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A B S T R A C T 

We carry out hydrodynamical simulations to study the eccentricity growth of a 1–30 Jupiter mass planet located inside the fixed 

cavity of a protoplanetary disc. The planet exchanges energy and angular momentum with the disc at resonant locations, and 

its eccentricity grows due to Lindblad resonances. We observe several phases of eccentricity growth where different eccentric 
Lindblad resonances dominate from 1:3 up to 3:5. The maximum values of eccentricity reached in our simulations are 0.65–0.75. 
We calculate the eccentricity growth rate for different planet masses and disc parameters and derive analytical dependencies on 

these parameters. We observe that the growth rate is proportional to both the planet’s mass and the characteristic disc mass for a 
wide range of parameters. In a separate set of simulations, we derived the width of the 1:3 Lindblad resonance. 
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 I N T RO D U C T I O N  

an y massiv e e xoplanets hav e high eccentricities. There is a wide
istribution of eccentricities at different planet masses and their
istances from the star (see e.g. fig. 1 from Debras, Baruteau &
onati 2021 , which is based on the recent data from exoplanets.eu).

n cases of warm/cold Jupiters (masses 0.5 < M p < 5 of Jupiter
ass), approximately 50 per cent of planets have eccentricities 0.1
 e p < 0.4, while in cases of more massive planetary objects (5 <
 p < 50), the eccentricities are even higher on average, with the

ccentricity distribution almost uniform up to e p ≈ 0.8. 
One class of mechanisms for eccentricity growth relies on the

ravitational interaction either through strong planet–planet scat-
erings (e.g. Rasio & Ford 1996 ; Lin & Ida 1997 ; Papaloizou &
erquem 2001 ; Chatterjee et al. 2008 ; Juri ́c & Tremaine 2008 ;
ustill, Davies & Johansen 2017 ; Anderson, Lai & Pu 2020 ; Li et al.

021 ) or through secular perturbations from exterior stellar/planetary
ompanions (e.g. Holman, Touma & Tremaine 1997 ; Anderson &
ai 2017 ). Another mechanism is the resonant interaction of a planet
ith an accretion disc. 
A planet interacts with the disc due to the Lindblad and coro-

ation resonances (Goldreich & Tremaine 1979 , 1980 ). Lindblad
esonances tend to increase the eccentricity of the planet, while
orotation resonances suppress the eccentricity growth (see also
oldreich & Sari 2003 ; Ogilvie & Lubow 2003 ; Teyssandier &
gilvie 2016 ). If a planet enters a low-density environment, the

orotation torque becomes small, and eccentricity can grow due to
he eccentric Lindblad resonances (ELRs; e.g. Artymowicz et al.
991 ; D ́Angelo, Lubow & Bate 2006 ). Such a situation appears if a
 E-mail: romanova@astro.cornell.edu 
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assive planet clears a low-density gap in the disc, or if a planet enters
he low-density cavity surrounding a star. A number of numerical
imulations have been performed that show that eccentricity can
ncrease due to the disc-planet resonant interaction (e.g. Papaloizou,
elson & Masset 2001 ; D ́Angelo et al. 2006 ; Kley & Dirksen 2006 ;
itsch et al. 2013 ; Dunhill, Alexander & Armitage 2013 ; Ragusa et al.
018 ; Debras et al. 2021 ). Ho we ver, only a small v alue of eccentricity
as been obtained in most of the simulations, e p ∼ 0.1 −0.25 (e.g.
apaloizou et al. 2001 ; D ́Angelo et al. 2006 ; Kley & Dirksen 2006 ).
n many instances, the authors concluded that eccentricity increases
ue to the 1:3 ELR (e.g. Kley & Dirksen 2006 ). Ho we ver, D ́Angelo
t al. ( 2006 ) argued that the main resonances responsible for the
ccentricity growth are the higher order ELRs: 2:4 and 3:5. 

Ragusa et al. ( 2018 ) performed very long simulations of planets in
avities of low-mass discs. They observed regular patterns in which
he disc and the planet exchange angular momentum. The maximum
lanet eccentricity in these simulations is e p ≈ 0.12. 
Debras et al. ( 2021 ) developed a quasi-steady low-density cavity

y taking a high viscosity in the cavity, and low viscosity in the
isc (in analogy with the dead disc ideas by Gammie 1996 ). They
nvestigated the migration of Jovian planets to the cavity and observed
ts eccentricity growth. They showed that the planet’s eccentricity can
ncrease up to e p ≈ 0.4. They had to stop the simulations because a
lanet in eccentric orbit entered the region of wave damping placed
round the inner boundary. Baruteau et al. ( 2021 ) studied how a
oung planet shapes the gas and dust emission of its parent disc using
 post-processing radiative transfer model aimed at comparisons with
LMA observations. 
Rice, Armitage & Hogg ( 2008 ) used a different approach. They

laced a planet into an empty cavity so that it interacted only with the
isc and the star. They observed the growth of eccentricity up to e p 

0.4 in the case of very massive 20 Jupiter mass planets. Ho we ver,
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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1 Note that the authors used the complex eccentricity E p = e p e −i ̄w , where 
w̄ is the argument of pericentre. Here, we neglected the precession of the orbit 
and take the absolute value e p = | E p | . 
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he authors considered an unrealistically massive disc (to decrease 
omputing time) and later scaled the results. Teyssandier & Ogilvie 
 2016 ) argued that scaling cannot be performed because the rate of
xchange of the angular momentum between the disc and the planet 
s not similar for discs of different masses. This issue of scalability
as not been checked in numerical simulations. 

In our earlier works, we experimented with low-density, high- 
emperature cavities that are in pressure equilibrium with the disc 
e.g. Romanova et al. 2018 ). This approach (at low viscosity in the
isc) provided a low-density cavity for a significant duration. We 
bserved that the eccentricity of a planet in the cavity grows due
o resonant interaction with the disc. Ho we v er, in man y instances, a
mall amount of disc matter entered the cavity, causing the planet’s 
ccentricity to decrease due to co-orbital corotation torque. In this 
ork, to stop the matter from penetrating into the cavity, we fix

he inner disc boundary. The low-density fixed-sized cavity may be 
upported by various physical mechanisms, such as the magneto- 
phere of the star (e.g. K ̈onigl 1991 ; Hartmann 2000 ; Romanova &
o v elace 2006 ; Romano va & Owocki 2015 ), magnetic wind from

he star (e.g. Lo v elace, Romano va & Barnard 2008 ; Schnepf et al.
015 ; Bai 2016 ; Wang & Goodman 2017 ), or e v aporation of the inner
isc due to UV radiation (e.g. Dullemond et al. 2007 ). By fixing the
avity border, we mimic such ‘real’ cavities. We also put zero density
n the cavity because in many situations planet interaction with the 
avity matter is expected to be less significant compared with the disc
atter. In this approach, we do not need to calculate the gas flow

nside the cavity. This approach is similar to that used by Rice et al.
 2008 ). Ho we ver, we take a lower mass, more realistic disc. In this
pproach, we are able to observe different resonances responsible for 
ccentricity growth and study the disc–planet interaction o v er long 
ime-scales. 

In our simulations, we observe that the eccentricity of the planet 
ncreases up to high values of e p ≈ 0.65 −0.75, which has never
een obtained in earlier studies. We perform simulations for different 
asses and different parameters of the disc and derived dependencies 

f the eccentricity growth rates on these parameters. 
The plan of the paper is the following. In Section 2 , we briefly

e vie w the main resonances. In Section 3 , we describe our numerical
odel and problem set-up. In Section 4 , we present the different

hases in eccentricity growth and resonances observed in simula- 
ions. In Section 5 , we derive the dependence of eccentricity growth
ate on planet mass and parameters of the disc. We discuss different
ssues and applications in Section 6 and conclude in Section 7 .
ppendix A presents the details of our numerical model. In Section 
 , we estimate the width of the 1:3 resonance. In Appendix B , we
iscusses possible effects of the ellipticity of the orbit on positions
f resonances. 

 R E S O NA N C E S  

ccentric resonances were studied by Goldreich & Tremaine ( 1978 ) 
see also Goldreich & Tremaine 1979 , 1980 ; Ward 1986 , 1997 ;
rtymowicz 1993a , b ; Goldreich & Sari 2003 ; Ogilvie 2007 ;
eyssandier & Ogilvie 2016 ). Following Teyssandier & Ogilvie 
 2016 ), we summarize the properties of these eccentric resonances. 

The gravitational potential of a planet on the eccentric orbit can 
e expanded in a Fourier series: 

( r, φ, t) = 

∑ 

l,m 

ψ l,m 

( r) exp [i( m φ − l �p t )] . (1) 

ere, the coefficients ψ l,m 

∝ e | l−m | 
p , where e p ≤ 1 is the planet’s

ccentricity. For a planet in a circular orbit, l = m . For a planet in an
ccentric orbit, at the first order in e p , one keeps terms with l = m ± 1,
here the plus/minus signs are rele v ant to the inner/outer resonances.
elow, we consider only the outer resonances, and therefore we take

 = m − 1. 
A planet interacts with the disc gravitationally and exchanges its 

nergy and angular momentum. The rate of exchange is strongest 
t particular locations in the disc called resonances. Two types 
f eccentric resonances are important: Lindblad and corotation 
esonances. The outer ELRs correspond to locations in the disc 
here the perturbing frequency (in the rotating frame) matches the 

requency of the disc: l �p − m � = �. Taking l = m − 1, one obtains
requencies and radii in the disc corresponding to ELRs: 

�

�p 
= 

m − 1 

m + 1 
, r ELR = a p 

(
m + 1 

m − 1 

)2 / 3 

, m ≥ 2 . (2) 

ECRs are located in the disc where l �p − m � = 0. They occur at
requencies in the disc and radii: 

�

�p 
= 

m − 1 

m 

, r ECR = a p 

(
m 

m − 1 

)2 / 3 

, m ≥ 2 . (3) 

There are also principal Lindblad resonances for a planet in a
ircular orbit (at l = m ). The outer Lindblad resonances (OLRs) are
ocated at radii where m �p − m � = � or 

�

�p 
= 

m 

m + 1 
, r OLR = a p 

(
m + 1 

m 

)2 / 3 

, m ≥ 1 . (4) 

The eccentricities ( e p and e d ) of the planet and disc are coupled
hrough resonant interactions. Different resonances contribute to this 
rocess. According to Ogilvie ( 2007 , see also Teyssandier & Ogilvie
016 ), a single ELR contributes to the evolution of the eccentricities
f the planet and the disc in the following way: 1 

 p a 
2 
p �p 

(
∂e p 

∂t 

)
ELR 

= 

GM 

2 
p 

M � 

e p B 

2 

(
1 − A e d 

Be p 

) ∫ 

�F 2 πr d r (5) 

 r 2 �

(
∂e d 

∂t 

)
ELR 

= −GM 

2 
p 

M � 

� AB e p 

(
1 − A e d 

B e p 

)
F . (6) 

The values of the coefficients A and B and the resonant radii r res 

re listed for small values of m in Table 1 (see the full version of the
able in Teyssandier & Ogilvie 2016 ). Here, 

 = w 

−1 
L 	 

(
r − r res 

w L 

− 1 

)
(7) 

s a function of the resonant radius r res , resonant width w L , and
imensionless function 	 , which describes the radial profile of 
he resonance. The width for outer ELR has been estimated as
Teyssandier & Ogilvie 2016 ; equation 18 ) 

 L ≈ r 

[
h 

2 

3( m + 1) 

]1 / 3 

. (8) 

Equations similar to 5 and 6 were derived for ECR where the
ele v ant coef ficients are C and D. Table 1 sho ws that higher order
esonances are located closer to the planet and the coefficients A −
are larger. 
MNRAS 523, 2832–2849 (2023) 
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M

T able 1. T op: Values of m , type of resonance, res, resonant radii r res / a p 
and coefficients A and B for ELRs. Bottom : Same but for ECRs, where 
coefficients are C and D. 

Lindblad resonances 
m res r res / a p A B 

1 1:2 1.587 
2 1:3 2.080 0.607 1.849 
3 2:4 1.587 5.201 3.594 
4 3:5 1.406 7.362 5.604 
5 4:6 1.310 9.763 7.859 

Corotation resonances 

m res r res / a p C D 

2 1:2 1.587 1.723 0.620 
3 2:3 1.310 2.931 3.595 
4 3:4 1.211 4.111 4.751 
5 4:5 1.160 5.282 5.910 
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Table 2. Reference dimensionless disc mass q d , reference surface density 
� d , and time-scale P 0 at different distances r d . 

r d (au) 0.1 1 10 

q d = M d / M 0 3 × 10 −4 3 × 10 −4 3 × 10 −4 

� d = q d � 0 (g cm 

−2 ) 2.7 × 10 5 2.7 × 10 3 26.7 
P 0 (d) 11.6 365 11565 
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2 Test simulations show that results are very close in models with and without 
an exponential cut. Ho we ver, we keep an exponential cut for safety and also 
use it to model discs of different sizes (see Section 5.8 ). 
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 N U M E R I C A L  M O D E L  

e consider the orbital evolution of a massive planet (of Jupiter
ass and higher) in an empty cavity surrounding a star. The planet

nteracts gravitationally with the star and accretion disc. 

.1 Initial and boundary conditions 

e place a point-like star of mass M � at the centre of the coordinate
ystem, an empty cavity at radii r < r d , and the disc at radii r d < r
 13.6 r d . 
We place a planet of mass M p in the cavity at a distance a p from

he star. We take a slightly eccentric orbit with e p = 0.02 (and e p =
 in our test case). 
We take a disc with an aspect ratio of h = H / r = 0.05, which is

etermined at time t = 0 at the inner edge of the disc, r = r d . Here,
 = ( c s / v K ) r is the scale height of the disc, c s is the sound speed,

nd v K is the Keplerian velocity. We investigate the dependence of
ur results on h in Section 5.5 . 
We take the power-law distribution of the surface density and

ressure in the disc: 

( r) = � d 

(
r 

r d 

)−n 


 ( r) = 
 d 

(
r 

r d 

)−l 

. (9) 

ere, � d and 
 d are the surface density and surface pressure at
he radius r = r d . We use values n = l = 0.5 (and investigate the
ependence on n in Section 5.6 ). 
We set an equilibrium distribution of the azimuthal velocity v φ in

he disc by taking into account the balance of gravity and pressure
radient forces in the radial direction: 

 φ( r, z) = 

√ 

r 

(
∂� 

∂r 
+ 

1 

� 

∂
 

∂r 

)
, (10) 

here � ( r ) = −GM ∗/ r is the gravitational potential of the star.
his approach provides quasi-equilibrium initial conditions in the
isc. 
We use ‘free’ boundary condition ∂ A / ∂ r = 0 for all variables A

t the inner (cavity) boundary and fixed boundary conditions at the
uter boundary. We use the procedure of damping waves at the outer
oundary, following de Val-Borro et al. ( 2006 , see their equation 10).
amely, we set the buffer zone for damping at the outer part of the
NRAS 523, 2832–2849 (2023) 
isc: 0.8 r out < r < r out . In addition, we put an exponential cut 2 to the
ensity and pressure distributions at r = r exp to further decrease the
ossible influence of outer boundary conditions: 

( r) = �( r ) e −
( r−r exp ) 

	 , 
 ( r ) = 
 ( r) e −
( r−r exp ) 

	 , (11) 

here r exp = 0.5 r out ≈ 6.8 r d and 	 = 0.22 r d in our Reference model.
e take smaller values of r exp and 	 in test models with the smaller

ized discs (see Section 5.8 ). 
At the inner boundary, we place an exponential cut in the narrow

egion of r d < r < 1.1 r d to have a smoother transition of density
owards the inner edge of the cavity. We take r exp = 1.1 r d and 	 =
.029 r d . We are not damping waves at the inner boundary. 
We solve a full set of hydrodynamic equations in 2D including

nergy equation in entropy form. We also solve the equation for the
lanet’s motion (see Section A ). 
We use a polar grid, which starts at the inner boundary r = r d .

he grid is centred on the star. It is evenly spaced in the azimuthal
irection, where the number of grid cells is N φ = 640. In the radial
irection, the size of the grid cells progressively increases such that
he shape of grids is approximately square, and the number of grids
s N r = 308. Test simulations were performed using finer and coarser
rids. Simulations at finer grid show convergence. We chose the grid
esolution 308 × 640 in all simulation runs. 

.2 Dimensionalization 

he equations are written in dimensionless form and the results can
e applied to cavities located at different distances from the star. We
hoose a reference scale r 0 = r d and reference mass M 0 = M ∗ =
 �. The dimensionless mass of the planet is q p = M p / M ∗. For the

onvenience of presentation, we take M ∗ = M � and measure the
ass of the planet in Jupiter masses. F or e xample, in our reference
odel, we take q p = 10 −2 which is M p = 10 in Jupiter masses. 
The reference velocity is The Keplerian velocity at r = r 0 : v 0 =
 

GM ∗/r 0 . We measure time in the Keplerian period at r = r 0 : P 0 =
 πr 0 / v 0 . The reference surface density is � 0 = M 0 /r 

2 
0 . The reference

ressure is 
 0 = � 0 v 
2 
0 . 

We also have the dimensionless parameter in the code, q d , which
s used to vary the characteristic mass of the disc: M d = q d M 0 .
hus, q d is the dimensionless characteristic mass of the disc: q d =
 d / M 0 . We vary q d in the range of q d = 10 −2 −10 −4 and take
 d = 3 × 10 −4 in the reference model. We take into account
hat M 0 = � 0 r 

2 
0 and obtain M d = q d � 0 r 

2 
0 = � d r 

2 
0 , where � d = q d 

 0 is characteristic surface density in the disc. Therefore, q d also
epresents dimensionless characteristic surface density in the disc:
¯
 = q d = � d /� 0 . Table 2 shows the reference dimensional values

n models with q d = 3 × 10 −4 at different r d . 
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Table 3. Parameters in the reference model. 

Parameter Reference model 

Reference disc mass q d = 3 × 10 −4 

Reference surface density �̄ = 3 × 10 −4 

Initial semimajor axis a p = 0.6, 0.7, 0.8 
Initial eccentricity e p = 0.02 
Coefficient of viscosity α = 3 × 10 −4 

Mass of the planet in stellar mass q p = 10 −2 

Mass of the planet in Jupiter mass M p = 10 
Semithickness of the disc h = 0.05 
Slope in the density distribution n = 0.5 
Adiabatic index γ = 5/3 
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3 We should note that the linear theory has been developed for small values of 
eccentricity, and therefore the positions of resonances may differ from those 
provided by the theory. 
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We can compare values of reference surface densities in our 
odel with values obtained for the Minimum-Mass Solar Nebula 

MMSN): � ≈ 1700( r/ 1 au ) −3 / 2 g cm 

−2 (Hayashi 1981 ). In our
eference model, we take q d = 3 × 10 −4 , r 0 = 1 au, and obtain
 d = 2.7 × 10 3 g cm 

−2 . In the model with the lowest mass of the
isc ( q d = 10 −4 ), we obtain � d = 8.9 × 10 2 g cm 

−2 . These values
re close to those in MMSN. 

.3 Reference model 

n the Reference model, we take a planet of mass M p = 10 and a disc
ith a dimensionless reference mass q d = 3 × 10 −4 , thickness h =
.05, slope n = 0.5, adiabatic index γ = 5/3, and viscosity coefficient
= 3 × 10 −4 . We place a planet at the orbit with eccentricity e p =

.02 and different semimajor axes: a p = 0.6, 0.7, and 0.8 (see Table
 for parameters in Reference model). The left-hand panel of Fig. 1
hows the temporal evolution of a p and e p in models with different
nitial a p . One can see that in all models a p decreases up to a p ≈ 0.6,
nd e p increases up to e p ≈ 0.65. We note that in models with initial
alues of a p = 0.7 and 0.8, there is an initial interval of time with
elatively fast inward migration and slow growth of eccentricity. 
n contrast, in the model with initial a p = 0.6 inward migration
s slow, while eccentricity increases rapidly from the beginning of 
he simulation. Analysis shows that in models with larger a p the 
rincipal 1:2 OLR is responsible for inward migration, while at a p 
 0.6, this stage is absent, and the planetary eccentricity increases 

ue to 1:3 ELR from the beginning of the simulation. Fig. 2 compares
he positions of 1:2 OLR and 1:3 ELR (see Table 1 for positions of
esonances) in models with a p = 0.8 (left-hand panel) and a p =
.6 (right-hand panel). One can see that in the model with a p =
.6, the OLR is located inside the cavity, and this may be the reason
hat eccentricity increases due to 1:3 ELR from the beginning of
imulations. 

In a test simulation run with a p = 0.6 and e p = 0, we observe a
ong interval of time during which eccentricity increases very slowly 
see the blue line in the right-hand panel of Fig. 1 ). This is probably
ecause the 1:2 ECR damps the eccentricity gro wth. Ho we ver, ECRs
re saturated at small values of e p (e.g. Goldreich & Sari 2003 ;
gilvie & Lubow 2003 ). We take e p = 0.02 in all our models. 

 PHASES  O F  E VO L U T I O N  

e observed several phases of orbit evolution, where different res- 
nances can be responsible for eccentricity growth. To demonstrate 
hese phases, we take a reference model with a p = 0.8. Fig. 3 shows
he results of the simulations. We observed that the planet excited 
piral waves in the disc, but the number of arms (the m number) is
if ferent at dif ferent times during the orbit evolution. The number of
aves may signal the importance of a particular resonance. Below, 
e describe these phases in greater detail. 
Phase 1 ( m = 1). Initially, at times 0 < t � 6000, the planet

xcites a one-armed spiral wave in the disc (see a panel at t = 3000
n Fig. 3 ). The bottom panel of the same figure shows that, during
his time interval, the semimajor axis decreases from 0.8 to 0.68 and
ccentricity increases from 0.02 to 0.039. This stage of evolution can
e associated with principal 1:2 OLR. At a p = 0.8, it is located at
 OLR, 1:2 ≈ 1.587 a p ≈ 1.27 (see the left-hand panel of Fig. 2 ). At the
nd of this phase, it is located at the edge of the disc: r OLR, 1:2 ≈ 1.08.
orotation resonance 1:2 ECR is also located at the same distance.
o we ver, at e p = 0.02, it is saturated. 
Phase 2 ( m = 2). At 6000 < t � 11 000, we observed two-armed

piral waves in the disc (see an example at the panel at t = 9000 in
ig. 3 ). These waves are a sign of the 1:3 ELR. At this phase, a p 
ecreases from 0.68 to 0.63, and e p increases from 0.039 to 0.23. At
hese values of a p , this resonance is located at r ELR, 1:3 ≈ 2.08 a p ≈
.41 and 1.31. Note that the 1:2 OLR is still in the disc: r OLR, 1:2 ≈
.587 a p ≈ 1.00 −1.08. Ho we ver, the 1:3 resonance is stronger and
ominates. 
Phase 3 ( m = 3). In the interval of time 11 000 � t � 17 000,

e observed three-armed spiral waves (see the panels at t = 13 000
nd t = 15000) which may be associated with the 2:4 ELR. During
his phase, a p decreased from 0.63 to 0.57, while e p increased from
.23 up to 0.49. At these (large) values of eccentricity, the theoretical
ormulae can be applied only approximately. In the linear theory of
esonances, 2:4 ELR is expected to be at r ELR, 2:4 ≈ 1.587 a p , that is at
.00 and 0.90 at the beginning and the end of this phase, respectively.
t this phase, the 1:3 ELR is still in the disc, while the 2:4 ELR is

nside the gap. We suggest that several factors are important. First,
he resonance has a finite width and part of the 2:4 ELR can be
ocated in the disc (see Section C ). In addition, the planet has an
lliptical orbit with the closest approach to the star in the pericentre,
 per = a p (1 − e p ), and furthest approach in the apocentre, a ap = a p 
1 + e p ). It spends most of the time in the apocentre. If this factor
s important, then the resonances will be in the disc (see Section B ).
he action of the 2:4 ELR is stronger than that of 1:3 ELR, probably
ecause coefficients A and Bare larger in case of 2:4 ELR (see
able 1 ). 
Phase 4 ( m = 4). At t > 17 000, we observed another transition

nd a final phase of e volution. No w, four-armed spiral waves were
bserved (see panel at t = 18 600). These waves may be associated
ith 3:5 ELR. During this phase, a p changes from 0.57 to 0.6, while

ccentricity increases from e p = 0.49 to the final value of e p =
.66. Using the formulae of linear theory, 3 we obtain the positions of
esonances: r ELR,3:5 = 1.406 a p ≈ 0.80 and 0.84, which are inside the
 ap. Ag ain, we suggest that the ellipticity of the orbit may increase
he resonant radii (see Section B ). Also, the coefficients A and Bare
arger than in the lower-m resonances (see Table 1 ). 

We stop simulations when a planet in apocentre reaches the disc-
avity boundary at r = 1. We should note that the inner low-density
egion in the disc increases with time (see dark-blue areas in top
anels of Fig. 3 ), and the eccentricity could increase to even higher
alues. 
MNRAS 523, 2832–2849 (2023) 
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Figure 1. Left-hand panel : Temporal evolution of the planetary orbit in models with different initial values of a p = 0.6, 0.7, 0.8, and initial eccentricity e p = 

0.02. Right-hand panel: Evolution of the orbit with initial value of a p = 0.6, and eccentricity e p = 0 (blue curve) and e p = 0.02 (red curve). 

Figure 2. Left-hand panel: Initial density distribution and location of resonances in a model with an initial value of a p = 0.8. The solid line shows the position 
of the semimajor axis a p , the dash–dotted line shows the positions of the 1:2 OLR and 1:2 ECR, and the dashed line shows the position of the 1:3 ELR. 
Right-hand panel: The same but for a planet with the initial value a p = 0.6. 
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 DEPEN D ENCIES  

e varied the mass of the planet and the parameters of the disc
nd studied the dependence of the eccentricity growth on different
arameters. We took, as a base, the model with a p = 0.6 and e p =
.02 (thus skipping Phase 1). We varied one parameter at a time. 

.1 Dependence on the r efer ence mass of the disc q d (r efer ence 
urface density �) 

e took several values of reference mass: q d = 1 × 10 −2 , 3 × 10 −3 ,
0 −3 , 3 × 10 −4 , 10 −4 . The left-hand panel of Fig. 4 shows that, in all
odels, the planet eccentricity increases to a high value. In the model
ith q d = 1 × 10 −4 , it reached e p ≈ 0.65, while in the model with
 d = 1 × 10 −2 , it reached e p ≈ 0.75. We observed that eccentricity
ncreases faster in models with more massive discs. In all models,
hases 2 and 3 were observed, which are characterized by different
lopes and typical ‘knees’ between phases. 

To calculate the rate of eccentricity growth τ−1 = (1/ e p )d e p /d t =
(ln e p )/d t , we plotted log( e p ) versus time (like in the left-hand
anel of Fig. 4 ), then chose intervals of the linear (or almost linear)
rowth, and calculated the eccentricity growth rate τ−1 = d(ln e p 
/d t ≈ 	 (ln e p )/ 	 t for each model. The right-hand panel of Fig. 4
hows the dependence of τ−1 on q d for Phases 2 and 3. We observed
hat in Phase 2 at q d � 3 × 10 −4 , the growth rate almost linearly
aries with q d and can be presented as τ−1 ∼ ( q d /3 × 10 −4 ) 0.95 . In
ur model, the reference density in the disc �̄ = q d , and therefore
he dependence on �̄ is almost linear as well. This is in agreement
NRAS 523, 2832–2849 (2023) 
ith theoretical prediction: (1/ e p ) d e p /d t ∼ � (see e.g. equation 5 ).
his also means that our results can be scaled: simulations can be
erformed using high-density discs for which the eccentricity growth
ate is high (and simulations are shorter). Subsequently, the results
an be scaled to more realistic, lower density discs and longer time
cales of eccentricity growth (e.g. Rice et al. 2008 ). Fig. 5 shows
he density distribution in the disc for different q d at the end of the
imulation run. The top panels show that the resonant sets of waves
re qualitatively similar despite the different densities of the disc. 

In Phase 3, the dependence is more complex. In this case, we
erive the dependence on q d in the vicinity of our reference value:
−1 ∼ ( q d /3 × 10 −4 ) 0.34 . 

.2 Dependence on the mass of the planet M p 

e varied the planet mass from relatively small ( M p = 1) to very
arge ( M p = 30) values. The left-hand panel of Fig. 6 shows that
he planet’s eccentricity increases faster in models with larger M p .
he right-hand panel shows that in Phase 2, the eccentricity growth

ate τ−1 systematically increases with M p up to M p ≈ 15. Ho we ver,
he curve flattens at larger values of M p . In Phase 3, the growth rate
ncreases with M p , but it is slo wer. The gro wth rates in the vicinity
f our reference value of M p = 10 are: τ−1 ∼ ( M p /10) 1.0 in Phase 2
nd τ−1 ∼ ( M p /10) 0.23 in Phase 3. 

We should note that in the interval of masses 1 < M p < 15 in
hase 2, the growth rate τ−1 increases with a planetary mass almost

inearly ( τ−1 ∼ ( M p /10) 1.03 ) which is in accord with the theoretical
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Figure 3. Top 6 panels: Waves forming in the inner disc in the Reference model at different times. Time is measured in periods of rotation at r 0 = 1. The 
colour background shows the surface density. A small red dot shows the location of the planet, and small white circles show the locations of the spiral arms. 
The bottom panel shows the temporal evolution of the semimajor axis a p (red line) and eccentricity e p (blue line) of the planet’s orbit. The black vertical lines 
separate different phases of evolution, in which m = 1, 2, 3, or 4 spiral waves dominate. 

Figure 4. Left-hand panel: Temporal variation of the eccentricity e p in models with different reference disc mass q d . The dashed line separates Phases 2 and 3. 
Right-hand panel: Dependence of the eccentricity growth rate τ−1 = (1/ e p ) d e p /d t on q d at Phases 2 and 3. 
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Figure 5. Top panels: Density distribution in models with different q d at the end of simulation run. The inner part of the simulation region is shown. Bottom 

panels: Same, but in the whole simulation region. The dashed circle shows the radius of the exponential cut, r = 6.8. 

Figure 6. Left-hand panel: Temporal variation of e p for different planet mass M p (in Jupiter mass) in the Reference model. Right-hand panel: Dependence of 
the eccentricity growth rate τ−1 on the planet mass M p . 
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rediction (see e.g. equation 5 ). 4 Fig. 7 shows the density distribution
n the disc for different M p . The top panels show that at high mass
 p , the inner cavity becomes wider and non-axisymmetric. This may

xplain the lower growth rate of eccentricity at high planet masses.
he bottom panels of the same figure show the asymmetry of the
hole disc increases at larger M p . 

.3 Dependence on viscosity α

e varied the viscosity coefficient α from α = 0 to α = 3 × 10 −3 .
he left-hand panel of Fig. 8 shows that in Phase 2 the eccentricity
 volves slo wer with time for larger values of α. The right panel shows
hat the eccentricity growth rate systematically decreases with α in
hase 2. We suggest that viscosity partly damps waves excited at
:3 resonance (see also Teyssandier & Ogilvie 2016 ). The damping
s weaker in Phase 3. In the vicinity of our reference value of α =
NRAS 523, 2832–2849 (2023) 

 Note that the faster growth of eccentricity with the planet’s mass has been 
lso observed in simulations by Papaloizou et al. ( 2001 ). 

H  

a  

a  

w  
 × 10 −4 , we derive dependencies τ−1 ∼ ( α/3 × 10 −4 ) −0.11 for Phase
 and τ−1 ∼ ( α/3 × 10 −4 ) 0.13 for Phase 3. 
We see that our reference value of α = 3 × 10 −4 gives similar

esults as those at α = 0. Thus, the damping of waves is negligibly
mall. 

.4 Dependence on the adiabatic index γ

e varied the adiabatic index γ from γ = 1.01 to γ = 5/3. The left-
and panel of Fig. 9 shows that the planetary eccentricity evolves
lower in models with smaller values of γ . The right-hand panel
hows that in both phases, the eccentricity growth rate increases
ystematically with γ in the interval of 1.01 < γ < 1.3 and slowly
ncreases at larger values of γ . We solve an energy equation in
he entropy form and use the equation of state in the form: p = k ργ .
ence, we expect that the amplitude of resonant waves and the torque

cting on the planet increases with γ . We see that the growth rate is
pproximately 1.8 times larger in models with γ = 5/3 than in models
ith γ = 1.01. We estimate that at smaller values of γ in the interval
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Figure 7. Top panels: Density distribution in models with different planet mass M p at the end of simulation run. The inner part of the simulation region is 
shown. Bottom panels: Same, but in the whole simulation region. 

Figure 8. Left-hand panel: Temporal variation of e p in models with different viscosity coefficients α. Right-hand panel: Dependence of the eccentricity growth 
rate τ−1 on α. 

Figure 9. Left-hand panel: Temporal variation of e p in models with different adiabatic index γ . Right-hand panel: Dependence of the eccentricity growth rate 
τ−1 on γ . 
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Figure 10. Left-hand panel: Temporal variation of e p for different half-thickness of the disc, h = H / r . Right-hand panel: Dependence of the eccentricity growth 
rate τ−1 on h . 
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f 1.01 � γ � 1.3 the growth rate strongly increases with γ : τ−1 ∼
 γ /(5/3)] 1.67 in Phase 2 and τ−1 ∼ [ γ /(5/3)] 1.48 in Phase 3. Ho we ver
n the interval of 1.4 � γ � 1.66, the dependence is not that strong:
−1 ∼ [ γ /(5/3)] 0.18 in Phase 2 and τ−1 ∼ [ γ /(5/3)] 0.59 in Phase 3.
urrently, we do not kno w ho w to explain weaker dependence on γ
t larger γ in Phase 2. 

We should note that in many previous simulations of planet
igration in the cavity, the energy equation is not solved. Instead,
 locally isothermal equation of state is often adopted, in which
he temperature distribution depends only on the radius and is fixed
ith time (e.g. Papaloizou et al. 2001 ; Rice et al. 2008 ; Ragusa

t al. 2018 ; Debras et al. 2021 ). Here, we cannot strictly compare
odels with and without the energy equation. Ho we ver, we suggest

hat locally isothermal models are closest to our models with 
= 1.01. 

.5 Dependence on the thickness of the disc h = H / r 

e varied the half-thickness of the disc h from h = 0.03 up to h =
.1. The left-hand panel of Fig. 10 shows the temporal evolution
f eccentricity for different h . The right-hand panel shows that in
hase 2, the eccentricity growth rate decreases when h increases.
n Phase 3, the growth rate slowly increases with h . In the vicinity
f our reference value of h = 0.05, we find dependencies τ−1 ∼
 h /0.05) −1.16 in Phase 2 and τ−1 ∼ ( h /0.05) 0.37 in Phase 3. 

A lo wer gro wth rate at larger h in Phase 2 can be explained by
he increase of viscosity with h: νvis = α c s H , where both H and c s 
ncrease with h . The viscosity damps the resonant waves (see also
ection 5.3 ). 

.6 Dependence on the density distribution in the disc (slope n ) 

ere, we varied the slope n in the initial density (and pressure)
istributions: � ∼ r −n , 
 ∼ r −n . The left-hand panel of Fig. 11
hows that the orbit evolves more rapidly in models with flatter
ensity distribution (smaller values of n ). The right-hand panel of
ig. 11 shows that the eccentricity growth rate τ−1 decreases when
 increases. We note that at steeper density distribution, there is less
atter in the inner disc (where resonances operate) and the action

f resonances is weaker. That is why τ−1 decreases with n in both
hases. In the vicinity of our reference value, n = 0.5, the dependence
s τ−1 ∼ ( n /0.5) −0.10 in Phase 2 and τ−1 ∼ ( n /0.5) −0.15 in Phase 3. 
NRAS 523, 2832–2849 (2023) 
.7 Analytical dependencies 

ere, we combine the dependencies derived in the abo v e subsections
or the planet’s eccentricity growth rate: 

In Phase 2, 

2 
−1 ≈ 3 . 8 × 10 −4 

(
M p 

10 M J 

)1 . 0 (
q d 

3 × 10 −4 

)0 . 95 (
h 

0 . 05 

)−1 . 16 

×
(

n 

0 . 5 

)−0 . 1 (
α

3 × 10 −4 

)−0 . 1 (
γ

5 / 3 

)0 . 18 

. (12) 

n Phase 3, 

−1 
3 ≈ 1 . 23 × 10 −4 

(
M p 

10 M J 

)0 . 23 (
q d 

3 × 10 −4 

)0 . 34 (
h 

0 . 05 

)0 . 37 

×
(

n 

0 . 5 

)−0 . 15 (
α

3 × 10 −4 

)0 . 13 (
γ

5 / 3 

)0 . 59 

. (13) 

We point out that these dependencies were derived in the vicinities
f reference parameters. Away from these regions, the values of τ−1 

hould be taken from plots. For example, Fig. 9 shows that in Phase
 the growth rate τ−1 increases with γ , as expected. Ho we ver, in the
icinity of our reference value γ = 5/3, it flattens. In several cases,
o we ver, the dependence is valid and can be used for a wide range
f parameters (e.g. the dependence on q d and M p ). 

.8 Dependence on the size of the disc 

e varied the size of the disc by changing the radius of the
xponential cut r exp (and 	 ) in the initial conditions for the density
nd pressure distributions (see equation 11 ). In the reference model
e have r exp = 0.5 r out = 6.8. In test models, we take r exp = 5, 4,
, and 2 (and take smaller widths of the exponential transition 	 ).
he top panels of Fig. 12 show the density distribution in discs with
if ferent v alues of r exp . The bottom panels of Fig. 12 show that in
odels with r exp = 6.8, 5, and 4, the curves for the eccentricity growth

re almost identical. The eccentricity increases somewhat slower in
he model with the smaller-sized disc, where r exp = 3 (it increases
o the maximum value during 17 900 rotations versus 15 300 in the
eference model). The eccentricity increases e ven slo wer in the model
ith the smallest disc, where r exp = 2 (during 29 000 rotations). We

onclude that resonant excitation of eccentricity occurs when the
isc is large enough to incorporate the width of the ELR. When the
isc is smaller than ELR width (the model with r exp = 2), then only
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Figure 11. Left-hand panel: Temporal variation of e p in models with different slope inde x es n : � ∼ r −n . Right-hand panel: Dependence of the eccentricity 
growth rate τ−1 on n . 

Figure 12. Top panels: Density distribution at different exponential cuts r exp at t = 10 000. The radius of the exponential cut is shown as a dashed black line. 
Bottom panel: Temporal variation of the eccentricity in models with different r exp . 
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art of the resonance is in the disc, and the action of the resonance
s weaker. We conclude that the disc with the size of r exp = 3 would
e sufficient for resonant excitation of eccentricity. 
The total dimensionless mass of the disc is calculated by integrat- 

ng the density distribution from r = 1 to r = r exp : 

 d , tot = 

∫ r exp 

1 
�̄ r −0 . 5 2 πrd r = �̄ (4 / 3) πr 1 . 5 

∣∣∣∣
r exp 

1 

. (14) 

aking our reference value of �̄ = 3 × 10 −4 , we obtain M d,tot ≈
.1 × 10 −2 in our reference model ( r exp = 6.8), and M d,tot ≈
.3 × 10 −3 in the model with r exp = 3. The disc mass is approximately
wice as larger as the planet mass q p = 10 −2 in our reference model
nd twice as smaller as the planet’s mass in the model of a small disc.

.9 Eccentricity of the disc 

he eccentricity of the planet changes due to interaction with the disc, 
nd therefore the eccentricity of the disc also varies with time. We
bserved that the disc becomes more and more non-axisymmetric 
ith time. Fig. 5 shows the density distribution at the end of the

imulation run in models with different reference disc masses q d from
he high one, q d = 1 × 10 −2 , to the low one, q d = 1 × 10 −4 . Top
anels of Fig. 5 show that in the inner parts of the disc, where resonant
nteraction occurs, the disc is non-axisymmetric. The bottom panels 
how that the disc o v erall becomes slightly non-axisymmetric. 

We calculate the distribution of the eccentricity of the disc with
adius using an approach based on the angular momentum deficit 
 d ( r ) (e.g. Ragusa et al. 2018 ). For that we calculate the circular
ngular momentum of the ring in the disc located at radius r : 

 circ ( r) = 

∫ 

� 

√ 

GMa d φ , a = −GM 

2 E 

, E = −GM 

r 
+ 

v 2 

2 

nd the real angular momentum of the ring at the radius r : 

 d ( r) = 

∫ 

� rv φd φ. 
MNRAS 523, 2832–2849 (2023) 



2842 M. M. Romanova et al. 

M

Figure 13. Distribution of the disc eccentricity e d with the distance from the 
star, r , at different times. 
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5 Note that a similar result has been obtained by Papaloizou et al. ( 2001 ). 
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he angular momentum deficit of the ring is 

 d ( r) = J circ ( r) − J d ( r) 

nd the eccentricity of the ring: 

 d ( r) = 

√ 

2 A d ( r) 

J circ ( r) 
. 

Fig. 13 shows the distribution of e d ( r ) at different moments in
ime in the inner part of the simulation region (at larger radii the
ensity of the disc drops due to the exponential cut). One can see
hat the disc eccentricity increases with time, and it is larger in the
nner parts of the disc. 

Ragusa et al. ( 2018 ) observed the long-period exchange of eccen-
ricity between the planet and the disc during the stage when the
esonant interaction of the planet with the inner disc is small. We
uggest that this type of evolution should be further studied in the
uture. 

 DISCUSSION  

.1 Size of the cavity 

he resonant interaction of a planet with the disc is a powerful
echanism for the excitation of planetary eccentricity. A planet

hould be located at a distance of r p � 0.5 r d from the star for
he mechanism to operate. The planet’s eccentricity grows if the size
f the cavity does not change significantly with time. In reality, the
ize of the cavity may vary, for example, due to variations in the
ccretion rate. We can compare the time-scale of eccentricity growth
ith the viscous time-scale. 
The viscous time-scale at the radius r is 

 vis ≈ r 2 

νvis 
= 

r 2 

αc s H 

= 

r 

αh 

2 v K 

, (15) 

here νvis is the viscosity coefficient. Normalizing to our reference
alues r 0 , v 0 , and P 0 , we obtain the dimensionless viscous time-scale: 

˜ 
 vis = 

t vis 

P 0 
= 

1 

2 παh 

2 
= 2 . 12 × 10 5 

(
3 × 10 −4 

α

)(
0 . 05 

h 

)2 

. (16) 

The time-scales of the eccentricity growth τ 2 and τ 3 are deter-
ined by equations ( 12 ) and ( 13 ). We put t vis = τ 2 and derive a
NRAS 523, 2832–2849 (2023) 
ritical value of α at which the time-scales are equal in Phase 2: 

2 = 1 . 62 × 10 −2 

(
M p 

10 M J 

)0 . 91 (
q d 

3 × 10 −4 

)0 . 86 (
h 

0 . 05 

)−2 . 87 

. (17) 

ere, we neglect the dependencies on γ and n . If α is smaller than this
ritical value, then the eccentricity of the planet increases faster than
he disc evolves due to viscosity. One can see that for the parameters
f our model and typical α = 10 −3 −10 −4 , the eccentricity increases
uch faster than the viscous disc evolves. We note that in systems
ith low-mass planets and/or low-mass discs, the disc may evolve

aster than eccentricity growth. This may explain why more massive
lanets ∼(5 −30) M J have higher eccentricities compared to the lower
ass Jovian planets. The variation of the accretion rate may lead to

pisodes of eccentricity growth and damping during protoplanetary
isc evolution. 
If a planet is located at r p < 0.5 r d , then resonant interaction

ecomes inef fecti ve. Ho we ver, the disc and the planet may continue
xchanging angular momentum, and the eccentricities of the planet
nd disc may increase/decrease in antiphase (Ragusa et al. 2018 ).
rom Fig. 11 of these authors, one can see that this type of evolution

asts 10–20 times longer than the time-scale of the initial eccentricity
rowth. In our simulations, we observed that the eccentricity of the
isc also increases with time. Ho we ver, we did not see quasi-periodic
ariations of eccentricities. Much longer simulations are probably
equired to study this phenomenon. 

Different types of discs and cavities may have their own specifics
hich can affect the planetary eccentricity evolution. For example, if
 planet is located inside the magnetospheric cavity around a young
tar (e.g. classical T Tauri star), then the size of the magnetosphere
s r d ∼ (3 −10) R ∗, and the size of a star should be taken into account
ecause a planet on the eccentric orbit may collide with the star
Rice et al. 2008 ). On the other hand, the tidal interaction of a planet
ith a star tends to decrease the eccentricity. Another factor is that
 star may accrete in the unstable regime, where tongues of matter
enetrate the magnetosphere in the equatorial plane (e.g. Kulkarni &
omano va 2008 , 2009 ; Romano va, K ulkarni & Lo v elace 2008 ). This
atter may decrease the eccentricity of the planet due to the action

f the co-orbital corotation torque. This mechanism is more efficient
n the cases of relatively small slowly rotating magnetospheres
Blino va, Romano va & Lo v elace 2016 ). At later stages, the mag-
etosphere gradually expands and the unstable regime becomes less 
mportant. 

The low-density cavities may form at different distances from
he star and the disc–planet resonant interaction may lead to the
ormation of eccentric planets at different distances. We have found
hat the eccentricity increases faster in the case of more massive
lanets. 5 This may explain the larger eccentricities of more massive
lanets. 
We should note that if the cavity is very large then the time-scale of

ccentricity growth may be larger than the lifetime of protoplanetary
isc (Debras et al. 2021 ). Taking equation ( 12 ) and equating P 0 τ 2 =
0 6 yr (where P 0 = r 0 /v 0 = r 

3 / 2 
0 / 

√ 

GM ∗is our dimensional time-
cale), we obtain the maximum size of the cavity: 

 max ≈ 51 au 

(
T disc 

10 6 yr 

)2 / 3 (
M p 

10 M J 

)2 / 3 (
q d 

3 × 10 −4 

)2 / 3 

, (18) 

here T disc is the lifetime of the disc. This formula shows that more
assive planets located in more massive discs have enough time to

cquire eccentricity even in large-scale cavities. 
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Figure 14. Left-hand panel: Temporal evolution of the semimajor axis a p and eccentricity e p in our model with M p = 10 Jupiter mass and other parameters 
similar to those of Rice et al. ( 2008 ). We stopped simulations at 1000 rotations to compare this plot with fig. 7 of R08. We observe m = 1, 2, 3 waves in the 
inner disc, like in our main simulations. Right-hand panel: the same, but at a longer simulation time. 
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6 The time-scales of eccentricity growth do not exactly coincide due to a few 

differences in models, e.g. different boundary conditions, different energy 
equations (they used locally isothermal disc), and more. 
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Our simulations show that the disc eccentricity also increases 
uring the simulations. The angular momentum exchange between 
he planet and the disc may be more complex over longer time-scales
e.g. Ragusa et al. 2018 ; Li & Lai 2022 ). This issue can be studied
n the future. 

If a planet is located in the large-scale cavity ( � 10 −30 au), then
nhomogeneities in the disc created by a planet in eccentric orbit
ould be observed by the ALMA telescope. Baruteau et al. ( 2021 )
eveloped maps in the disc in CO molecular spectral lines that can be
ompared with ALMA observations. In our models, from 2 to 4 spiral
rms are expected in the disc during different stages of eccentricity 
ro wth. Ho we ver, the main feature is the crescent-shaped blob that
esults from growing eccentricity in the inner disc. This blob may 
orm and dominate the disc structure in particular in models with 
ore massive planets (see the right-hand four panels in Fig. 7 ; see

lso Ragusa et al. 2018 ). This issue should be studied in the future. 

.2 Comparisons with earlier developed models 

.2.1 Comparison with model by Rice et al. ( 2008 ) 

ur model is very close to the model of Rice et al. ( 2008 , hereafter
08). To compare our models, we chose parameters close to those 
sed by R08: we placed an empty gap at r < 1 and considered the
imulation domain between r in = 1 and r out = 10. The disc has
urface density distribution � = � 0 r −1 , where the surface density
t r = 1 is � 0 = 10 −2 , which is 30 times larger than the density
n our simulations. We took viscosity with α = 10 −3 in the whole
imulation region, while they took α = 10 −3 at r = 1 and higher
alues ∼r at larger distances. We used our type of grid with square-
haped grid cells and our typical resolution in φ-direction N φ = 640.
he number of grids in the radial direction is N r = 273. R08 used grid

esolution 400 × 400, which has a lower resolution in the azimuthal 
irection and compressed grids in the r -direction. They used the code
EUS (Norman & Stone 1992 ), while we used a Godunov-type code
Koldoba et al. 2016 ). 

In one experiment, we took a planet of M p = 10 Jupiter mass and
laced it initially at a p = 0.8. Fig. 14 shows the results of simulations.
he left-hand panel shows the evolution of the semimajor axis and 
ccentricity up to time t = 1000. We can compare this plot with fig. 7
f Rice et al. ( 2008 ). These authors placed a planet at a p = 0.9. One
an see that there is a quantitative and qualitative similarity between 
hese two plots. In both models, the eccentricity increased up to e p 

0.4 −0.45. In their model, wavy oscillations of eccentricity are 
ften observed, probably due to their boundary conditions. In our 
odel, we used de Val-Borro et al. ( 2006 ) boundary conditions,
hich pro vide v ery good wav e damping at the boundary, and curv es

re smoother. Rice et al. ( 2008 ) commented in their paper that they
annot run the code for too long. That is why we continued running
he same model up to the moment when a planet in apocenter reached
he disc-cavity boundary at r = 1. The right-hand panel of Fig. 14
hows that the eccentricity reached the value e p ≈ 0.75 at the end of
imulations. At the end of simulations, the planet reached the value
f a ap ≈ 0.2 in the apocentre. Rice et al. ( 2008 ) concentrated on the
roblem of planet survi v al in magnetospheres of young stars, where
he typical size of the magnetosphere is r m 

∼ 3 −10 stellar radii.
he authors concluded that the high-mass planets may not survive in
uch cavities due to the high eccentricity and collision with the star.
hough this conclusion is confirmed by our simulations, we note 

hat in cavities of larger size, the planet eccentricity may increase
p to high values. We checked the types of resonances operating at
hese parameters. 2D plots of density distribution in the disc show
he presence of waves with m = 1, 2, 3 spiral arms. 

In another experiment, we took the initial position of the planet
t a p = 0.7 and calculated the eccentricity evolution at different
asses of the planet, taken by R08: M p = 10, 5, 1, 0.5. The left-hand

anel of Fig. 15 shows eccentricity evolution during a relatively brief
ime interval. This plot can be compared with fig. 8 of R08. These
gures show qualitatively similar results: eccentricity increases fast 

n the model with M p = 10 Jupiter mass and slower in the model
ith M p = 5. At masses M p = 1 and 0.5, the eccentricity seems to be
ot growing. 6 We continued running these models for a longer time
nd obtain that in all models, the eccentricity increases up to a high
alue of e p ≈ 0.7 −0.75, though the time scale strongly increases for
lanets of lower mass. The right-hand panel of Fig. 15 shows that
he eccentricity reached high values in all models. We conclude that
here is no theoretical obstacle to the eccentricity growth of a lower

ass planet, but it takes much longer time, which in some cases may
e unrealistically long (see Section 6.1 ). 

.2.2 Comparison with model by Debras et al. ( 2021 ) 

e also compared the results of our model with results obtained by
ebras et al. ( 2021 , hereafter D21) who performed simulations both

n the disc and in the cavity and obtained the maximum eccentricity e p 
MNRAS 523, 2832–2849 (2023) 
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M

Figure 15. Left-hand panel: Eccentricity evolution for planets of different mass M p and initial a p = 0.7. Simulations are stopped at the time when a planet 
with M p = 10 riched eccentricity e p ≈ 0.26 like in fig. 8 of R08. The right-hand panel shows that at longer time-scales, the eccentricity increased to high values 
in all models, but the time-scale is much longer for planets of lower mass. 

Figure 16. Left two panels: Evolution of the semimajor axis a p and eccentricity e p in our model with parameters close to those of D21. Dashed lines show 

parameters at which eccentricity stopped increasing in the D21 model due to the inner damping zone region. Right-hand panel: Dependence e p −a p . This 
figure should be compared with fig. 3 from D21. 
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 0.4. They supported a low-density cavity by placing a low viscosity
n the disc and high viscosity in the cavity and were able to obtain a
uasi-stationary cavity at the radius r = 1. The authors had a goal to
nvestigate the eccentricity growth of planets of Jupiter’s mass. 

We took our model but chose parameters close to those of D21:
ass of the planet: M p = 1 Jupiter mass, reference density in the

isc is three times higher than in our model: � 0 = 10 −3 . We took a
at density distribution with n = l = 0, like in D21. We took a small
imulation region with the outer radius r out = 2, like in D21 (who
ad r out = 1.9). We used our typical grid resolution N φ = 640 in the
direction, and grid N r = 84 in the radial direction (which resulted

rom our preference to keep square-shaped grid cells). We note that
21 used mainly grids 200 × 200 or 400 × 400. Also, D21 used
 locally isothermal equation of state (with the fixed temperature
istribution), while we solved the energy equation and took γ = 5/3.
Despite a few differences, our model is in reasonably good

greement with that of D21. Left-hand panels of Fig. 16 show that in
ur model the eccentricity increased up to the value of e p ≈ 0.6 during
30 000 rotations of the inner disc. Our simulations were stopped
hen a planet in the apocentre reached R ap = 1. The right-hand panel

hows the dependence of the eccentricity on the semimajor axis in
he style of fig. 3 of D21. Comparisons of this plot with the right-
and panel of fig. 3 of D01 show that in D21 the eccentricity stops
rowing at e p ≈ 0.35 −0.4. The authors explained that a planet enters
 wave-damping zone placed at r = 0.36. In our model, the cavity
s empty and eccentricity increases to larger v alues. Ho we ver, if we
NRAS 523, 2832–2849 (2023) 

t  
ake a part of our curves (restricting the apocenter of the planet with
he value of a per ≈ 0.36) then we obtain the maximum eccentricity of
 p ≈ 0.4 which corresponds to that obtained in the D21 model. We
ote that in this interval of parameters, our curves are similar. Our
ime-scale of eccentricity growth up to the value e p = 0.4 is 28 000
otations which is close to 20 000 rotations obtained by D21 at the
rid 400 × 400 (see their fig. 3 ). We note that in D21, the time-scale
ncreases up to 60 000 rotations at their runs with the lower grid
esolution, 200 × 200. Overall, our result is close to the result of
21 at their higher grid resolution and at parameters a ap � 0.0.36

nd e p � 0.4. 
We also plotted the 2D slices of the surface density distribution

nd observed the formation of the m = 1 one-armed spiral wave
n the disc at times � 15 000, and m = 2 two-armed spiral waves
corresponding to the 1:3 ELR) during the rest of simulation time.

e observed that waves were jammed in the small-sized simulation
egion of 1 < r < 2. This may be the reason why m = 3 waves (the
:4 resonance) were not observed. 

.2.3 Comparison with model by Papaloizou et al. ( 2001 ) 

apaloizou et al. ( 2001 , hereafter P01 ) investigated the migration of
lanets with masses M p = 1 −30 Jupiter mass in the disc, which
radually opened a central cavity and subsequently interacted with
he disc. They observed that the planet’s eccentricity increases due
o interaction with the disc. It increases more rapidly in models with
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igher mass M p (see their fig. 1). This is in accord with our models
see Section 5.2 and our Fig. 6 ). 

P01 also analysed the causes of eccentricity growth. They fixed 
 30 M J mass planet at the orbit and analysed the role of 1:2 and
:3 resonances in the eccentricity growth. The y observ ed that the
ction of the 1:2 resonance is slightly stronger than that of the 1:3
esonance and concluded that the primary cause of the eccentricity 
rowth is the excitation of the eccentricity in the disc and subsequent
nterchange of angular momentum between the disc and the planet. 

e note here that when the planet is fixed (and eccentricity is zero)
hen the action of the 1:2 ECR is larger than 1:3 ELR and corotation
orque suppresses the eccentricity growth (e.g. Goldreich & Sari 
003 ; Ogilvie & Lubow 2003 ). We observed it in our simulations
hich were initially performed at e p = 0. Later, we switched to
odels with initial e p = 0.02 (like e.g. R08 did). The right-hand

anel of our fig.1 shows the difference between models with e p = 0
nd 0.02. 

P01 noted that the eccentricity does not increase in their model with 
 p = 1 Jupiter mass. In our models, we observed that eccentricity

f 1 M J planet increases to a high value of e p ≈ 0.6 but very slowly
ompared with more massive planets (see our Fig. 6 where the initial
art of the eccentricity growth is shown). 
P01 commented that the eccentricity of a Jupiter mass planet may 

tart growing at the lower viscosity of the disc. Our simulations
erformed at different values of viscosity parameter α show that 
iscosity damps resonant waves and decreases the rate of eccentricity 
rowth. We also note that modelling a Jupiter mass planet requires a
igher grid resolution, compared with more massive planets. 

.2.4 Comparison with model by Ragusa et al. ( 2018 ) 

agusa et al. ( 2018 , hereafter R18 ) performed simulations of two
odels with the mass of the planet M p = 13 Jupiter mass and two

iscs with the reference surface densities � 0 = 1.5 × 10 −4 and � 0 =
.8 × 10 −5 . Simulations were performed at a high grid resolution 
30 × 580 and in a large simulation region: 0.2 < r < 15 with an
dditional exponential taper at r = 5. They observed the formation of
he crescent-shaped o v erdense feature at the apocentre of the cavity
hich is consistent with the density perturbation expected for an 

ccentric disc (Teyssandier & Ogilvie 2016 ). Our simulations also 
how the formation of such a feature which is particularly clear 
n models with a high planet mass (see right-hand panels in our
ig. 7 ). We expect that this feature can explain some of the ALMA
bservations where the crescent-shaped brightness enhancement is 
ften observed (see also Ataiee et al. 2013 ; Ragusa et al. 2017 ). This
s a similarity between our models. 

In models of R18 , a planet eccentricity does not increase abo v e a
mall value of r p ≈ 0.14. Our models with comparably low density 
f � = q d = 10 −4 show that the planet eccentricity increases up
o high values, but very slowly (see our Fig. 4 ). It is not clear why
ccentricity does not increase to larger values in models of R08. The
uthors do not show details of early times when the planet could
xcite resonances in the disc. In their fig. 1, the inner disc is located
t the distance of ∼(2 − 3) a p at which all resonances are inside
he cavity. In this work, the stage of resonant interaction may have
een relatively brief and eccentricity increased only a part-way. It 
s possible that in R18 the inner disc mo v ed outward faster than the
ate of eccentricity growth. 

At later times, when the inner disc is too far away and the
esonances do not operate, R18 calculated the interaction of a planet 
ith the disc and found interesting long-term variability where the 
lanet and the disc exchange their angular momentum and their 
ccentricity vary in the antiphase. These types of simulations are 
eyond the scope of our paper. 

 C O N C L U S I O N S  

e hav e inv estigated the growth of the eccentricity of massive planets 
ocated inside the cavities of protoplanetary discs due to the resonant
lanet–disc interactions. The main conclusions are the following: 

(1) We observed clear, long-lasting resonant interactions between 
he disc and the planet driven by different resonances. This helped
s to investigate the properties of such interaction in detail. 
(2) In most of the simulations, the planet’s eccentricity grows to 

 large value of e p ≈ 0.65 −0.75, which have never been obtained in
revious numerical works. Note that we stopped our simulations 
hen the planet in eccentric orbit reaches the cavity boundary. 
therwise, the eccentricity could increase to even larger values. 
(3) The planet’s eccentricity growth proceeds through several 

istinct phases: (1) A slow exponential growth due to the 1:2 OLR
t which one-armed ( m = 1) spiral waves are excited in the disc. (2)
apid growth due to the 1:3 ( m = 2) ELR up to e ≈ 0.2 −0.25. (3)
lo wer gro wth up to e ≈ 0.5 due to the 2:4 ( m = 3) ELR resonance.
4) A relatively brief time interval of eccentricity growth up to e ≈
.65 −0.75, in which the m = 4 waves are observed. This phase may
orrespond to the excitation of the 3:5 resonance. 

(4) We varied the mass of the planet and various parameters of the
isc in order to derive the dependencies of the eccentricity growth
ate on these parameters. The growth rate driven by the 1:3 ELR is
roportional to the planet’s mass and the disc surface density (for a
ide interval of parameters), in agreement with theoretical predic- 

ions. The growth rate decreases with the α-parameter of viscosity 
nd the thickness of the disc h . In Phase 3, the eccentricity grows
wo to three times slower. Many other dependencies are complex 
nd are presented as figures (see Figs 4 –11 ). In the vicinity of ref-
rence v alues, we deri ved analytical dependencies (see equations 12
nd 13 ). 

(5) We derived the width of the 1:3 ELR from numerical simula-
ions: w L ≈ 0.19 r d which is ∼2.3 times larger than that predicted by
he theory (e.g. Teyssandier & Ogilvie 2016 ). We observed that the
esonance may be inside the ca vity b ut the planet interacts with the
art of the resonance due to its finite width. 
(6) The eccentricity of the planet can grow if the time-scale of the

rowth is shorter than that of the cavity evolution due to viscosity. For
 wide range of parameters, the eccentricity growth time is indeed
horter than the viscous time-scale (see equation 17 ). 

(7) The results obtained in our numerical models may help in 
nderstanding the non-linear stages of eccentricity growth and the 
evelopment of the theory of non-linear resonant interaction. 

A caveat of the simulations reported in this paper is that we fixed
he boundary of the cavity, inside which the disc matter does not
enetrate. This helped us to exclude the local corotation torque, 
hich damps the planet’s eccentricity. This set-up also helped us to

nvestigate the role of different resonances in the eccentricity growth 
nd the dependencies of the eccentricity growth rate on various 
hysical parameters. As a next step, we plan to investigate reso-
ances and planetary eccentricity growth in 2D and 3D simulations 
here the cavity has low density. The knowledge obtained in the

urrent research will help us to choose the parameters of future
imulations. 
MNRAS 523, 2832–2849 (2023) 
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7 In our models, the integrated force from the disc onto the star is a few orders 
of magnitude smaller than that from the planet, and we neglect the inertial 
term associated with the disc. 
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PPENDI X  A :  DETA I LS  O F  T H E  N U M E R I C A L  

O D E L  

e calculate the evolution of the disc and the orbit of the planet in
he coordinate system centred on the star. This coordinate system
s not inertial due to the presence of the planet and the disc. 7 That
s why in equations of motion for the disc and the planet, we add
n additional term for the inertial force. We solve the hydrodynamic
quations in polar coordinates ( r , φ): 
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( �Sv ϕ ) = 0 . (A1) 

ere, � = 

∫ 
ρd z is the surface density (with ρ the volume density);

 r and v ϕ are the radial and azimuthal v elocities, respectiv ely; 
 = 

∫ 
 d z is the surface pressure (with P the volume pressure); S = 
 / � 

γ

s a function analogous to entropy; and γ is adiabatic index. w r and
 ϕ are the forces e x erted on the disc by the planet (per unit area of

he disc). 
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Figure A1. Left-hand panel: Sketch of the main resonances plotted on top of the density distribution in the reference model with a p = 0.6 at t = 12 000 when 
2:4 resonance with m = 3 dominates. Resonances were calculated using the apocentre a ap = a p (1 + e p ) position, marked as an outer dashed circle (instead of 
the semimajor axis a p ). Middle panel: Temporal variation of the semimajor axis a p , apocentre r ap , and pericentre r per = a p (1 − e p ) in the reference model. The 
black line shows eccentricity. Right-hand panel: Dependence of the planet’s eccentricity e p on the semimajor axis a p , apocentre a ap , and pericentre a per . 

Figure A2. Top panels: Surface density distribution (color background), initial positions of the planet (solid lines), and position of the 1:3 ELR (dashed bold 
line). The approximate width of the ELR is shown with arrows and schematics. Bottom panels: Left: Temporal variation of eccentricity in models with different 
a p . Right: Dependence of the eccentricity growth rate τ−1 in Phase 2 on the initial semimajor axis of the planet, a p . The horizontal line with arro ws sho ws the 
half-width of the ELR. 
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8 In addition, it has been tested on several astrophysical problems. In 2D 

hydro and MHD versions, it has been used for modelling planet migration in 
accretion disc (Comins et al. 2016 ). In the case of a non-magnetized disc with 
different slopes in density distribution, we obtain the transition from inward to 
outward migration at the slope which is close to that predicted theoretically 
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Viscosity terms are added to the equations of motion following 
he α prescription of Shakura & Sunyaev ( 1973 ), with the viscosity
oefficient in the form of α −viscosity, ν vis = α c s H . 

In our code, we use the entropy balance equation instead of the
ull energy equation, because in the problems that we solve, the 
hock waves (where we cannot neglect the energy dissipation) are 
ot expected. This approach is more appropriate for the investigation 
f waves in the disc compared with the widely used locally isothermal 
pproach, where the temperature is fixed in time and depends on the
adius only (e.g. Ragusa et al. 2018 ; Debras et al. 2021 ; see also
iscussion of this issue in Miranda & Rafikov 2020 ). 
The equations of hydrodynamics are integrated numerically using 

n explicit conserv ati ve Godunov-type numerical scheme (Koldoba 
t al. 2016 ). For the calculation of fluxes between the cells, we use the
LLD Riemann’s solv er dev eloped by Miyoshi & Kusano ( 2005 ).
ntegration of the equations with time are performed with a two-step
unge–Kutta method. 
Our code is similar in many respects to other codes that use

odunov-type method, such as PLUTO (Mignone et al. 2007 ), 
LASH (Fryxell et al. 2000 ), and ATHENA (Stone et al. 2008 ). The
ode is different from FARGO3D code where the orbital advection has
een implemented (Bentez-Llambay & Masset 2016 ). Our code has 
een thoroughly tested using standard tests (Koldoba et al. 2016 ). 8 
MNRAS 523, 2832–2849 (2023) 
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The code is parallelized using MPI. We typically use 448 proces-
ors and run the code during 20–200 h, depending on the parameters.
imulations are longer in models with lower disc mass and smaller
asses of the planet. 
We calculate the orbit of the planet using earlier developed

pproaches (e.g. Kley 1998 ; Masset 2000 ; Kley & Nelson 2012 ).
he force per unit mass acting on the disc is 

f = −GM ∗
| r | 3 r − GM p 

| r − r p | 3 ( r − r p ) − GM p 

| r p | 3 r p , (A2) 

here r p is the radius vector from the star to the planet. The first
nd second terms represent the gravitational forces from the star and
he planet respectively. The last term accounts for the fact that the
oordinate system is not inertial. 

We find the position r p and velocity v p of the planet at each time-
tep solving the equation of motion: 

 p 
d v p 
d t 

= −GM � M p 

| r p | 3 r p −
GM 

2 
p 

| r p | 3 r p + F disc → p , (A3) 

here 

F disc → p = 

∫ 

GM p 

| r − r p | 3 ( r − r p ) �r d r d φ (A4) 

s a cumulative force acting from the disc to the planet. If we neglect
he force F disc → p in equation ( A3 ), then the trajectory of the planet
s described by the equations of motion in the gravitational field of
he cumulative mass M = M ∗ + M p . 

We calculate the planet’s orbital energy and angular momentum
er unit mass using the calculated values of r p and v p : 

 p = 

1 

2 
| v p | 2 − GM 

r p 
and L p = r p × v p . (A5) 

e use these relationships to calculate the semimajor axis and
ccentricity of the planet’s orbit at each time-step: 

 p = −1 

2 

GM 

E p 
and e p = 

√ 

1 − L 

2 
p 

GMa p 
. (A6) 

PPENDIX  B:  EFFECTS  O F  T H E  ELLIPTICAL  

R B I T  

n our reference models, we observe spiral density waves with m =
, 2, 3, and 4 arms that can be excited at the 1:2 OLR and 1:3, 2:4,
nd 3:5 ELRs. Ho we ver, higher order resonances are located closer
o the star (see Table 1 ). In reference model with a p = 0.6 and
or typical values of a p = 0.55 −0.6, many resonances are located
nside the cavity. The question arises, why do we see resonant 
nteraction? 

On one hand, resonances have a finite width and part of the
esonance can be in the disc, as described in Section C . This factor
hould play a role. On the other hand, a planet in an elliptical orbit
NRAS 523, 2832–2849 (2023) 

y T anaka, T akeuchi & W ard ( 2002 ). In the model of a magnetized disc, 
e obtained the positions of the magnetic resonances at locations similar to 

hose found in the simulations by Fromang, Terquem & Nelson ( 2005 ), which 
oth correspond to the theoretical resonance locations predicted by Terquem 

 2003 ). A 3D hydro version of the code has been used to study the trapping 
f low-mass planets at the disc-cavity boundary due to the corotation torque 
Romanova et al. 2018 ). In models with thin discs, our results have shown 
rapping radii similar to those obtained in 2D simulations by Masset et al. 
 2006 ). 

i  

t  

i
 

e  

a  

r  

g  

t
i  
as the closest approach to the disc during its passage through the
pocentre, which is located at a distance of r ap = a p (1 + e p )
rom the star. A planet spends a significant time at this part of the
rbit and may excite ELRs during its passage through the apocentre.
e can calculate the location of resonances using r ap (instead

f a p ). 
We show examples using the reference model with a p = 0.6. The

ight-hand panel of Fig. A1 shows the temporal evolution of a p , e p ,
pocentre r ap , and pericentre r per = a p (1 − e p ). One can see that the
pocentre increases with time up to r ap = 1 when the planet reaches
he disc inner boundary. 

F or e xample, at t = 12 000, the parameters of the orbit are a p 
0.56 and e p ≈ 0.38. The left-hand panel of Fig. A1 shows that

he three-armed density wave dominates, which fa v ors the 2:4 ELR
esonance. Using a p as a base, we obtain r ELR,2:4 ≈ 1.587 r ap ≈ 0.89,
hich is within the cavity. The apocentre is located at r ap ≈ 0.78 and

he corresponding 2:4 resonance at r ELR,2:4 ≈ 1.587 r ap ≈ 1.24, that
s, within the disc. This resonance is shown as the white dash-dotted
ine in Fig. A1 . 

Similarly, at time t = 15 000 when m = 4 waves were observed,
e calculate the position of the 3:5 resonance. The parameters of the
rbit are a p = 0.57 and e p = 0.61. The position of the planet in
he apocentre is r ap ≈ 0.92, and the location of the resonance is at
 ELR,3:5 ≈ 1.406 r ap ≈ 1.29, which is within the disc. Note that if we
se a p as a base, we obtain r ELR,3:5 ≈ 0.80. 

PPENDI X  C :  T H E  W I D T H  O F  T H E  1 :3  ELR  

E S O NA N C E  

esonances in the disc have a finite width which increases with the
isc thickness h (e.g. Goldreich & Tremaine 1978 ). In the linear
pproximation, the width has been derived from theoretical studies
see e.g. equation 8 ). Using parameters of our reference models a p =
.6, h = 0.05, and taking m = 2 for 1:3 ELR, we obtain theoretically
redicted width: 

 L ≈ 0 . 065 r ELR , 1:3 h 

2 / 3 ≈ 0 . 081 

(
h 

0 . 05 

)2 / 3 

, (C1) 

here we take into account that r ELR,1:3 ≈ 2.08 a p . 
Here, we estimate the width of the 1:3 ELR using our numerical
odel. For that, we place a planet at different distances a p from the

tar, from a p = 0.7 to a p = 0.55, and let them migrate. The top
anels of Fig. A2 show the initial orbit of the planet with semimajor
xis a p (solid line) and positions of the 1:3 ELR which are located
t r ELR,1:3 ≈ 2.08 a p (see bold dashed lines). One can see that at a p 
 0.65 (left top panel), the ELR is located at r ELR,1:3 ≈ 1.35, and a

ignificant part of the resonance width is located in the denser part
f the disc (red and yellow colours). At a p = 0.6 (middle top panel),
he ELR is located at r ELR,1:3 ≈ 1.25, and approximately half of the
esonance width is located in the disc. At a p = 0.55, the resonance
s located at r ELR,1:3 ≈ 1.14, and only a part of the resonance width
s inside the disc. It is expected that in the model with a p = 0.65
he resonant interaction will be stronger than in models with smaller
nitial a p . 

The bottom left-hand panel shows that at larger values of a p , the
ccentricity increases faster, as expected. In models with smaller
 p the eccentricity increases, but slower, because only a part of the
esonance width is located in the disc. We calculated the eccentricity
rowth rate τ−1 = (1/ e p )d e p /d t in Phase 2 for models shown in
he left-hand panel. The bottom right-hand panel shows that τ−1 

s approximately the same in models with a p � 0.65 because all (or
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ost) of the resonant width is inside the disc. Ho we ver, τ decreases
hen a p decreases because a smaller and smaller part of the resonant
idth is inside the disc. From the curve of Fig. A2 , we can estimate

he width of the resonance at half of the amplitude. We obtain w L /2
0.08 and the full width of the resonance is w L ≈ 0.16. This value

s ∼2 times larger than that derived theoretically. 
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ublished by Oxford University Press on behalf of Royal Astronomical Society 
The finite width of resonances is important in the disc–planet 
nteraction because a planet may interact with the disc even if the
entre of resonance is located in the cavity. 
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