buffer capacity. Also, let \Delta N

0 (t) and \Delta N
1 (t) denote the number of idle-off servers

and servers in setup mode at time t, respectively. The fluid-scaled quantities are
denoted by the respective small letters, qNi (t) := QN

i (t)/N , \delta N0 (t) = \Delta N
0 (t)/N , and

\delta N1 (t) = \Delta N
1 (t)/N . For brevity of notation, we will write qN (t) = (qN1 (t), . . . , qNB (t))

and \bfitdelta N (t) = (\delta N0 (t), \delta N1 (t)). The results presented in the remainder of the section are
extracted from [121], unless indicated otherwise.
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Q1

busy
yellow

idle-on
green

∆0

idle-off
red

∆1

setup
orange

busy server
becomes idle

task assigned to
idle-on server

standby period
ends, rate = µ

setup period
ends, rate = ν

idle-on server
not available

Fig. 7 Illustration of server on-off decision rules in the TABS scheme, along with message colors
and state variables.

Fluid Limit. Under suitable initial conditions, on any finite time interval, with
probability 1, any sequence in N has a further subsequence along which the sequence
of processes (qN (\cdot ), \bfitdelta N (\cdot )) converges to a deterministic limit (q(\cdot ), \bfitdelta (\cdot )) that satisfies
the system of ODEs

d+qi(t)

dt
= \lambda (t)pi - 1(q(t), \bfitdelta (t), \lambda (t)) - (qi(t) - qi+1(t)), i = 1, . . . , B,

d+\delta 0(t)

dt
= u(t) - d+\xi (t)

dt
,

d+\delta 1(t)

dt
=

d+\xi (t)

dt
 - \nu \delta 1(t),

(7.5)

where by convention qB+1(\cdot ) \equiv 0 and

u(t) = 1 - q1(t) - \delta 0(t) - \delta 1(t),
d+\xi (t)

dt
= \lambda (t)(1 - p0(q(t), \bfitdelta (t), \lambda (t)))1[\delta 0(t)>0].

For any (q, \bfitdelta ) and \lambda > 0, (pi(q, \bfitdelta , \lambda ))i\geq 0 are given by

p0(q, \bfitdelta , \lambda ) =

\Biggl\{ 
1 if u = 1 - q1  - \delta 0  - \delta 1 > 0,

min\{ \lambda  - 1(\delta 1\nu + q1  - q2), 1\} otherwise,

pi(q, \bfitdelta , \lambda ) = (1 - p0(q, \bfitdelta , \lambda ))(qi  - qi+1)q
 - 1
1 , i = 1, . . . , B.

We now provide an intuitive explanation of the fluid limit stated above. The
term u(t) corresponds to the asymptotic fraction of idle-on servers in the system
at time t, and \xi (t) represents the asymptotic cumulative number of server setups
(scaled by N) that have been initiated during [0, t]. The coefficient pi(q, \bfitdelta , \lambda ) can
be interpreted as the instantaneous fraction of incoming tasks that are assigned to
some server with queue length i, when the fluid-scaled occupancy state is (q, \bfitdelta ) and
the scaled instantaneous arrival rate is \lambda . Observe that as long as u > 0, there are
idle-on servers, and hence all the arriving tasks will join idle servers. This explains
why if u > 0, p0(q, \bfitdelta , \lambda ) = 1 and pi(q, \bfitdelta , \lambda ) = 0 for i = 1, . . . , B  - 1. If u = 0, then
observe that servers become idle at rate q1  - q2 and servers in setup mode turn on
at rate \delta 1\nu . Thus the idle-on servers are created at a total rate \delta 1\nu + q1  - q2. If
this rate is larger than the arrival rate \lambda , then almost all the arriving tasks can be
assigned to idle servers. Otherwise, only a fraction (\delta 1\nu + q1  - q2)/\lambda of arriving tasks
join idle servers. The rest of the tasks are distributed uniformly among busy servers,

D
ow

nl
oa

de
d 

06
/1

2/
23

 to
 1

43
.2

15
.1

6.
16

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALABLE LOAD BALANCING IN NETWORKED SYSTEMS 603

so a proportion (qi  - qi+1)q
 - 1
1 are assigned to servers having queue length i. For any

i = 1, . . . , B, qi increases when there is an arrival at some server with queue length
i - 1, which occurs at rate \lambda pi - 1(q, \bfitdelta , \lambda ), and it decreases when there is a departure
from some server with queue length i, which occurs at rate qi  - qi - 1. Since each idle-
on server turns off at rate \mu , the fraction of servers in the off mode increases at rate
\mu u. Observe that if \delta 0 > 0, for each task that cannot be assigned to an idle server,
a setup procedure is initiated at one idle-off server. As noted above, \xi (t) captures
the (scaled) cumulative number of setup procedures initiated up to time t. Therefore,
the fraction of idle-off servers and the fraction of servers in setup mode decreases and
increases by \xi (t), respectively, during [0, t]. Finally, since each server in setup mode
becomes idle-on at rate \nu , the fraction of servers in setup mode decreases at rate \nu \delta 1.

Fixed Point and Global Stability. In the case of a constant arrival rate \lambda (t) \equiv 
\lambda < 1, any fluid sample path in (7.5) has a unique fixed point,

(7.6) \delta \ast 0 = 1 - \lambda , \delta \ast 1 = 0, q\ast 1 = \lambda , and q\ast i = 0

for i = 2, . . . , B. Indeed, it can be verified that p0(q
\ast , \bfitdelta \ast , \lambda ) = 1 and u\ast = 0 for

(q\ast , \bfitdelta \ast ) given by (7.6) so that the derivatives of qi, i = 1, . . . , B, \delta 0, and \delta 1 become
zero, and that these cannot be zero at any other fluid-scaled occupancy state. Note
that, at the fixed point, a fraction \lambda of the servers have exactly one task, while the
remaining fraction have zero tasks, independently of the values of the parameters \mu 
and \nu .

In order to establish the convergence of the sequence of steady states, we need the
global stability of the fluid limit, i.e., starting from any fluid-scaled occupancy state,
any fluid sample path described by (7.5) converges to the unique fixed point (7.6) as
t \rightarrow \infty . More specifically, irrespective of the starting state,

(7.7) (q(t), \bfitdelta (t)) \rightarrow (q\ast , \bfitdelta \ast ) as t \rightarrow \infty ,

where (q\ast , \bfitdelta \ast ) is as defined in (7.6).

Interchange of Limits. The global stability can be leveraged to show that the
steady-state distribution of the Nth system, for large N , can be well approximated
by the fixed point of the fluid limit in (7.6). Specifically, it justifies the interchange
of the many-server (N \rightarrow \infty ) and stationary (t \rightarrow \infty ) limits. Since the buffer ca-
pacity B at each server is supposed to be finite, for every N , the Markov process
(QN (t),\Delta N

0 (t),\Delta N
1 (t)) is irreducible, has a finite state space, and thus has a unique

steady-state distribution. Let \pi N denote the steady-state distribution of the Nth
system, i.e.,

\pi N (\cdot ) = lim
t\rightarrow \infty 

P
\bigl( 
qN (t) = \cdot , \bfitdelta N (t) = \cdot 

\bigr) 
.

The fluid-limit result and the global stability thus yield that \pi N converges weakly to \pi 
as N \rightarrow \infty , where \pi is given by the Dirac mass concentrated upon (q\ast , \bfitdelta \ast ) defined
in (7.6).

Remark 7.4. Note that the above interchange of limits result was obtained under
the assumption that the queues have finite buffers, and analysis of the infinite-buffer
scenario was left open. The key challenge in the latter case stems from the fact that
the system stability under the usual subcritical load assumption is not automatic. In
fact, as explained in [122], when the number of servers N is fixed, the stability may
not hold even under a subcritical load assumption. In [122] the stability issue of the
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TABS scheme was addressed and the convergence of the sequence of steady states
was shown for the infinite-buffer scenario. In particular, it was established that for
a fixed choice of parameters \lambda < 1, \mu > 0, and \nu > 0, the system with N servers
under the TABS scheme is stable for large enough N . There the authors introduced
an induction-based approach that uses both the conventional fluid limit (in the sense
of a large starting state) and the mean-field fluid limit (when N \rightarrow \infty ) in an intricate
fashion to prove the large-N stability of the system.

Performance Metrics. As mentioned earlier, two key performance metrics are
the expected waiting time of tasks E[WN ] and energy consumption E[PN ] for the
Nth system in steady state. In order to quantify the energy consumption, we assume
that the energy usage of a server is Pfull when busy or in setup mode, Pidle when
idle-on, and zero when turned off. Evidently, for any value of N , at least a fraction
\lambda of the servers must be busy in order for the system to be stable, and hence \lambda Pfull

is the minimum mean energy usage per server needed for stability. We will define
E[ZN ] = E[PN ] - \lambda Pfull as the relative energy wastage accordingly. The interchange
of limits result can be leveraged to obtain that asymptotically the expected waiting
time and energy consumption for the TABS scheme vanish in the limit, for any strictly
positive values of \mu and \nu . More specifically, for a constant arrival rate \lambda (t) \equiv \lambda < 1,
for any \mu > 0, \nu > 0, as N \rightarrow \infty ,

(a) zero mean waiting time: E[WN ] \rightarrow 0;
(b) zero energy wastage: E[ZN ] \rightarrow 0.

The key implication is that the TABS scheme, while only involving constant commu-
nication overhead per task, provides performance in a distributed setting that is as
good at the fluid level as can possibly be achieved, even in a centralized queue, or
with unlimited information exchange.

Comparison to Ordinary JIQ Policy. Consider again a constant arrival rate
\lambda (t) \equiv \lambda . It is worthwhile to observe that the component q of the fluid limit as
in (7.5) coincides with that for the ordinary JIQ policy where servers always remain
on, when the system following the TABS scheme starts with all the servers being
idle-on and \lambda + \mu < 1. To see this, observe that the component q depends on \bfitdelta only
through (pi - 1(q, \bfitdelta ))i\geq 1. Now, p0 = 1, pi = 0 for all i \geq 1, whenever q1 + \delta 0 + \delta 1 < 1,
irrespective of the precise values of (q, \bfitdelta ). Moreover, starting from the above initial
state, \delta 1 can increase only when q1 + \delta 0 = 1. Therefore, the fluid limits of q in (7.5)
and the ordinary JIQ scheme are identical if the system parameters (\lambda , \mu , \nu ) are such
that q1(t) + \delta 0(t) < 1 for all t \geq 0. Let y(t) = 1 - q1(t) - \delta 0(t). The solutions to the
differential equations

dq1(t)

dt
= \lambda  - q1(t),

dy(t)

dt
= q1(t) - \lambda  - \mu y(t),

y(0) = 1, q1(0) = 0, are given by

q1(t) = \lambda (1 - e - t), y(t) =
e - (1+\mu )t

\mu  - 1

\bigl( 
et(\lambda + \mu  - 1) - \lambda e\mu t

\bigr) 
.

Notice that if \lambda + \mu < 1, then y(t) > 0 for all t \geq 0 and, thus, q1(t) + \delta 0(t) < 1 for
all t \geq 0. The fluid-level optimality of the JIQ scheme was described in section 7.1.
This observation thus establishes the optimality of the fluid-limit trajectory under the
TABS scheme for suitable parameter values in terms of response time performance.
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From the energy usage perspective, under the ordinary JIQ policy, since the asymp-
totic steady-state fractions of busy servers (q\ast 1) and idle-on servers are given by \lambda and
1 - \lambda , respectively, the asymptotic steady-state (scaled) energy usage is given by

E[P JIQ] = \lambda Pfull + (1 - \lambda )Pidle = \lambda Pfull(1 + (\lambda  - 1  - 1)f),

where f = Pidle/Pfull is the relative energy consumption of an idle server. As described
earlier, the asymptotic steady-state (scaled) energy usage under the TABS scheme is
\lambda Pfull. Thus the TABS scheme reduces the asymptotic steady-state energy usage by
\lambda Pfull(\lambda 

 - 1 - 1)f = (1 - \lambda )Pidle, which amounts to a relative saving of (\lambda  - 1 - 1)f/(1+
(\lambda  - 1  - 1)f). In summary, the TABS scheme performs as well as the ordinary JIQ
policy in terms of the waiting time and communication overhead while providing a
significant energy saving.

8. Redundancy Policies and Alternative Scaling. In this section we discuss
somewhat related redundancy policies, alternative scaling regimes, and some addi-
tional performance metrics of interest.

8.1. Redundancy-\bfitd Policies. So-called redundancy-d policies involve a somewhat
similar operation to JSQ(d) policies and also share the primary objective of ensuring
low delays [6, 162]. In a redundancy-d policy, d \geq 2 candidate servers are selected
uniformly at random (with or without replacement) for each arriving task, just like
in a JSQ(d) policy. Rather than forwarding the task to the server with the shortest
queue, however, replicas are dispatched to all sampled servers. Note that the initial
replication to d servers selected uniformly at random does not entail any communica-
tion burden, but the elimination of redundant copies at a later stage does involve a
significant amount of information exchange and complexity.

Two common options can be distinguished for the removal of redundant clones.
In the first variant, as soon as the first replica starts service, the other clones are
abandoned. In this case, a task gets executed by the server which had the smallest
workload at the time of arrival (and which may or may not have had the shortest queue
length) among the sampled servers. This can be interpreted as a power-of-d version of
the JSW policy discussed in section 2.3.3. The optimality properties of the JSW policy
mentioned in that subsection suggest that redundancy-d policies should outperform
JSQ(d) policies, which appears to be supported by simulation experiments.

In the second option the other clones of the task are not eliminated until the first
replica has completed service (which may or may not have been the first replica to
start service). While a task is only handled by one of the servers in the former case, it
may be processed by several servers in the latter case. When the service times are ex-
ponentially distributed and independent for the various clones, the aggregate amount
of time spent by all the servers until completion remains exponentially distributed
with the same mean. An exact analysis of the delay distribution in systems with
N = 2 or N = 3 servers is provided in [57, 58], and exact expressions for the mean
delay with an arbitrary number of servers are established in [59]. The limiting delay
distribution in the many-server regime (ii) is derived in [55, 60] based on an asymp-
totic independence assumption among the servers. In general, the mean aggregate
amount of time devoted to a task and the resulting delay may be larger or smaller
for fewer or more variable service time distributions, also depending on the number
of replicas per task [133, 138, 164, 165]. In particular, for heavy-tailed service time
distributions, the mean aggregate time spent on a task may be considerably reduced
by virtue of the redundancy. Indeed, even if the first replica to start service has an
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extremely long service time, that is not likely to be the case for the other clones as
well. In spite of the extremely long service time of the first replica, it is therefore
unlikely for the aggregate amount of time spent on the task or its waiting time to
be large. This provides a significant performance benefit to redundancy-d policies
over JSQ(d) policies, and has also motivated a strong interest in adaptive replication
schemes [4, 84, 85].

A further closely related model is where k of the replicas need to complete service,
1 \leq k \leq d, in order for the task to finish, which is relevant in the context of storage
systems with coding and MapReduce tasks [86, 87]. The special case where k = d = N
corresponds to a classical fork-join system. The authors of [78] present a unified
approach for analyzing the stability and performance of a broad class of workload-
dependent task assignment and replication policies based on considering the so-called
cavity process in a many-server regime with N \rightarrow \infty . This class of policies includes
both versions of the redundancy-d policy as well as the above-mentioned k-out-of-d
service mechanism system.

8.2. Conventional Heavy Traffic. In this subsection we briefly discuss a few
asymptotic results for LBAs in the classical heavy-traffic regime as described in sec-
tion 2.2, where the number of servers N is fixed and the relative load tends to one in
the limit.

The papers [39, 40, 134, 178] establish diffusion limits for the JSQ policy in a
sequence of systems with Markovian characteristics as in our basic model setup, but
where in the Kth system the arrival rate is K\lambda + \^\lambda 

\surd 
K, while the service rate of the

ith server is K\mu i + \^\mu i

\surd 
K, i = 1, . . . , N , with \lambda =

\sum N
i=1 \mu i, inducing critical load as

K \rightarrow \infty . It is proved that for suitable initial conditions the queue lengths are of the
order O(

\surd 
K) over any finite time interval and exhibit a state-space collapse property.

In particular, a properly scaled version of the joint queue length process lives in a
one-dimensional rather than N -dimensional space, reflecting that the various queue
lengths evolve in lock-step, with the relative proportions remaining virtually identical
in the limit, while the aggregate queue length varies.

Atar, Keslassy, and Mendelson [9] investigate a similar scenario and establish dif-
fusion limits for three policies: the JSQ(d) policy, the redundancy-d policy (where
the redundant clones are abandoned as soon as the first replica starts service), and a
combined policy called replicate-to-shortest-queues (RSQ), where d replicas are dis-
patched to the d-shortest queues. Note that the latter policy requires instantaneous
knowledge of all the queue lengths and hence involves similarly excessive commu-
nication overhead as the ordinary JSQ policy, besides the substantial information
exchange associated with the removal of redundant copies. Conditions are derived for
the values of the relative service rates \mu i, i = 1, . . . , N , in conjunction with the diver-
sity parameter d, in order for the queue lengths under the JSQ(d) and redundancy-d
policies to be of the order O(

\surd 
K) over any finite time interval and exhibit state-

space collapse. The conditions for the two policies are distinct, but in both cases
they are weaker for larger values of d, as intuitively expected. While the conditions
for the values of \mu i depend on d, whenever they are met, the actual diffusion-scaled
queue length processes do not depend on the exact value of d in the limit, showing a
certain resemblance to the universality property as identified in section 2.3.4 for the
conventional large-capacity and Halfin--Whitt regimes.

The authors of [181] consider a slightly different model setup with a time-slotted
operation and identify a class \Pi of LBAs that not only provide throughput optimality
(or maximum stability, i.e., keep the queues stable in a suitable sense whenever feasible
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to do so at all), but also achieve heavy-traffic delay optimality in the sense that the
properly scaled aggregate queue length is the same as that in a centralized queue
where all the resources are pooled as the load tends to one. As it turns out, the
class \Pi includes JSQ(d) policies with d \geq 2, but it does not include the JIQ scheme,
which tends to degenerate into a random assignment policy when idle servers are
rarely available. The authors further propose a threshold-based policy which has low
implementation complexity like the JIQ scheme, but does belong to the class \Pi and
hence achieves heavy-traffic delay optimality. A later paper [180] establishes both
necessary and sufficient conditions for threshold-based task assignment policies to
achieve heavy-traffic optimality in terms of mean delay.

8.3. Nondegenerate Slowdown. In this subsection we briefly discuss a few of
the scarce asymptotic results for LBAs in the so-called nondegenerate slow-down
regime described in section 2.2, where N  - \lambda (N) \rightarrow \gamma > 0 as the number of servers N
grows large. In a centralized queue the process tracking the evolution of the number
of waiting tasks, suitably accelerated and normalized by N , converges in this regime
to a Brownian motion with drift  - \gamma reflected at zero as N \rightarrow \infty , as demonstrated
in [8]. In stationarity, the number of waiting tasks, normalized by N , converges in this
regime to an exponentially distributed random variable with parameter \gamma as N \rightarrow \infty .
Hence, the mean number of waiting tasks must be at least of the order N/\gamma , and the
waiting time cannot vanish as N \rightarrow \infty under any policy.

The authors of [73] characterize the diffusion-scaled queue length process under
the JSQ policy in this asymptotic regime. They further compare the diffusion limit
for the JSQ policy with that for a centralized queue as described above, as well as
several LBAs such as the JIQ scheme and a refined version called idle-one-first (I1F),
where a task is assigned to a server with exactly one task if no idle server is available
and to a randomly selected server otherwise.

In [73], it is proved that the diffusion limit for the JIQ scheme is no longer
asymptotically equivalent to that for the JSQ policy in this asymptotic regime, and
the JIQ scheme fails to achieve asymptotic optimality in that respect, as opposed to
the behavior in the conventional large-capacity and Halfin--Whitt heavy-traffic regimes
discussed in section 2.3.5. In contrast, the I1F scheme does preserve the asymptotic
equivalence with the JSQ policy in terms of the diffusion-scaled queue length process,
and thus retains asymptotic optimality in that sense.

These results provide further indication that the amount and accuracy of queue
length information needed to achieve asymptotic equivalence with the JSQ policy
depend not only on the scale dimension (e.g., fluid or diffusion), but also on the load
regime. Put differently, the finer the scale and the higher the load, the more strictly
one can distinguish various LBAs in terms of the relative performance compared to
the JSQ policy.

8.4. Sparse-Feedback Regime. As described in section 2.3.5, the JIQ scheme in-
volves a communication overhead of at most one message per task, and yet it achieves
optimal delay performance in the fluid and diffusion regimes. However, even just
one message per task may still be prohibitive, especially when tasks do not involve
big computational tasks, but instead small data packets which require little process-
ing. In such situations the sheer message exchange volume in providing queue length
information may be disproportionate to the actual amount of processing required.

Motivated by the above issues, [150] proposes and examines a novel class of LBAs
which also leverage memory at the dispatcher, but allow the communication overhead
to be seamlessly adapted and reduced to below that of the JIQ scheme. Specifically, in
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the proposed schemes, the various servers provide occasional queue status notifications
to the dispatcher, in either a synchronous or an asynchronous fashion. The dispatcher
uses these reports to maintain queue estimates and forwards incoming tasks to the
server with the lowest queue estimate. The queue estimate for a server is incremented
for every task assigned and set to the true queue length at update moments, but is
never lowered in between updates. Note that when the update frequency per server
is \delta , the number of messages per task is d = \delta /\lambda , with \lambda < 1 denoting the arrival rate
per server.

The results in [150] demonstrate that the proposed schemes markedly outperform
JSQ(d) policies with the same number of d \geq 1 messages per task and they can achieve
a vanishing waiting time in the many-server limit when the update frequency \delta exceeds
\lambda /(1  - \lambda ). In the case when servers only report zero queue lengths and suppress
updates for nonzero queues, the update frequency required for a vanishing waiting
time can in fact be lowered to just \lambda , matching the one message per task involved in
the JIQ scheme.

From a scalability viewpoint, the most pertinent regime is d < 1 where only very
sparse server feedback is required. It is shown in [150] that the proposed schemes
then outperform the corresponding sparsified versions of the JIQ scheme where idle
servers only provide notifications to the dispatcher with probability d. In order to
further explore the performance for d < 1 in the many-server limit, [150] investigates
fluid limits for the synchronous case as well as the asynchronous case with exponen-
tial update intervals. The fixed points of the fluid limit are leveraged to derive the
stationary queue length distribution as a function of the update frequency.

Additionally, [150] examines the performance in the ultralow feedback regime
where the update frequency \delta goes to zero, and in particular establishes a somewhat
counterintuitive dichotomy. In the synchronous case, the behavior of each of the
individual queues approaches that of a single-server queue with a near-deterministic
arrival process and exponential service times, with the mean waiting time tending to a
finite constant. In contrast, in the asynchronous case, the individual queues experience
saw-tooth behavior with oscillations and waiting times that grow without bound.

In order to achieve a vanishing waiting time, the dispatcher must assign each
incoming task to an idle server with high probability, and thus be able to identify on
average at least one idle server for every incoming task. When the amount of memory
at the dispatcher is limited, the dispatcher may in fact have to identify more idle
servers on average to ensure that at least one is available with high probability for
each incoming task, as is also reflected in the results of [50, 51, 52]. These conditions,
in conjunction with the fact that the fraction of idle servers in equilibrium is 1  - \lambda ,
translate into a minimum required communication overhead for various families of
algorithms. For example, if the dispatcher samples a server at random, it will find
that server idle with probability 1  - \lambda , so in the absence of any memory it will need
to sample a number of servers that grows with N for each incoming task, while with
unlimited memory, it will need to sample on average 1/(1  - \lambda ) servers per incoming
task. Likewise, if servers report their queue status to the dispatcher, then an arbitrary
server will report as idle with probability 1  - \lambda , so they all need to do that every
\lambda /(1  - \lambda ) time units on average, i.e., 1/(1  - \lambda ) times on average per incoming task.
When only idle servers report their status to the dispatcher, as in the JIQ algorithm,
they only need to do so at most once per incoming task. When servers report their
status asynchronously rather than all simultaneously, or idle servers only after some
delay, the associated memory requirement at the dispatcher can be reduced.
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8.5. Scaling of Maximum Queue Length. So far we have focused on the asymp-
totic behavior of LBAs in terms of the number of servers with a certain queue length,
either on fluid scale or diffusion scale, in various regimes as N \rightarrow \infty . A related but
different performance metric is the maximum queue length M(N) among all servers
as N\rightarrow \infty . The authors of [103] showed that for fixed d\geq 2 the stationary maximum
queue length M(N) in a system under the JSQ(d) policy is concentrated on at most
two adjacent values which are log(log(N))/ log(d)+O(1), whereas for purely random as-
signment (d=1), it scales as log(N)/ log(1/\lambda ) and does not concentrate on a bounded
range of values. This is yet a further manifestation of the power-of-choice effect.

An earlier paper [102] had already shown a similar result for the maximum bin
occupancy under a power-of-d policy in a balls-and-bins context where arriving items
(balls) do not get served and never depart, but simply accumulate in bins, so that
(stationary) queue lengths are not meaningful. The maximum bin occupancy under
purely random assignment, however, scales as log(N )/ log(log(N)) and does concen-
trate on two adjacent values, in contrast with the queuing scenario mentioned above.

In fact, the very notion of randomized load balancing and power-of-d strategies
was introduced in a balls-and-bins setting in the seminal paper [10]. Several further
variations and extensions in that context have been considered in [1, 17, 18, 31, 33,
45, 68, 129, 131, 161]. One of the earliest papers on graph-based load balancing was
also concerned with a balls-and-bins setting [90].

As alluded to above, there are natural parallels between the balls-and-bins setup
and the queuing scenario that we have focused on so far. These commonalities are,
for example, reflected in the fact that power-of-d strategies yield similar dramatic per-
formance improvements over purely random assignment in both settings. However,
there are also quite fundamental differences between the balls-and-bins setup and
the queuing scenario, besides the obvious contrasts in the performance metrics. This
distinction is already reflected in the different scaling behavior under purely random
assignment of the maximum queue length in a queuing scenario and the maximum bin
occupancy in a balls-and-bins setting, as mentioned above. A further manifestation
of this is provided by the fact that a simple round-robin strategy produces a perfectly
balanced allocation in a balls-and-bins setup but is far from optimal in a queuing
scenario, as observed in section 2.3.1. In particular, the stationary fraction of servers
with two or more tasks under a round-robin strategy remains positive in the limit as
N \rightarrow \infty , whereas it vanishes under the JSQ policy. On a related account, since tasks
get served and eventually depart in a queuing scenario, less balanced allocations with
a large portion of vacant servers will generate fewer service completions and result in
a larger total number of tasks. Thus different schemes yield not only various degrees
of balance, but also variations in the aggregate number of tasks in the system, which
is not the case in a balls-and-bins setup.

9. Extensions and Future Research Directions. Throughout most of the paper
we have focused on the supermarket model as a canonical setup and adopted several
common assumptions in that context: (i) all servers are identical; (ii) the service
requirements are exponentially distributed; (iii) no advance knowledge of the ser-
vice requirements is available; (iv) in particular, the service discipline at each server
is oblivious to the actual service requirements. As mentioned earlier, the stochas-
tic optimality of the JSQ policy, and hence its central role as an ideal performance
benchmark, rely critically on these assumptions. The latter also broadly applies to the
stochastic coupling techniques and asymptotic universality properties that we have
considered in the previous sections.
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In this section we turn to a brief overview of results for scenarios where some
of the above assumptions are relaxed, in particular allowing for general service re-
quirement distributions and possibly heterogeneous servers, along with some broader
methodological issues. In section 9.1 we focus on the behavior of JSQ(d) policies
in such scenarios, mainly in the large-N limit, while also briefly commenting on the
JIQ policy. In section 9.2 we discuss strategies which specifically exploit knowledge
of server speeds or service requirements of arriving tasks in making task assignment
decisions, and may not necessarily use queue length information, mostly in a fixed-N
regime. While nonexponential service requirement distributions and heterogeneous
settings cover a major share of the extensions beyond the supermarket model, there is
also a plethora of further model variations that have been considered in the literature.
An exhaustive listing is simply out of reach, but some notable examples within the
realm of scaling laws include [105, 106, 166, 168].

9.1. JSQ(\bfitd ) Policies with General Service Requirement Distributions. The
authors of [41, 42] use direct probabilistic methods and fluid limits to obtain stability
conditions for finite-size systems with a renewal arrival process, an FCFS discipline
at each server, various state-dependent routing policies, including JSQ, and general
service requirement distributions, which may depend on the task type, the server, or
both. Using fluid limits as well as Lyapunov functions, [20, 21] show that JSQ(d)
policies achieve stability for any subcritical load in finite-size systems with a renewal
arrival process, identical servers, nonidling local service disciplines, and general service
requirement distributions. In addition, the author derives uniform bounds on the tails
of the marginal queue length distributions and uses them to prove relative compactness
of these distributions.

The authors of [22, 23] examine mean-field limits for JSQ(d) policies with gen-
erally distributed service requirements, leveraging the above-mentioned tail bounds
and relative compactness. They establish that similar power-of-choice benefits oc-
cur as originally demonstrated for exponentially distributed service requirements
in [113, 163], provided a certain ``ansatz"" holds asserting that finite subsets of queues
become independent in the large-N limit. The latter ``propagation of chaos"" property
is shown to hold in several settings, e.g., when the service requirement distribution
has a decreasing hazard rate and the discipline at each server is FCFS, or when the
service requirement distribution has a finite second moment and the load is sufficiently
low. The ansatz also always holds for the power-of-d version of the JSW rather than
JSQ policy; see Theorem 2.1 in [23].

It is further shown in [22, 23] that the arrival process at any given server tends
to a state-dependent Poisson process, and that the queue length distribution becomes
insensitive with respect to the service requirement distribution when the service dis-
cipline is either processor sharing or LCFS with preemptive resume. This may be
explained based on the insensitivity property of queues with state-dependent Poisson
arrivals and symmetric service disciplines.

There are strong plausibility arguments that a similar asymptotic insensitivity
property should hold for the JIQ policy in a queuing scenario, even if the discipline
at each server is not symmetric but FCFS, for example. So far, however, this has
only been rigorously established for service requirement distributions with decreasing
hazard rate in [141]. This result was in fact proved for systems with heterogeneous
server pools and was further extended in [142] to systems with multiple symmetric
dispatchers. As it turns out, general service requirement distributions with an in-
creasing hazard rate give rise to major technical challenges due to the lack of certain
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monotonicity properties. This has only allowed a proof of the asymptotic zero-wait
property for the JIQ policy for load values strictly below 1/2 so far [44].

A fundamental technical issue associated with any general service requirement
distribution is that the joint queue length no longer provides a suitable state de-
scription, and that the state space required for a Markovian description is no longer
countable. The authors of [2, 3] introduce a particle representation for the state of the
system and describe the state dynamics for a JSQ(d) policy via a sequence of inter-
acting measure-valued processes. They prove that as N grows large, a suitably scaled
sequence of state processes converges to a hydrodynamic limit which is characterized
as the unique solution of a countable system of coupled deterministic measure-valued
equations, i.e., a system of PDEs rather than the usual ODEs. They also establish
a ``propagation of chaos"" result, meaning that finite collections of queues are asymp-
totically independent.

The authors of [123, 125, 126] analyzed the performance and stability of static
probabilistic routing strategies and power-of-d policies in the large-N limit in systems
with exponential service requirement distributions, but heterogeneous server pools
and a processor-sharing discipline at each server. They also considered variants of the
JSQ(d) policy which account for the server speed in the selection criterion as well as
hybrid combinations of the JSQ(d) policy with static probabilistic routing. Related
results for heterogeneous loss systems rather than queuing scenarios are presented in
[89, 124, 127]. As the results in [125, 126] reflect, ordinary JSQ(d) policies may fail
to sample the faster servers sufficiently often in such scenarios, and therefore they
can fail to achieve maximum stability, let alone asymptotic optimality. In [123] a
weighted version of JSQ(d) policies is presented that does provide maximum stability,
without requiring any specific knowledge of the underlying system parameters and
server speeds in particular.

The authors of [158, 159, 160] examine mean-field limits for power-of-d policies
in many-server loss systems as well processor-sharing queues with phase-type service
requirement distributions. They observe that the fixed point suggests a similar in-
sensitivity property of the stationary occupancy distribution, as mentioned above. In
view of the insensitivity of loss systems with possibly state-dependent Poisson arrivals,
this may be interpreted as an indirect indication that the arrival process at any given
server pool tends to a state-dependent Poisson arrival process in the large-N limit.
In a somewhat different strand of work, the authors of [83] investigate the behavior
of blocking probabilities in various load regimes in systems with many single-server
finite-buffer queues, a processor-sharing discipline at each server, and an insensitive
routing policy.

9.2. Heterogeneous Servers and Knowledge of Service Requirements. The
bulk of the literature has focused on systems with identical servers, and scenarios
with nonidentical server speeds have received relatively limited attention. A natu-
ral extension of the JSQ policy is to assign jobs to the server with the normalized
shortest queue length or, equivalently, assuming exponentially distributed service re-
quirements, the shortest expected delay. While such a generalized JSQ (GJSQ) or
shortest-expected-delay (SED) strategy tends to perform well [12], it is not strictly
optimal in general [34], and the true optimal strategy may in fact have a highly
complicated structure.

The authors of [137] present approximations for the performance of GJSQ policies
in a fixed-N regime with generally distributed service requirements and a processor-
sharing discipline at each server, extending the analysis in [72] for the ordinary JSQ
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policy with homogeneous servers. In [81] necessary and sufficient conditions are estab-
lished for JSQ(d) policies to be optimal in systems with heterogeneous server speeds
in a classical heavy-traffic regime. The authors of [56] examine fluid limits for a sys-
tem with both ``fast"" and ``slow"" servers and task assignment policies which may only
have limited knowledge of the speeds of individual servers. In [29] and [174] fluid
limits and heavy-traffic limits are investigated, respectively, for a somewhat related
system where speeds are also heterogeneous but depend on the combination of the
server and the task types due to affinity relations.

In a separate line of work, the authors of [37] consider static dispatching policies
in a fixed-N regime with heterogeneous servers and an FCFS or processor-sharing
discipline at each server. The assignment decision may depend on the service re-
quirement of the arriving task, but not on the actual queue lengths or any other state
information. In case of FCFS the optimal routing policy is shown to have a nested size
interval structure, generalizing the strict size interval structure of the task assignment
strategies in [76] which are optimal for homogeneous servers. In the case of processor
sharing, the knowledge of the service requirements of arriving tasks is irrelevant, in
the absence of any state information.

The authors of [5] consider static probabilistic routing policies in the somewhat
similar setup of a fixed-N regime with multiple task types, servers with heterogeneous
speeds, and a processor-sharing discipline at each server. The routing probabilities
are selected so as to minimize either the global weighted holding cost or the expected
holding cost for an individual task, and may depend on the type of the task and its
service requirement, but not on any other state information.

When knowledge of the service requirements of arriving tasks is available, it is
natural to exploit that for the purpose of local scheduling at the various servers and,
for example, use size-based disciplines. The impact of the local scheduling discipline
and server heterogeneity on the performance and degree of efficiency of load balancing
strategies is examined in [30]. The authors of [71] show that any given dispatching
policy can be augmented with a ``guardrails"" feature to ensure minimization of the
mean delay in a classical heavy-traffic regime in systems where the local scheduling
is governed by the shortest-remaining processing-time (SRPT) policy. An interest-
ing broader issue concerns the relative benefits provided by exploiting knowledge of
service requirements of arriving tasks versus using information on queue lengths or
workloads at the various servers, which strongly depend on the service requirement
distribution [77].

9.3. Open Problems and Emerging Research Directions. If we now return to
scalable load balancing as the central theme of this survey, and consider the above-
described extensions in that light, it is striking how scant the results are if any of
the assumptions (i)--(iv) as stated at the beginning of section 2.2 are dropped. On
further thought, the paucity of results from a scalability viewpoint is perhaps not so
surprising since it is not even clear what the optimal achievable (delay) performance is
in the absence of these assumptions, leaving aside any trade-off with communication
overhead.

The graph-based load balancing scenario considered in section 6 moves beyond
assumption (i) of all servers being identical as it entails that different incoming tasks
can only be served by different subsets of the servers. Thus, it is not clear what the
optimal assignment policy is, but since the server speeds are still homogeneous, it can
be argued that the JSQ policy provides a bound on the achievable performance. The
results obtained in [116] as reviewed in section 6 establish suitable conditions in terms
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of the graph for that lower bound to be asymptotically achievable.
Important extensions of these results are presented in [136, 169], which allow

for more general compatibility constraints between different task types and different
servers represented in terms of a bipartite graph and examine conditions in terms of
the latter graph for the achievable performance to be asymptotically equivalent to that
in case of full compatibility. Informally speaking, both papers establish conditions in
terms of the connectivity properties of the bipartite compatibility graph for similar
performance to be achievable as in a fully flexible system. More specifically, the
authors of [136] focus on scenarios with identical server speeds and uniform loads
across the various job types and establish process-level limits indicating convergence
of the system occupancy under JSQ policies to that in the supermarket model with full
flexibility. The authors of [169] allow for heterogeneous server speeds and arbitrary
load distributions and use drift methods to prove bounds and demonstrate that speed-
aware extensions of the JSQ and JIQ strategies achieve vanishing waiting times and
minimum expected response times. Interestingly, the results in [136, 169] also entail
a certain notion of universality as in [116], with similar achievable performance as
in a fully flexible system under relatively sparse compatibility relations. An open
question is what the associated communication overhead is with these policies, and
whether it is close in any sense to the minimum communication overhead required for
asymptotically optimal delay performance.

A further extension of the above two models is where the service rates can depend
in an arbitrary way on the pairwise combination of the task and the server. In that
case it is also open what the minimum required overhead is to achieve asymptotically
optimal performance, and it even remains to be established what the asymptotically
optimal performance is.

Both these questions are also largely open for nonexponential service requirement
distributions, even in the absence of any compatibility constraints. It is evident
that for nearly deterministic service requirements, a zero mean waiting time can be
achieved without any communication overhead at arbitrarily high subcritical load
(using open-loop policies such as round-robin). It might thus be natural to expect
that for extremely variable service requirements, correspondingly high communication
overhead is needed to achieve a zero mean waiting time. However, this is countered
by the asymptotic insensitivity of the JIQ policy, which has been proven for service
requirement distributions with decreasing hazard rate, as mentioned earlier. Also, the
amount of communication overhead can in fact be reduced by not issuing messages
when a server is busy at predefined time instants rather than sending messages when
a server is idle [152]. All in all, it seems largely open exactly how the amount of
communication overhead required for vanishing waiting time depends on the service
requirement distribution in conjunction with the system load.

Finally, throughout we have tacitly assumed that each task involves a single pro-
cessing operation that can be handled by a single server. In reality, however, tasks can
have a highly complex structure and consist of several subtasks that can be executed
by multiple servers subject to certain precedence constraints; see, for instance, [75]
for references and further background. The above questions also seem to be totally
open in these scenarios.
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