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The development of new earthquake forecasting models is often motivated by one of
the following complementary goals: to gain new insights into the governing physics
and to produce improved forecasts quantified by objective metrics. Often, one comes
at the cost of the other. Here, we propose a question-driven ensemble (QDE) modeling
approach to address both goals. We first describe flexible epidemic-type aftershock
sequence (ETAS) models in which we relax the assumptions of parametrically defined
aftershock productivity and background earthquake rates during model calibration.
Instead, both productivity and background rates are calibratedwith data such that their
variability is optimally represented by the model. Then we consider 64 QDE models in
pseudoprospective forecasting experiments for southern California and Italy. QDEmod-
els are constructed by combining model parameters of different ingredient models, in
which the rules for how to combine parameters are defined by questions about the
future seismicity. The QDE models can be interpreted as models that address different
questions with different ingredient models. We find that certain models best address
the same issues in both regions, and that QDE models can substantially outperform the
standard ETAS and all ingredient models. The best performing QDE model is obtained
through the combination of models allowing flexible background seismicity and flex-
ible aftershock productivity, respectively, in which the former parameterizes the spatial
distribution of background earthquakes and the partitioning of seismicity into back-
ground events and aftershocks, and the latter is used to parameterize the spatiotem-
poral occurrence of aftershocks.

Introduction
Earthquake forecasting is one of the defining problems of seis-
mology. To provide useful solutions, forecasting models use a
wide range of approaches: Coulomb rate-and-state (CRS)
models (Cocco et al., 2010; Parsons et al., 2012; Mancini et al.,
2019) calculate Coulomb stress changes and couple them with
a lab-based constitutive friction law (Dieterich, 1994). On the
other end of the spectrum are statistical models, with the epi-
demic-type aftershock sequence (ETAS) model being the best
performing current statistical approach (Cattania et al., 2018;
Taroni et al., 2018). First introduced by Ogata (1988), it models
seismicity rate as the sum of background and aftershock events,
where aftershocks are triggered according to regional empirical
laws. In between the purely physics-based and purely statistics-
based approaches are models such as the short-term earth-
quake probability (STEP) model (Gerstenberger et al.,
2005), the Inlabru model (Bayliss et al., 2020), and hybrid
Coulomb and statistical models (Steacy et al., 2014). The
STEPmodel combines clustering principles with fault informa-
tion in a statistical model to produce time-dependent forecasts.
The Inlabru model more generally allows the inclusion of

diverse data sets as covariates to issue time-independent seis-
micity forecasts. A hybrid Coulomb/statistical model redistrib-
utes seismicity forecasted by STEP according to Coulomb
stress changes.

While physics-based models aim to describe the processes
and mechanisms underlying seismogenesis, statistical models
are generally more empirical and data driven. Ultimately, “all
models are wrong, but some are useful,” to cite the famous stat-
istician George Box (1979). Usefulness can be viewed from dif-
ferent perspectives. Different forecasting models can be useful
for gaining new scientific insight, for producing the most accu-
rate forecasts, or for producing forecasts that are most suited for
operational earthquake forecasting (OEF), given the trade-off
between accuracy and computational cost. Cattania et al.
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(2018) found in a pseudoprospective forecasting experiment for
the 2010–2012 Canterbury, New Zealand, earthquake sequence
that hybrid Coulomb/statistical models have a similar forecast-
ing skill as CRS models, at a lower computational effort.
Mancini et al. (2019, 2020) conducted pseudoprospective
experiments for the 2016 central Italy and the 2019 Ridgecrest,
California, sequences, comparing CRS models of different com-
plexity with ETAS forecasts. In both studies, the forecasting skill
of CRS models increases with their complexity, with the most
complex CRS model performing similarly to ETAS. Hardebeck
(2021) investigated possible reasons for the general underper-
formance of the physics-based models relative to statistical mod-
els and suggested that understanding and incorporating
heterogeneities in background conditions into physical forecast-
ing models may be key in improving their skill.

Having been tested thoroughly and systematically
(Woessner et al., 2011; Ogata et al., 2013; Strader et al.,
2017; Taroni et al., 2018; Nandan et al., 2019b; Savran et al.,
2020), ETAS models meanwhile remain the state-of-the art of
earthquake forecasting and are being used or considered for
OEF at various locations (Marzocchi et al., 2014; Rhoades et al.,
2016; Field et al., 2017; Kamer et al., 2021; Nandan, Kamer,
et al., 2021; van der Elst et al., 2022). Besides using the most
basic formulation of ETAS, modelers also commonly refine the
model. For instance, Bach and Hainzl (2012) enhanced ETAS
with fault information, ShakeMaps, ground-motion models, or
Coulomb stress changes. Seif et al. (2017) assessed the biasing
effects of data incompleteness and model assumptions on the
estimated ETAS parameters. Several techniques have been pro-
posed to address the effects of short-term aftershock incom-
pleteness (Mizrahi et al., 2021b; Grimm et al., 2022; Hainzl,
2022) or the assumption of isotropic aftershock triggering
(Grimm et al., 2022; Page and van der Elst, 2022). Other stud-
ies focus on deriving spatial variations of ETAS parameters or
background seismicity (Enescu et al., 2009; Nandan et al., 2017;
Nandan, Ram, et al., 2021), also relating parameter variations
with physical quantities such as heat flow. Others have refined
the standard ETAS model with a relationship between magni-
tudes of triggered and triggering earthquakes and a magnitude-
dependent Omori kernel and found the resulting models to
possess improved forecasting performance (Nandan et al.,
2019; Nandan, Kamer, et al., 2021). A recent framework for
modeling seismicity with an invariant Galton–Watson stochas-
tic branching process provides a generalization of ETAS that is
invariant with respect to various common deficiencies of earth-
quake catalogs (Kovchegov et al., 2022). However, this frame-
work has not yet been used for forecasting seismicity.

A related forecasting topic, which has recently received
attention, is ensemble modeling (Rhoades and Gerstenberger,
2009; Marzocchi et al., 2012; Taroni et al., 2014; Bird et al.,
2015; Akinci et al., 2018; Llenos and Michael, 2019; Bayona
et al., 2021). The idea, widely used for decades in the meteoro-
logical and climate forecasting community (Tracton and

Kalnay, 1993; Leutbecher and Palmer, 2008; Eyring et al.,
2016), is to combine different models in an overarching ensem-
ble model to obtain more robust forecasts. Commonly, an
ensemble is a linear or multiplicative combination of ingre-
dient models (e.g., Bird et al., 2015), and the challenge is to
optimize the weights given to each model. In a recent study,
Bayona et al. (2021) found that the time-independent ensem-
ble models WHEEL and GREAR1 (Bird et al., 2015) outper-
form the ingredient models of which they consist. Akinci et al.
(2018) found that their time-independent ensemble model out-
performs its ingredients and performs similarly to the best-per-
forming time-independent model tested in the 2009 CSEP
experiment (Schorlemmer, Zechar, et al., 2010; Zechar et al.,
2010) for Italy. In the context of time-dependent models,
Taroni et al. (2014) and Gerstenberger et al. (2014) used
ensemble approaches, and Llenos and Michael (2019) found
that ensembles of ETAS models perform best for the 2015
San Ramon, California, Swarm. Shebalin et al. (2014) proposed
an iterative method to combine forecasting models and found
the resulting models to have advantageous properties com-
pared to the ingredient models or traditional linear combina-
tions thereof. The emerging consensus across the mentioned
studies is that ensemble modeling is a promising path to
use for earthquake forecasting; this is also demonstrated by
the fact that they are currently implemented in Italy’s OEF sys-
tem (Marzocchi et al., 2014). Yet, a breakthrough of ensemble
models as established in the meteorological forecasting com-
munity is still pending.

For practical operational forecasting, especially in regions
that are less studied due to a lack of data or resources, a balance
must be achieved between model accuracy and simplicity.
With this in mind, we relax some of the assumptions behind
ETAS. We allow aftershock productivity and background seis-
micity to be described nonparametrically, providing event-spe-
cific productivity and background rates. This aims to better
capture the real behavior of seismicity without making any
choices on resolution, parametric form, and so on. Using pseu-
doprospective forecasting experiments in southern California
and Italy, we evaluate whether these flexible ETAS (flETAS)
models provide superior forecasts.

We also propose a novel approach for QDE modeling, fun-
damentally different from traditional ensemble modeling
approaches. In the QDE approach, models are combined in
the parameter space as opposed to the solution space. Several
ETAS-like models are fit to the observed data, yielding an indi-
vidual set of parameters for each model. A QDE model is then
created by defining a new set of parameters based on a combi-
nation of the ingredient model parameters. The rules to com-
bine parameters are defined by dividing the forecasting
problem into several subproblems. Each subproblem addresses
a question regarding the number of forecasted events or the
spatiotemporal distribution of either background earthquakes
or aftershocks. A QDE model can be viewed as a model that
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addresses different questions with different ingredient models.
This approach allows the combination of ETAS variants but
can be extended to combining more general types of seismicity
models.

By including such QDE models in the forecasting experi-
ments, we assess their forecasting capability in comparison
with their ingredient models, standard ETAS, and flETAS.
At the same time, the QDE approach helps to understand
which ingredient models are best suited to solve different fore-
casting subproblems, thus, making it useful from the perspec-
tive of gaining new scientific insight.

The remainder of this article is structured as follows. We
describe flETAS models and the QDE approach in the next
section flETAS models. The setup for the forecasting experi-
ments, the data analyzed, and the metrics used to evaluate
forecasting performance are described in the Forecasting
experiments section. We present and discuss our results in
the Results and discussion section and finally provide our
Conclusions.

flETAS Models
The following subsections describe flETAS models and explain
the QDE modeling. We begin by explaining the algorithm used
to estimate the parameters of the ETAS model. Then, we
describe how to relax some parametric assumptions of the
ETAS model. Finally, we introduce a framework to create
QDEs of flETAS models.

Expectation maximization algorithm
Consider an earthquake catalog:

EQ-TARGET;temp:intralink-;df1;41;353C � fei � �mi,ti,xi,yi�,i ∈ f1,…,ngg, �1�

consisting of events ei of magnitudes mi, which occur at times
ti and locations �xi,yi�.

The ETAS model describes earthquake rate as

EQ-TARGET;temp:intralink-;df2;41;276λ�t,x,yjHt� � μ�
X
i:ti<t

g�mi,t − ti,x − xi,y − yi�: �2�

That is, the sum of background rate μ and the rate of all after-
shocks of previous events ei. The aftershock triggering rate
g�m,Δt,Δx,Δy� describes the rate of aftershocks triggered by
an event of magnitude m, at a time delay of Δt and a spatial
distance (Δx,Δy) from the triggering event. We use here the
definition:

EQ-TARGET;temp:intralink-;df3;41;144g�m,Δt,Δx,Δy�� k0×ea�m−mref �×e−Δt=τ�
�Δx2�Δy2��d×eγ�m−mref �

�
1�ρ

×�Δt�c�1�ω
,

�3�
as in Nandan, Kamer, et al. (2021) and Mizrahi et al. (2021a).
This formulation differs from other, more commonly used

formulations of ETAS models in that it uses an
Exponentially Tapered Omori Kernel (ETOK). In their article,
Nandan, Kamer, et al. (2021) compare the ETAS model with
ETOK to a more general version thereof, MDOK, which allows
a magnitude dependency, finding that the more general
version allows better forecasts. This indicates that including
an exponential taper does lead to improved forecasts when
compared to the commonly used Omori kernel. Besides
allowing less heavy tails in the temporal distribution of after-
shocks, this formulation of the Omori kernel makes it possible
for the parameter ω to attain negative values, which is not pos-
sible in the traditional formulation. Also, our choice of this
base model does not impact the main conclusions that can
be drawn from comparing it to modified versions of itself.

To calibrate the ETAS model, the nine parameters to be
optimized are the background rate μ and k0, a, c, ω, τ, d, γ,
ρ, which parameterize the aftershock triggering rate g(m, t,
x, y) given in equation (3). Implicitly, the model assumes that
only earthquakes with magnitudes larger than or equal to mref

can trigger aftershocks. Most applications of the method define
mref as equal to the constant value of mc.

We build on the expectation maximization (EM) algorithm
to estimate the ETAS parameters (Veen and Schoenberg,
2008). In this algorithm, the expected number of background
events n̂ and the expected number of directly triggered after-
shocks l̂i of each event ei are estimated in the expectation step
(E step), along with the probabilities pij that event ej was trig-
gered by event ei, and the probability pindj that event ej is inde-
pendent. Following the E step, the nine parameters are
optimized to maximize the complete data log likelihood in
the maximization step (M step). E and M steps are repeated
until convergence of the parameters. The usual formulation
of the EM algorithm defines:

EQ-TARGET;temp:intralink-;df4;308;314n̂ �
X
j

pindj , �4�

EQ-TARGET;temp:intralink-;df5;308;273̂li �
X
j

pij, �5�

and st

EQ-TARGET;temp:intralink-;df6;308;209pij �
gij

μ� P
k:tk<tj

gkj
, �6�

EQ-TARGET;temp:intralink-;df7;308;152pindj � μ

μ� P
k:tk<tj

gkj
, �7�

with gkj � g�mk,tj − tk,xj − xk,yj − yk� being the aftershock
triggering rate of ek at location and time of event ej. For a given
target event ej, equations (6) and (7) define pij to be
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proportional to the aftershock occurrence rate gij, and pindj to
be proportional to the background rate μ. As an event must be
either independent or triggered by a previous event, the nor-
malization factor Λj :� μ�P

k:tk<tj gkj in the denominator of
equations (6) and (7) stipulates that pindj �P

k:tk<tjpkj � 1.

Introducing flexibility
In the formulation of the ETAS model given in Equation (2),
the rate of background earthquakes is described by the param-
eter μ, which does not vary with space nor time. During the
maximization step of the EM algorithm, μ can be estimated
independently from the other parameters as

EQ-TARGET;temp:intralink-;df8;53;587μ � n̂
AR × T

, �8�

in which AR and T denote the area of the study region and the
length of the considered time window, respectively. In some
approaches, the region of interest is divided into several subre-
gions, which can have their own values for μ (Veen and
Schoenberg, 2008). An iterative algorithm to estimate spatial
variations of background rate based on maximum-likelihood
estimation (Zhuang, 2012) uses a Gaussian kernel smoothing
applied to the catalog event locations, weighted by their esti-
mated independence probability, to obtain an estimate of
μ�x,y�. Here, we present a similar approach using EM, which
has been shown to be more stable with respect to the initial con-
ditions compared to maximum-likelihood approaches (Veen
and Schoenberg, 2008). Our approach is similar yet not identical
to the one described by Nandan, Ram, et al. (2021), which uses a
regularized inverse power law for smoothing the locations. We
define the background rate at a location (x, y) as

EQ-TARGET;temp:intralink-;df9;53;329μ�x,y� � 1
T
×
X
j

pindj × k�Δxj,Δyj�, �9�

in which k�Δxj,Δyj� is the Gaussian kernel with bandwidth
σ applied to the distance �Δxj,Δyj� of event ej to the location
(x,y),

EQ-TARGET;temp:intralink-;df10;53;236k�Δx,Δy� � 1
2πσ2

× exp

�
−
1
2
×
Δx2 � Δy2

σ2

�
: �10�

The bandwidth σ determines the smoothness of the back-
ground event density. In principle, σ could be calibrated itself,
but we choose to fix it to 5 km for simplicity. Our next modi-
fication to the standard ETAS model is to allow flexibility of
the aftershock probability. The number of directly triggered
aftershocks l̂j is estimated during the expectation step of the
EM algorithm as described in equation (5). We can, thus,
replace the term k0 × ea�m−mref � in equation (3) with κj, in which
κj is stipulated to be proportional to l̂j. Instead of

parameterizing aftershock productivity to be exponentially
increasing with the magnitude of the triggering event, we allow
each event to have its own productivity. This yields:

EQ-TARGET;temp:intralink-;df11;320;704

gjθ,κj
�m,Δt,Δx,Δy�

� κj × eΔt=τ��Δx2 � Δy2� � d × eγ�m−mref �
�
1�ρ × �Δt � c�1�ω

, �11�

for given parameters θ � �c,ω,τ,d,γ,ρ� and κj. The EM algo-
rithm is adapted as follows:

1. Define initial estimates of κj as κj � ea�mj−mref � with a ran-
dom guess for a;

2. define initial estimates of independence probability
pindj ≡ 0:1. The inversion result is not sensitive to this choice;

3. define random initial guesses for the parameters
θ � �c,ω,τ,d,γ,ρ�;

4. expectation step: calculate n̂,l̂j,pij,p
ind
j using the current esti-

mates of κj,θ, and pindj . pij,p
ind
j are calculated using equa-

tions (6) and (7), but using the flexible definitions of gij
and μ�x,y� of equations (9) and (11);

5. maximization step: optimize the parameters θ to minimize
the complete data log likelihood (see Mizrahi et al., 2021a
for details), given the current estimates of n̂,l̂j,pij,p

ind
j ;

6. update κnewj to be κoldj ×
l̂j

Gj
θ,κold

j

, in which Gj
θ,κold

j

is the expected

total number of aftershocks of ej, given θ and κoldj . This

ensures that l̂j � Gjθ,κnew
j
. We calculate Gjθ,κj

as

EQ-TARGET;temp:intralink-;df12;320;377Gjθ,κj
�

ZZ
R

Z
tend−tj

0
gjθ,κj

�mj,t,x,y� dt dx dy, �12�

in which tend is the end time of the considered time window,
and we assume the spatial region R to extend infinitely in
space, allowing a facilitated, asymptotically unbiased esti-
mation of ETAS parameters (Schoenberg, 2013), and

7. repeat from step 4 until convergence of θ, that is,
until

P
ai∈θjanewi − aoldi j < 10−3.

After the inversion, we calibrate an overall productivity law
for the flETAS models with free productivity to avoid over fit-
ting with event-wise productivity. From the individually esti-
mated productivities κj of magnitude mj events, we calibrate a
law of the form:

EQ-TARGET;temp:intralink-;df13;320;171κ�m� � k0 × ea�m−mref �, �13�

by minimizing the sum of absolute residuals between
the observed κ̄�m� � 1

n�m�
P

i:mi�mκi and the theoretical
κ�m� � k0 × ea�m−mref �, in which n(m) is the number of events
with magnitude m.

Then, productivity is treated the same way as in the case of
standard ETAS. In this way, the variability of productivity is
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only accounted for during the parameter inversion process and
may lead to more accurate estimators of the productivity as
well as the remaining ETAS parameters.

QDE modeling
We propose a novel approach for QDE modeling, in which a
forecast is created by combining model parameters of different
ingredient models. The rules for how parameters can be com-
bined are defined by questions that divide the forecasting prob-
lem into several subproblems: How many background events
are expected? Where are they expected? When are they expected?
How many aftershocks are expected? Where are they expected?
When are they expected?

By answering each of these questions with different ingre-
dient models, we create a suite of ensembles. The remainder of
this section establishes rules to combine parameters based on
the questions.

Consider a collection of ETAS or flETAS ingredient models,
�Mi�i�0,…,nM . As they are sufficiently defined through their
parameters, we can write:

EQ-TARGET;temp:intralink-;df14;41;483Mi � �μi,κi,ci,ωi,τi,di,γi,ρi�: �14�

In case Mi is a flETAS model, μi � μi�x,y� can vary with
space. For simplicity, we denote with κi the function that assigns
to each event its appropriate value to replace the term κj in
equation (11). In our case, this means that we define
κi�m� � k0i × eai�m−mref �, in which k0i and ai are either obtained
during parameter inversion directly, or afterward in caseMi is a
flETAS model with free productivity. We chose the notation of
κi instead of (k0i ,ai) to emphasize this possible distinction. We
can then generally describe the aftershock triggering kernel g as

EQ-TARGET;temp:intralink-;df15;41;326

gi�m,Δt,Δx,Δy�

� κi × eΔt=τi�
�Δx2�Δy2��di × eγi�m−mref �

�
1�ρi × �Δt� ci�1�ωi

: �15�

Let us now revisit the earlier questions.

1. How many background events are expected?
More precisely, what we want to ask here is howmany back-
ground events do we expect in total in the region R and
forecasting horizon �T0,T1� we are issuing a forecast for.
The answer to this question, given out of the perspective
of model Mi, is

EQ-TARGET;temp:intralink-;df16;41;146NBi
�

ZZ
R

Z
T1

T0

μi�x,y� dt dx dy: �16�

2. Where and when are they expected?
We address for now these two questions jointly. The spa-
tiotemporal density of background events is given by

EQ-TARGET;temp:intralink-;df17;308;743f Bi
�x,y,t� � μi�x,y�RR

R

R T1
T0

μi�x,y� dt dx dy
� μi�x,y�

NBi

, �17�

which is effectively time independent due to our choice of a
time independent μ�x,y�.

3. How many aftershocks are expected?
Again, what we want to ask here is how many aftershocks
do we expect in total in the region R and forecasting hori-
zon �T0,T1� we are issuing a forecast for. For an individual
event ej, we expect it to have nA aftershocks, in which

EQ-TARGET;temp:intralink-;df18;308;612nAi
�ej��

ZZ
R

Z
T1

T0

gi�mj,t − tj,x−xj,y− yj� dt dxdy: �18�

The total number of aftershocks NAi
is then given as the

sum of aftershocks of all events

EQ-TARGET;temp:intralink-;df19;308;535NAi
�

X
j:tj<T1

nAi
�ej�: �19�

4. Where and when are they expected?
We again answer these two questions jointly. If we define

EQ-TARGET;temp:intralink-;df20;308;457Gi�x,y,t� :�
X
j:tj<T1

gi�mj,t − tj,x − xj,y − yj�, �20�

as the total rate of aftershocks at time t and location (x,y),
consisting of the sum of aftershock rates of all events that
occurred prior to the end T1 of the forecasting horizon, the
spatiotemporal density of aftershocks is given by

EQ-TARGET;temp:intralink-;df21;308;353f Ai
�x,y,t�� Gi�x,y,t�RR

R

R T1
T0

Gi�x,y,t�dt dxdy
�Gi�x,y,t�

NAi

: �21�

We now construct a QDE model Eklm as follows. The num-
ber questions (1) and (3) are answered with model Mk, the
background density question (2) is answered with model
Ml, and the aftershock density question (4) is answered with
modelMm. Questions (1) and (3) are addressed with the same
model. This is a choice made to avoid unrealistic event num-
bers. If one model interprets the majority of events as back-
ground, and another model interprets the majority of events
to be aftershocks, answering the two questions with two dif-
ferent models would lead to exceptionally high or low total
event numbers, which is not intended by the two ingredient
models.

In the earlier notation, which identifies a model with its
parameters, this would give us:

EQ-TARGET;temp:intralink-;df22;308;106Eklm �
�
μl ×

NBk

NBl

,κm ×
NAk

NAm

,cm,ωm,τm,dm,γm,ρm

�
: �22�
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Forecasting Experiments
To test whether flETAS models and QDE models, which con-
sist of ETAS and flETAS models, provide better forecasts, we
conduct pseudoprospective forecasting experiments for
southern California and Italy.

Competing models
In these experiments, we consider the following four compet-
ing ingredient models.

• M0: standard ETAS.
• M1: flETAS with free productivity and standard background.
• M2: flETAS with standard productivity and free background.
• M3: flETAS with free productivity and free background.

Out of these, 43 � 64 QDE models can be constructed.
M2 is conceptually close to the models described by Zhuang

(2012) and Nandan, Ram, et al. (2021).

Evaluation metric
We use interevent time horizons: whenever an event occurs, a
forecast is issued, which is valid until the occurrence of the next
event. A pseudoprospective model evaluation then aims to cap-
ture how well a forecast issued using data until event ej−1 can
describe the occurrence of the next event ej.

An ETAS forecast always consists of the forecasted back-
ground seismicity rate plus the forecasted aftershock seismicity
rate. With this flexible definition of forecasting horizon, our
ETAS forecast can be calculated and evaluated analytically.

Consider λi�t,x,yjHtj−1�, the event rate under modelMi as of
time tj−1 of the (j−1)th earthquake. This formulation of λi is
valid for times t ∈ �tj−1,tj� between the occurrence of event
ej−1 and event ej, and hence, this is the forecasting horizon
we consider.

For the traditional experiment settings for which one is
interested in the seismicity forecast of the next days, months,
or years, such an analytical description of the forecasted seis-
micity is not possible. As soon as an event occurs during the
forecasting period, its aftershocks are not part of the back-
ground seismicity, nor of the aftershock seismicity that was cal-
culated at the start of the forecasting period. For this reason,
ETAS forecasts for fixed forecasting horizons are usually pro-
duced through the simulation of a large number of possible
continuations of the catalog.

In our case of flexible forecasting horizons, the log likeli-
hood of observing ej under model Mi is analytically defined
(see Ogata et al., 2013; Daley and Vere-Jones, 2003) as

EQ-TARGET;temp:intralink-;df23;53;146

lnLi�ej� � ln λi�tj,xj,tjjHtj−1�

−

ZZ
R

Z
tj

tj−1

λi�tj,xj,tjjHtj−1� dt dx dy: �23�

We then define the information gain IGi1,i2
j of model i1 over

model i2 during the jth forecasting period �tj−1,tj� as
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The information gain per event (IGPE) over forecasting
periods j1,…,jK is defined as

EQ-TARGET;temp:intralink-;df25;320;679
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, �25�

the average of IGs over those testing periods.
Compared to evaluation techniques based on the simulation

of large numbers of possible catalog continuations such as in
Nandan et al. (2019a) and Mizrahi et al. (2021a), which are
encouraged by CSEP (see Savran et al., 2022), this approach
allows us to compare models much faster, accelerating the
development and testing process. To apply these models opera-
tionally, in which forecasts are required for a fixed time hori-
zon, simulations would still be required. This evaluation
approach allows us to save time when developing and selecting
the model to be used operationally and is especially useful for
evaluating a large suite of QDE models.

Data
For southern California, we consider the Advanced National
Seismic System (ANSS) comprehensive earthquake catalog
(ComCat), in the polygon given by the vertices in Table A1.
We consider earthquakes of magnitude M ≥ 2.0 from 1
January 2010 until 1 January 2022. The first two years serve
as an auxiliary period in the ETAS and flETAS parameter
inversion, and thus, the start of the primary catalog is 1
January 2012. This means that the events between January
2010 and January 2012 can act as triggering events during
the inversion but not as triggered events. Using the method
described by Mizrahi et al. (2021b), we find that the overall
catalog is complete at this threshold, although there are likely
periods during which the catalog is incomplete due to short-
term aftershock incompleteness (STAI). Although Mizrahi
et al. (2021a) have proposed a method to account for STAI
in the ETAS model, we do not address this issue here.

For Italy, we consider the Italian Seismological Instrumental
and Parametric Data-Base catalog (ISIDe, Group, 2007), in the
area defined for the first CSEP experiment (Schorlemmer,
Christophersen, et al., 2010, vertices given in Table A2). We
consider earthquakes of magnitude M ≥ 2.5 from 16 April
2005 until 1 July 2021. This is the time horizon available to
modelers in the upcoming prospective CSEP forecasting
experiment in Italy, and the estimated magnitude of complete-
ness provided in the experiment description. The start of the
primary catalog is 1 January 2010.

Experiment setting
For southern California, we consider 5 yr of testing, with the
start of the first forecasting period at the occurrence of event
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e0, the first event on or after 1 January 2017. In Italy, we con-
sider 3 yr of testing, starting at the occurrence of the first
event on or after 1 July 2018. The idea of the pseudoprospec-
tive experiments is to only use data that would have been
available at the time the forecast is issued to calibrate the
models. One could, thus, recalibrate the model at the start
of each forecasting period, whenever one more event
becomes part of the catalog. To limit the number of computa-
tionally expensive parameter inversions for these experi-
ments, we re-estimate the model parameters every 7 days
in southern California, and every day in Italy, and use the
latest available set of parameters at the start time of each fore-
casting interval. This does not mean that events between the
calibration time and forecasting start are ignored. Their
aftershocks are still considered in the calculated aftershock
rate. We chose a shorter parameter updating interval for

Italy to mimic the conditions
of the CSEP experiment, and
a longer one for southern
California to limit computa-
tional cost.

We then calculate IGi1,i2
j for

all j, and for all pairs of models
Mi1 ,Mi2 . If the IGPE over all
forecasting periods of one
model to another is positive,
we consider the model to pro-
duce superior forecasts.

As one could argue that gen-
erating a large number of mod-
els and then selecting the best
performing ones somewhat
invalidates the pseudoprospec-
tive nature of our experiments,
we consider the following addi-
tional model. At the start of the
jth forecasting period, the total
information gain of all QDE
models during the last n fore-
casting periods, that is, periods
j−(n + 1) to j−1, is compared.
The model with the highest
IG is selected to produce the
forecast for the jth forecasting
period. We call this model
QDE-Sn.

This type of model, if
capable of producing a power-
ful forecast, would be well
suited to be used in an OEF
context.

Results and Discussion
The parameters that were obtained using the flETAS inversion
algorithm are described in the Inverted parameters section.
Here, we present the results of the Forecasting Experiments.

Experiment results
Figure 1 compares the IGPE over the standard ETAS null
model (M0 � E000) of all 64 QDE models in Italy and southern
California. The IGPE varies between −0.64 and 0.45 in Italy,
and between −0.13 and 0.12 in southern California. The best
and worst performing QDE models are E221 and E112, respec-
tively, for both regions. The best performing model E221 uses
the free background model M2 to answer the number and
background density questions, and the free productivity model
M1 to answer the aftershock density question. Vice versa, the
worst performing model E112 uses M1 to answer the number

Figure 1. Scatter plot of information gain per event (IGPE) over standard epidemic-type aftershock
sequence (ETAS) of the 64 question-driven ensemble (QDE) models in Italy and southern California.
The symbol shape, fill color, and edge color describe the composition of the QDE. The shape, fill
color, and edge color represent the ingredient model used to answer the background density (BG),
number (N), and aftershock density (AS) questions, respectively. Box plots on top (for southern
California) and to the right (for Italy) of the scatter plot: for N, BG, and AS questions, the four boxes
represent the IGPE of four groups of QDE models. Each group contains the 16 QDEmodels that use
a specific ingredient model (indicated by box color) to answer the indicated question.
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and background density questions, and model M2 to answer
the aftershock density question. Generally, the models that
perform well or poorly in Italy are also performing similarly
in southern California.

The symbol shape, fill color, and edge color in the scatter
plot of Figure 1 represent the ingredient model used to answer
the background density (BG), number (N), and aftershock
density (AS) questions, respectively. Models that perform well
tend to answer the BG question with the free background
ingredient model and the AS question with the free productiv-
ity model. Conversely, models that address the BG question
with the free productivity model, and those that address the
AS question with the free background model, tend to perform
poorly.

This is highlighted in the box plots of Figure 1. There, for
each question, the distribution of IGPE of the 64 QDE models
is given per possible answer. Although for the number ques-
tions, no clear trend can be inferred, it is evident that the free
background model serves well at answering the BG question
and the free productivity model serves well at answering the
AS question. These trends are qualitatively very similar in
southern California and Italy.

These results emphasize the added value generated by the
flETAS approach, although most flETAS models individually
do not outperform standard ETAS. Apparently, a model that
gives full flexibility to the background rate during parameter
inversion is more informative than others when addressing
the background density question. And a model that is flexible
at identifying aftershocks is more informative than others
when answering the aftershock density question. These obser-
vations are made for both considered regions.

While conceptually it makes sense that a model that can
more flexibly capture one particular aspect of seismicity is par-
ticularly successful at answering questions about this very
aspect of seismicity, this is simultaneously a somewhat
counterintuitive result. If flETAS with free background is more
successful than other models at identifying background events,
one would expect it, due to the self-consistent nature of param-
eter inversion, to also be more successful at identifying after-
shocks, and thus at describing their occurrence times and
locations.

A possible interpretation of the observation that E221, E220,
and even E223 can so clearly outperform E222, is the following.
Compared to the null model M0, model M2 � E222 allows the
background seismicity to be free and, therefore, interprets a
higher fraction of events in the training catalog to be back-
ground earthquakes, which manifests in a much higher back-
ground rate. M2 can, thus, explain the spatial distribution of
background events well, as well as the partitioning of seismicity
into background events and aftershocks. Possibly, M2 overes-
timates the background portion of the training catalog due to
“too much freedom.” The level of overestimation may be small
enough so that M2 still captures the fraction and locations of

background earthquakes better than the other ingredient mod-
els do. Overestimation of the background seismicity comes
with underestimation of the fraction of aftershocks in the train-
ing catalog. Although this underestimation may have a minor
biasing effect on the number of background earthquakes and
aftershocks, the spatiotemporal distribution of aftershocks can
be affected in a more harmful way. Aftershocks that occur in
the tails of the spatial or temporal distributions have higher
chances to be falsely identified as background events compared
to aftershocks that are close to their parent event. This leads to
a distorted characterization of the aftershock triggering behav-
ior of model M2, which can be fixed using the triggering
parameters from models M0 or M1, as indicated by the good
performance of models E221 and E220.

Another noteworthy observation is that modelM3, which in
principle has all the flexibility necessary to encompass the
parameterization of model E221, is clearly outperformed by
E221. We interpret this to be a consequence of the fact that
the information that is optimized during model calibration
and the information used for forecasting are not the same.
This does not indicate a flaw in the method presented, but
rather illustrates a complexity of the forecasting problem to
which the QDE approach offers an apparently useful solution.

Figure 2a shows the cumulative information gain (CIG)
over the standard ETAS model over time of the three
flETAS ingredient models and the three best performing
QDE models. The CIG of model i1 over model i2 at time t
is given as the sum of IGs of all forecasting periods ending
prior to time t:

EQ-TARGET;temp:intralink-;df26;320;366

X
j:tj<t

IGi1,i2
j : �26�

In southern California, the flETAS ingredient models have a
negative information gain following the Ridgecrest events in July
2019, meaning that during this time, the standard ETAS model
(M0) is better performing. The free background model M2 out-
performs M0 immediately after the onset of the sequence and
suffers from information loss later during the sequence. The
other two ingredient models do not exhibit the initial informa-
tion gain. Among the flETAS models, only M2 can compensate
for the information loss during the course of the 5 yr of testing
and ends up with a positive overall information gain.

Among the QDE models presented, models E221 and E220

show an initial information gain after the onset of the
Ridgecrest sequence, followed by a period of information loss.
In contrast to the ingredient models, the information loss dur-
ing the sequence is smaller than the gain at the beginning of the
sequence, such that these models show positive information
gain during the Ridgecrest sequence. The three QDE models
in Figure 2a also show a rapidly accumulating information gain
throughout the testing period, arriving at an overall IGPE of
0.12, 0.10, and 0.09.
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From Figure 2b, it is clear that the IGPE is relatively close to
zero in the Ridgecrest area, and the positive IG during the
sequence must come from a few specific locations. In the rest
of southern California, higher IGPE values are achieved, with a
median grid-cell-wise IGPE of 0.66 for model E221 shown in
Figure 2b. Conversely, the median grid-cell-wise IGPE for
the worst performing model E112 shown in Figure 2c is
−0.54. Generally, it performs poorly where E221 performs well.

In Italy, all flETAS models have negative total information
gain over M0. Nevertheless, two of the top three QDE models
that perform best in southern California are also among the top
three in Italy, with overall IGPE values of 0.45 and 0.44 for E221

and E321. The second best model of southern California, E220,
ranks sixth in Italy with an IGPE of 0.32. Similar to what
can be observed in southern California, the regions in Italy
in which the best performing model E221 performs well coincide
with the areas in which model E112 shown in Figure 2f performs
poorly. The median grid-cell-wise IGPE of the two models are
0.76 and −0.82, respectively. Although these grid-cell-wise IGPE
values cannot directly be compared between Italy and southern
California due to the different size of the grid cells, the results
suggest a qualitatively more similar model performance between
the two regions than what is shown by the overall IGPE shown
in Figure 1. The lower IGPE in southern California is likely
caused by a relatively small IG during the Ridgecrest sequence
when a large fraction of events occurred.

Pseudoprospective model selection
Figure 3 illustrates the composition and performance of QDE-Sn
models. The number n of past forecasting periods considered

when selecting the forecasting model for the next period
is in f1 � 20, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 � 210g for
southern California, and n ∈ f1 � 20,…,512 � 29g for Italy.
We do not consider n = 1024 for Italy, as this would reduce
the number of testing periods in which QDE-Sn is defined by
more than half compared to the QDE models. The top, middle,
and bottom parts of Figure 3a,b show the ingredient model used
by QDE-Sn to answer the N, BG, and AS questions over time.
Within each part, n increases from top to bottom. As expected,
the composition of QDE-Sn is more stable as n increases and is
almost always defined via E221 for large n, in both regions.

In southern California, a change in composition can be
observed after the onset of the Ridgecrest sequence in July
2019. Specifically, the number questions are best answered
by standard ETAS, free productivity flETAS, and free produc-
tivity and background flETAS, in this order, before moving
back to answering with free background flETAS. The

Figure 2. (a,b,c) Results for southern California and (d,e,f) results
for Italy. Panels (a) and (d) Cumulative information gain (CIG)
over time of the ingredient models and the three QDE models
best performing in southern California, compared to the stan-
dard ETAS model indicated by the black horizontal line. Panels (b,
c) and (e,f): Information gain per earthquake (IGPE) per spatial
grid cell of the best performing QDE model (E221, panels b and
e) and the worst performing QDE model (E112, panels c and f),
compared to standard ETAS (M0 � E000). Grid cell resolution is
0.05° × 0.05° in southern California, and 0.2° × 0.2° in Italy,
chosen for best visibility. The white rectangle in panels (b,
c) highlights the region of the Ridgecrest sequence in 2019.
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aftershock question is intermittently best answered by standard
ETAS during the sequence. It is interesting to note here that the
performance of E221 and QDE-S64 are almost identical through-
out the 5 yr of testing, with the difference that QDE-S64 does
not show the information loss after the initial information gain
after the onset of the sequence. This results in an overall IGPE
of 0.13 and 0.12 for QDE-S64 and E221, during the period in
which both are defined, as is shown in Figure 3c. Thus, the
QDE-Sn model, which was originally designed to avoid a biased
selection of the winning model after knowing the experiment
outcome, is capable of outperforming the winning QDE model
for good choices of n, and clearly outperforms all ingredient
flETAS models for any tested choice of n.

In Italy, the best performing QDE-Sn model is QDE-S128. It is
almost always using E221 to issue a forecast for the next period
and, thus, unsurprisingly achieves the same IGPE. As in
southern California, all tested choices of n yield a model that
clearly outperforms all ingredient flETAS models. The simplest
QDE-Sn model, QDE-S1, which always selects the best QDE
model of the previous forecasting period to issue the next fore-
cast, already achieves a very high IGPE of 0.28.

Conclusions
We describe an adapted ETAS EM algorithm that allows a
nonparametric inversion of aftershock productivity and/or
background rate. Further, we introduce a novel approach of
QDE modeling, which combines ingredient models by using
them to answer different forecasting subproblems. In

pseudoprospective forecasting experiments for southern
California and Italy, we compare the forecasting skill of three
flETAS models and a total of 60 nontrivial QDEs of flETAS
and ETAS models, to that of the standard ETAS null model.

We find that the best models tend to use flETAS with free
background to model the number of events and locations
of background earthquakes and flETAS with free productivity
to model the times and locations of aftershocks. The best
model is the same in both regions and achieves an IGPE over
standard ETAS of 0.12 in southern California and 0.45
in Italy.

Figure 3. Composition and performance of QDE-Sn models.
(a,b) For southern California and Italy: composition of QDE-Sn, in
which n takes values of powers of 2. Top, middle, and bottom
part represent the ingredient model used to answer the number
(N), background density (BG), and aftershock density (AS)
questions. Within each part, n increases from top to bottom. The
dotted white lines highlight the best performing QDE-Sn. The
solid white and orange line show the cumulative information
gain (CIG) of the best QDE-Sn and best QDE (E221), respectively,
for the period in which both are defined. The white line is barely
visible for Italy because it coincides with the orange line. The
vertical dashed line indicates the occurrence time of the M 6.4
Ridgecrest event on 4 July 2019. (c) IGPE of different QDE-Sn

(black lines), for different values of n. The horizontal orange lines
indicate IGPE of E221 for the period in which the best QDE-Sn is
defined. The solid lines represent southern California; dashed
lines represent Italy.

838 Seismological Research Letters www.srl-online.org • Volume 94 • Number 2A • March 2023

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/94/2A/829/5793422/srl-2022230.1.pdf
by University of Southern California user
on 12 June 2023



To address the possible concern of a biased selection of the
winning model after knowing the experiment outcome, we also
test the forecasting skill of a model that pseudoprospectively
selects the currently best performing QDE model to issue
the forecast for the next testing period. Depending on the cri-
teria to identify the best QDE model, we find that the forecast-
ing skill can be greater than that of the overall best QDEmodel.
This approach thus provides a promising candidate for an
operational earthquake forecast.

During the 2019 Ridgecrest sequence in southern
California, different ingredient models are best suited to model
the number of events during different stages of the sequence.
The idea of operationally selecting different QDE models (i.e.,
selecting different ETAS model parameters) based on their
recent performance is in this case related to the idea of
Page et al. (2016). They considered sequence-specific param-
eters to be sampled from an underlying distribution and
described a Bayesian approach to update this distribution as
aftershock data become available.

Our results can also be viewed as a first step toward devel-
oping a potentially fruitful branch of earthquake forecasting
research. Several key questions remain open and are to be
addressed in future studies: Why do QDE models outperform
ingredient models that were inverted in a self-consistent way?
What drives the success of different QDE models during different
phases of the Ridgecrest sequence? How does QDE performance
increase when further ingredient models are considered? And
what does all of this teach us about the dynamics of seismicity?

Data and Resources
The Advanced National Seismic System (ANSS) Comprehensive
Earthquake Catalog (ComCat) provided by the U.S. Geological Survey
(USGS) was searched using https://earthquake.usgs.gov/data/comcat/
(last accessed January 2022). The Italian Seismological Instrumental
and Parametric Data-Base (ISIDe) was used as provided by the organizers
of the upcoming CSEP experiment in Italy and can be accessed via http://
terremoti.ingv.it/en/search (last accessed March 2022).

Declaration of Competing Interests
The authors acknowledge that there are no conflicts of interest
recorded.

Acknowledgments
This study has been funded by the Eidgenössische Technische
Hochschule (ETH) research grant for Project Number 2018-FE-213,
“Enabling dynamic earthquake risk assessment (DynaRisk),” the
European Union’s Horizon 2020 research and innovation program
under Grant Agreement Number 821115, real-time earthquake risk
reduction for a resilient Europe (RISE), the National Science
Foundation (Grant Number EAR-2122168), and the Southern
California Earthquake Center (based on NSF Cooperative Agreement
Number EAR-1600087 and USGS Cooperative Agreement Number
G17AC00047). The article benefited from constructive comments by
the Associate Editor and two anonymous referees.

References
Akinci, A., M. P. Moschetti, and M. Taroni (2018).

Ensemble smoothed seismicity models for the new Italian
probabilistic seismic hazard map, Seismol. Res. Lett. 89, no. 4,
1277–1287.

Bach, C., and S. Hainzl (2012). Improving empirical aftershock mod-
eling based on additional source information, J. Geophys. Res. 117,
no. B4, doi: 10.1029/2011JB008901.

Bayliss, K., M. Naylor, J. Illian, and I. G. Main (2020). Data-driven
optimization of seismicity models using diverse data
sets: Generation, evaluation, and ranking using Inlabru, J.
Geophys. Res. 125, no. 11, e2020JB020226, doi: 10.1029/
2020JB020226.

Bayona, J., W. Savran, A. Strader, S. Hainzl, F. Cotton, and D.
Schorlemmer (2021). Two global ensemble seismicity models
obtained from the combination of interseismic strain measure-
ments and earthquake-catalogue information, Geophys. J. Int.
224, no. 3, 1945–1955.

Bird, P., D. D. Jackson, Y. Y. Kagan, C. Kreemer, and R. Stein (2015).
Gear1: A global earthquake activity rate model constructed from
geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc.
Am. 105, no. 5, 2538–2554.

Box, G. E. (1979). Robustness in the strategy of scientific model build-
ing, in, Elsevier, 201–236, doi: 10.1016/B978-0-12-438150-
6.50018-2.

Cattania, C., M. J. Werner, W. Marzocchi, S. Hainzl, D. Rhoades, M.
Gerstenberger, M. Liukis, W. Savran, A. Christophersen, A.
Helmstetter, et al. (2018). The forecasting skill of physics-based
seismicity models during the 2010–2012 Canterbury, New
Zealand, earthquake sequence, Seismol. Res. Lett. 89, no. 4,
1238–1250.

Cocco, M., S. Hainzl, F. Catalli, B. Enescu, A. Lombardi, and J.
Woessner (2010). Sensitivity study of forecasted aftershock seis-
micity based on coulomb stress calculation and rate-and state-
dependent frictional response, J. Geophys. Res. 115, no. B5, doi:
10.1029/2009JB006838.

Daley, D. J., and D. Vere-Jones (2003). An Introduction to the Theory
of Point Processes: Volume I: Elementary Theory and Methods,
Springer, Heidelberg, Germany.

Dieterich, J. (1994). A constitutive law for rate of earthquake produc-
tion and its application to earthquake clustering, J. Geophys. Res.
99, no. B2, 2601–2618.

Enescu, B., S. Hainzl, and Y. Ben-Zion (2009). Correlations of seis-
micity patterns in southern California with surface heat flow data,
Bull. Seismol. Soc. Am. 99, no. 6, 3114–3123.

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer,
and K. E. Taylor (2016). Overview of the coupled model intercom-
parison project phase 6 (cmip6) experimental design and organi-
zation, Geosci. Model Dev. 9, no. 5, 1937–1958.

Field, E. H., T. H. Jordan, M. T. Page, K. R. Milner, B. E. Shaw, T. E.
Dawson, G. P. Biasi, T. Parsons, J. L. Hardebeck, A. J. Michael,
et al. (2017). A synoptic view of the third uniform California earth-
quake rupture forecast (UCERF3), Seismol. Res. Lett. 88, no. 5,
1259–1267.

Gerstenberger, M., G. McVerry, D. Rhoades, and M. Stirling (2014).
Seismic hazard modeling for the recovery of Christchurch, Earthq.
Spectra 30, no. 1, 17–29.

Volume 94 • Number 2A • March 2023 • www.srl-online.org Seismological Research Letters 839

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/94/2A/829/5793422/srl-2022230.1.pdf
by University of Southern California user
on 12 June 2023

https://earthquake.usgs.gov/data/comcat/
https://earthquake.usgs.gov/data/comcat/
https://earthquake.usgs.gov/data/comcat/
http://terremoti.ingv.it/en/search
http://terremoti.ingv.it/en/search
http://dx.doi.org/10.1029/2011JB008901
http://dx.doi.org/10.1029/2020JB020226
http://dx.doi.org/10.1029/2020JB020226
http://dx.doi.org/10.1016/B978-0-12-438150-6.50018-2
http://dx.doi.org/10.1016/B978-0-12-438150-6.50018-2
http://dx.doi.org/10.1029/2009JB006838


Gerstenberger, M. C., S. Wiemer, L. M. Jones, and P. A. Reasenberg
(2005). Real-time forecasts of tomorrow’s earthquakes in
California, Nature 435, no. 7040, 328–331.

Grimm, C., S. Hainzl, M. Käser, and H. Küchenhoff (2022). Solving
three major biases of the etas model to improve forecasts of the
2019 Ridgecrest sequence, Stochastic Environ. Res. Risk
Assess.36, 2133–2152.

Group, I. W. (2007). Italian seismological instrumental and paramet-
ric database (ISIDe), available at https://www.earth-prints.org/
handle/2122/5063 (last accessed December 2022).

Hainzl, S. (2022). ETAS-approach accounting for short-term incom-
pleteness of earthquake catalogs, Bull. Seismol. Soc. Am. 112, no. 1,
494–507.

Hardebeck, J. L. (2021). Spatial clustering of aftershocks impacts the
performance of physics-based earthquake forecasting models, J.
Geophys. Res. 126, no. 2, e2020JB020824, doi: 10.1029/
2020JB020824.

Kamer, Y., S. Nandan, G. Ouillon, S. Hiemer, and D. Sornette (2021).
Democratizing earthquake predictability research: Introducing the
Richterx platform, Eur. Phys. J. Spec. Top. 230, no. 1, 451–471.

Kovchegov, Y., I. Zaliapin, and Y. Ben-Zion (2022). Invariant Galton-
Watson branching process for earthquake occurrence, Geophys. J.
Int. 231, 567–583, doi: 10.1093/gji/ggac204.

Leutbecher, M., and T. N. Palmer (2008). Ensemble forecasting, J.
Comput. Phys. 227, no. 7, 3515–3539.

Llenos, A. L., and A. J. Michael (2019). Ensembles of etas models pro-
vide optimal operational earthquake forecasting during swarms:
Insights from the 2015 san Ramon, California swarm ensembles
of etas models provide optimal operational earthquake forecasting
during swarms, Bull. Seismol. Soc. Am. 109, no. 6, 2145–2158.

Mancini, S., M. Segou, M. Werner, and C. Cattania (2019).
Improving physics-based aftershock forecasts during the 2016–
2017 central Italy earthquake cascade, J. Geophys. Res. 124,
no. 8, 8626–8643.

Mancini, S., M. Segou, M. J. Werner, and T. Parsons (2020). The pre-
dictive skills of elastic coulomb rate-and-state aftershock forecasts
during the 2019 Ridgecrest, California, earthquake sequence, Bull.
Seismol. Soc. Am. 110, no. 4, 1736–1751.

Marzocchi, W., A. M. Lombardi, and E. Casarotti (2014). The estab-
lishment of an operational earthquake forecasting system in Italy,
Seismol. Res. Lett. 85, no. 5, 961–969.

Marzocchi, W., J. D. Zechar, and T. H. Jordan (2012). Bayesian fore-
cast evaluation and ensemble earthquake forecasting, Bull. Seismol.
Soc. Am. 102, no. 6, 2574–2584.

Mizrahi, L., S. Nandan, and S. Wiemer (2021a). Embracing data
incompleteness for better earthquake forecasting, J. Geophys.
Res. 126, no. 12, e2021JB022379, doi: 10.1029/2021JB022379.

Mizrahi, L., S. Nandan, and S. Wiemer (2021b). The effect of declus-
tering on the size distribution of mainshocks, Seismol. Res. Lett.
doi: 10.1785/0220200231.

Nandan, S., Y. Kamer, G. Ouillon, S. Hiemer, and D. Sornette
(2021). Global models for short-term earthquake forecasting
and predictive skill assessment, Eur. Phys. J. Spec. Top. 230,
no. 1, 425–449.

Nandan, S., G. Ouillon, and D. Sornette (2019). Magnitude of earth-
quakes controls the size distribution of their triggered events, J.
Geophys. Res. 124, no. 3, 2762–2780.

Nandan, S., G. Ouillon, D. Sornette, and S. Wiemer
(2019a). Forecasting the full distribution of earthquake
numbers is fair, robust, and better, Seismol. Res. Lett. 90,
no. 4, 1650–1659.

Nandan, S., G. Ouillon, D. Sornette, and S. Wiemer (2019b).
Forecasting the rates of future aftershocks of all generations is
essential to develop better earthquake forecast models, J.
Geophys. Res. 124, no. 8, 8404–8425.

Nandan, S., G. Ouillon, S. Wiemer, and D. Sornette (2017). Objective
estimation of spatially variable parameters of epidemic type after-
shock sequence model: Application to California, J. Geophys. Res.
122, no. 7, 5118–5143.

Nandan, S., S. K. Ram, G. Ouillon, and D. Sornette (2021). Is seismic-
ity operating at a critical point? Phys. Rev. Lett. 126, no. 12,
128,501.

Ogata, Y. (1988). Statistical models for earthquake occurrences and
residual analysis for point processes, J. Am. Stat. Assoc. 83,
no. 401, 9–27.

Ogata, Y., K. Katsura, G. Falcone, K. Nanjo, and J. Zhuang
(2013). Comprehensive and topical evaluations of earthquake
forecasts in terms of number, time, space, and magnitude,
Bull. Seismol. Soc. Am. 103, no. 3, 1692–1708, doi: 10.1785/
0120120063.

Page, M. T., and N. J. van der Elst (2022). Aftershocks preferentially
occur in previously active areas, Seismol. Rec. 2, no. 2, 100–106.

Page, M. T., N. van Der Elst, J. Hardebeck, K. Felzer, and A. J. Michael
(2016). Three ingredients for improved global aftershock forecasts:
Tectonic region, time-dependent catalog incompleteness, and
intersequence variability, Bull. Seismol. Soc. Am. 106, no. 5,
2290–2301.

Parsons, T., Y. Ogata, J. Zhuang, and E. L. Geist (2012). Evaluation of
static stress change forecasting with prospective and blind tests,
Geophys. J. Int. 188, no. 3, 1425–1440.

Rhoades, D. A., and M. C. Gerstenberger (2009). Mixture models for
improved short-term earthquake forecasting, Bull. Seismol. Soc.
Am. 99, no. 2A, 636–646.

Rhoades, D., M. Liukis, A. Christophersen, and M. Gerstenberger
(2016). Retrospective tests of hybrid operational earthquake fore-
casting models for Canterbury, Geophys. J. Int. 204, no. 1, 440–
456.

Savran, W. H., M. J. Werner, W. Marzocchi, D. A. Rhoades, D. D.
Jackson, K. Milner, E. Field, and A. Michael (2020).
Pseudoprospective evaluation of UCERF3-etas forecasts during
the 2019 Ridgecrest sequence, Bull. Seismol. Soc. Am. 110,
no. 4, 1799–1817.

Savran, W. H., M. J. Werner, D. Schorlemmer, and P. J. Maechling
(2022). pycsep: A python toolkit for earthquake forecast develop-
ers, Seismol. Soc. Am. 93, no. 5, 2858–2870.

Schoenberg, F. P. (2013). Facilitated estimation of etas, Bull. Seismol.
Soc. Am. 103, no. 1, 601–605.

Schorlemmer, D., A. Christophersen, A. Rovida, F. Mele, M. Stucchi,
and W. Marzocchi (2010). Setting up an earthquake forecast
experiment in Italy, Ann. Geophys. doi: 10.4401/ag-4844.

Schorlemmer, D., J. D. Zechar, M. J. Werner, E. H. Field, D. D.
Jackson, T. H. Jordan, , and RELM Working Group (2010).
First results of the regional earthquake likelihood models experi-
ment, in Seismogenesis and Earthquake Forecasting: The Frank

840 Seismological Research Letters www.srl-online.org • Volume 94 • Number 2A • March 2023

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/94/2A/829/5793422/srl-2022230.1.pdf
by University of Southern California user
on 12 June 2023

https://www.earth-prints.org/handle/2122/5063
https://www.earth-prints.org/handle/2122/5063
https://www.earth-prints.org/handle/2122/5063
https://www.earth-prints.org/handle/2122/5063
http://dx.doi.org/10.1029/2020JB020824
http://dx.doi.org/10.1029/2020JB020824
http://dx.doi.org/10.1093/gji/ggac204
http://dx.doi.org/10.1029/2021JB022379
http://dx.doi.org/10.1785/0220200231
http://dx.doi.org/10.1785/0120120063
http://dx.doi.org/10.1785/0120120063
http://dx.doi.org/10.4401/ag-4844


Evison Volume II, Springer, Basel, Switzerland, 5–22, doi: 10.1007/
978-3-0346-0500-7_2.

Seif, S., A. Mignan, J. D. Zechar, M. J. Werner, and S. Wiemer (2017).
Estimating etas: The effects of truncation, missing data, and model
assumptions, J. Geophys. Res. 122, no. 1, 449–469.

Shebalin, P. N., C. Narteau, J. D. Zechar, and M. Holschneider (2014).
Combining earthquake forecasts using differential probability
gains, Earth Planets Space 66, no. 1, 1–14.

Steacy, S., M. Gerstenberger, C. Williams, D. Rhoades, and A.
Christophersen (2014). A new hybrid coulomb/statistical model
for forecasting aftershock rates, Geophys. J. Int. 196, no. 2,
918–923.

Strader, A., M. Schneider, and D. Schorlemmer (2017). Prospective
and retrospective evaluation of five-year earthquake forecast mod-
els for California, Geophys. J. Int. 211, no. 1, 239–251.

Taroni, M., W. Marzocchi, D. Schorlemmer, M. J. Werner, S. Wiemer,
J. D. Zechar, L. Heiniger, and F. Euchner (2018). Prospective csep
evaluation of 1-day, 3-month, and 5-yr earthquake forecasts for
Italy, Seismol. Res. Lett. 89, no. 4, 1251–1261.

Taroni, M., J. Zechar, and W. Marzocchi (2014). Assessing annual
global m 6+ seismicity forecasts, Geophys. J. Int. 196, no. 1,
422–431.

Tracton, M. S., and E. Kalnay (1993). Operational ensemble predic-
tion at the national meteorological center: Practical aspects,
Weather Forecast. 8, no. 3, 379–398.

van der Elst, N. J., J. L. Hardebeck, A. J. Michael, S. K. McBride, and E.
Vanacore (2022). Prospective and retrospective evaluation of the
US geological survey public aftershock forecast for the 2019–2021
southwest Puerto Rico earthquake and aftershocks, Seismol. Soc.
Am. 93, no. 2A, 620–640.

Veen, A., and F. P. Schoenberg (2008). Estimation of space–time
branching process models in seismology using an em–type algo-
rithm, J. Am. Stat. Assoc. 103, no. 482, 614–624.

Woessner, J., S. Hainzl, W. Marzocchi, M. Werner, A. Lombardi, F.
Catalli, B. Enescu, M. Cocco, M. Gerstenberger, and S. Wiemer
(2011). A retrospective comparative forecast test on the 1992
Landers sequence, J. Geophys. Res. 116, no. B5, doi: 10.1029/
2010JB007846.

Zechar, J. D., D. Schorlemmer, M. Liukis, J. Yu, F. Euchner, P. J.
Maechling, and T. H. Jordan (2010). The collaboratory for
the study of earthquake predictability perspective on computa-
tional earthquake science, Concurrency Comput. 22, no. 12,
1836–1847.

Zhuang, J. (2012). Long-term earthquake forecasts based on the epi-
demic-type aftershock sequence (ETAS) model for short-term
clustering, Res. Geophys. 2, no. 1, e8–e8.

Appendix
Polygons
The polygons used in this study are defined via the lists of ver-
tices defined in Tables A1 and A2.

Inverted parameters
Figure A1 shows the inverted parameters for the four ingre-
dient models, with an increasing time horizon used for the

calibration, for southern California and Italy. For the standard
epidemic-type aftershock sequence (ETAS) model and flexible
epidemic-type aftershock sequence (flETAS) in which only the
background rate is free, the parameters a and k0 are inverted
directly during expectation maximization (EM), whereas for
the flETAS models with free productivity, they are inferred
afterward based on the κj values that result from the EM
inversion.

Most parameters show remarkable changes in time in
southern California, and generally, the parameters differ
between Italy and southern California. The differences between
parameters obtained for different ingredient models show sim-
ilar trends in both regions.

For instance, the background rate μ is highest for
the model that only allows the background rate to be
free, followed by the model in which background and
productivity are free, and is lowest when only the productivity
is free. This is expected, because allowing the background
to be free will allow the model to classify more events to
be background events, whereas allowing the productivity
to be free will allow it to classify more events to be after-
shocks.

The exponent of the productivity law, a, is larger in the
flETAS models that allow the background to be free, indicating
a stronger magnitude dependency of the number of aftershocks
an earthquake is expected to generate. Those models also have
larger γ and much larger ρ values, which translates to a
stronger magnitude dependency of the spatial region in which
aftershocks occur, and a stronger spatial decay of the after-
shock rate.

Interestingly, the flETAS model in which only productivity
is free shows smaller k0 values than standard ETAS in
both regions, accompanied by values of a that are similar
to standard ETAS. Both these effects would suggest lower
overall productivity. However, the value of τ is larger in
this model, indicating a slower long-term tapering off of
aftershock rate in time, and ω is smaller in southern
California (similar in Italy), further indicating a slower
(similar) temporal decay of aftershock rate. Together with
the observation that μ is smaller for this model, these results
suggest that allowing productivity to be free leads to an over-
all slower decay of aftershock rate, and, thus, a large fraction
of aftershocks is expected to occur later in an ongoing
sequence.

The branching ratio η, which captures the average expected
number of aftershocks of any event, is highest for the standard
ETAS model, followed by flETAS with free productivity,
flETAS with free background, and flETAS with free productiv-
ity and background with the lowest branching ratio. Thus, the
degree of flexibility of a model is qualitatively opposite to the
degree of criticality of the system that is inferred with
that model.
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TABLE A2
Italy Polygon Boundary Vertices

Latitude Longitude

45.1 4.9

44.5 5.1

43.3 5.9

42.8 6.5

41.6 9.1

38.0 10.5

36.7 11.5

35.8 13.4

35.3 15.1

35.7 16.1

38.8 19.4

40.1 20.1

41.3 19.5

42.9 17.2

44.0 15.6

45.6 15.6

46.5 15.4

47.5 14.7

47.9 13.7

48.1 13.2

48.4 12.2

48.2 10.7

47.9 9.4

47.8 8.4

46.8 5.8

45.8 5.1

45.1 4.9

TABLE A1
Southern California Polygon Boundary Vertices

Latitude Longitude

32.7219 −116.3004

33.7424 −117.6512

33.7958 −117.966

33.9322 −118.0775

34.0984 −118.2611

34.1755 −118.9365

34.6027 −118.8775

34.8281 −119.343

36.525 −119.1988

36.4835 −115.6381

34.128 −115.5463

32.7219 −115.2578

32.6922 −115.448

32.7753 −115.7234

32.8109 −115.8545
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Figure A1. Evolution of inverted parameters with increasing
length of the training catalog, for the four ingredient models.
The branching ratio η is not individually inverted but is

calculated from the other parameters. The dashed lines reflect
southern California parameters; solid lines reflect Italian
parameters.
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