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ABSTRACT

We carry out hydrodynamical simulations to study the eccentricity growth of a 1-30 Jupiter mass planet located inside the fixed
cavity of a protoplanetary disc. The planet exchanges energy and angular momentum with the disc at resonant locations, and
its eccentricity grows due to Lindblad resonances. We observe several phases of eccentricity growth where different eccentric
Lindblad resonances dominate from 1:3 up to 3:5. The maximum values of eccentricity reached in our simulations are 0.65-0.75.
We calculate the eccentricity growth rate for different planet masses and disc parameters and derive analytical dependencies on
these parameters. We observe that the growth rate is proportional to both the planet’s mass and the characteristic disc mass for a
wide range of parameters. In a separate set of simulations, we derived the width of the 1:3 Lindblad resonance.

Key words: hydrodynamics — planet-disc interactions — protoplanetary discs —accretion, accretion discs.

1 INTRODUCTION

Many massive exoplanets have high eccentricities. There is a wide
distribution of eccentricities at different planet masses and their
distances from the star (see e.g. fig. 1 from Debras, Baruteau &
Donati 2021, which is based on the recent data from exoplanets.eu).
In cases of warm/cold Jupiters (masses 0.5 < M, < 5 of Jupiter
mass), approximately 50 per cent of planets have eccentricities 0.1
< e, < 0.4, while in cases of more massive planetary objects (5 <
M, < 50), the eccentricities are even higher on average, with the
eccentricity distribution almost uniform up to e, ~ 0.8.

One class of mechanisms for eccentricity growth relies on the
gravitational interaction either through strong planet—planet scat-
terings (e.g. Rasio & Ford 1996; Lin & Ida 1997; Papaloizou &
Terquem 2001; Chatterjee et al. 2008; Juri¢ & Tremaine 2008;
Mustill, Davies & Johansen 2017; Anderson, Lai & Pu 2020; Li et al.
2021) or through secular perturbations from exterior stellar/planetary
companions (e.g. Holman, Touma & Tremaine 1997; Anderson &
Lai 2017). Another mechanism is the resonant interaction of a planet
with an accretion disc.

A planet interacts with the disc due to the Lindblad and coro-
tation resonances (Goldreich & Tremaine 1979, 1980). Lindblad
resonances tend to increase the eccentricity of the planet, while
corotation resonances suppress the eccentricity growth (see also
Goldreich & Sari 2003; Ogilvie & Lubow 2003; Teyssandier &
Ogilvie 2016). If a planet enters a low-density environment, the
corotation torque becomes small, and eccentricity can grow due to
the eccentric Lindblad resonances (ELRs; e.g. Artymowicz et al.
1991; DAngelo, Lubow & Bate 2006). Such a situation appears if a
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massive planet clears a low-density gap in the disc, or if a planet enters
the low-density cavity surrounding a star. A number of numerical
simulations have been performed that show that eccentricity can
increase due to the disc-planet resonant interaction (e.g. Papaloizou,
Nelson & Masset 2001; DAngelo et al. 2006; Kley & Dirksen 2006;
Bitschetal.2013; Dunhill, Alexander & Armitage 2013; Ragusaetal.
2018; Debras et al. 2021). However, only a small value of eccentricity
has been obtained in most of the simulations, e, ~ 0.1-0.25 (e.g.
Papaloizou et al. 2001; DAngelo et al. 2006; Kley & Dirksen 2006).
In many instances, the authors concluded that eccentricity increases
due to the 1:3 ELR (e.g. Kley & Dirksen 2006). However, DAngelo
et al. (2006) argued that the main resonances responsible for the
eccentricity growth are the higher order ELRs: 2:4 and 3:5.

Ragusa et al. (2018) performed very long simulations of planets in
cavities of low-mass discs. They observed regular patterns in which
the disc and the planet exchange angular momentum. The maximum
planet eccentricity in these simulations is e, ~ 0.12.

Debras et al. (2021) developed a quasi-steady low-density cavity
by taking a high viscosity in the cavity, and low viscosity in the
disc (in analogy with the dead disc ideas by Gammie 1996). They
investigated the migration of Jovian planets to the cavity and observed
its eccentricity growth. They showed that the planet’s eccentricity can
increase up to e, ~ 0.4. They had to stop the simulations because a
planet in eccentric orbit entered the region of wave damping placed
around the inner boundary. Baruteau et al. (2021) studied how a
young planet shapes the gas and dust emission of its parent disc using
a post-processing radiative transfer model aimed at comparisons with
ALMA observations.

Rice, Armitage & Hogg (2008) used a different approach. They
placed a planet into an empty cavity so that it interacted only with the
disc and the star. They observed the growth of eccentricity up to e,
~ (0.4 in the case of very massive 20 Jupiter mass planets. However,
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the authors considered an unrealistically massive disc (to decrease
computing time) and later scaled the results. Teyssandier & Ogilvie
(2016) argued that scaling cannot be performed because the rate of
exchange of the angular momentum between the disc and the planet
is not similar for discs of different masses. This issue of scalability
has not been checked in numerical simulations.

In our earlier works, we experimented with low-density, high-
temperature cavities that are in pressure equilibrium with the disc
(e.g. Romanova et al. 2018). This approach (at low viscosity in the
disc) provided a low-density cavity for a significant duration. We
observed that the eccentricity of a planet in the cavity grows due
to resonant interaction with the disc. However, in many instances, a
small amount of disc matter entered the cavity, causing the planet’s
eccentricity to decrease due to co-orbital corotation torque. In this
work, to stop the matter from penetrating into the cavity, we fix
the inner disc boundary. The low-density fixed-sized cavity may be
supported by various physical mechanisms, such as the magneto-
sphere of the star (e.g. Konigl 1991; Hartmann 2000; Romanova &
Lovelace 2006; Romanova & Owocki 2015), magnetic wind from
the star (e.g. Lovelace, Romanova & Barnard 2008; Schnepf et al.
2015; Bai 2016; Wang & Goodman 2017), or evaporation of the inner
disc due to UV radiation (e.g. Dullemond et al. 2007). By fixing the
cavity border, we mimic such ‘real’ cavities. We also put zero density
in the cavity because in many situations planet interaction with the
cavity matter is expected to be less significant compared with the disc
matter. In this approach, we do not need to calculate the gas flow
inside the cavity. This approach is similar to that used by Rice et al.
(2008). However, we take a lower mass, more realistic disc. In this
approach, we are able to observe different resonances responsible for
eccentricity growth and study the disc—planet interaction over long
time-scales.

In our simulations, we observe that the eccentricity of the planet
increases up to high values of e, ~ 0.65—0.75, which has never
been obtained in earlier studies. We perform simulations for different
masses and different parameters of the disc and derived dependencies
of the eccentricity growth rates on these parameters.

The plan of the paper is the following. In Section 2, we briefly
review the main resonances. In Section 3, we describe our numerical
model and problem set-up. In Section 4, we present the different
phases in eccentricity growth and resonances observed in simula-
tions. In Section 5, we derive the dependence of eccentricity growth
rate on planet mass and parameters of the disc. We discuss different
issues and applications in Section 6 and conclude in Section 7.
Appendix A presents the details of our numerical model. In Section
C, we estimate the width of the 1:3 resonance. In Appendix B, we
discusses possible effects of the ellipticity of the orbit on positions
of resonances.

2 RESONANCES

Eccentric resonances were studied by Goldreich & Tremaine (1978)
(see also Goldreich & Tremaine 1979, 1980; Ward 1986, 1997,
Artymowicz 1993a, b; Goldreich & Sari 2003; Ogilvie 2007;
Teyssandier & Ogilvie 2016). Following Teyssandier & Ogilvie
(2016), we summarize the properties of these eccentric resonances.

The gravitational potential of a planet on the eccentric orbit can
be expanded in a Fourier series:

Vr ¢, 1) = Z Yim(r)expli(me — 1$2,0)]. ey
I.m

Here, the coefficients 1, o e‘lﬁ"”‘, where ¢, < | is the planet’s
eccentricity. For a planet in a circular orbit, / = m. For a planet in an
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eccentric orbit, at the first order in e, one keeps terms with/ =m £ 1,
where the plus/minus signs are relevant to the inner/outer resonances.
Below, we consider only the outer resonances, and therefore we take
Il=m—1.

A planet interacts with the disc gravitationally and exchanges its
energy and angular momentum. The rate of exchange is strongest
at particular locations in the disc called resonances. Two types
of eccentric resonances are important: Lindblad and corotation
resonances. The outer ELRs correspond to locations in the disc
where the perturbing frequency (in the rotating frame) matches the
frequency of the disc: 12, — m$2 = Q. Taking [ = m — 1, one obtains
frequencies and radii in the disc corresponding to ELRs:

Q m-1 m+1\*?
—=—, =a(——) . m=>2. 2
Q,  m+l FELR ap(m_l) m (2)

ECRs are located in the disc where I€2, — m$2 = 0. They occur at
frequencies in the disc and radii:

Q m—1 m 23 -9 3)
— = —, T =a,| —— , m>2.
Q, m ECR Plm—1

There are also principal Lindblad resonances for a planet in a
circular orbit (at / = m). The outer Lindblad resonances (OLRs) are
located at radii where m€2, — mQ = Q or

Q m m+1\*?
—_—= = _— s > 1. 4
Q ml TOLR ap( m ) m =z 4

The eccentricities (e, and eg) of the planet and disc are coupled
through resonant interactions. Different resonances contribute to this
process. According to Ogilvie (2007, see also Teyssandier & Ogilvie

2016), a single ELR contributes to the evolution of the eccentricities
of the planet and the disc in the following way:'

GM?
Mpagszp<%) = "ePBz(l—%>/zF2mdr ®)
ELR

ot M, ep
GM?
Zrzsz(%) = ——pzABeD(l - &)F. (6)
0t Jgr M, Be,

The values of the coefficients A and B and the resonant radii 7y
are listed for small values of m in Table 1 (see the full version of the
table in Teyssandier & Ogilvie 2016). Here,

F—uf‘A(ir_”“ - 1) )
— %L

is a function of the resonant radius r.s, resonant width w;, and
dimensionless function A, which describes the radial profile of
the resonance. The width for outer ELR has been estimated as
(Teyssandier & Ogilvie 2016; equation 18)

2 13
wy ~ r[73(m . 1)} . ®)

Equations similar to 5 and 6 were derived for ECR where the
relevant coefficients are C and D. Table 1 shows that higher order
resonances are located closer to the planet and the coefficients A —
Dare larger.

"Note that the authors used the complex eccentricity Ep, = epe_’ ®_ where
wis the argument of pericentre. Here, we neglected the precession of the orbit
and take the absolute value e, = | E; |.
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Table 1. Top: Values of m, type of resonance, res, resonant radii res/a,
and coefficients A and B for ELRs. Bottom: Same but for ECRs, where
coefficients are C and D.

Lindblad resonances

m res Tres/ap A B

1 1:2 1.587

2 1:3 2.080 0.607 1.849
3 2:4 1.587 5.201 3.594
4 3:5 1.406 7.362 5.604
5 4:6 1.310 9.763 7.859

Corotation resonances

m res Treslap C D
2 1:2 1.587 1.723 0.620
3 2:3 1.310 2.931 3.595
4 3:4 1.211 4.111 4751
5 4:5 1.160 5.282 5.910

3 NUMERICAL MODEL

We consider the orbital evolution of a massive planet (of Jupiter
mass and higher) in an empty cavity surrounding a star. The planet
interacts gravitationally with the star and accretion disc.

3.1 Initial and boundary conditions

We place a point-like star of mass M, at the centre of the coordinate
system, an empty cavity at radii » < rq , and the disc at radii rg < r
<136r4.

We place a planet of mass M, in the cavity at a distance a, from
the star. We take a slightly eccentric orbit with e, = 0.02 (and e, =
0 in our test case).

We take a disc with an aspect ratio of h = H/r = 0.05, which is
determined at time ¢ = O at the inner edge of the disc, r = rq . Here,
H = (cs /vg)r is the scale height of the disc, ¢y is the sound speed,
and vk is the Keplerian velocity. We investigate the dependence of
our results on 4 in Section 5.5.

We take the power-law distribution of the surface density and
pressure in the disc:

P\ r -l
X(r) = %4 (a) H(r) =14 <E> . &)

Here, X4 and Il4 are the surface density and surface pressure at
the radius r = rg. We use values n = [ = 0.5 (and investigate the
dependence on 7 in Section 5.6).

We set an equilibrium distribution of the azimuthal velocity vy in
the disc by taking into account the balance of gravity and pressure
gradient forces in the radial direction:

(r.2) = 0P n 1 oIl (10)
RAAR T or zor )’
where ®(r) = —GM,/r is the gravitational potential of the star.

This approach provides quasi-equilibrium initial conditions in the
disc.

We use ‘free’ boundary condition dA/dr = O for all variables A
at the inner (cavity) boundary and fixed boundary conditions at the
outer boundary. We use the procedure of damping waves at the outer
boundary, following de Val-Borro et al. (2006, see their equation 10).
Namely, we set the buffer zone for damping at the outer part of the
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Table 2. Reference dimensionless disc mass gq, reference surface density
Y4, and time-scale Py at different distances rq .

74 (au) 0.1 1 10
qa = My IMy 3x 1074 3x 1074 3x 1074
24 =qq o (gem™?) 2.7 x 10° 2.7 x 103 26.7
Py (d) 11.6 365 11565

disc: 0.87py < 7 < row. In addition, we put an exponential cut? to the
density and pressure distributions at r = e, to further decrease the
possible influence of outer boundary conditions:

(r—rexp) (r—rexp)
X(r)y=%(r)e- &, II(r)=M@Fr)e 5, (11)
where 7eyp = 0.570u  6.8rg and A = 0.22 r4 in our Reference model.
We take smaller values of r.,, and A in test models with the smaller
sized discs (see Section 5.8).

At the inner boundary, we place an exponential cut in the narrow
region of ry < r < 1.1rgq to have a smoother transition of density
towards the inner edge of the cavity. We take re, = 1.17g and A =
0.02974 . We are not damping waves at the inner boundary.

We solve a full set of hydrodynamic equations in 2D including
energy equation in entropy form. We also solve the equation for the
planet’s motion (see Section A).

We use a polar grid, which starts at the inner boundary r = rq4 .
The grid is centred on the star. It is evenly spaced in the azimuthal
direction, where the number of grid cells is Ny = 640. In the radial
direction, the size of the grid cells progressively increases such that
the shape of grids is approximately square, and the number of grids
is N, = 308. Test simulations were performed using finer and coarser
grids. Simulations at finer grid show convergence. We chose the grid
resolution 308 x 640 in all simulation runs.

3.2 Dimensionalization

The equations are written in dimensionless form and the results can
be applied to cavities located at different distances from the star. We
choose a reference scale ro = ry and reference mass My = M, =
Mg,. The dimensionless mass of the planet is g, = Mp/M.,. For the
convenience of presentation, we take M, = Mg and measure the
mass of the planet in Jupiter masses. For example, in our reference
model, we take g, = 1072 which is M, = 10 in Jupiter masses.

The reference velocity is The Keplerian velocity at r = ry: vo =
VG M, /ry. We measure time in the Keplerian period at r = ry: Py =
27 ro/vg. The reference surface density is g = M,/ rg. The reference
pressure is [Ty = Zov3.

We also have the dimensionless parameter in the code, g4 , which
is used to vary the characteristic mass of the disc: My = gq Mo.
Thus, g4 is the dimensionless characteristic mass of the disc: g4 =
Mgy IMy. We vary qq in the range of g4 = 1072—10"* and take
ga = 3 x 10 ~* in the reference model. We take into account
that My = Zor2 and obtain My = gqZori = Zard, where =4 = qq
¥ is characteristic surface density in the disc. Therefore, g4 also
represents dimensionless characteristic surface density in the disc:
¥ = g4 = X4/ Zo. Table 2 shows the reference dimensional values
in models with g3 =3 x 10~* at different ry .

2Test simulations show that results are very close in models with and without
an exponential cut. However, we keep an exponential cut for safety and also
use it to model discs of different sizes (see Section 5.8).
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Table 3. Parameters in the reference model.

Parameter Reference model
Reference disc mass qqs =3 x 10 —4
Reference surface density £=3x10"*
Initial semimajor axis a, =0.6,0.7,0.8
Initial eccentricity ep =0.02
Coefficient of viscosity a=3x10"*
Mass of the planet in stellar mass ap = 1072
Mass of the planet in Jupiter mass M, =10
Semithickness of the disc h=0.05
Slope in the density distribution n=0.5
Adiabatic index y =5/3

We can compare values of reference surface densities in our
model with values obtained for the Minimum-Mass Solar Nebula
(MMSN): ¥ = 1700(r/1au)_3/2 gcm_2 (Hayashi 1981). In our
reference model, we take g¢ = 3 x 107*, ry = 1 au, and obtain
¥4 = 2.7 x 10° gcm™2. In the model with the lowest mass of the
disc (ga = 107*), we obtain 4 = 8.9 x 10> gcm™2. These values
are close to those in MMSN.

3.3 Reference model

In the Reference model, we take a planet of mass M, = 10 and a disc
with a dimensionless reference mass g3 = 3 x 1074, thickness =
0.05, slope n = 0.5, adiabatic index y = 5/3, and viscosity coefficient
o =3 x 107*. We place a planet at the orbit with eccentricity e, =
0.02 and different semimajor axes: a, = 0.6, 0.7, and 0.8 (see Table
3 for parameters in Reference model). The left-hand panel of Fig. 1
shows the temporal evolution of g, and e, in models with different
initial a, . One can see that in all models a, decreases up to a, ~ 0.6,
and e, increases up to e, &~ 0.65. We note that in models with initial
values of a, = 0.7 and 0.8, there is an initial interval of time with
relatively fast inward migration and slow growth of eccentricity.
In contrast, in the model with initial ¢, = 0.6 inward migration
is slow, while eccentricity increases rapidly from the beginning of
the simulation. Analysis shows that in models with larger a, the
principal 1:2 OLR is responsible for inward migration, while at a,
= 0.6, this stage is absent, and the planetary eccentricity increases
due to 1:3 ELR from the beginning of the simulation. Fig. 2 compares
the positions of 1:2 OLR and 1:3 ELR (see Table 1 for positions of
resonances) in models with a, = 0.8 (left-hand panel) and a, =
0.6 (right-hand panel). One can see that in the model with a, =
0.6, the OLR is located inside the cavity, and this may be the reason
that eccentricity increases due to 1:3 ELR from the beginning of
simulations.

In a test simulation run with ¢, = 0.6 and e, = 0, we observe a
long interval of time during which eccentricity increases very slowly
(see the blue line in the right-hand panel of Fig. 1). This is probably
because the 1:2 ECR damps the eccentricity growth. However, ECRs
are saturated at small values of e, (e.g. Goldreich & Sari 2003;
Ogilvie & Lubow 2003). We take e, = 0.02 in all our models.

4 PHASES OF EVOLUTION

We observed several phases of orbit evolution, where different res-
onances can be responsible for eccentricity growth. To demonstrate
these phases, we take a reference model with a, = 0.8. Fig. 3 shows
the results of the simulations. We observed that the planet excited
spiral waves in the disc, but the number of arms (the m number) is

Eccentricity of massive planets 2835

different at different times during the orbit evolution. The number of
waves may signal the importance of a particular resonance. Below,
we describe these phases in greater detail.

Phase 1 (m = 1). Initially, at times 0 < ¢ < 6000, the planet
excites a one-armed spiral wave in the disc (see a panel at = 3000
in Fig. 3). The bottom panel of the same figure shows that, during
this time interval, the semimajor axis decreases from 0.8 to 0.68 and
eccentricity increases from 0.02 to 0.039. This stage of evolution can
be associated with principal 1:2 OLR. At a, = 0.8, it is located at
TOLR, 1:2 ~ 1.587 a, ~ 1.27 (see the left-hand panel of Fig. 2). At the
end of this phase, it is located at the edge of the disc: rorr, 12 ~ 1.08.
Corotation resonance 1:2 ECR is also located at the same distance.
However, at e, = 0.02, it is saturated.

Phase 2 (m = 2). At 6000 < ¢ < 11 000, we observed two-armed
spiral waves in the disc (see an example at the panel at = 9000 in
Fig. 3). These waves are a sign of the 1:3 ELR. At this phase, a,
decreases from 0.68 to 0.63, and ¢, increases from 0.039 to 0.23. At
these values of a, , this resonance is located at rgir, 1.3 ~ 2.08 a, ~
1.41 and 1.31. Note that the 1:2 OLR is still in the disc: rorg, 12 &
1.587 a, ~ 1.00—1.08. However, the 1:3 resonance is stronger and
dominates.

Phase 3 (m = 3). In the interval of time 11 000 < ¢ < 17 000,
we observed three-armed spiral waves (see the panels at + = 13 000
and ¢ = 15000) which may be associated with the 2:4 ELR. During
this phase, a, decreased from 0.63 to 0.57, while ¢, increased from
0.23 up to 0.49. At these (large) values of eccentricity, the theoretical
formulae can be applied only approximately. In the linear theory of
resonances, 2:4 ELR is expected to be at rg; r 2.4 ~ 1.587a,, , that s at
1.00 and 0.90 at the beginning and the end of this phase, respectively.
At this phase, the 1:3 ELR is still in the disc, while the 2:4 ELR is
inside the gap. We suggest that several factors are important. First,
the resonance has a finite width and part of the 2:4 ELR can be
located in the disc (see Section C). In addition, the planet has an
elliptical orbit with the closest approach to the star in the pericentre,
aper = ap (1 — ), and furthest approach in the apocentre, a,, = g,
(1 4 ep ). It spends most of the time in the apocentre. If this factor
is important, then the resonances will be in the disc (see Section B).
The action of the 2:4 ELR is stronger than that of 1:3 ELR, probably
because coefficients .4 and Bare larger in case of 2:4 ELR (see
Table 1).

Phase 4 (m = 4). At t > 17 000, we observed another transition
and a final phase of evolution. Now, four-armed spiral waves were
observed (see panel at t = 18 600). These waves may be associated
with 3:5 ELR. During this phase, a, changes from 0.57 to 0.6, while
eccentricity increases from e, = 0.49 to the final value of ¢, =
0.66. Using the formulae of linear theory,® we obtain the positions of
resonances: rgrg3:5 = 1.406 a, ~ 0.80 and 0.84, which are inside the
gap. Again, we suggest that the ellipticity of the orbit may increase
the resonant radii (see Section B). Also, the coefficients Aand Bare
larger than in the lower-m resonances (see Table 1).

We stop simulations when a planet in apocentre reaches the disc-
cavity boundary at » = 1. We should note that the inner low-density
region in the disc increases with time (see dark-blue areas in top
panels of Fig. 3), and the eccentricity could increase to even higher
values.

3We should note that the linear theory has been developed for small values of
eccentricity, and therefore the positions of resonances may differ from those
provided by the theory.
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Figure 1. Left-hand panel: Temporal evolution of the planetary orbit in models with different initial values of a, = 0.6, 0.7, 0.8, and initial eccentricity e, =
0.02. Right-hand panel: Evolution of the orbit with initial value of a, = 0.6, and eccentricity e, = 0 (blue curve) and e, = 0.02 (red curve).

2.7E-04
2.4E-04
2.1E-04
1.8E-04
1.5E-04
1.2E-04

Figure 2. Left-hand panel: Initial density distribution and location of resonances in a model with an initial value of @, = 0.8. The solid line shows the position
of the semimajor axis a, , the dash—dotted line shows the positions of the 1:2 OLR and 1:2 ECR, and the dashed line shows the position of the 1:3 ELR.

Right-hand panel: The same but for a planet with the initial value a, = 0.6.

5 DEPENDENCIES

We varied the mass of the planet and the parameters of the disc
and studied the dependence of the eccentricity growth on different
parameters. We took, as a base, the model witha, = 0.6 and ¢, =
0.02 (thus skipping Phase 1). We varied one parameter at a time.

5.1 Dependence on the reference mass of the disc g, (reference
surface density X)

We took several values of reference mass: gg =1 x 1072,3 x 1073,
1073,3 x 10, 10~*. The left-hand panel of Fig. 4 shows that, in all
models, the planet eccentricity increases to a high value. In the model
with gg = 1 x 1074, it reached e, ~ 0.65, while in the model with
ga =1 x 1072, it reached e, &~ 0.75. We observed that eccentricity
increases faster in models with more massive discs. In all models,
Phases 2 and 3 were observed, which are characterized by different
slopes and typical ‘knees’ between phases.

To calculate the rate of eccentricity growth t=' = (1/e,)de,/df =
d(In e, )/dt, we plotted log(e, ) versus time (like in the left-hand
panel of Fig. 4), then chose intervals of the linear (or almost linear)
growth, and calculated the eccentricity growth rate T~ = d(In e,
)/dt ~ A(In e,)/ At for each model. The right-hand panel of Fig. 4
shows the dependence of 7! on g4 for Phases 2 and 3. We observed
that in Phase 2 at ¢4 2 3 X 10%, the growth rate almost linearly
varies with gq and can be presented as 7! ~ (gq /3 x 1074)%% In
our model, the reference density in the disc T = qq, and therefore
the dependence on Zis almost linear as well. This is in agreement
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with theoretical prediction: (1/e, ) dey/dt ~ X (see e.g. equation 5).
This also means that our results can be scaled: simulations can be
performed using high-density discs for which the eccentricity growth
rate is high (and simulations are shorter). Subsequently, the results
can be scaled to more realistic, lower density discs and longer time
scales of eccentricity growth (e.g. Rice et al. 2008). Fig. 5 shows
the density distribution in the disc for different g4 at the end of the
simulation run. The top panels show that the resonant sets of waves
are qualitatively similar despite the different densities of the disc.

In Phase 3, the dependence is more complex. In this case, we
derive the dependence on g, in the vicinity of our reference value:
T~ (gq 13 x 1074)034,

5.2 Dependence on the mass of the planet M|,

We varied the planet mass from relatively small (M, = 1) to very
large (M, = 30) values. The left-hand panel of Fig. 6 shows that
the planet’s eccentricity increases faster in models with larger M, .
The right-hand panel shows that in Phase 2, the eccentricity growth
rate 7~ systematically increases with M, up to M, ~ 15. However,
the curve flattens at larger values of M, . In Phase 3, the growth rate
increases with M}, , but it is slower. The growth rates in the vicinity
of our reference value of M, = 10 are: T=' ~ (M,/10)"* in Phase 2
and t~! ~ (M, /10)** in Phase 3.

We should note that in the interval of masses 1 < M, < 15 in
Phase 2, the growth rate 7~ increases with a planetary mass almost
linearly (z=! ~ (M,/10)"%%) which is in accord with the theoretical
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prediction (see e.g. equation 5).* Fig. 7 shows the density distribution
in the disc for different M. The top panels show that at high mass
M,,, the inner cavity becomes wider and non-axisymmetric. This may
explain the lower growth rate of eccentricity at high planet masses.
The bottom panels of the same figure show the asymmetry of the
whole disc increases at larger M,, .

5.3 Dependence on viscosity o

We varied the viscosity coefficient o froma =0to o =3 x 1073,
The left-hand panel of Fig. 8 shows that in Phase 2 the eccentricity
evolves slower with time for larger values of «. The right panel shows
that the eccentricity growth rate systematically decreases with « in
Phase 2. We suggest that viscosity partly damps waves excited at
1:3 resonance (see also Teyssandier & Ogilvie 2016). The damping
is weaker in Phase 3. In the vicinity of our reference value of ¢ =

“Note that the faster growth of eccentricity with the planet’s mass has been
also observed in simulations by Papaloizou et al. (2001).
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3 x 107, we derive dependencies T~! ~ (a/3 x 10)~%!! for Phase
2and ! ~ (/3 x 10~%)*13 for Phase 3.

We see that our reference value of @ = 3 x 107* gives similar
results as those at « = 0. Thus, the damping of waves is negligibly
small.

5.4 Dependence on the adiabatic index y

We varied the adiabatic index y from y = 1.01 to y = 5/3. The left-
hand panel of Fig. 9 shows that the planetary eccentricity evolves
slower in models with smaller values of y. The right-hand panel
shows that in both phases, the eccentricity growth rate increases
systematically with y in the interval of 1.01 < y < 1.3 and slowly
increases at larger values of y. We solve an energy equation in
the entropy form and use the equation of state in the form: p = kp”.
Hence, we expect that the amplitude of resonant waves and the torque
acting on the planet increases with . We see that the growth rate is
approximately 1.8 times larger in models with y = 5/3 than in models
with y = 1.01. We estimate that at smaller values of y in the interval
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1 ~

of 1.01 < y < 1.3 the growth rate strongly increases with y: t~
[y/(5/3)1"7 in Phase 2 and T ! ~ [y/(5/3)]'*® in Phase 3. However
in the interval of 1.4 < y < 1.66, the dependence is not that strong:
=1~ [y/(5/3)]°'® in Phase 2 and ="' ~ [y/(5/3)]°7° in Phase 3.
Currently, we do not know how to explain weaker dependence on y
at larger y in Phase 2.

We should note that in many previous simulations of planet
migration in the cavity, the energy equation is not solved. Instead,
a locally isothermal equation of state is often adopted, in which
the temperature distribution depends only on the radius and is fixed
with time (e.g. Papaloizou et al. 2001; Rice et al. 2008; Ragusa
et al. 2018; Debras et al. 2021). Here, we cannot strictly compare
models with and without the energy equation. However, we suggest
that locally isothermal models are closest to our models with
y =1.01.

5.5 Dependence on the thickness of the disc 7 = H/r

We varied the half-thickness of the disc 4 from &4 = 0.03 up to h =
0.1. The left-hand panel of Fig. 10 shows the temporal evolution
of eccentricity for different 4. The right-hand panel shows that in
Phase 2, the eccentricity growth rate decreases when 4 increases.
In Phase 3, the growth rate slowly increases with /. In the vicinity
of our reference value of & = 0.05, we find dependencies 77!
(h/0.05)~"1° in Phase 2 and t~! ~ (1/0.05)*%’ in Phase 3.

A lower growth rate at larger % in Phase 2 can be explained by
the increase of viscosity with h: vy, = o ¢ H, where both H and ¢,
increase with h. The viscosity damps the resonant waves (see also
Section 5.3).

~

5.6 Dependence on the density distribution in the disc (slope n)

Here, we varied the slope n in the initial density (and pressure)
distributions: £ ~ r~", I1 ~ r~". The left-hand panel of Fig. 11
shows that the orbit evolves more rapidly in models with flatter
density distribution (smaller values of n). The right-hand panel of
Fig. 11 shows that the eccentricity growth rate 7~ decreases when
n increases. We note that at steeper density distribution, there is less
matter in the inner disc (where resonances operate) and the action
of resonances is weaker. That is why 7! decreases with n in both
phases. In the vicinity of our reference value, n = 0.5, the dependence
is 71 ~ (1n/0.5)7%10 in Phase 2 and 7! ~ (n/0.5)~%1 in Phase 3.
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5.7 Analytical dependencies

Here, we combine the dependencies derived in the above subsections
for the planet’s eccentricity growth rate:
In Phase 2,

M 1.0 0.95 h —1.16
L A 38x 1074 =2 da o
10M, 3% 104 0.05

~0.1 ~0.1 0.18
<(@5) (i) (G5) @
0.5 3x 10~ 5/3 '

In Phase 3,

M 0.23 q 0.34 h 0.37
—1 —4 p d

~ 1.23 x 10 o
£ X (10M,> (3 X 1074) (0.05)

n 0\ 01 o 013/, 059
() ) () o

We point out that these dependencies were derived in the vicinities
of reference parameters. Away from these regions, the values of !
should be taken from plots. For example, Fig. 9 shows that in Phase
2 the growth rate 7~ increases with y, as expected. However, in the
vicinity of our reference value y = 5/3, it flattens. In several cases,
however, the dependence is valid and can be used for a wide range
of parameters (e.g. the dependence on g, and M,,).

5.8 Dependence on the size of the disc

We varied the size of the disc by changing the radius of the
exponential cut 7, (and A) in the initial conditions for the density
and pressure distributions (see equation 11). In the reference model
we have rep = 0.5 1oy = 6.8. In test models, we take rex, = 5, 4,
3, and 2 (and take smaller widths of the exponential transition A).
The top panels of Fig. 12 show the density distribution in discs with
different values of rexp. The bottom panels of Fig. 12 show that in
models with 7., = 6.8, 5, and 4, the curves for the eccentricity growth
are almost identical. The eccentricity increases somewhat slower in
the model with the smaller-sized disc, where 7.y, = 3 (it increases
to the maximum value during 17 900 rotations versus 15 300 in the
reference model). The eccentricity increases even slower in the model
with the smallest disc, where 7ex, = 2 (during 29 000 rotations). We
conclude that resonant excitation of eccentricity occurs when the
disc is large enough to incorporate the width of the ELR. When the
disc is smaller than ELR width (the model with e, = 2), then only
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Bottom panel: Temporal variation of the eccentricity in models with different rexp.

part of the resonance is in the disc, and the action of the resonance
is weaker. We conclude that the disc with the size of r., = 3 would
be sufficient for resonant excitation of eccentricity.

The total dimensionless mass of the disc is calculated by integrat-
ing the density distribution from r = 1 to r = rxp:

Texp

Texp _ _
My o = / Sr%2mrdr = £(4/3)mr!d (14)
1

1
Taking our reference value of £ =3 x 107, we obtain My, ~
2.1 x 1072 in our reference model (rex, = 6.8), and Mygr ~
5.3 x 1072 in the model with rey, = 3. The disc mass is approximately
twice as larger as the planet mass g, = 1072 in our reference model
and twice as smaller as the planet’s mass in the model of a small disc.

5.9 Eccentricity of the disc

The eccentricity of the planet changes due to interaction with the disc,
and therefore the eccentricity of the disc also varies with time. We

observed that the disc becomes more and more non-axisymmetric
with time. Fig. 5 shows the density distribution at the end of the
simulation run in models with different reference disc masses ¢4 from
the high one, gg = 1 x 1072, to the low one, gg = 1 x 107*. Top
panels of Fig. 5 show that in the inner parts of the disc, where resonant
interaction occurs, the disc is non-axisymmetric. The bottom panels
show that the disc overall becomes slightly non-axisymmetric.

We calculate the distribution of the eccentricity of the disc with
radius using an approach based on the angular momentum deficit
Aq (r) (e.g. Ragusa et al. 2018). For that we calculate the circular
angular momentum of the ring in the disc located at radius r:

GM GM 2
Jcirc(r):/z\/md¢, a:_ﬁ’ E=— +v2
r

and the real angular momentum of the ring at the radius r:
Ja(r) = / X rvgde.
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Figure 13. Distribution of the disc eccentricity eq with the distance from the
star, r, at different times.

The angular momentum deficit of the ring is
Ad(r) = circ(r) - Jd(r)

and the eccentricity of the ring:

(2 A4
ed(r) B Jcirc(r) .

Fig. 13 shows the distribution of e4 (r) at different moments in
time in the inner part of the simulation region (at larger radii the
density of the disc drops due to the exponential cut). One can see
that the disc eccentricity increases with time, and it is larger in the
inner parts of the disc.

Ragusa et al. (2018) observed the long-period exchange of eccen-
tricity between the planet and the disc during the stage when the
resonant interaction of the planet with the inner disc is small. We
suggest that this type of evolution should be further studied in the
future.

6 DISCUSSION

6.1 Size of the cavity

The resonant interaction of a planet with the disc is a powerful
mechanism for the excitation of planetary eccentricity. A planet
should be located at a distance of r, 2 0.5 rqy from the star for
the mechanism to operate. The planet’s eccentricity grows if the size
of the cavity does not change significantly with time. In reality, the
size of the cavity may vary, for example, due to variations in the
accretion rate. We can compare the time-scale of eccentricity growth
with the viscous time-scale.
The viscous time-scale at the radius r is

I‘z rz r

Lis ¥ — = =—, (15)
YT s | acsH | ah?ug

where v, is the viscosity coefficient. Normalizing to our reference
values ry, v, and Py, we obtain the dimensionless viscous time-scale:

L s 1 S(3x 1074 /0.05\*
fis=—=——>=212x10(— | =) . (16)
PO 27'[(}(]’12 o h

The time-scales of the eccentricity growth 7, and 73 are deter-
mined by equations (12) and (13). We put #,;; = 7, and derive a
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critical value of « at which the time-scales are equal in Phase 2:

M 0.91 q 0.86 h —2.87
=162 x 1072 2 d o . (17)
10M; 3x 104 0.05

Here, we neglect the dependencies on y and n. If « is smaller than this
critical value, then the eccentricity of the planet increases faster than
the disc evolves due to viscosity. One can see that for the parameters
of our model and typical & = 10731074, the eccentricity increases
much faster than the viscous disc evolves. We note that in systems
with low-mass planets and/or low-mass discs, the disc may evolve
faster than eccentricity growth. This may explain why more massive
planets ~(5—30) M; have higher eccentricities compared to the lower
mass Jovian planets. The variation of the accretion rate may lead to
episodes of eccentricity growth and damping during protoplanetary
disc evolution.

If a planet is located at r, < 0.5 ry , then resonant interaction
becomes ineffective. However, the disc and the planet may continue
exchanging angular momentum, and the eccentricities of the planet
and disc may increase/decrease in antiphase (Ragusa et al. 2018).
From Fig. 11 of these authors, one can see that this type of evolution
lasts 10-20 times longer than the time-scale of the initial eccentricity
growth. In our simulations, we observed that the eccentricity of the
disc also increases with time. However, we did not see quasi-periodic
variations of eccentricities. Much longer simulations are probably
required to study this phenomenon.

Different types of discs and cavities may have their own specifics
which can affect the planetary eccentricity evolution. For example, if
a planet is located inside the magnetospheric cavity around a young
star (e.g. classical T Tauri star), then the size of the magnetosphere
is rg ~ (3—10) R,, and the size of a star should be taken into account
because a planet on the eccentric orbit may collide with the star
(Rice et al. 2008). On the other hand, the tidal interaction of a planet
with a star tends to decrease the eccentricity. Another factor is that
a star may accrete in the unstable regime, where tongues of matter
penetrate the magnetosphere in the equatorial plane (e.g. Kulkarni &
Romanova 2008, 2009; Romanova, Kulkarni & Lovelace 2008). This
matter may decrease the eccentricity of the planet due to the action
of the co-orbital corotation torque. This mechanism is more efficient
in the cases of relatively small slowly rotating magnetospheres
(Blinova, Romanova & Lovelace 2016). At later stages, the mag-
netosphere gradually expands and the unstable regime becomes less
important.

The low-density cavities may form at different distances from
the star and the disc—planet resonant interaction may lead to the
formation of eccentric planets at different distances. We have found
that the eccentricity increases faster in the case of more massive
planets.’ This may explain the larger eccentricities of more massive
planets.

We should note that if the cavity is very large then the time-scale of
eccentricity growth may be larger than the lifetime of protoplanetary
disc (Debras et al. 2021). Taking equation (12) and equating Pyt, =
10% yr (where Py = ro/vg = rg/ z /~/GM.,is our dimensional time-
scale), we obtain the maximum size of the cavity:

T \7( My \*? qd 23
max ~ 51 - P ) 18
" au(mé yr) 10M, 3x 104 (18)

where Ty is the lifetime of the disc. This formula shows that more
massive planets located in more massive discs have enough time to
acquire eccentricity even in large-scale cavities.

SNote that a similar result has been obtained by Papaloizou et al. (2001).
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Figure 14. Left-hand panel: Temporal evolution of the semimajor axis a;, and eccentricity e}, in our model with M;, = 10 Jupiter mass and other parameters
similar to those of Rice et al. (2008). We stopped simulations at 1000 rotations to compare this plot with fig. 7 of RO8. We observe m = 1, 2, 3 waves in the
inner disc, like in our main simulations. Right-hand panel: the same, but at a longer simulation time.

Our simulations show that the disc eccentricity also increases
during the simulations. The angular momentum exchange between
the planet and the disc may be more complex over longer time-scales
(e.g. Ragusa et al. 2018; Li & Lai 2022). This issue can be studied
in the future.

If a planet is located in the large-scale cavity (210—30 au), then
inhomogeneities in the disc created by a planet in eccentric orbit
could be observed by the ALMA telescope. Baruteau et al. (2021)
developed maps in the disc in CO molecular spectral lines that can be
compared with ALMA observations. In our models, from 2 to 4 spiral
arms are expected in the disc during different stages of eccentricity
growth. However, the main feature is the crescent-shaped blob that
results from growing eccentricity in the inner disc. This blob may
form and dominate the disc structure in particular in models with
more massive planets (see the right-hand four panels in Fig. 7; see
also Ragusa et al. 2018). This issue should be studied in the future.

6.2 Comparisons with earlier developed models

6.2.1 Comparison with model by Rice et al. (2008)

Our model is very close to the model of Rice et al. (2008, hereafter
RO08). To compare our models, we chose parameters close to those
used by R0O8: we placed an empty gap at r < 1 and considered the
simulation domain between r;, = 1 and ry, = 10. The disc has
surface density distribution & = X !, where the surface density
at r = 1 is ¥y = 1072, which is 30 times larger than the density
in our simulations. We took viscosity with @ = 1073 in the whole
simulation region, while they took @ = 1073 at r = 1 and higher
values ~r at larger distances. We used our type of grid with square-
shaped grid cells and our typical resolution in ¢-direction Ny = 640.
The number of grids in the radial direction is N, = 273. RO8 used grid
resolution 400 x 400, which has a lower resolution in the azimuthal
direction and compressed grids in the r-direction. They used the code
ZEUS (Norman & Stone 1992), while we used a Godunov-type code
(Koldoba et al. 2016).

In one experiment, we took a planet of M, = 10 Jupiter mass and
placeditinitially at a, = 0.8.Fig. 14 shows the results of simulations.
The left-hand panel shows the evolution of the semimajor axis and
eccentricity up to timet = 1000. We can compare this plot with fig. 7
of Rice et al. (2008). These authors placed a planet at a, =0.9. One
can see that there is a quantitative and qualitative similarity between
these two plots. In both models, the eccentricity increased up to e,
~ 0.4—0.45. In their model, wavy oscillations of eccentricity are
often observed, probably due to their boundary conditions. In our

model, we used de Val-Borro et al. (2006) boundary conditions,
which provide very good wave damping at the boundary, and curves
are smoother. Rice et al. (2008) commented in their paper that they
cannot run the code for too long. That is why we continued running
the same model up to the moment when a planet in apocenter reached
the disc-cavity boundary at r = 1. The right-hand panel of Fig. 14
shows that the eccentricity reached the value e, ~ 0.75 at the end of
simulations. At the end of simulations, the planet reached the value
of a,p, ~ 0.2 in the apocentre. Rice et al. (2008) concentrated on the
problem of planet survival in magnetospheres of young stars, where
the typical size of the magnetosphere is r,, ~ 3—10 stellar radii.
The authors concluded that the high-mass planets may not survive in
such cavities due to the high eccentricity and collision with the star.
Though this conclusion is confirmed by our simulations, we note
that in cavities of larger size, the planet eccentricity may increase
up to high values. We checked the types of resonances operating at
these parameters. 2D plots of density distribution in the disc show
the presence of waves with m = 1, 2, 3 spiral arms.

In another experiment, we took the initial position of the planet
at a, = 0.7 and calculated the eccentricity evolution at different
masses of the planet, taken by R08: M, = 10, 5, 1, 0.5. The left-hand
panel of Fig. 15 shows eccentricity evolution during a relatively brief
time interval. This plot can be compared with fig. 8 of R0S. These
figures show qualitatively similar results: eccentricity increases fast
in the model with M, = 10 Jupiter mass and slower in the model
with M, =5. Atmasses M, =1 and 0.5, the eccentricity seems to be
not growing.® We continued running these models for a longer time
and obtain that in all models, the eccentricity increases up to a high
value of e, ~ 0.7—0.75, though the time scale strongly increases for
planets of lower mass. The right-hand panel of Fig. 15 shows that
the eccentricity reached high values in all models. We conclude that
there is no theoretical obstacle to the eccentricity growth of a lower
mass planet, but it takes much longer time, which in some cases may
be unrealistically long (see Section 6.1).

6.2.2 Comparison with model by Debras et al. (2021)

We also compared the results of our model with results obtained by
Debras et al. (2021, hereafter D21) who performed simulations both
in the disc and in the cavity and obtained the maximum eccentricity e,

The time-scales of eccentricity growth do not exactly coincide due to a few
differences in models, e.g. different boundary conditions, different energy
equations (they used locally isothermal disc), and more.

MNRAS 523, 2832-2849 (2023)

€202 duUN( || uo Josn Aleiqr uue Y Wadly Aq L0668 2/ZE82/Z/ETS/PI0IME/SEIUW/WOD dNO"dlWapede/:sdny WOy papeojumoq



2844 M. M. Romanova et al.

0.3 T T T

400 500 QUO
Time

700 800

0.6

0400 5000 10000

Time

Figure 15. Left-hand panel: Eccentricity evolution for planets of different mass M}, and initial @, = 0.7. Simulations are stopped at the time when a planet
with M, = 10 riched eccentricity e, =~ 0.26 like in fig. 8 of RO8. The right-hand panel shows that at longer time-scales, the eccentricity increased to high values

in all models, but the time-scale is much longer for planets of lower mass.
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Figure 16. Left two panels: Evolution of the semimajor axis a, and eccentricity e, in our model with parameters close to those of D21. Dashed lines show
parameters at which eccentricity stopped increasing in the D21 model due to the inner damping zone region. Right-hand panel: Dependence e,—ap,. This

figure should be compared with fig. 3 from D21.

< 0.4. They supported a low-density cavity by placing a low viscosity
in the disc and high viscosity in the cavity and were able to obtain a
quasi-stationary cavity at the radius r = 1. The authors had a goal to
investigate the eccentricity growth of planets of Jupiter’s mass.

We took our model but chose parameters close to those of D21:
mass of the planet: M, = 1 Jupiter mass, reference density in the
disc is three times higher than in our model: ¥y = 103, We took a
flat density distribution with n = [ = 0, like in D21. We took a small
simulation region with the outer radius r,, = 2, like in D21 (who
had roy = 1.9). We used our typical grid resolution Ny = 640 in the
¢ direction, and grid N, = 84 in the radial direction (which resulted
from our preference to keep square-shaped grid cells). We note that
D21 used mainly grids 200 x 200 or 400 x 400. Also, D21 used
a locally isothermal equation of state (with the fixed temperature
distribution), while we solved the energy equation and took y = 5/3.

Despite a few differences, our model is in reasonably good
agreement with that of D21. Left-hand panels of Fig. 16 show that in
our model the eccentricity increased up to the value of e, ~ 0.6 during
~30 000 rotations of the inner disc. Our simulations were stopped
when a planet in the apocentre reached R,, = 1. The right-hand panel
shows the dependence of the eccentricity on the semimajor axis in
the style of fig. 3 of D21. Comparisons of this plot with the right-
hand panel of fig. 3 of DO1 show that in D21 the eccentricity stops
growing at e, ~ 0.35—0.4. The authors explained that a planet enters
a wave-damping zone placed at r = 0.36. In our model, the cavity
is empty and eccentricity increases to larger values. However, if we
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take a part of our curves (restricting the apocenter of the planet with
the value of a.; ~ 0.36) then we obtain the maximum eccentricity of
e, ~ 0.4 which corresponds to that obtained in the D21 model. We
note that in this interval of parameters, our curves are similar. Our
time-scale of eccentricity growth up to the value e, = 0.4 is 28 000
rotations which is close to 20 000 rotations obtained by D21 at the
grid 400 x 400 (see their fig. 3). We note that in D21, the time-scale
increases up to 60 000 rotations at their runs with the lower grid
resolution, 200 x 200. Overall, our result is close to the result of
D21 at their higher grid resolution and at parameters a,, 2 0.0.36
and e, < 0.4.

We also plotted the 2D slices of the surface density distribution
and observed the formation of the m = 1 one-armed spiral wave
in the disc at times < 15 000, and m = 2 two-armed spiral waves
(corresponding to the 1:3 ELR) during the rest of simulation time.
We observed that waves were jammed in the small-sized simulation
region of 1 < r < 2. This may be the reason why m = 3 waves (the
2:4 resonance) were not observed.

6.2.3 Comparison with model by Papaloizou et al. (2001)

Papaloizou et al. (2001, hereafter PO1) investigated the migration of
planets with masses M, = 1—30 Jupiter mass in the disc, which
gradually opened a central cavity and subsequently interacted with
the disc. They observed that the planet’s eccentricity increases due
to interaction with the disc. It increases more rapidly in models with
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higher mass M, (see their fig. 1). This is in accord with our models
(see Section 5.2 and our Fig. 6).

P01 also analysed the causes of eccentricity growth. They fixed
a 30 M, mass planet at the orbit and analysed the role of 1:2 and
1:3 resonances in the eccentricity growth. They observed that the
action of the 1:2 resonance is slightly stronger than that of the 1:3
resonance and concluded that the primary cause of the eccentricity
growth is the excitation of the eccentricity in the disc and subsequent
interchange of angular momentum between the disc and the planet.
We note here that when the planet is fixed (and eccentricity is zero)
then the action of the 1:2 ECR is larger than 1:3 ELR and corotation
torque suppresses the eccentricity growth (e.g. Goldreich & Sari
2003; Ogilvie & Lubow 2003). We observed it in our simulations
which were initially performed at e, = 0. Later, we switched to
models with initial e, = 0.02 (like e.g. R0O8 did). The right-hand
panel of our fig.1 shows the difference between models with e, =0
and 0.02.

P01 noted that the eccentricity does not increase in their model with
M, =1 Jupiter mass. In our models, we observed that eccentricity
of 1 M; planet increases to a high value of e, ~ 0.6 but very slowly
compared with more massive planets (see our Fig. 6 where the initial
part of the eccentricity growth is shown).

PO1 commented that the eccentricity of a Jupiter mass planet may
start growing at the lower viscosity of the disc. Our simulations
performed at different values of viscosity parameter o show that
viscosity damps resonant waves and decreases the rate of eccentricity
growth. We also note that modelling a Jupiter mass planet requires a
higher grid resolution, compared with more massive planets.

6.2.4 Comparison with model by Ragusa et al. (2018)

Ragusa et al. (2018, hereafter R18) performed simulations of two
models with the mass of the planet M, = 13 Jupiter mass and two
discs with the reference surface densities £g = 1.5 x 10~*and = =
4.8 x 107°. Simulations were performed at a high grid resolution
430 x 580 and in a large simulation region: 0.2 < r < 15 with an
additional exponential taper at » = 5. They observed the formation of
the crescent-shaped overdense feature at the apocentre of the cavity
which is consistent with the density perturbation expected for an
eccentric disc (Teyssandier & Ogilvie 2016). Our simulations also
show the formation of such a feature which is particularly clear
in models with a high planet mass (see right-hand panels in our
Fig. 7). We expect that this feature can explain some of the ALMA
observations where the crescent-shaped brightness enhancement is
often observed (see also Ataiee et al. 2013; Ragusa et al. 2017). This
is a similarity between our models.

In models of R18, a planet eccentricity does not increase above a
small value of r, ~ 0.14. Our models with comparably low density
of ¥ = ¢4 = 107* show that the planet eccentricity increases up
to high values, but very slowly (see our Fig. 4). It is not clear why
eccentricity does not increase to larger values in models of R08. The
authors do not show details of early times when the planet could
excite resonances in the disc. In their fig. 1, the inner disc is located
at the distance of ~(2 — 3) a, at which all resonances are inside
the cavity. In this work, the stage of resonant interaction may have
been relatively brief and eccentricity increased only a part-way. It
is possible that in R18 the inner disc moved outward faster than the
rate of eccentricity growth.

At later times, when the inner disc is too far away and the
resonances do not operate, R18 calculated the interaction of a planet
with the disc and found interesting long-term variability where the
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planet and the disc exchange their angular momentum and their
eccentricity vary in the antiphase. These types of simulations are
beyond the scope of our paper.

7 CONCLUSIONS

We have investigated the growth of the eccentricity of massive planets
located inside the cavities of protoplanetary discs due to the resonant
planet—disc interactions. The main conclusions are the following:

(1) We observed clear, long-lasting resonant interactions between
the disc and the planet driven by different resonances. This helped
us to investigate the properties of such interaction in detail.

(2) In most of the simulations, the planet’s eccentricity grows to
a large value of e, ~ 0.65—0.75, which have never been obtained in
previous numerical works. Note that we stopped our simulations
when the planet in eccentric orbit reaches the cavity boundary.
Otherwise, the eccentricity could increase to even larger values.

(3) The planet’s eccentricity growth proceeds through several
distinct phases: (1) A slow exponential growth due to the 1:2 OLR
at which one-armed (m = 1) spiral waves are excited in the disc. (2)
Rapid growth due to the 1:3 (m = 2) ELR up to e =~ 0.2—0.25. (3)
Slower growth up to e & 0.5 due to the 2:4 (m = 3) ELR resonance.
(4) A relatively brief time interval of eccentricity growth up to e &~
0.65—0.75, in which the m = 4 waves are observed. This phase may
correspond to the excitation of the 3:5 resonance.

(4) We varied the mass of the planet and various parameters of the
disc in order to derive the dependencies of the eccentricity growth
rate on these parameters. The growth rate driven by the 1:3 ELR is
proportional to the planet’s mass and the disc surface density (for a
wide interval of parameters), in agreement with theoretical predic-
tions. The growth rate decreases with the «-parameter of viscosity
and the thickness of the disc 4. In Phase 3, the eccentricity grows
two to three times slower. Many other dependencies are complex
and are presented as figures (see Figs 4—11). In the vicinity of ref-
erence values, we derived analytical dependencies (see equations 12
and 13).

(5) We derived the width of the 1:3 ELR from numerical simula-
tions: wy, &~ 0.19 rq which is ~2.3 times larger than that predicted by
the theory (e.g. Teyssandier & Ogilvie 2016). We observed that the
resonance may be inside the cavity but the planet interacts with the
part of the resonance due to its finite width.

(6) The eccentricity of the planet can grow if the time-scale of the
growth is shorter than that of the cavity evolution due to viscosity. For
a wide range of parameters, the eccentricity growth time is indeed
shorter than the viscous time-scale (see equation 17).

(7) The results obtained in our numerical models may help in
understanding the non-linear stages of eccentricity growth and the
development of the theory of non-linear resonant interaction.

A caveat of the simulations reported in this paper is that we fixed
the boundary of the cavity, inside which the disc matter does not
penetrate. This helped us to exclude the local corotation torque,
which damps the planet’s eccentricity. This set-up also helped us to
investigate the role of different resonances in the eccentricity growth
and the dependencies of the eccentricity growth rate on various
physical parameters. As a next step, we plan to investigate reso-
nances and planetary eccentricity growth in 2D and 3D simulations
where the cavity has low density. The knowledge obtained in the
current research will help us to choose the parameters of future
simulations.
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APPENDIX A: DETAILS OF THE NUMERICAL
MODEL

We calculate the evolution of the disc and the orbit of the planet in
the coordinate system centred on the star. This coordinate system
is not inertial due to the presence of the planet and the disc.” That
is why in equations of motion for the disc and the planet, we add
an additional term for the inertial force. We solve the hydrodynamic
equations in polar coordinates (r, ¢):

X

2 s+ me) =0
ot rarr v rog vl =5

9 19 19
7 (v + o [r(Zv; + 1) + e (Svrvy)

5l GM,
= — =X + Xw,

r r2
] 1a ., 19 5
5 (v + 5o [r* (Zvev,)] + pEw (Zv, + 1) = Zw,
L9+ L emsuy+ - Ly =0 (A1)
- —— (rXSv, - v,) = 0.
ot r or rog ¢

Here, ¥ = f pdz is the surface density (with p the volume density);
v, and v,, are the radial and azimuthal velocities, respectively; IT = [
Pdz is the surface pressure (with P the volume pressure); S = [1/X7
is a function analogous to entropy; and y is adiabatic index. w, and
w , are the forces exerted on the disc by the planet (per unit area of
the disc).

"In our models, the integrated force from the disc onto the star is a few orders
of magnitude smaller than that from the planet, and we neglect the inertial
term associated with the disc.
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Figure Al. Left-hand panel: Sketch of the main resonances plotted on top of the density distribution in the reference model with @, = 0.6 at t = 12 000 when
2:4 resonance with m = 3 dominates. Resonances were calculated using the apocentre aap = a;, (1 + ¢p ) position, marked as an outer dashed circle (instead of
the semimajor axis ap). Middle panel: Temporal variation of the semimajor axis a;,, apocentre ryp, and pericentre rper = @ (1 — ¢}, ) in the reference model. The
black line shows eccentricity. Right-hand panel: Dependence of the planet’s eccentricity e, on the semimajor axis ap, apocentre d,p, and pericentre ape;.
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Figure A2. Top panels: Surface density distribution (color background), initial positions of the planet (solid lines), and position of the 1:3 ELR (dashed bold
line). The approximate width of the ELR is shown with arrows and schematics. Bottom panels: Left: Temporal variation of eccentricity in models with different
ap. Right: Dependence of the eccentricity growth rate =1 in Phase 2 on the initial semimajor axis of the planet, ap. The horizontal line with arrows shows the

half-width of the ELR.

Viscosity terms are added to the equations of motion following
the « prescription of Shakura & Sunyaev (1973), with the viscosity
coefficient in the form of o« —viscosity, v vis = o ¢ H.

In our code, we use the entropy balance equation instead of the
full energy equation, because in the problems that we solve, the
shock waves (where we cannot neglect the energy dissipation) are
not expected. This approach is more appropriate for the investigation
of waves in the disc compared with the widely used locally isothermal
approach, where the temperature is fixed in time and depends on the
radius only (e.g. Ragusa et al. 2018; Debras et al. 2021; see also
discussion of this issue in Miranda & Rafikov 2020).

The equations of hydrodynamics are integrated numerically using
an explicit conservative Godunov-type numerical scheme (Koldoba
etal. 2016). For the calculation of fluxes between the cells, we use the
HLLD Riemann’s solver developed by Miyoshi & Kusano (2005).

Integration of the equations with time are performed with a two-step
Runge—Kutta method.

Our code is similar in many respects to other codes that use
Godunov-type method, such as PLUTO (Mignone et al. 2007),
FLASH (Fryxell et al. 2000), and ATHENA (Stone et al. 2008). The
code is different from FARGO3D code where the orbital advection has
been implemented (Bentez-Llambay & Masset 2016). Our code has
been thoroughly tested using standard tests (Koldoba et al. 2016).

8In addition, it has been tested on several astrophysical problems. In 2D
hydro and MHD versions, it has been used for modelling planet migration in
accretion disc (Comins et al. 2016). In the case of a non-magnetized disc with
different slopes in density distribution, we obtain the transition from inward to
outward migration at the slope which is close to that predicted theoretically
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The code is parallelized using MPI. We typically use 448 proces-
sors and run the code during 20-200 h, depending on the parameters.
Simulations are longer in models with lower disc mass and smaller
masses of the planet.

We calculate the orbit of the planet using earlier developed
approaches (e.g. Kley 1998; Masset 2000; Kley & Nelson 2012).
The force per unit mass acting on the disc is

GM, GM, GM,
e I N A
where r, is the radius vector from the star to the planet. The first
and second terms represent the gravitational forces from the star and
the planet respectively. The last term accounts for the fact that the
coordinate system is not inertial.

We find the position r, and velocity v, of the planet at each time-
step solving the equation of motion:

dv, GM.M, GM?

P
- = - F isc—>ps A3
P dr ol P g 7 e (A
where
GM,
Fgiesp = m(r —rp)Xrdrdg (A4)
P

is a cumulative force acting from the disc to the planet. If we neglect
the force Fgis — , in equation (A3), then the trajectory of the planet
is described by the equations of motion in the gravitational field of
the cumulative mass M =M, + M, .

We calculate the planet’s orbital energy and angular momentum
per unit mass using the calculated values of r, and v,:

1, GM

E, = §|vp| — T and L, =rp, X vp,. (AS5)
We use these relationships to calculate the semimajor axis and
eccentricity of the planet’s orbit at each time-step:

_ 1GM _ L
ap=—-—— and e, =,/1~— . (A6)
2 E, GMa,

APPENDIX B: EFFECTS OF THE ELLIPTICAL
ORBIT

In our reference models, we observe spiral density waves with m =
1, 2, 3, and 4 arms that can be excited at the 1:2 OLR and 1:3, 2:4,
and 3:5 ELRs. However, higher order resonances are located closer
to the star (see Table 1). In reference model with a, = 0.6 and
for typical values of a, = 0.55—0.6, many resonances are located
inside the cavity. The question arises, why do we see resonant
interaction?

On one hand, resonances have a finite width and part of the
resonance can be in the disc, as described in Section C. This factor
should play a role. On the other hand, a planet in an elliptical orbit

by Tanaka, Takeuchi & Ward (2002). In the model of a magnetized disc,
we obtained the positions of the magnetic resonances at locations similar to
those found in the simulations by Fromang, Terquem & Nelson (2005), which
both correspond to the theoretical resonance locations predicted by Terquem
(2003). A 3D hydro version of the code has been used to study the trapping
of low-mass planets at the disc-cavity boundary due to the corotation torque
(Romanova et al. 2018). In models with thin discs, our results have shown
trapping radii similar to those obtained in 2D simulations by Masset et al.
(2006).
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has the closest approach to the disc during its passage through the
apocentre, which is located at a distance of ryp = a, (1 + ¢, )
from the star. A planet spends a significant time at this part of the
orbit and may excite ELRs during its passage through the apocentre.
We can calculate the location of resonances using ry, (instead
of ap ).

We show examples using the reference model with a, = 0.6. The
right-hand panel of Fig. Al shows the temporal evolution of ay, e,
apocentre r,p,, and pericentre rper = a, (1 — e, ). One can see that the
apocentre increases with time up to r,, = 1 when the planet reaches
the disc inner boundary.

For example, at ¢+ = 12 000, the parameters of the orbit are a,
A 0.56 and e, ~ 0.38. The left-hand panel of Fig. Al shows that
the three-armed density wave dominates, which favors the 2:4 ELR
resonance. Using a, as a base, we obtain rg g4 ~ 1.587r,; ~ 0.89,
which is within the cavity. The apocentre is located at r,, ~ 0.78 and
the corresponding 2:4 resonance at rerro.4 A~ 1.587ry, A~ 1.24, that
is, within the disc. This resonance is shown as the white dash-dotted
line in Fig. Al.

Similarly, at time ¢ = 15 000 when m = 4 waves were observed,
we calculate the position of the 3:5 resonance. The parameters of the
orbit are @, = 0.57 and e, = 0.61. The position of the planet in
the apocentre is r,, ~ 0.92, and the location of the resonance is at
TR 3:5 ~ 1.4067,, ~ 1.29, which is within the disc. Note that if we
use aj as a base, we obtain rgig 3.5 ~ 0.80.

APPENDIX C: THE WIDTH OF THE 1:3 ELR
RESONANCE

Resonances in the disc have a finite width which increases with the
disc thickness h (e.g. Goldreich & Tremaine 1978). In the linear
approximation, the width has been derived from theoretical studies
(see e.g. equation 8). Using parameters of our reference models a, =
0.6, h = 0.05, and taking m = 2 for 1:3 ELR, we obtain theoretically
predicted width:

ho\23
wy A 0.065re r 137 ~ 0.081 (%) , (C1)
where we take into account that rgr g 13 ~ 2.08ap .

Here, we estimate the width of the 1:3 ELR using our numerical
model. For that, we place a planet at different distances a, from the
star, from a, = 0.7 to a, = 0.55, and let them migrate. The top
panels of Fig. A2 show the initial orbit of the planet with semimajor
axis a, (solid line) and positions of the 1:3 ELR which are located
at rgrr,1:3 ~ 2.08a, (see bold dashed lines). One can see that at a,
= 0.65 (left top panel), the ELR is located at rg g 1.3 ~ 1.35, and a
significant part of the resonance width is located in the denser part
of the disc (red and yellow colours). At a, = 0.6 (middle top panel),
the ELR is located at rgir 13 & 1.25, and approximately half of the
resonance width is located in the disc. At g, = 0.55, the resonance
is located at rgrgr 1.3 &~ 1.14, and only a part of the resonance width
is inside the disc. It is expected that in the model with a, = 0.65
the resonant interaction will be stronger than in models with smaller
initial a;, .

The bottom left-hand panel shows that at larger values of aj,, the
eccentricity increases faster, as expected. In models with smaller
ay the eccentricity increases, but slower, because only a part of the
resonance width is located in the disc. We calculated the eccentricity
growth rate T7! = (1/ep)dey/dt in Phase 2 for models shown in
the left-hand panel. The bottom right-hand panel shows that 77!
is approximately the same in models with a, 2 0.65 because all (or
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most) of the resonant width is inside the disc. However, ! decreases
when a, decreases because a smaller and smaller part of the resonant
width is inside the disc. From the curve of Fig. A2, we can estimate
the width of the resonance at half of the amplitude. We obtain w;/2
=~ (.08 and the full width of the resonance is w; & 0.16. This value
is ~2 times larger than that derived theoretically.
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The finite width of resonances is important in the disc—planet
interaction because a planet may interact with the disc even if the
centre of resonance is located in the cavity.

This paper has been typeset from a TEX/IATgX file prepared by the author.

MNRAS 523, 2832-2849 (2023)

€202 duUN( || uo Josn Aleiqr uue Y Wadly Aq L0668 2/ZE82/Z/ETS/PI0IME/SEIUW/WOD dNO"dlWapede/:sdny WOy papeojumoq



	1 INTRODUCTION
	2 RESONANCES
	3 NUMERICAL MODEL
	4 PHASES OF EVOLUTION
	5 DEPENDENCIES
	6 DISCUSSION
	7 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: DETAILS OF THE NUMERICAL MODEL
	APPENDIX B: EFFECTS OF THE ELLIPTICAL ORBIT
	APPENDIX C: THE WIDTH OF THE 1:3 ELR RESONANCE

