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Colour-concept association formation for novel concepts
Melissa A. Schoenlein a,b and Karen B. Schlossa,b

aDepartment of Psychology, University of Wisconsin—Madison, Madison, WI, USA; bWisconsin Institute for Discovery, University of Wisconsin
—Madison, Madison, WI, USA

ABSTRACT
Colour-concept associations influence fundamental processes in cognition and perception,
including object recognition and visual reasoning. To understand these effects, it is necessary to
understand how colour-concept associations are formed. It is assumed that colour-concept
associations are learned through experiences, but questions remain concerning how association
formation is influenced by properties of the input and cognitive factors. We addressed these
questions by first exposing participants to colour-concept co-occurrences for novel concepts
(“Filk” and “Slub” alien species) using a category learning task. We then assessed colour-concept
associations using an association rating task. During alien category learning, colour was a noisy
cue and shape was 100% diagnostic of category membership, so participants could ignore
colour to complete the task. Nonetheless, participants learned systematic colour-concept
associations for “seen” colours during alien category learning and generalized to “unseen”
colours as a function of colour distance from the seen colours (Experiment 1). Association
formation not only depended on colour-concept co-occurrences during alien category learning,
but also on cognitive structure of colour categories (e.g., degree to which an observed red
colour is typical of the colour category “red”) (Experiment 2). Thus, environmental and cognitive
factors combine to influence colour-concept associations formed from experiences in the world.
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People have associations between colours and con-
cepts, which influence a wide variety of judgments
in visual cognition. Colour-concept associations
affect object recognition (Macario, 1991; Nagai &
Yokosawa, 2003; Ostergaard & Davidoff, 1985;
Tanaka & Presnell, 1999; Wurm et al., 1993), colour
perception (Delk & Fillenbaum, 1965; Hansen et al.,
2006; Olkkonen et al., 2008; Witzel, 2016; see Valenti
& Firestone, 2019 for contrary evidence), perceptual
experiences in other modalities (e.g., flavour)
(Piqueras-Fiszman & Spence, 2012; Velasco et al.,
2014), colour preferences (Palmer & Schloss, 2010;
Schloss & Palmer, 2017; Strauss et al., 2013; Taylor &
Franklin, 2012), visual reasoning with information
visualizations (Lin et al., 2013; Schloss et al., 2018;
Schloss et al., 2019), and interpretations of other
people’s emotions (Thorstenson et al., 2018). Thus,
to fully understand visual cognition, it is necessary

to understand the nature of colour-concept associ-
ations. In the present study, we investigated factors
that influence colour-concept association formation
for novel concepts.

Motivation for studying colour-concept associ-
ations. Early work on the role of colour-concept associ-
ations in visual cognition primarily focused on effects
of the single, most diagnostic colour of objects that
are high in colour diagnosticity (e.g., red for fire
trucks) (Bramão et al., 2010; Joseph & Proffitt, 1996;
Nagai & Yokosawa, 2003; Ostergaard & Davidoff,
1985; Tanaka & Presnell, 1999). For example, Tanaka
and Presnell (1999) found that participants were
better at identifying objects when objects were pre-
sented in their most diagnostic colour versus pre-
sented in an atypical or achromatic colour.

However, recent work suggests that focusing on
diagnostic colours for colour-diagnostic objects is
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insufficient for understanding effects of colour-
concept associations for visual cognition. This limit-
ation has been highlighted in studies on how
people interpret the meanings of colours in infor-
mation visualizations (e.g., graphs, maps, diagrams,
and signs) (Mukherjee et al., 2022; Schloss, 2018;
Schloss et al., 2018; Schloss et al., 2021). When infer-
ring which colour maps to a particular concept, par-
ticipants did not always choose the strongest
associated colour. Instead, using a process called
assignment inference, they inferred mappings that
optimize overall colour-concept association strengths
(Schloss et al., 2018). This process can lead to inferring
that concepts map to weakly associated colours when
there are more strongly associated candidate colours
(see Schloss et al., 2018 for details). To perform assign-
ment inference, observers cannot merely rely on their
representations of diagnostic colours for particular
objects; they must represent relative colour-concept
associations extending over colour space.

Colour-concept associations can be represented as
continuous distributions over perceptual colour space
(Lindner, Bonnier, et al., 2012; Lindner, Li, et al., 2012;
Mukherjee et al., 2022; Schloss, 2018; Schloss et al.,
2018; Schloss et al., 2021). Figure 1 shows examples
of colour-concept association spaces, which depict
the degree to which a given concept is associated
with each possible colour sampled from a continuous
colour space (Rathore et al., 2020; Schloss, 2018).
Some concepts, such as raspberry, have a single,
most strongly associated colour, with decreasing

association strength as distance from the strongest
associate increases. Other concepts, such as waterme-
lon in Figure 1 (right) have multiple strongly associ-
ated areas of colour space (reds and greens), with
decreasing associations between peaks. If a concept
is equally associated with all colours, whatever the
association strength may be, that would manifest in
a uniformly weighted colour-concept association
space. Colour-concept association distributions can
be quantified in various ways, including human judg-
ments (Dael et al., 2016; Mukherjee et al., 2022; Ou
et al., 2004; Schloss et al., 2018; Schloss et al., 2021;
Tham et al., 2020), automated estimations from
image statistics (Lin et al., 2013; Lindner, Bonnier,
et al., 2012; Rathore et al., 2020; Setlur & Stone,
2015) and natural language (Havasi et al., 2010;
Setlur & Stone, 2015). However, a fundamental ques-
tion concerns how people form colour-concept
associations that “populate” continuous colour
concept association spaces.

Potential accounts of colour-concept associ-
ation formation. Many have assumed that colour-
concept associations are learned through experiences
(Elliot et al., 2007; Mehta & Zhu, 2009; Rathore et al.,
2020; Schloss, 2018; Tham et al., 2020; Velasco et al.,
2014; Witzel et al., 2011). In the Colour Inference Fra-
mework, Schloss (2018) proposed that people conti-
nually learn and update colour-concept associations
from colour-concept co-occurrences in their environ-
ment. Even associations between colours and abstract
concepts might stem from associations with related

Figure 1. Example colour-concept association spaces for the concepts raspberry and watermelon. The data were obtained by asking
participants to rate their association strength between each concept and each of 58 colours sampled uniformly in CIELAB space
(Rathore et al., 2020). The centre of each bar indicates the colour coordinate in CIELAB space, and the width of the bar represents
the colour-concept association strength. Figure adapted from Supplementary Material in Rathore et al. (2020).
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concrete objects that have directly observable colours
(Schloss, 2018; Soriano & Valenzuela, 2009). It may
seem obvious that people would form and update
colour-concept associations when using colour for
particular activities, such as learning to use colour to
discern between ripe and rotten fruit. But, what
about activities where colour is not directly relevant?

If opportunities to form colour-concept associ-
ations are confined to experiences in which colour is
central to a task, then opportunities to form these
associations through daily experiences would be
severely limited. When making inferences about the
world, people tend to prioritize other factors over
colour such as shape (Landau et al., 1988; Smith,
2000; Tek et al., 2012; Vlach, 2016) and functional
relations (Gopnik & Sobel, 2000). An exception is for
categorizing food-related objects, in which colour is
prioritized over shape (Macario, 1991). During experi-
ences when non-colour related factors are prioritized,
people may not detect colour-related statistics
needed to form and update colour-concept associ-
ations. This possibility is consistent with evidence
that in the presence of more informative cues, less
informative cues are used less (Kruschke & Johansen,
1999) and are harder to learn (McLaren et al., 2014).

Although colour often may be a less reliable cue
than other cues like shape and motion, that does
not necessarily mean that people are insensitive to
colour statistics from the environment. For example,
to cross a street safely, it is necessary to estimate
the speed and distance of oncoming traffic, not
attend to the colours of the cars, but that does not
mean people are insensitive to car colour frequency.
Extensive evidence suggests that people learn about
properties and relations from statistical regularities
in stimulus input (Austerweil & Griffiths, 2013; Fiser
& Aslin, 2001, 2002; Park et al., 2018; Saffran et al.,
1996; Turk-Browne et al., 2005; Turk-Browne et al.,
2008; Yu & Zhao, 2018; Zhao & Yu, 2016). Perhaps
most relevant to the present study, participants
learn relations among cues that co-occur while com-
pleting tasks that do not require learning such
relations, such as identifying when a shape repeats
in a sequential stream of shapes (Turk-Browne et al.,
2005). Even outside of awareness, participants are
sensitive to co-occurrence frequencies in their
environment (Hasher & Chromiak, 1977; Hasher &
Zacks, 1979, 1984; Turk-Browne et al., 2005; Watten-
maker, 1991, 1993; Zacks & Hasher, 2002). If people

are sensitive to colour-concept co-occurrences when
using colour is nonessential, then associative learning
could enable them to continually form and update
colour-concept associations through daily activities
that do not require using colour.

Moreover, such associative learning need not be
confined to exact colours from the visual input.
During associative learning, organisms tend to show
tolerance around the input and generalize learned
associations to similar stimuli (see Ghirlanda and
Enquist (2003) for a review). Thus, learned associations
through colour-concept co-occurrences may spread
to nearby colours in colour space (Rathore et al.,
2020). One possibility, is that the degree of generaliz-
ation could simply depend on distance between the
colours in colour space. However, generalization may
also depend on perceived similarity. Rosch (1975a)
found that judgments of colour similarity are asym-
metric: non-prototypical colours (e.g., mauve) are
more similar to colour prototypes (e.g., pure red) than
prototypes are to non-prototypes. If generalization of
colour-concept associations depends on colour simi-
larity, and colour similarity is asymmetric, then general-
ization may also be asymmetric.

Present approach. In this study, we conducted two
experiments investigating factors that influence
colour-concept association formation for novel con-
cepts. Both experiments used the same two-part
experimental paradigm. First, we exposed participants
to colour-concept co-occurrences during a task in
which they could reach 100% accuracy by using only
shape and ignoring colour. Second, we assessed
colour-concept associations for colours “seen” during
that initial task, plus additional “unseen” colours.
Through the lens of several hypotheses, we tested
whether participants learned and generalized colour-
concept associations from the initial exposure task:

1. Frequency hypothesis: association strength will
increase with increased co-occurrence frequency.

2. Exposure hypothesis: associations will be stron-
ger for seen colours during colour-concept co-
occurrences than for unseen colours.

3. Frequency generalization hypothesis: fre-
quency effects for seen colours will extend to
similar, unseen colours.

4. Colour distance generalization hypothesis: the
degree to which associations for seen colours
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generalize to unseen colours will decrease as
colour distance from the seen colours increases

5. Asymmetric generalization hypothesis: the
degree to which associations for seen colours gen-
eralize to unseen colours is asymmetric, depend-
ing on colour category typicality.

We tested the first two hypotheses in Experiments
1 and 2, the frequency generalization and colour dis-
tance generalization hypotheses in Experiment 1, and
the asymmetric generalization hypothesis in Exper-
iment 2. Experiment 2 was preregistered prior to
data collection at osf.io/6cjkz, Experiment 1 was
not preregistered.

In our study, support for these hypotheses
suggests that people can form colour-concept associ-
ations during experiences when colour can be
ignored while successfully completing the task at
hand. Our results further suggest that continuous
colour-concept association spaces can become
“populated” through experiences in the world by
the combination of (1) observed colour-concept co-
occurrences from a sampling of colours, and (2) a gen-
eralization gradient away from the observed colours.

Experiment 1

Experiment 1 investigated whether participants would
form colour-concept associations from co-occurrence
frequencies during exposure to images of novel alien
species. Our primary focus was on testing the fre-
quency, exposure, frequency generalization, and
colour distance generalization hypotheses. We also
examined potential effects of noticing colour-related
patterns during alien category learning on association
formation. The Supplemental Material includes
additional data on baseline associations and additional
analyses testing for effects of goodness-of-fit among
features (shape, colour, and name for each alien
species) on category learning and learned colour-
concept associations. All materials, data, and analysis
code from both experiments are publicly available at
github.com/SchlossVRL/ColorConceptAssociations.

Methods

Participants
Two hundred and twenty University of Wisconsin–
Madison undergraduate students (134 women, 82

men, 4 no report; mean age = 18.6 years, 1 no
report) participated in exchange for partial course
credit in an Introductory Psychology course. We
determined this sample based on a power analysis
from a pilot study (see Supplemental Material). All
participants had normal colour vision as assessed
with the H.R.R. Pseudoisochromatic Plates (Hardy
et al., 2002), and all had a categorization accuracy
above the a priori criteria, see details below, thus no
participants were excluded. All participants of this
experiment and the following experiment gave
informed consent, and all protocols were approved
by the University of Wisconsin–Madison Institutional
Review Board.

Design, displays, and procedure
The experiment included two tasks: (1) alien category
learning task, followed by (2) association ratings task.
For each task, participants also completed a post-task
questionnaire: a strategy questionnaire after the cat-
egory learning task, and a colour pattern noticing
questionnaire after the ratings task. At the end of
the experiment, participants were checked for
typical colour vision using the H.R.R. Pseudoisochro-
matic Plates (Hardy et al., 2002). This check was com-
pleted last to avoid priming participants to think
about colour before the alien category learning task.
In the following sections, we describe the design, dis-
plays, and procedures separately for the category
learning and association rating tasks.

Alien category learning task. In the alien cat-
egory learning task, participants were presented
with images of aliens from two novel alien species,
Filk and Slub. These species names were selected
from the artificial language Sillyspeak (Hudson Kam
& Newport, 2005). These words were selected to be
opposites phonetically and visually in regard to their
“pointiness” (Aveyard, 2012; Gómez et al., 2013;
Nielsen & Rendall, 2011; Westbury, 2005). The words
“filk” and “slub” in Sillyspeak are verbs meaning “to
be red” and “to be blue”, respectively (Hudson Kam
& Newport, 2005). The alien species differed on two
dimensions: body shape and colour distribution.

Alien body shape.One species of aliens always had
pointy bodies and the other species had curvy bodies
(Figure 2(A)), such that body shape was 100% diag-
nostic of alien category membership. Within each
body type (pointy and curvy) there were five
different body shapes to add variety. Each body
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shape had unique antennae, such that antennae per-
fectly co-varied with body shape. Five different leg
types appeared equally often with all bodies from
both species, thus providing no helpful information
for categorization.

Alien colour. One alien species had a “warm-
biased” colour distribution and the other species
had a “cool-biased” distribution (Figure 2(B)).

However, the colour distributions overlapped, so
colour was only partially diagnostic of species cat-
egory membership. Each alien was a single colour,
sampled from the eight saturated colours from the
Berkeley Colour Project 32 (BCP-32) colours (Palmer
& Schloss, 2010). These alien colours included eight
hues: red, orange, yellow, chartreuse, green, cyan,
blue, and purple. See Table A1 in the Appendix for

Figure 2. Stimuli for Experiment 1. (A) The two body shapes, pointy and curvy, each had 5 different body types that co-varied with 5
different leg types, resulting in 25 alien bodies per species. (B) Colour distributions when pointy aliens were warm-biased, and curvy
aliens were cool-biased. (C) The BCP-32 colours (Palmer & Schloss, 2010) judged in the colour-concept association task of the present
study. “Seen” colours were the colours of aliens seen during the alien category learning task. “Unseen” colours were the same hues but
different lightness/saturation levels as the seen colours. (D) The four between-subject conditions, which crossed shape-colour fit with
shape-name fit. Sets of three aliens in the figure represent the colour distributions (warm vs. cool) in B.
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CIE xyY coordinates. The warm-biased species
included 20 red, 25 orange, 20 yellow, 15 chartreuse,
10 green, 5 cyan, 10 blue and 15 purple aliens (Figure
2(B)). The cool-biased species was the opposite,
including 10 red, 5 orange, 10 yellow, 15 chartreuse,
20 green, 25 cyan, 20 blue and 15 purple aliens.

Within each colour distribution, the most frequent
hue (orange for warm-biased, cyan for cool-biased)
was presented in all five body shapes for its respective
category of bodies (pointy or curvy), see Figure 2(B).
The second most frequent hues (red and yellow for
warm-biased, green and blue for cool-biased) were
presented in body shapes 1–4. The third most fre-
quent hues (chartreuse and purple for both) were pre-
sented in shapes 1–3. The fourth most frequent hues
(green and blue for warm-biased, red and yellow for
cool-biased) were presented in shapes 1–2. The least
frequent hue (cyan for warm-biased, orange for
cool-biased) was only presented in shape 1. This
method created distributions of 120 unique aliens
for each species.

The species’ names (Filk, Slub), body shapes
(pointy, curvy), and colour distributions (warm, cool)
were all counterbalanced across participants, creating
four conditions (n = 55 per condition): warm-pointy-
Filks/cool-curvy-Slubs, cool-pointy-Filks/warm-curvy-
Slubs, warm-curvy-Filks/cool-pointy-Slubs, and cool-
curvy-Filks/warm-pointy-Slubs (Figure 2(D)). See
Supplemental Material for additional details testing
the goodness-of-fit between these features and
their effects on association formation and alien

category learning (including Figures S2–S4 and
Tables S7–S9).

Participants were presented with the distributions
of aliens in a category learning task (Figure 3(A)),
similar to the task in Lupyan and Casasanto (2014).
On each trial, a single alien (approx. 100 × 250 px;
2.5 × 6.7 cm) appeared in the centre of the screen
with the two species’ names (FILK and SLUB) dis-
played above the alien to the left and right. Partici-
pants indicated the species to which they thought
the alien belonged using the left/right arrow keys.
They received feedback with text displaying “Yes.
This is a FILK/SLUB” or “No. This is a FILK/SLUB”,
then after 1000-ms, the alien moved beneath the
correct species name (1000-ms duration). Participants
therefore guessed on the initial trials until they
learned how to categorize the species based on the
feedback. Each of the 240 aliens were presented
once in a random order, separated by 500-ms inter-
trial intervals, with breaks after every 40 trials.

Strategy questionnaire. After the alien category
learning task, participants provided written responses
to the following three questions: (1) Please describe
what strategy you used for the previous task; (2)
Were there any visual features that you paid particular
attention to complete the previous task?; (3) If so,
what features did you attend to? If not, please write
“None”.

Association ratings task. In the association
ratings task, participants were presented with a
series of trials, each containing a coloured square

Figure 3. Experiment tasks. (A) Sequence for a trial during the alien category learning task. Participants saw a single alien and
responded with an arrow press which species they believed it belonged to. Text and then motion feedback appeared, with the
alien moving underneath the correct species. (B) Example association ratings trial in which saturated orange has been rated as
strongly associated with the Filk species.
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(100 × 100 px; 2.7 × 2.7 cm) centred on the screen and
one species name displayed above. The colours were
each of the BCP-32 colours (Palmer & Schloss, 2010),
which included the eight saturated hues seen
during alien category learning, which we refer to as
the “seen” colours, plus three additional colours of
each hue, varying in lightness and saturation. We
refer to these as the “unseen” colours (Figure 2(C))
(see Table A1 in the Appendix for CIE xyY coordi-
nates). Participants rated their association strength
for the given colour and species using a line-mark
slider, with endpoints labelled “Not at all” (−200)
and “Very much” (200) (Figure 3(B)). Trials were
blocked by species, and species order was random-
ized over participants. Within each species, each
colour was presented twice using a blocked random-
ized design, such that all colours were judged once in
a random order, before all colours were judged a
second time in a new random order (total of 128
trials).

Before beginning the association ratings task, par-
ticipants completed an anchoring exercise to
promote full use of the rating scale (Palmer et al.,
2013). Participants saw the 32 colours on the screen
that they would later be asked to rate individually.
For each species, participants were asked to point to
the colours on the screen that they believed were
“very much” and “not at all” associated with each
species, and were told to rate these colours near the
endpoints of the scale during the task.

We prepared the colour-concept association
ratings for analysis for each participant by first aver-
aging over their ratings across the two repetitions
and dividing by 400 so the range was 0 (not at all)
to 1 (very much).

Colour pattern noticing questionnaire. After com-
pleting the association ratings task, participants indi-
cated if they noticed any patterns in the colours
during the categorization task. They wrote responses
to the following two questions: (1) Did you notice any
patterns or regularities in the colours of either alien
species during the first task?; (2) If so, what did you
notice? If not, please write “None”.

All displays in the two tasks were presented on a
24.1 in. ASUS ProArt PA249Qmonitor (1920 × 1200 res-
olution). We used a Photo Research PR-655 SpectraS-
can® spectroradiometer to calibrate the monitor and
verify accurate presentation of the colours. The
deviance between the measured colours and target

colours in CIE 1931 xyY coordinates was <0.01 for x
and y and <1 cd/m2 for Y. The background for all dis-
plays was a medium grey (CIE x = 0.312, y = 0.318, Y
= 19.26) that approximated CIE Illuminant
C. Participants sat approximately 60 in. from the
screen in a dark room. Instructions for all tasks were
read aloudwhile also presented visually on the compu-
ter screen. The experiment tasks were coded and
implemented using Presentation (www.neurobs.com).

Results and discussion

This experiment assessed colour-concept associations
formed after exposure to colour-concept co-occur-
rences during the alien category learning task. Our
approach relied on participants quickly learning the
alien categories so they would have ample exposure
to the colour distributions of each species while
knowing which aliens belonged to which species. Par-
ticipants achieved high accuracy quickly (mean cumu-
lative accuracy reached 88% by trial 50 out of 240; total
accuracy was 96%1; see Figure S2 in the Supplemental
Material). This high accuracy was likely facilitated by
shape being a 100% diagnostic cue to alien category
membership. Indeed, responses to the strategy ques-
tionnaire (administered after category learning,
before colour-concept association ratings) indicated
that only 10% of participants reported using colour,
whereas all other participants reported using only
shape. If participants formed colour-concept associ-
ations based on colour-concept co-occurrences, that
will suggest people can develop colour-concept associ-
ations during experiences when colour is not central
for successfully completing the task. We test this possi-
bility through the lenses of the frequency, exposure,
frequency generalization, and colour distance general-
ization hypotheses.

Effects of frequency for seen colours during
category learning
According to the frequency hypothesis, participants
will form stronger associations between a given
colour and concept as colour-concept co-occurrence
frequency increases. As shown in Figure 4, mean
colour-concept association strengths for seen
colours did indeed increase with increased co-occur-
rence frequency (warm-biased species: r = .86, p
= .006; cool-biased species: r = .74, p = .04; data aver-
aged over species’ name and shape). This result was
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further supported by a linear mixed-effects model
predicting association ratings for the seen colours
from a fixed effect of co-occurrence frequency, a by-
subject random intercept, and a by-subject random
slope (R2 = .74) (Bates et al., 2011; R-3.6.0, RStudio
version 1.2.1335, lme4 1.1–21; versions used for all
reported analyses). Frequency was a significant pre-
dictor of associations (β = 0.03, F(1,218) = 26.784, p
< .001), indicating that association strength increased
with co-occurrence frequency.

Exposure, frequency generalization, and colour
distance generalization comparing seen and
unseen colours
Figure 5(A) shows the mean colour-concept associ-
ation ratings for seen and unseen colours as a func-
tion of frequency, averaged over the warm and
cool-biased species (see Figure S1 in the Supplemen-
tal Material for figure separated by warm vs. cool-
biased species). We used a linear mixed-effects
model (LMEM) to test whether effects of frequency
for seen colours generalize to unseen colours, while
also testing for effects of exposure and colour dis-
tance generalization. The model predicted colour-
concept associations for the full set of 32 colours
from fixed effects for frequency, exposure (seen vs.
unseen colours), and colour distance (ΔE) between
the unseen colour and seen colour of the correspond-
ing hue (seen colours were assigned ΔE = 0), plus a

by-subject random intercept and all relevant by-
subject random slopes (R2 = .35).

Although technically unseen colours had zero co-
occurrence frequency, the frequency generalization
hypothesis suggests that the frequency effect reported
for seen colours could extend to similar, unseen
colours. Thus, we coded frequency of the unseen
colours with respect to the seen colours of the same
hue. For example, if seen, saturated orange had a co-
occurrence frequency of 5 for the warm-biased
species and 1 for the cool-biased species, then the
unseen oranges were coded as having a co-occurrence
frequency of 5 for the warm-biased species and 1 for
the cool-biased species.

As shown in Figure 5(A), associations were overall
stronger for seen colours than unseen colours, sup-
porting the exposure hypothesis (β = 0.068, F(1,218)
= 17.277, p < .001). Overall, association strength
increased with increased frequency (β = 0.025, F
(1,218) = 28.996, p < .001), regardless of whether
colours were seen or unseen (no frequency × exposure
interaction; β = 0.012, F(1,218) = 2.783, p = .096). This
result suggests that the frequency effect for seen
colours generalized to unseen colours, but to directly
test the frequency generalization hypothesis, we ran
the above model for only the unseen colours (remov-
ing exposure—seen vs. unseen—as a factor). Fre-
quency was still a significant predictor (β = 0.019, F
(1,218) = 15.533, p < .001), suggesting effects of co-
occurrence frequency extend to colours that share
the same hue as the seen colours.

Figure 5(B) shows the mean colour-concept associ-
ations for each of the seen and unseen colours,
plotted as a function of colour distance (ΔE; Euclidean
distance in CIELAB space) from the seen colours
(plotted at position 0 on the x-axis). Supporting the
colour distance generalization hypothesis, association
strength decreased as colour distance from the seen
colours increased (β =−0.004, F(1,218) = 135.779, p
< .001). Examining the model that only included
unseen colours, colour distance still had an effect (β
=−0.004, F(1,218) = 135.819, p < .001), suggesting
generalization to unseen colours decreases with
colour distance from the seen colours.

Effects of noticing colour patterns during alien
category learning
We next examined if the effects reported above were
modulated by whether participants reported noticing

Figure 4. Colour-concept association ratings from Experiment
1. Mean association ratings for the seen colours as a function
of co-occurrence frequency during alien category learning for
the cool-biased species (left) and warm-biased species (right),
averaged over species name and shape. Mark size represents
co-occurrence frequency of the seen hue and error bands rep-
resent 95% confidence interval around the best fit line.
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colour-related patterns in the two alien species. We
classified participants as “noticers” or “non-noticers”
depending on their response to the noticing ques-
tionnaire at the end of the experiment, which asked
if they self-reported noticing colour-related patterns
during the first task. We coded participants as noticers
if they identified at least one colour related to a
species (e.g., “Filks were in more reds and Slubs
were in more greens”) or used colour comparison
terms (e.g., “one species was warm and one was
cool”, “one dark, one light”, etc.). We included
anyone who reported they noticed anything about
colour, even if their observation was inaccurate (e.g.,
reporting Filks were often cool colours when they
were actually warm-biased). Based on this self-
report measure of noticing, we cannot rule out the
possibility that some non-noticers actually did
detect colour-related patterns but did not report so
on the noticing questionnaire. Thus, we interpret
this measure as an assessment of whether colour-
related patterns were salient enough for participants
to report what they saw when asked if they noticed
any patterns in the colours during the first task.

In total, 36% of participants were noticers and 64%
were non-noticers. We tested whether participants

who deliberately used colour during alien category
learning (reported on the strategy questionnaire)
were more likely to be noticers (reported on the noti-
cing questionnaire), but found no significant differ-
ence (X2(1) = 1.149, p = .284).

Figure 6 shows the mean association ratings from
Figure 5, separated by whether participants were
noticers. We tested for effects of noticing using a
LMEM analysis predicting association ratings from
co-occurrence frequency (determined by the seen
colour of each hue; within-subject), exposure (seen
vs. unseen; within-subject), colour distance (ΔE;
within-subject), noticing (noticers vs. non-noticers;
between-subject), and all interactions except those
with both ΔE and exposure, and a by-subject
random intercept and by-subject random slopes for
all relevant within-subject fixed effects (R2 = .35) (see
Table S1 in Supplemental Material for full output).

As in the model without noticing, there were main
effects of co-occurrence frequency (β = 0.029, F
(1,219.02) = 39.570, p < .001), exposure (β = 0.057, F
(1,217.08) = 11.875, p < .001), and colour distance (β
=−0.004, F(1,217.08) = 120.973, p < .001). However,
noticing interacted with multiple factors. To under-
stand these interactions, we conducted the model

Figure 5. Colour-concept associations ratings from Experiment 1 averaged over warm vs. cool-biased species. (A) Mean association
ratings for seen (black) and unseen (grey) colours as a function of co-occurrence frequency of the seen hue. (B). Mean ratings for
frequent (circles; red, orange, yellow for warm-biased species and green, cyan, blue for cool-biased species) and infrequent (triangles;
green, cyan, blue for warm-biased species and red, orange, yellow for cool-biased species) as a function of ΔE in CIELAB space from the
seen colours. This figure excludes ratings for chartreuse and purple, which were seen equally often for both species, but all colours
were included in the analysis (see Figure S1 in Supplemental Material for association ratings for all colours). For (A) and (B) mark size
represents co-occurrence frequency of the seen hue and error bands represent 95% confidence interval around the best fit line.
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separately for noticers and non-noticers (see Table S2
in Supplemental Material for full output).

Interaction between noticing and frequency.
Noticing interacted with frequency (β = 0.035, F
(1,219.02) = 14.153, p < .001), such that the effect of
frequency was stronger for noticers than non-noticers
(steeper slope in Figure 6(A)). Still, both groups
showed increased association strength with increased
frequency (noticers: β = 0.046, F(1,82) = 26.184, p
< .001; non-noticers: β = 0.117, F(1,135) = 6.312, p

= .013). These results suggest that explicitly noticing
colour related patterns is not required for forming
associations based on co-occurrence frequencies,
but it may lead to stronger effects of frequency.

Interaction between noticing and exposure.
Noticing interacted with exposure (β =−0.088, F
(1,218.08) = 7.053, p = .009), such that the effect of
exposure was stronger for non-noticers than for noti-
cers (Figure 6(B)). Tested separately, noticers showed
no significant difference in association strength

Figure 6. Mean association ratings separated by noticing. (A) Seen vs. unseen colours as a function of co-occurrence frequency, and
(B) frequent and infrequent colours as a function of ΔE. The data are plotted in the same way as Figure 5, but are further separated by
whether participants reported noticing colour-related patterns.
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between seen and unseen colours (β = 0.013, F(1,82)
= 0.364, p = .548), whereas non-noticers showed a
robust difference, forming strong associations for all
seen colours, and weak associations for all unseen
colours (β = 0.101, F(1,135) = 20.666, p < .001).
Although it may appear that there was a 3-way inter-
action between noticing, frequency, and exposure, it
did not reach statistical significance (β =−0.010, F
(1,302.18) = 0.451, p = .502).

No interaction between noticing and colour dis-
tance. Noticing did not significantly interact with
colour distance (β = 0.000, F(1,217.08) = 1.857, p
= .174). As shown Figure 6(B), association strength
decreased with increased colour distance from the
seen colours for both noticers (β =−0.003, F(1,82) =
52.704, p< .001) and non-noticers (β=−0.004, F(1,135)
= 85.632, p< .001). Although there was a 3-way inter-
action between noticing, frequency, and colour distance
(β=−0.001, F(1,219.55) = 5.950, p= .016), the 2-way
interactions between frequency and colour distance
were not significant among noticers (β=−0.001, F
(1,82) = 3.412, p= .068) or non-noticers (β= 0.000, F
(1,135) = 2.103, p= .149). Thus, this 3-way interaction
should only be interpreted with caution.

What determines noticing? Although it is clear
from these results that noticing colour-related pat-
terns has an effect, the question remains of what
determines whether a participant is a noticer. One
possibility is that noticing depends on cognitive strat-
egy during category learning. For example, Williams
and Lombrozo (2010) found that participants were
more likely to notice patterns in properties of aliens
when they were asked to explain their approach to
categorization than when they simply described
what they saw. Thus, it is possible that our partici-
pants who were noticers had detected colour-
related patterns by virtue of being spontaneous
“explainers,” but that is an open question for future
work.

Summary. In summary, this experiment showed
that participants formed colour-concept associations
from exposure to co-occurrence frequencies during a
task in which attending to colour was unnecessary
for successful performance. Overall, association
strength between a given colour and concept was
stronger as colour-concept co-occurrence frequency
increased (frequency hypothesis), but this effect was
stronger for noticers than non-noticers. This effect of
frequency for seen colours extended to unseen

colours (frequency generalization hypothesis). Associ-
ation strength was stronger for colours seen during
category learning compared to unseen colours
(exposure hypothesis), but this effect was driven pri-
marily by non-noticers. Finally, associations decreased
with increased colour distance from seen colours
(colour distance generalization hypothesis), which
was unaffected by noticing. These results suggest
people can “populate” a continuous colour-concept
association space for a given concept by tracking fre-
quencies of co-occurrence and spreading associations
learned from exposure to neighbouring colours in
colour space.

Experiment 2

In Experiment 2 we aimed to replicate the effects of
frequency and exposure observed in Experiment 1,
and test a new generalization hypothesis: the asym-
metric generalization hypothesis. The analyses used
to test these hypotheses were preregistered (osf.io/
6cjkz; Schoenlein & Schloss, 2020).

Although we introduced the asymmetric generaliz-
ation hypothesis in the introduction, we explain it in
greater detail here. The asymmetric generalization
hypothesis suggests that patterns of colour-concept
association generalization depend on colour typical-
ity within the cognitive structure of colour categories.
To avoid confusion, we emphasize that by “color cat-
egories”, we refer to cognitive structure that carves
continuous colour spaces into discrete categories
(e.g., category of red, blue, yellow, etc.) (Berlin &
Kay, 1969; Parraga & Akbarinia, 2016; Rosch, 1973,
1975b). We are not referring to alien categories (Filk,
Slub) that participants learn during the alien category
learning task in our paradigm. And, by “typicality,” we
refer to how typical the colour is for its respective
colour category (i.e., whether a red colour is a proto-
type or non-prototype of the colour category “red”)
(Rosch, 1973, 1975b), not how typical the colour
was for a given alien species during alien category
learning (e.g., the typicality of the colour red for a
Filk alien).

Colour typicality may influence generalization from
seen to unseen colours because of asymmetries in
colour similarity. Unlike distances in colour space,
which are symmetric (the Euclidean distance
between colour 1 and colour 2 is the same as the
Euclidean distance between colour 2 and colour 1),
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Rosch (1975a) found that participants judged non-
prototypes (e.g., mauve) as being more similar to pro-
totypes (e.g., pure red) than prototypes were to non-
prototypes (Rosch, 1975a). If generalization of colour-
concept associations depends on judgments of
colour similarity, and colour similarity is asymmetric,
then generalization should also be asymmetric. That
is, there should be greater generalization of learned
associations from non-prototypes to prototypes (e.g.,
exposure to mauve generalizing to pure red) than
from prototypes to non-prototypes (exposure to pure
red generalizing to mauve).

To test the asymmetric generalization hypothesis
we had to modify the colours of the experimental
stimuli, but otherwise the general methods in Exper-
iment 2 were analogous to Experiment 1.

Methods

Participants
One hundred and twenty-six participants completed
the experiment (69 women, 56 men, 1 prefer to not
respond; mean age = 25.79 years). Eighty-two Univer-
sity of Wisconsin–Madison undergraduate students
participated online in exchange for partial course
credit and 44 mTurk workers participated in exchange
for monetary compensation. Given the experiment
was conducted online, colour vision was assessed
with two yes/no questions: (1) Do you consider your-
self to be colorblind? and, (2) Do you have difficulty
seeing colours or noticing differences between
colours compared to the average person? Data from
an additional 19 participants was excluded due to
self-reported atypical colour vision (an answer of yes
to either or both of these colour vision questions).
Data from 10 additional participants was excluded
for their categorization accuracy being lower than
the a priori criterion of the upper bound of the 95%
confidence interval (57.22%).

For this online experiment, we implemented an
additional a priori exclusion criterion using the
reliability during the association ratings task. We cal-
culated the correlation between the association
ratings for the two presentations of each colour
with each species (30 pairs of ratings). Data from 28
participants were excluded for having an average cor-
relation less than .4 for the 30 pairs. This cutoff was
based on the smallest correlation needed for 30
pairs to achieve p < .05, which was r = .365. We

rounded this to .4 to be more conservative. An
additional 17 participants signed up but did not com-
plete the entire experiment, therefore their data was
not included.

Design, displays, and procedure
The design, displays, and procedure used in this
experiment were similar to Experiment 1, except for
the following changes.

Alien category learning task. For all participants,
Filks were warm-biased, pointy aliens and Slubs were
cool-biased, curvy aliens (given that goodness-of-fit
had no effect on learned colour-concept associations
in Experiment 1, see Supplemental Material). Each of
the two colour distributions included three high fre-
quency colours and three low frequency colours
(Figure 7(A)). The Filk distribution consisted of 25
aliens in each of red, orange, and yellow, and five
each of green, blue, and purple.2 The Slub distribution
had the opposite frequencies, creating a total of 180
aliens to judge in the alien category learning task.

Participants saw aliens in each of the six hues pre-
sented in one of two typicality conditions: colour cat-
egory prototypes (Figure 7(A), left) or colour category
non-prototypes, which were the same hue and value
(lightness) in Munsell space as the prototypes but
decreased in chroma (Figure 7(A), right). We
adapted these colour sets from Rosch’s (1975b) proto-
types and non-prototypes such that the colours could
be rendered on a standard computer monitor
(Rosch’s colours were selected from Munsell chips,
some of which are outside a standard monitor
gamut). To define coordinates for our prototypes,
we started with Rosch’s (1975b) prototypes and
decreased the Munsell chroma of each colour until
it could be rendered within the gamut of a standard
computer monitor (sRGB) with a white point of CIE
Illuminant C (CIE x = .312, y = .318, Y = 116). We then
reduced the Munsell chroma of Rosch’s (1975b)
non-prototypes by the proportional amount of
change made for the respective prototype of the
same hue.3 Thus, colours we call “prototypes” may
not be the most typical possible colour for each
colour category, but they should at least be more
typical than the non-prototypes.

The chromaticity of the grey background approxi-
mated CIE Illuminant C for an sRGB display (x =
0.312, y = 0.318, Y = 19.26). See Table A2 in the
Appendix for CIE 1931 xyY coordinates, which were
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converted from the Munsell coordinates using the
Munsell Renotation table (Wyszecki & Stiles, 1982).
RGB coordinates were obtained by converting the
xyY coordinates to XYZ and then using MATLAB’s
xyz2rgb function with a specified white point of Illu-
minant C.

Unlike Experiment 1, Experiment 2 was completed
online, on participants’ own computers. Thus, the
coordinates in Table A2 are approximations of the
colours observed during the experiment, using
assumptions about standard monitor specifications
in MATLAB’s xyz2rgb function. Although the exact

colours each participant saw likely varied somewhat
across devices, we found systematic results that repli-
cated effects in Experiment 1, supporting the robust-
ness of these effects. The tasks were coded in
Javascript using jsPsych (de Leeuw, 2015).

Association ratings task. The colour-concept
association ratings task was the same as Experiment
1, but with different colours. Participants judged the
six prototypes and six non-prototypes from the alien
category learning task in Experiment 2, plus three
achromatic colours (15 colours total). During anchor-
ing at the start of the procedure, participants

Figure 7. Stimuli for Experiment 2. (A) Warm and cool-biased distributions for participants who saw aliens in prototypical colours (left)
and in non-prototypical colours (right). (B) Seen colours (alien colours during category learning) and unseen colours, depending on
whether participants saw prototypes or non-prototypes.
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evaluated all 15 colours presented as shown in Figure
7(B) (left), but without the horizontal grey line and
labels. Within each group of participants, “seen”
colours were colours seen during alien category learn-
ing (prototypes vs. non-prototypes, depending on the
typicality condition), “unseen chromatic” colours were
colours not seen during alien category learning but of
the same colour categories as the seen colours (e.g., if
participants saw prototypes during the alien category
learning task, unseen chromatic colours were non-
prototypes), and “unseen achromatic” colours were
the black, grey, and white, which no participants
saw during alien category learning. The achromatic
colours were included to reduce potential floor
effects that could have occurred for the unseen chro-
matic colours.4

Results and discussion

As in Experiment 1, participants quickly achieved high
accuracy in the alien category learning task (mean
overall accuracy was 94%5; mean cumulative accuracy
reached 89% by trial 50 out of 180; see Figure S5 in
the Supplemental Material). In the strategy question-
naire, only 9% of participants reported using colour to
complete the task, and all other participants reported
using shape. We classified participants as noticers or
non-noticers using the same criteria as in Experiment
1 (37% were noticers, 63% were non-noticers). The
mean colour-concept association ratings are shown
in Figure 8, and we discuss the results corresponding
to each hypothesis below.

Frequency hypothesis
The frequency hypothesis predicts that participants
will associate the warm-biased concept Filk more
strongly with warm colours and associate the cool-
biased concept Slub more strongly with cool
colours. This pattern can be seen in Figure 8(A),
which shows mean association ratings for the seen
colours separated by warm versus cool hues for
each species, depending on whether participants
saw prototypes or non-prototypes, and whether
they were noticers or non-noticers.

We tested the frequency hypothesis using a prere-
gistered LMEM analysis predicting association ratings
from colour warmness [warm (red, orange, yellow) vs.
cool (green, blue, purple); within-subject], species
(warm-biased vs. cool-biased; within-subject),

typicality of colours seen during alien category learn-
ing (prototypes vs. non-prototypes; between-subject),
noticing (noticers vs. non-noticers; between-subject),
all interactions, and relevant by-subject random
effects (R2 = .47). Here we focus on effects central to
the frequency hypothesis, but see Table S3 of the Sup-
plemental Material for the full model output.

Supporting the frequency hypothesis, colour
warmness interacted with species (β = 0.440, F
(1,122) = 92.800, p < .001): warm colours were more
strongly associated with warm-biased Filks than
cool-biased Slubs (β = 0.218, F(1,122) = 79.597, p
< .001) and cool colours were more strongly associ-
ated with cool-biased Slubs than warm-biased Filks
(β =−0.222, F(1,122) = 76.592, p < .001).6 As shown in
Figure 8(A), this interaction was larger for noticers
than non-noticers (colour warmness × species × noti-
cing interaction: β = 0.603, F(1,122) = 43.691, p
< .001). This finding is a conceptual replication of
Experiment 1, where noticers were more sensitive to
frequency than non-noticers (Figure 6).

This model also revealed an unexpected effect of
typicality, with stronger associations for prototypes
than for non-prototypes (β = 0.077, F(1,122) = 10.950,
p = .001). This difference might be explained by proto-
typical colours generally being easier to remember
(Bae et al., 2015; Bartleson, 1960; Heider, 1972;
Persaud et al., 2021).

Exposure hypothesis
The exposure hypothesis makes two predictions. First,
associations for seen colours will be stronger than
associations for unseen chromatic colours from the
same colour category. Second, associations for both
seen and unseen chromatic ratings will be stronger
than associations for unseen achromatic colours
because the seen and unseen colour share the same
colour category. The results addressing the exposure
hypothesis are shown in Figure 8(B). The association
ratings for the seen colours in Figure 8(B) were com-
puted as the mean over warm and cool colours
within each frequency level from Figure 8(A) (aver-
aged over species). As in Experiment 1, the unseen
chromatic colours were assigned the same frequency
value as the seen colours of the same hue (e.g., if pure
red was a frequently seen colour for Filk, then mauve
was also scored as frequent colour for Filk because
they are the same hue). The mean associations for
the unseen achromatic colours are plotted as
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horizontal lines behind the bars for both the high and
low frequency colours for the corresponding group of
participants.

We tested the exposure hypothesis using two pre-
registered LMEM models, one for each co-occurrence
frequency level, because the achromatic colours did
not have corresponding high and low frequency
colours. The high frequency model compared fre-
quent seen colours, corresponding unseen chromatic
colours, and unseen achromatic colours. The low fre-
quency model compared infrequent seen colours,
corresponding unseen chromatic colours, and

unseen achromatic colours. For both models, the pre-
dictors included two within-subject contrasts: (i) seen
vs. unseen chromatic contrast, coding seen colours as
1/2, unseen chromatic colours as −1/2, and unseen
achromatic colours as 0 and (ii) chromatic vs. achro-
matic contrast, coding seen colours as 1/3, unseen
chromatic colours as 1/3, and unseen achromatic
colours as −2/3. The models also included between-
subject fixed effects for typicality of the seen
colours and noticing, plus all interactions, and by-
subject random effects for each within-subject fixed
factor (high frequency: R2 = .54; low frequency: R2

Figure 8. Colour-concept associations from Experiment 2. (A) Mean colour-concept association ratings for colours seen during alien
category learning. Associations with the concepts Filk (warm-biased during category learning) and Slub (cool-biased during category
learning) are shown separately for warm colours (red, orange, yellow; represented in red) and cool colours (green, blue, purple; rep-
resented in blue). Data are separated by typicality of seen colours during alien category learning (saw prototypes (proto.) vs. saw non-
prototypes (non-proto.)) and noticing (noticers vs. non-noticers). (B) Mean ratings for seen (dark grey) and unseen chromatic (light
grey) colours for high and low co-occurrence frequencies, separated by typicality and noticing. Colours beneath bars signify which
colours were seen vs. unseen (i.e., for the saw proto. group, seen colours were prototypes and unseen colours were non-prototypes;
for the saw non-proto. group, seen colours were non-prototypes and unseen colours were prototypes). The three achromatic colours
(dashed line) for each typicality condition are redundantly shown behind the bars for both high and low frequency colours. Error bars
and grey regions behind the dashed line for achromatic colours represent standard errors of the means (SEM).
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= .45). Here we focus on effects central to the
exposure hypothesis, but see Table S5 of the Sup-
plemental Material for the full model output.

The results support the exposure hypothesis for
both high and low frequency colours: associations
were stronger for seen chromatic colours than
unseen chromatic colours (high frequency: β = 0.07,
F(1,122) = 47.042, p < .001; low frequency: β = 0.055,
F(1,122) = 36.708, p < .001), and associations were
stronger for both sets of chromatic colours than
unseen achromatic colours (high frequency: β = 0.39,
F(1,122) = 298.99, p < .001; low frequency: β = 0.186,
F(1,122) = 66.710, p < .001), see Figure 8(B).

Recall that in Experiment 1, non-noticers had stron-
ger associations for seen than unseen colours (Figure
6 right), whereas noticers had similar associations for
seen and unseen colours (Figure 6 left). Figure 8(B) in
the present experiment shows an analogous effect;
non-noticers showed greater differentiation
between the seen versus unseen chromatic colours
compared to noticers (noticing seen vs. unseen con-
trast interaction; high frequency: β =−0.07, F(1,122)
= 11.349, p = .001; low frequency: β =−0.091, F
(1,122) = 25.090, p < .001). Moreover, within the low
frequency colours, non-noticers showed greater
differentiation between the seen and unseen chro-
matic colours versus the unseen achromatic colours
compared to noticers (noticing × chromatic vs. achro-
matic contrast interaction; β =−0.207, F(1,122) =
20.562, p < .001).

Asymmetric generalization hypothesis
The asymmetric generalization hypothesis suggests
that generalization from seen to unseen chromatic
colours is asymmetric: the difference between associ-
ation ratings for seen versus unseen chromatic
colours should be greater for those who saw proto-
types than those who saw non-prototypes. This
effect should result in an interaction between typical-
ity of the seen colours (prototype vs. non-prototype)
and exposure (seen vs. unseen chromatic colours)
(Figure 8(B)). We tested the asymmetric generalization
hypothesis in a preregistered LMEM analysis that pre-
dicted association ratings from co-occurrence fre-
quency (determined by the seen colour of each
colour category: low vs. high; within-subject),
exposure (seen vs. unseen chromatic colours;
within-subject), typicality of seen colours (prototypes
vs. non-prototypes; between-subject), noticing

(noticers vs. non-noticers; between-subject), all inter-
actions, and relevant by-subject random effects (R2

= .45). Here we focus on the results central to the
asymmetric generalization hypothesis (see Table S6
in the Supplemental Material for the full model
output).

As shown in Figure 8(B), participants who saw pro-
totypes during alien category learning showed a
larger difference between seen and unseen colours,
compared with those who saw non-prototypes (typi-
cality × exposure interaction; β = 0.088, F(1,122) =
5.801, p = .018). This pattern was more extreme for
high frequency colours than low frequency colours
(typicality × exposure × frequency interaction; β =
0.084, F(1,122) = 8.239, p = .004). If generalization is
simply operationalized as the difference in association
strength for seen and unseen colours, then these
results support the asymmetric generalization
hypothesis—those who saw prototypes generalized
less than those who saw non-prototypes.

However, when formulating this hypothesis purely
in terms of association difference, we assumed that
the seen colours would have similar associations,
regardless of whether they were prototypes or non-
prototypes. Thus, the baseline for comparison (seen
colours) would be the same for the two groups.
However, as reported in the analysis of frequency
effects within seen colours, participants who saw pro-
totypes formed stronger associations for seen colours,
than those who saw non-prototypes. This finding
enables an alternative interpretation of the typicality
× exposure interaction, which still depends on
colour category structure, but does not point to asym-
metric generalization. The interaction could be due to
stronger associations for prototypes compared to
non-prototypes, regardless of exposure (whether
they were seen or unseen). Stronger associations for
prototypes would lead to a larger difference
between seen and unseen colours when seen
colours were prototypes, and a smaller difference
when seen colours were non-prototypes. Regardless,
the results under both interpretations demonstrate
that the cognitive structure of colour categories influ-
ences colour-concept associations.

Summary. In summary, the results of this exper-
iment supported the frequency, exposure, and asym-
metric generalization hypotheses. Participants
learned stronger colour-concept associations from
more frequent colour-concept co-occurrences
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(frequency hypothesis). This effect was largely driven
by noticers, whose association strengths indicate they
were more sensitive to frequency than non-noticers.
Associations were stronger for seen colours than
unseen chromatic colours, and associations for these
two sets of chromatic colours were stronger than
unseen achromatic colours (exposure hypothesis).
These differences were more extreme among non-
noticers, whose association strengths were more sen-
sitive to what they saw versus did not see during alien
category learning. Participants who saw non-proto-
types during alien category learning generalized
more to unseen colours compared to those who
saw prototypes (asymmetric generalization hypoth-
esis), but this result may have been driven by
overall stronger associations for prototypes, regard-
less of whether they were seen during category learn-
ing. Taken together, these results indicate that when
people form colour-concept associations they do
not merely store observed statistics and generalize
to nearby colours, they construct associations based
on their cognitive representations of colour
categories.

General discussion

In this study, we investigated whether participants
were sensitive to colour-concept co-occurrences
when using colour was nonessential for the task at
hand. We addressed this question through the lens
of the frequency hypothesis, exposure hypothesis,
and multiple generalization hypotheses. Support for
these hypotheses suggests that people can continu-
ally form and update associations between colours
and concepts through experiences in the world,
even if they do not explicitly think they are using
colour to complete tasks.

The frequency hypothesis proposed that colour-
concept associations formed during alien category
learning would be influenced by colour-concept co-
occurrence frequencies. Overall, participants formed
stronger colour-concept associations as co-occur-
rence frequency increased, however this effect was
stronger for participants who reported noticing
colour related patterns during alien category learning.
The frequency effect is consistent with evidence that
people continually detect statistics from their
environment (Austerweil & Griffiths, 2013; Fiser &
Aslin, 2001, 2002; Hasher & Chromiak, 1977; Hasher

& Zacks, 1984; Park et al., 2018; Saffran et al., 1996;
Turk-Browne et al., 2005; Turk-Browne et al., 2008;
Wattenmaker, 1991, 1993; Yu & Zhao, 2018; Zacks &
Hasher, 2002; Zhao & Yu, 2016), even if those statistics
are not essential to the task at hand.

The exposure hypothesis proposed that associ-
ations would be stronger for seen colours than for
unseen colours. Both experiments supported this
hypothesis, but the effect of exposure was stronger
for non-noticers than noticers. That is, those who
did not notice colour related patterns, and who
were less sensitive to the frequency of seen colours
during exposure, were more discerning between
colours they saw versus those they did not see
during alien category learning.

Taken together, these results suggest that both
noticers and non-noticers “populated” their colour-
concept association spaces for these novel concepts
during exposure, but the way in which they popu-
lated them differed depending on whether they
noticed colour-related patterns during exposure.

However, there are limitations to our measure of
noticing. Given that our measure relied on self-
reported observations, we cannot rule out the possi-
bility that non-noticers did actually notice colour
related patterns during the alien category learning
task and forgot or chose not to report them at the
end of the experiment. It is also possible that those
classified as noticers had actually guessed about
colour-related patterns without noticing them during
the alien category learning task. Further research
with more objective measures of noticing would be
needed to fully understand effects of detecting
colour-related patterns on association formation.

Moreover, we do not yet know why such individ-
ual differences in noticing arise. One possibility
could be related to how participants thought
about the features during alien category learning.
Williams and Lombrozo (2010) showed that people
learn regularities of object features better when
they provide explanations of their thoughts while
learning. In their study, participants who were
instructed to explain while observing exemplars of
two alien robot categories were more likely to
notice a subtle, but 100% diagnostic feature rule
(i.e., all glorps had pointy feet and all drents had
flat feet), compared with participants who were
instructed to describe during observation. In our
study, participants may have become noticers if
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they were more likely to spontaneously try to explain
colour variability in the alien distributions. Future
studies designed specifically to study this noticing
effect will be needed to understand the nature of
these individual differences.

We examined multiple generalization hypotheses,
proposing that learned associations from colour-
concept co-occurrences will generalize to similar,
unseen colours. Supporting frequency generalization,
frequency effects observed for seen colours extended
to unseen colours of corresponding hues. Supporting
colour distance generalization, learned colour-
concept associations generalized more strongly to
colours that were closer in colour space. Supporting
asymmetric generalization (if we take association
strength for seen colours as baseline for assessing
generalization), generalization from non-prototypes
to prototypes was greater than generalization from
prototypes to non-prototypes (Figure 9(A)).

The asymmetric generalization hypothesis directly
follows from asymmetric similarity (Rosch, 1975a), if
one assumes that generalization depends on simi-
larity. However, this generalization pattern may
seem counterintuitive given classic evidence in
semantic cognition suggesting the opposite—
greater generalization from prototypes to non-proto-
types. As illustrated in Figure 9(B), Rips (1975) found
that if participants are told that a new disease (a

property) emerged in robins (prototypical birds),
they rate the disease as highly likely to emerge in
ducks (less typical birds), but if they are told the
disease emerged in ducks, they rate it less likely to
emerge in robins.

However, this type of scenario is distinct from the
scenario in the present study. We studied generaliz-
ation between different properties (pure red,
mauve) of an object (e.g., Filk) depending on typicality
of the properties of their property category (red)
(Figure 9(A)). In contrast, Rips (1975) studied general-
ization of one property (disease) between multiple
objects (robin, duck), depending on typicality of
objects to their object category (bird) (Figure 9(B)).
Thus, our results do not contradict earlier work on
feature generalization in category membership
(Rips, 1975). Instead, they suggest that effects of typi-
cality on generalization may be more intricate than
previously thought. Further work is needed to under-
stand this distinction, and to understand why
different patterns of generalizations may arise in
these two cases.

We also considered an alternative interpretation of
the results in Experiment 2 that does not involve asym-
metric generalization. We found unexpected effects of
colour typicality on learned associations for colours
seen during alien category learning. From the perspec-
tive of mere statistical co-occurrence, one would

Figure 9. Potential patterns of generalization between (A) properties within objects and (B) properties across objects. (A) Predicted
patterns of generalization for the present study, in which generalization is between properties that vary in typicality for a given object.
Thicker arrows indicate stronger generalization. (B) Classic patterns of generalization in semantic cognition, as described by Rips
(1975), in which generalization is of properties between two objects which vary in typicality.
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expect that the strength of learned associations
depends on frequencies of colours seen during cat-
egory learning, but not on which exact colours were
seen. Yet, participants formed stronger associations
for seen colours if they saw prototypical colours
(“good” examples of colour categories, such as a satu-
rated red colour for the colour category red) during
learning than if they saw less typical colours (worse
examples of colour categories, such as a mauve
colour for the colour category red). This finding is con-
sistent with previous reports that people have better
memory for colour category prototypes than for less
typical category members (Bae et al., 2015; Heider,
1972). It is possible that participants form stronger
associations for prototypes, regardless of whether
they were seen or not. Such an effect could also
produce the observed pattern of results in Experiment
2. Although further work is needed to disentangle
these potential effects due to colour category struc-
ture, it is clear that colour category membership
plays an important role in the formation of colour-
concept associations.

In conclusion, our results suggest people form
associations between colours and concepts through
detecting co-occurrence frequencies, but people are
not merely bottom-up statistic detectors. An individ-
ual’s colour-concept associations are constructed
depending on a combination of factors, including
statistics in the colour input, whether they detect pat-
terns in the colour input, and typicality of the colours
in the input, as defined by the cognitive structure of
colour categories. These results provide an initial
step in explaining how people construct the rich rep-
resentations of colour-concept associations that
influence the way they interpret the meanings of
colours in the world around them.

Notes

1. We set an a priori exclusion criterion of < 56.25% accu-
racy, but all participants exceeded this criterion, so
none were excluded (the minimum accuracy was
59%). We determined this criterion by calculating the
95% confidence interval for chance performance and
determined that the upper bound of the interval was
56.25%.

2. Purple can be considered on the border between
“warm” vs. “cool” colours. For the purpose of this exper-
iment, we classified it as a cool colour.

3. We also made an additional change to the yellows,
shifting their hue from 2.5 to 5Y in Munsell space,
based on more recent work suggesting that prototypi-
cal yellow is closer to 5Y in Munsell space (Olkkonen
et al., 2010). After shifting in hue, we used the chroma-
ticity (CIE x and y) if the value was 9, but adjusted the
luminance to acquire a prototypical yellow with the
highest possible chroma within the sRGB gamut. The
non-prototypical yellow’s chroma was set half-way
between the prototype’s chroma and achromatic.

4. The logic for introducing achromatic colours to reduce
floor effects was as follows. Participants should have
low association ratings for achromatic colours because
those colours were so dissimilar from the seen colours
for both groups. Given the anchoring of all colours
was on the same rating scale, and achromatic colours
were more different from the seen colours than the
chromatic unseen colours, low ratings for achromatic
colours should boost ratings for the unseen chromatic
colours away from the bottom end point of the ratings
scale.

5. We set an a priori exclusion criteria of < 57.22% accuracy.
10 participants were excluded, as described in the Par-
ticipants section. Minimum accuracy after exclusions
was 72%. We determined this criterion by calculating
the 95% confidence interval for chance performance
and determined that the upper bound of the interval
was 57.22%.

6. These follow-up comparisons within species were not
specified in the preregistration, but they follow directly
from the preregistered predicted interaction in the fre-
quency hypothesis (see Table S4 in the Supplemental
Material for the full output of species-specific models).
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Appendix

Table A1. Colour coordinates for BCP-32 colours used in Experiment 1. The coordinates were modified to fit in the gamut of the
monitors. The “seen” colours were saturated and the “unseen” colours were the light, muted, and dark variations of each hue.
Hue Variation x y Y L a b
Red Saturated 0.549 0.313 22.93 51.573 62.234 32.198

Light 0.407 0.326 49.95 71.596 31.578 16.68
Muted 0.441 0.324 22.93 51.573 33.58 16.981
Dark 0.506 0.311 7.60 30.764 37.017 16.39

Orange Saturated 0.513 0.412 49.95 71.6 31.215 69.647
Light 0.399 0.366 68.56 81.35 15.001 30.172
Muted 0.423 0.375 34.86 61.7 15.94 30.33
Dark 0.481 0.388 10.76 36.51 18.354 30.597

Yellow Saturated 0.446 0.472 91.25 91.08 −5.7506 86.678
Light 0.391 0.413 91.25 91.08 −5.4588 47.705
Muted 0.407 0.426 49.95 71.6 −3.3302 45.936
Dark 0.437 0.45 18.43 46.83 −0.92513 43.35

Chartreuse Saturated 0.387 0.504 68.56 81.35 −32.919 72.055
Light 0.357 0.42 79.90 86.44 −20.62 40.644
Muted 0.36 0.436 42.40 66.94 −19.975 37.45
Dark 0.369 0.473 18.43 46.83 −19.923 36.863

Green Saturated 0.254 0.449 42.40 66.94 −59.948 24.537
Light 0.288 0.381 63.90 79.09 −34.126 15.212
Muted 0.281 0.392 34.86 61.7 −33.267 14.065
Dark 0.261 0.419 12.34 38.96 −33.292 12.408

Cyan Saturated 0.226 0.335 49.95 71.6 −44.315 −6.1068
Light 0.267 0.33 68.56 81.35 −26.118 −2.7294
Muted 0.254 0.328 34.86 61.7 −25.402 −4.1266
Dark 0.233 0.324 13.92 41.22 −24.26 −5.4518

Blue Saturated 0.2 0.23 34.86 61.7 −13.209 −38.399
Light 0.255 0.278 59.25 76.73 −8.8676 −20.82
Muted 0.241 0.265 28.90 56.99 −7.8584 −21.411
Dark 0.212 0.236 10.76 36.51 −6.5572 −23.727

Purple Saturated 0.272 0.156 18.43 46.83 57.212 −50.49
Light 0.29 0.242 49.95 71.6 26.028 −27.872
Muted 0.287 0.222 22.93 51.57 28.052 −27.816
Dark 0.28 0.181 7.60 30.76 33.038 −29.66

Table A2. Colour coordinates for prototypical and non-prototypical colours used in Experiment 2. Colours were based on Rosch’s
(1975b) prototypes and non-prototypes in Munsell space, but adapted to fit in the standard gamut of a monitor. Yellow was
shifted in hue as well due to colour category concerns (see main text).
Hue Typicality H V C x y Y L a b
Red Prototype 5R 4 14 0.5734 0.3057 13.92 44.11798 62.5262 31.69846

Non-prototype 5R 4 8 0.469 0.3209 13.92 44.11798 36.85677 18.5329
Orange Prototype 2.5YR 6 14 0.5488 0.3947 34.858 65.63796 43.42444 71.12107

Non-prototype 2.5YR 6 7.875 0.445 0.37 34.858 65.63796 24.76745 35.10147
Yellow Prototype 5Y 9 12 0.4455 0.4719 83.52 93.24162 −5.94025 88.70761

Non-prototype 5Y 9 6 0.3858 0.4071 83.52 93.24162 −5.3463 46.15292
Green Prototype 2.5G 5 8 0.271 0.438 22.9332 55.00346 −43.5609 21.39649

Non-prototype 2.5G 5 3.25 0.295 0.365 22.9332 55.00346 −19.1112 9.350688
Blue Prototype 2.5PB 4 8 0.1995 0.2094 13.92 44.11798 −2.48853 −34.8861

Non-prototype 2.5PB 4 3.8 0.255 0.265 13.92 44.11798 −1.63457 −15.8402
Purple Prototype 5P 3 10 0.2772 0.1707 7.6038 33.14374 38.77706 −33.7731

Non-prototype 5P 3 4 0.2928 0.2386 7.6038 33.14374 16.43582 −15.6187
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