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ABSTRACT: It is well-known that first-order phase transitions in the early universe can
be a powerful source of observable stochastic gravitational wave backgrounds. Any such
gravitational wave background must exhibit large-scale anisotropies at least as large as
those seen in the CMB ~ 107°, providing a valuable new window onto the (inflationary)
origins of primordial fluctuations. While significantly larger fractional anisotropies are
possible (for example, in multi-field inflation) and would be easier to interpret, it has been
argued that these can only be consistent with CMB bounds if the gravitational wave signal
is correspondingly smaller. In this paper, we show that this argument, which relies on
assuming radiation dominance of the very early universe, can be evaded if there is an era
of early matter dominance of a certain robust type. This allows large gravitational wave
anisotropies to be consistent with observable signals at proposed future gravitational wave
detectors. Constraints from the CMB on large scales, as well as primordial black hole and
mini-cluster formation on small scales, and secondary scalar-induced gravitational waves

are all taken into account.
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1 Introduction

Well-motivated particle physics beyond the Standard Model (BSM) can readily undergo first-
order phase transitions in the early universe, which can be powerful sources of observable
stochastic gravitational wave backgrounds (GWB) (see [1, 2] for a review). For example,
a critical temperature in the (multi-)TeV range would result in GWB in the frequency
range of the LISA detector [3]. The frequency spectrum of a GWB would encode valuable
information about the BSM dynamics. Complementary to the frequency spectrum, such
a GWB would necessarily also exhibit large-scale anisotropies, analogous to those of the
CMB. This was shown in ref. [4]. GWB anisotropies in other contexts have also been
discussed in [5-11]. In the inflationary paradigm, these anisotropies would reflect quantum
fluctuations in inflation-era fields, giving us an invaluable new window into their poorly
understood dynamics. In particular, if there are multiple light fields during inflation, ref. [4]
showed that the GWB anisotropies could have a significant isocurvature component, very
different from the standard adiabatic perturbations of the CMB and Large Scale Structure
(LSS). Refs. [12, 13] have explored the potential of such isocurvature GWB maps from
phase transitions as a probe of early universe physics.



The presence of isocurvature in GWB would imply the existence of another light
quantum field during inflation. However, to be readily distinguished and interpreted the
isocurvature should be larger than the CMB anisotropy. This is because any GWB would
receive an irreducible contribution from the adiabatic perturbations through the gravitational
Sachs-Wolfe effect ~ 1075 [9, 12, 14, 15]. Therefore, large fractional anisotropies > 1075 in
the GWB would be ideal for revealing new inflationary physics.

For example, a well-motivated candidate for a light spectator field during inflation is
an (unstable) axion-like particle (ALP) with an initial misalignment from its minimum
(see [16, 17] for a review of ALPS). The overall level of anisotropy is then given by the ratio
of the inflationary Hubble scale to the initial field misalignment. In high-scale inflation
where the Hubble constant is taken to be ~ 107 times the Planck scale [18], the ALP
fluctuations are likely to be > 107 if the ALP misalignment is constrained to being
sub-Planckian. Also, if the Hubble constant during inflation can be inferred independently,
through the detection of primordial tensor modes for example [19], then the measurement
of GWB isocurvature would give us the initial misalignment of the ALP field. Therefore,
large isocurvature GWB sourced by this ALP field would be an ideal target for gravitational
wave experiments.

Unfortunately, there is a significant challenge for large GWB anisotropies to even be
detectable. A distinct isocurvature GWB requires that there be two mostly decoupled
sectors at the time of the phase transition: one sector with adiabatic perturbation reheated
by the inflaton, and another undergoing the phase transition reheated by a separate light
field, in our case an ALP. The phase-transitioning sector in such a case must be significantly
subdominant at recombination to avoid its impact on the CMB, which is highly constrained
from observations. In the case of standard radiation dominance in the early universe, this
subdominance implies a strong suppression in the overall strength of the GWB signal [4],
making detection of large anisotropies extremely difficult at upcoming or proposed detectors.

In this work, we will show that the trade-off between large fractional anisotropy and
detectability of GW signals can be evaded if there is a period of early matter dominance
(eMD)! in the cosmological history. In this scenario, the phase-transitioning sector can
be dominant at the time of the phase transition, avoiding suppression in GW signal at
its production time. A later stage of eMD in the adiabatic sector will dilute the phase-
transitioning sector such that its contribution to CMB anisotropies is subdominant. It
would necessarily also dilute the overall GWB, but we will show that this dilution is less
severe. Importantly, the anisotropic component is left unsuppressed in absolute size, which
brings a larger range of anisotropies within the sensitivity of upcoming detectors.

The paper is organized as follows. In section 2, we review the original model of
isocurvature GWB from a phase transition from [4], in which the phase transition and
adiabatic sectors of the very early universe are always radiation-dominated, prior to merging
into a single sector via (late) particle decays. We re-examine why, with radiation dominance,
consistency with CMB constraints predicts that large fractional anisotropies in the GWB
must come at the expense of suppressed signal strength, both in the isotropic and anisotropic
components. In section 3, we introduce our new eMD model and show how a large fractional
anisotropy in the GWB is consistent with CMB constraints, along the lines sketched above.

!Early in this context means before Big Bang Nucleosynthesis.
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Figure 1. A schematic of the model discussed in section 2 showing energy densities in various
sectors as a function of the scale factor (time). The decay products of both the inflaton and ALP y
are always radiation dominated in this model.

We also show that the eMD dilution of the GWB results in only a modest redshift of
the GW frequency spectrum relative to the original model. In section 4, we consider the
gravitational interactions between the phase transition and adiabatic sectors prior to their
merging to see that they do no affect our conclusions in section 3 on large scales, but also to
consider new constraints on small scales from primordial black hole production, small-scale
structure formation, and scalar-induced gravitational wave production at second order. In
section 5, we present plausible benchmarks in our model with different fractional GWB
anisotropies and the associated isotropic and anisotropic signal strengths. We compare
with the analogous benchmarks in the original radiation-dominated model to illustrate the
significant gains in signal strength, in both the isotropic and anisotropic components. We
conclude in section 6 with a short discussion of the significance of our results.

2 Isocurvature GWB in the radiation-dominated model

In this section, we review the model proposed in ref. [4] that produces isocurvature GWB.
Consider an additional light scalar field x during inflation. It is taken to be initially
misaligned from its minimum (taken to be at x = 0) to xo > Hinf, where Hi,s denotes
the inflationary Hubble constant. Such a misalignment is robust as the field remains stuck
due to the inflationary Hubble friction if its mass m, < Hij,r. A well-motivated example
of such a light field is an axion-like particle (ALP), which is a generic prediction of many
BSM theories (see [16, 17]). During inflation, the energy density in x, V(xo) ~ mixg is
subdominant to that of the inflaton ¢, which primarily drives inflation. After inflation,
when the dropping Hubble constant matches m,, the x field starts oscillating around its
minimum and reheats some extension of the standard model (SM), including dark matter
(DM), at tyren. We will assume that this extension of the SM undergoes a first-order phase



transition (PT) in the multi-TeV range, capable of producing an observable GWB, as is
known to take place in many explicit SM extensions (see [1, 2]). If the reheat temperature
from y decay is higher than the PT temperature, the decay products of x will undergo
this phase transition. We will therefore refer to this sector emerging from x decay as the
“PT sector”.

The inflaton on the other hand is taken to reheat another sector that interacts very
weakly with the PT sector and does not participate in the phase transition, henceforth
referred to as the “non-PT sector”. The non-PT sector is taken to decay to the SM + DM
at tgec sometime after the phase transition but before DM decoupling. In this way, after
the decay there is a single SM+DM sector which dominantly originates from inflaton ¢
reheating, assuming that the PT sector is subdominant to the non-PT sector as depicted in
figure 1. On the other hand, the GWB dominantly originates from y reheating. Therefore
it is possible for the fluctuations in GWB to be distinct from those in the SM+DM, as we
detail below.

2.1 Fluctuations

Here, we relate the anisotropies in the CMB and GWB to the independent primordial
fluctuations (4 and ¢y,
_ 20x(k)

Gl =T 21)

Hinf§¢(k)
b0

where d¢ ~ dx ~ Hiyt, and the expressions are evaluated at the horizon exit of the co-
moving mode k. The fluctuations in GWB will be dominated by the PT sector (reheated
by x), dgw ~ dpr ~ (y. More precisely, the anisotropies can be written in terms of the

Co(k) =

gauge-invariant fluctuations as [12, 20]
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4
daw = 4¢y (1 - 3fPT) — §C¢>, (2.2)
where
for = 221 (2.3)
Ptotal

is the fraction of energy density in the PT sector compared to the total energy density.
Note that (s ~ 1075 sets the minimum Jgyw. This comes from the Sachs-Wolfe (SW) effect,
which is dominated by the fluctuations of the non-PT sector. A small ¢, < 10~ would be
swamped by the SW contribution, leaving the GWB to be predominantly adiabatic. On
the other hand, large isocurvature in GWB coming from ¢, > 10~°, would clearly imply
the existence of a new light quantum field during inflation. Hence, we will focus on the
range ¢, > 107°.

The fluctuations in the SM plasma (and hence in the CMB and matter distribution) after
tdec are a weighted superposition of the fluctuations in the PT sector and those in the decay

2A more relevant quantity to measure isocurvature is Sy, = ¢, — (p. However, for ¢, > (g, which is of
interest to us in this work, we can simply take Sy ~ (y.



products of the non-PT sector, 6, ~ d,pr(tdec)+ frTdpT. In terms of primordial fluctuations,

4 4
(57 ~ —5C¢ — ngTCX' (24)

As expected, the contribution of ¢, to CMB can be kept small by choosing sufficiently small
fpr. From the CMB observations [21], 6, ~ 3.6 x 107°, giving a constraint

frr ¢y <45 %1077, (2.5)

Therefore, since we are interested in ¢, > 1075, the PT sector must be sufficiently
subdominant, fpp < 1. This leads to the simplification of eq. (2.2),

Saw ~ 4Gy (2.6)

Additionally, if ¢, contains qualitative features which are not observed in CMB, the

constraint on fpr ¢, will be even stronger, requiring yet smaller fpr.

2.2 Strength of GWB and its anisotropies

During a first-order phase transition, gravitational waves are dominantly produced through
bubble dynamics. It has been noted that the GW production is suppressed when the
PT sector constitutes a smaller fraction of the total energy density at the time of the
phase transition, i.e. fpr < 1 [22, 23]. In terms of the fraction of energy density in
gravitational waves compared to the critical energy density at the time of production (tpr),
the suppression goes as

+ _
Qaw(tpr) = pewlter) ~ [BrQaw(tpT), (2.7)
ptotal(tPT)

where Qaw represents GWB for a single sector system with fpr = 1. Intuitively, the
amplitude of the gravitational wave must be O(fpr), so that it vanishes in the absence of
the PT plasma. Since GW energy density goes as the square of this amplitude, we expect
fAr scaling of the r.h.s. of eq. (2.7). We elaborate on this scaling in appendix A.

To estimate the strength of the GWB, we specialize to the plausible and relatively
tractable scenario in which the gravitational waves are produced dominantly from bubble
wall collisions in the envelope approximation.® Using eq. (2.7) and taking the expression

for Qaw from [1], the GWB spectrum today can be given as*

2 1/3 3
O 2 gy (e ) (100 (O
Qowh™ = 1.67 x 107787 “ fir (1 aPT) <g*(tPT) 042+ 02 Spub(w),  (2.8)

3In the case of significant coupling between the PT plasma and bubble walls, the majority of latent
heat can be transferred to the plasma making sound waves the dominant source of gravitational waves.
However, it turns out that for the parameters that we choose as the benchmark, i.e. apr ~ 1 and § ~ 10,
the sound wave contribution will be similar in strength to the estimate in eq. (2.10) even if all the latent
heat is transferred to the kinetic energy of the plasma [24].

dref. [25] has pointed out that the peak energy density of the gravitational wave background from a
phase transition can be enhanced if the small scale inhomogeneities (H(tpT) < k < 8) in the PT plasma are
large, i.e. (6T/T) > B~ 1. Since we consider relatively low 3 = 10 in all of our benchmarks, this effect is
subdominant even for the biggest ¢, ~ 1072 on small scales that we will consider later. It will be important
while considering more generic values of 3 ~ O(100). Also, note that this effect modifies the frequency
spectrum, but does not affect the angular power spectrum which is the main focus of our work.



where the frequency dependence is

_ 3.8(w/wpeak)2'8
1+ 2.8(w/wpeak )38

Shub(w) (2.9)
Here, apr is the ratio of the latent heat released compared to the energy density of the
PT plasma before the phase transition, and k is the efficiency of the latent heat transfer
to bubble walls. We will take apt ~ 1, such that the efficiency x =~ 1, and the bubble
wall velocity v, = 1. The peak frequency today wpeax can be estimated by redshifting the
typical frequency at the time of phase transition wy, given by w, ~ 0.23 H (tpr) B. We
choose B = 10 for all our benchmarks. g, corresponds to the effective number of relativistic
degrees of freedom, and we take g.(tp) ~ 100.> Note that the envelope approximation is
relatively crude and specific phase transitions may exhibit significant deviations.® However,
it suffices for our purpose here since our main focus will be the angular power spectrum.
With the choice of parameters described above, the expression in eq. (2.8) at the peak
frequency is simplified to
OO h? ~32x 10702 (2.10)

Following eq. (2.6), the size of the fluctuations in the GWB, which is relevant for detection, is
0 0 _

SO0L h? ~ QW) B2 x 4¢, ~ 1.3 x 1078 f21¢, . (2.11)

The constraint of eq. (2.5) gives us an upper bound on the inhomogeneities of the GWB,

SO A2 < 5.8 x 1073 fprp. (2.12)

Note that despite relative anisotropy dpcaw/paw ~ (y being large > 1075, the absolute
signal strength of the fluctuations is suppressed by one power of fpr, making it more
difficult to detect.

3 Isocurvature GWB with an era of early matter dominance (eMD)

Smaller fpr at tgec allows for larger ¢, while evading constraints from CMB summarized in
eq. (2.5). If both PT and non-PT sectors are radiation-dominated throughout, then this
also constrains the PT sector to be subdominant by the same factor fp at the time of the
phase transition, heavily suppressing the strength of GW produced, as seen in egs. (2.10)
and (2.12). This, however, will not be the case if there is a deviation from standard
radiation dominance, for example, a period of early matter domination (eMD). In such
modified cosmological histories, fpr is effectively a function of time, and can be such that
the PT sector is dominant during the phase transition and only becomes subdominant by
tdec- We will show that this significantly enhances the strength of GWB compared to the
purely-radiation-dominance scenario of [4], while still being consistent with constraints from
CMB. For clarity, we define this time-dependent fraction as f (t), and its late time value at
tdec Will continue to be denoted by fpr.

°In reality, g«(tpT) > 100 depending on the exact extension of the SM undergoing the phase transition.
However, this is a small effect considering the 9;1/3 dependence in eq. (2.8).
5See for example [26] for an updated numerical study of the phase transition in an abelian gauge theory

with a comparison to the envelope approximation.
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Figure 2. A schematic of the modified eMD model discussed in section 3 showing energy densities
in various sectors as a function of the scale factor (time). While the decay products of the ALP
X are always radiation dominated, the massive particles (reheaton) in the decay products of the
inflaton lead to a period of early matter domination.

Here we describe such a modified cosmological history with eMD, shown schematically
in figure 2. As in the minimal model, the inflaton reheats the non-PT sector at the end
of inflation, which dilutes like radiation, pppr o< a~*. On the other hand, py acts like
matter while oscillating around its minimum, which dilutes slower than radiation. If the
oscillations persist for a sufficiently long time, p, can dominate the energy density (as well
as the curvature perturbations) of the universe before decaying to the PT sector, which
subsequently undergoes the phase transition. Notice that unlike the radiation-dominated
model described previously, the PT sector dominates the energy density during the phase
transition, and therefore pgw is not suppressed at production by fpr. We will call this
period of ppt domination the era of early radiation domination (eRD).

Now we take the non-PT sector to be dominated by massive particles which become
non-relativistic around t,,, sometime after the phase transition, redshifting slower than the
radiation in the PT sector. The eRD of the PT sector is thereby replaced by eMD in the
non-PT sector at t,,q. The period of eMD ends at t4e. when the non-PT massive particles
decay, reheating the SM+DM. We will therefore refer to these massive non-PT particles as
“reheatons”. The reheaton decays are taken to occur before DM decoupling, which allows
thermalization with the SM and the remnants of the phase transition in the PT sector,
matching onto the standard cosmological history from then on. In this way, we arrive at
the following time-dependence of fpr from the 1 /a? redshifting of non-relativistic matter
and the 1/a* redshifting of relativistic radiation:

(1 + 6)_1 txreh <t<tn

fer(t) = (1 + eﬁ)_l - (1 + L)‘l tm < t < taec s 31

Amd

. and we have used €(amq/am) = 1. Therefore, fpr = pr(tdec) =
xreh

(1 + U/dec/amd)_1 ~ (amd/adec)-

where € = (pHﬂ)
PPT




3.1 Strength of GW and anisotropies

In this model with eMD, the PT sector dominates the energy density at the phase transition,
Protal (tpT) = ppr(tpT) and pr(tPT) ~ 1. Hence, in eq. (2.8) for GW production at the
time of the transition, flg,T is not a suppression.

However, the period of eMD dilutes GW radiation because of the differential redshifting
of matter and GW radiation, such that

pcw (tpT)
Ptotal (tPT>

PGW (tdec)

3.2
Ptotal (tdec) ( )

= fpr (tdec)

This, along with the same microphysical parameters as in section 2.2 for the phase transition,
gives the fractional energy density in GWB today as

QO 1%~ 3.2 %107 fpr. (3.3)

Note that the GW signal in this model, despite the dilution from eMD, has only one power
of fpr suppression, compared to the quadratic suppression in eq. (2.7).
The anisotropy of the GWB can again be related to the fluctuations of y;,

4
oGw ~ —3% (3.4)

The factor in front of ¢, is smaller compared to eq. (2.6) because the SW contribution, in
this case, comes from the PT sector itself, and is therefore anti-correlated with the inherent
inhomogeneities of the GWB. The expression for the anisotropies of the CMB for all
relevant scales (i.e., the scales that re-enter much after t4e.) remains the same as eq. (2.4),

4 4
0y & —5C¢ - ngTCX' (3.5)
This is shown explicitly in section 4.1. The inhomogeneity in the GWB is then
4 _
BOGW ~ Qgagh® x 56 ~ 43 x 107 fprcy (3.6)
We must still satisfy the constraint in eq. (2.5). Saturating it gives
SO R <1.9x 10713, (3.7)

which is now independent of fpr, as opposed to eq. (2.12). The possibility that the relative
anisotropies in the GWB are large while the absolute size of the anisotropic signal is
unsuppressed by fpr, is the main result of our paper.

3.2 Peak frequency of GWB

The frequency spectrum of the GWB will be slightly shifted compared to the single-sector
scenario (fpr = 1) due to the modified cosmological history. At production, the typical
frequency of GWB for the choice of parameters given in section 2.2 is [1]

wy &~ 0.238H (tp). (3.8)



Red-shifting this frequency gives the peak frequency of the spectrum today

apt
Wpeak = Wx | ——
ap

=0 () (i) Gitey) (e ) () o

3/2

during matter dominance, while H o a2 during radiation dominance,

~ 2 3/2 2 3/2
Wpeak ~ 0.235 (‘IPT) (amd> (adec> <ae‘1> 20) H(t)
agp apT Amd Gdec Qeq
~ 28x 10713 (“) 12 Hz, (3.10)

apt

Using H < a~

where we have used the fact that the redshift at matter-radiation equality in the standard
cosmological history z.q ~ a;ll ~ 3100, H(to) ~ 2.2 x 107! Hz, and amnq/adec ~ fpr from
eq. (3.1). Now,

Geq _ Tpr(tpT) ,~1/4 (g*(tmd)>1/4 (3.11)
aptr TSM(teq)) PT G« (tdec)
Then with Tsy(teq) ~ 1€V, g«(tmd) ~ g«(tdec) ~ 100, and setting B = 10, we get
T
Wpeak ~ 2.8 x 1074 fL1 (W} Hz. (3.12)

The dependence on fpr is very mild, less than an order of magnitude in the range of fpp
that we will be led to consider. For a single sector (fpp = 1), a phase transition occurring
at Tpr(tpr) ~ 100 TeV gives wpeax ~ 28 mHZ, falling within the sensitivity of LISA [3],
BBO [27], and DECIGO [28]. As we lower the fraction of the PT sector to the smallest
fpr ~ 4.5 x 107* of interest to us (see the last benchmark in table 1), the peak frequency
shifts to wpeak ~ 4 mHZ, remaining within the sensitivity of the above-mentioned detectors.
In this case, an eMD starting shortly after the phase transition when Tpp(tmg) ~ 32 TeV
ensures Tey (tdec) ~ 100 GeV and fpp ~ 4.5 x 1074,

4 Gravitational crosstalk

The PT and non-PT sectors can influence each other gravitationally even though they are
otherwise only weakly coupled. We want to ensure that the CMB scales are unaffected
despite large perturbations in the PT sector during eRD era. We also want to identify other
constraints on our eMD model which may arise from the evolution of perturbations after
horizon re-entry. We address these two concerns here.

4.1 Modes that are superhorizon prior to tgec

Our modified early cosmology reverts to standard cosmology at tqec., where we will take
Tsm(taec) 2 100 GeV. We want to ensure that the observed fluctuation modes of the
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Figure 3. ®(k) as a function of the conformal time 1 for a co-moving mode k that re-enters
sufficiently after the end of eMD. We have taken a benchmark, ¢, ~ 1073, fpr ~ 1072, and € = 1/2.
Conformal times denoting boundaries of different eras are (9m/fyren) ~ (md/Myren) ~ 100 and
(ndec/nxreh) ~ 2000.

CMB and LSS would be unaffected by the modified cosmology before t4e., and this is
relatively straightforward to analyze because they are all superhorizon prior to tgec, given
the high Ty (tdec)-

We use the convention where the perturbed FLRW metric is given by [29],

goo = —1 =2V, gij =a*(t)6;;[1+29], goi=0. (4.1)
In the absence of anisotropic stress, ® = —W, and the relevant Einstein equation is
k2n? 1
n@+®+7§¢=§§ym, (4.2)
i

where / denotes partial derivative with respect to the conformal time 1 and k is the co-
moving momentum. f; = p;/protal is the fraction of the energy density in the i*" sector and
0; = dp;i/p; is the fractional density perturbation. When a certain mode is superhorizon,
the k?-term in eq. (4.2) can be neglected, giving

1

The gauge invariant fluctuation of a non-interacting fluid is conserved on superhorizon
scales. For fluid 7, it is given by

%
3(1+w;)’

where wj; is its equation of state. Then (,pr = (4 and (pr = (, remain constant until

G=d+ (4.4)

horizon re-entry. This also dictates the superhorizon evolution of radiation and matter
density perturbations,

=A% =39 (4.5)

mat —

~10 -



Using eqs. (4.3) and (4.5), we numerically evaluated the evolution of ® for ¢, ~ 1073,
Cp ~ 3.5 X 1072, and fpT ~ 1072, as shown in figure 3. While ® is larger during eRD when
the total curvature perturbation is dominated by (y, it becomes small again after eMD.”
Let us do a few consistency checks. Eqgs. (4.3) and (4.4) can be simplified to give ® =~ %Ctotal
during radiation dominance. Then we expect ® ~ % (%Cx + %Cd,) ~ 4.6 x 107* (using
€ = 1/2) during eRD, while ® ~ % (frr¢y + Cs) &~ 3 x 107° during radiation dominance
after eMD. This is exactly what we find in figure 3. Therefore, the anisotropy in CMB
(and in other late-time maps of adiabatic perturbations) remains small at 10~ even in our
modified scenario with PT sector domination during eRD.

4.2 Modes that have re-entered the horizon prior to tgec

In this section, we focus on the evolution of density perturbations in the non-PT sector and
® for the modes that re-enter the horizon during eRD and eMD. This will be relevant for
the constraints on ¢, on small scales, which can indirectly affect CMB or LSS.

The gradient terms that we neglected for superhorizon evolution become important as
the mode becomes subhorizon. The coupled evolution of perturbations is given by

k2?1
N+ @+ 0= 3 fil;
%
k3 4k2
éﬁad + ?61"&(1 = —49" + ?@ (46)
1 3
St + 55@ = 30" + k2P — ch/.

Let us start by analyzing the evolution of a co-moving mode that re-enters the horizon
during eRD, generically labeled kegrp. Just before its re-entry, ®(kerpn S 1) = (2/3)(y as
the PT sector is dominant. Since (4 = ® + dppT /4 ~ 107 is conserved on superhorizon
scales, we get onpr(kernpn S 1) & —4(P — Gapr) & —(8/3)(y for ¢, > (.

After the horizon re-entry at nerp ~ 1/kerD, perturbations follow egs. (4.6). Below,
we describe their qualitative behavior. Fluctuations in the radiation of the PT sector, dpr,
oscillate in time with a constant amplitude throughout eRD and eMD. The behaviour of ®
and d,pT, however, changes significantly. During eRD, |®| oc n~2 drops rapidly, while the
amplitude of d,pT remains constant when the non-PT sector is radiation-dominated and
increases logarithmically ~ log(a) when it becomes matter-dominated. This logarithmic
growth is insignificant if € is close to 1, which we take to be the case. The linear growth
during eMD, however, is significant when J,pr o a, and consequently ® becomes constant.

In summary,

8
§<X NeRD < 1 < Mmd
7]2
‘5nPT(keRD)| ~ Q%CX NMmd < 1 < Ndec (47)
8 n3
gn]%:Cx Ndec <17,

"A similar conclusion was found in [30]. They consider a model with two curvatons where one of the cur-
vatons with larger perturbations dominates the energy density during an earlier era of radiation domination.

- 11 -



where we have used the adiabatic relation d;4q/4 = Omat/3 at the transitions between
radiation and matter dominance, and a o< n? during MD. Similarly, the behaviour of ® can

be given as
2
neRD Cx NeRD < 1 < Tnd
|®(k ~ §77€RD <
ERDN ~ 5 772 CX NMmd = 1 < 7Ndec (4.8)
md
2
3 neRDndec CX Ndec S n,

where we have used the fact that ® decreases by a factor of (9/10) during a transition from
RD to MD, and increases by (10/9) during a transition from MD to RD.

Now let us similarly analyze the evolution of perturbations for a co-moving mode kovp
that re-enters during eMD. As pr drops during eMD, the total density perturbation
decreases, leading to a decreasing ®(kenp) even on superhorizon scales. This can also be
seen in figure 3. Using superhorizon conservation of (,pt = (4, we see that the density
perturbation d,pT ~ —® also decreases. After horizon re-entry, however, §,pr x a increases
while ® remains constant till the end of the eMD era. Then

2
2077;“”7)@ NeMD < 1 < Ndec
|6upT (koD )| ~ eMb (4.9)
8 (Nmddec) o Taee <1
ec —= Y
3 773MD *
and the evolution of P is
Afpr 3(1 - fer) a2y . 3
~—Cx + G~ 3G+ =€ NeMD < 1 < 14
N 5+fPTX 5+ fpr ’ SURY 57 ‘ *
|®(kemp)| ~ 5
ndec |:4fPTC €¢:| ndec % "hmd C + éCtb Ndec < N
ec = .
n? 5 n? \5n4p X 5

(4.10)
Here, we have used fpr < 1. The results of this section will be useful while analyzing
constraints on our eMD model, which we discuss next.

4.2.1 Structure on small scales

The density perturbations in the non-PT sector grow during eMD as seen in eqgs. (4.7)
and (4.9). These overdensities will be retained and transferred to the SM+DM plasma after
the reheaton decay. This poses the danger of overabundance of small-scale structures like
compact mini-halos in the late universe. In reality, however, various processes at play during
the decay of reheaton and DM decoupling suppress these small-scale fluctuations, effectively
erasing any accumulated growth from the eMD era. We list the relevant processes below:

1. Refs. [31, 32] showed that the perturbative decay of the reheaton into radiation sup-
presses the amplitude of radiation perturbations by as much as ~ 10~2 for subhorizon
modes k 2 20kgec-
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2. Frictional damping and acoustic oscillations during kinetic decoupling, and the free-
streaming of DM afterwards erases DM fluctuations on all length scales smaller
than the maximum of the horizon size at decoupling and the free-streaming length-
scale [33, 34]. These effects erase enhancement in DM perturbations for all modes
k 2 kgec that re-entered during eRD and eMD.

3. Finally, large perturbations in the baryon and photon plasma are erased by Silk
damping [35, 36], and thus do not contribute to additional small-scale structure.

These mechanisms that erase DM perturbations on small scales require DM to be in thermal
equilibrium with the SM at the time of reheaton decay. Our choice of Tgn(tgec) 2 100 GeV
ensures that a standard WIMP-like DM candidate would satisfy this criterion. In summary,
enhanced structure formation on small scales can be easily avoided in our eMD model by
taking appropriately high reheat temperature for the SM at 4ec.

4.2.2 Primordial black holes

Horizon patches with sufficient overdensity can collapse to form primordial black holes
(PBH) in the early universe, which cannot be erased by the mechanisms discussed above.
PBH production from adiabatic perturbations ~ 107 is negligible. However, in our modified
model, larger density perturbations during eRD and eMD era will enhance PBH production,
giving a constraint on the power spectrum of x on small scales.
During radiation dominance, the Hubble patches exceeding a certain critical overdensity
(6c) collapse to form PBH. At a given time, the fraction of such collapsing patches can then
be given as [37]
o0 o 52
Brad = /5 P(8)ds ~ 5, P <_202(MH)> : (4.11)

Here My is the horizon mass and o?(Mpy) is the variance of the mass overdensities of
Hubble patches, which is related to the power spectrum of the curvature perturbations Pg,®

oo

7 (M) = (G /M) = o [~ @/ VBV amPel . (@)
Here, j; is the spherical Bessel function, and W (g/k) is the Fourier transform of a window
function used to smooth density contrast over the length scale k= ~ (aH)~!. During eRD,
Pr ~ Py. A real-space top hat window function in eq. (4.12) gives o%(Mp) ~ 1.1P, [38].
The value of . can vary between 0.4 — 0.7 depending on the density distribution within
the collapsing patch [39], but we take J. ~ 0.4 for a conservative estimate. PBH formation
during radiation era is thought to follow the phenomenon of critical collapse, which produces
a distribution of PBH up to arbitrary low masses [37, 40-42],

MPBH = MH(6 — 56)7 . (413)
8The power spectrum for any gauge-invariant perturbation ‘¢’ is defined as
oo -~ o, (27)3
(GRIGE) = ok + B EL P r),

For a scale-invariant spectrum, P (k) is constant.
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The most stringent constraint in the low mass region comes from CMB distortions caused
by the evaporation of light PBH. This puts a constraint on their formation probability
Berp < 10725 [43, 44]. From eqs. (4.11) and (4.12), this translates to a bound ¢, < 0.04 on
small scales (high k). A more significant enhancement of PBH formation occurs during the
eMD era. This gives a stronger bound on small-scale ¢, which we discuss below.

Density perturbations in the non-PT sector would grow linearly during MD, d,pr o a(t),
as discussed in section 4.2. Thus, even small perturbations can lead to significant PBH
formation. When the perturbation becomes non-linear d,pr = O(1), the corresponding
Hubble patch separates from the background expansion and eventually collapses. A
conservative bound on small-scale ¢, can then be obtained by simply requiring that the
perturbations never become nonlinear during eMD, i.e.,

Spr (de) ~ Al fop < L. (4.14)
Taking ¢, fpr < 4% 1075 from eq. (2.5), we get an upper bound on small-scale ¢, < 3 x1073.
Note that this upper bound becomes tighter if the eMD lasts longer. However, this simple
bound is too restrictive and a more careful analysis gives a fairly fpr-independent bound
Gy < 1072 on small scales. We elaborate on this below.

It was shown in [45, 46] that despite over-densities becoming nonlinear, only patches
with sufficient spherical symmetry and homogeneity can collapse to form PBH.? The
probability of PBH formation on the co-moving scale k~! is then

roan | 13/2
B (k) & 0.2 ( > , (4.15)
Tk

where 1 ~ a/k is the physical wavelength of the mode and 74, is the Schwarzschild radius
corresponding to the typical overdense region on length scale 7. The ratio (rseh/rr) =~
Sup1(k,t)(aH/k)? remains constant during eMD due to the linear growth of d,pt. Hence,
the ratio can be evaluated at horizon re-entry for the modes re-entering during eMD, while
for the modes that have re-entered before eMD, the ratio is evaluated at the start of eMD.
From eqs. (4.7) and (4.9), we get

ar \? ar \?
r 6nPT(k7amd) () ~ 2()( () k > kmd
b ~ 0md @md (4.16)
T 5nPT(k7ak) ~ QCX (al;:i) kmd >k > kdec:

where ay (tx) corresponds to the scale factor (time) at the horizon re-entry of the co-
moving mode k, and we have used H  a~2 during RD while H « a2 during MD.
Clearly, the largest [ corresponds to the mode re-entering at the start of eMD, kg4,
with Buat (kma) ~ 18¢L3/2.

The mass of PBH formed from a certain comoving mode k£ during the matter domination

era is roughly the horizon mass at reentry. Unlike radiation, pressureless matter does not

9The patches that do not satisfy these criteria form pancake/cigar-shaped structures instead. These are
later dispersed due to the radiation pressure when the non-PT sector decays to SM.
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seem to follow critical collapse [47-49]. For the modes that re-enter during eRD but form
PBH during eMD, the PBH mass is instead the mass within a patch of radius ~ amq k' at
the start of eMD. Thus

MH(ak) (aaﬁ) k > kmd

MH(ak) kmd >k > kdec-

MpgH|eMD ~ (4.17)

Modes re-entering after eMD have curvature perturbation ~ 107> as shown in section 4.1,
and produce negligible amount of PBH following eq. (4.11). However, the modes that
re-entered earlier during eRD and eMD retain larger perturbations even in the standard
radiation-dominated era (sRD) after eMD, until they are erased by mechanisms discussed
in section 4.2.1. We will show that despite large perturbations, there is no additional
enhancement in PBH formation from these modes in the sRD. The collapse probability of
a subhorizon mode in sRD can be estimated by performing Jeans mass analysis. Balancing
kinetic and gravitational potential energy gives the Jeans mass M = 2r/G for a spherical
region of radius r. (Here, G is the gravitational constant.) The condition for instability
M > My then gives the critical overdensity for subhorizon modes,

s b o _ 1 k2
© 2Gpr?  2n2Gpa?’

(4.18)

where we have taken r = ma/k. Using 87Gp = 3H?, the critical overdensity at some time ¢
during sRD is

v () = (i) o () ()

Note that the critical overdensity is bigger for subhorizon modes than the constant ~ 0.4 we

had taken before. Now, onpr(k,t) = dnpr(k, tr)(adec/ax) due to the linear growth during
eMD. Thus the ratio

Se(t) 0.43 < a >2 0.43
~ > 4.20
onpT(k,t)  OnpT(K,tk) \adec/ — OupT(Kmd;tmd) (4.20)

is smallest at ¢ & t4ec and for the co-moving mode ky,q. Using egs. (4.11) and (4.12), the

probability of collapse of the subhorizon modes during sRD is then

0.432
rp < - . 4.21
BsrD < exp < 2(1'17%()) (4.21)
Following the analysis at the beginning of this section, we see that this production probability
is much smaller than that from the eMD era.

Having analyzed PBH production, let us connect it to the experimental bounds on the
fraction of PBH today,
o)

BH — [ dMy(M). 4.22
=) [ asrwan) (4.22)

frBH =
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Here Q](DUK/[ ~ 0.26 and the mass function ¢ (M) is defined as

1 dn 1 a
M) — _ M e‘l). 1.23
000 = cor gy = g P00 (o (4.23)

The factor of (aeq/adec) in the above equation accounts for the relative enhancement of
PBH abundance during the radiation dominated era since PBH dilute slower like pressure-
less matter. The mass of PBH can be evaluated using eq. (4.17) along with the relation

Ptotal =~ 3H2M§17 giViIlg
ar \* 100GeV 2
107521, (k) 3/2 (T(t)> k> kund
Gmd SM \ldec
Mppu(k) ~ o 52 7 100GV \ 2 (4.24)
10-501,, ( ) () Fmd > k > Faee.
Gdec TSM (tdec)

Here, Mg, corresponds to the solar mass and we have used My ~ 10739 M.
Constraints on PBH are typically given for a monochromatic mass function, [43, 44]

wmono = fPBH 5(M - Mc) (425)

Figure 4 (b) shows these constraints as blue regions. The same constraints can also be used
to check the viability of an extended mass function following the method of [50], which
translates to the following condition

M
/ a3y (4.26)
fmono (M)
Here, fiono is the maximum allowed fraction for a monochromatic mass function.
To evaluate the largest allowed (, on small scales, we have chosen two benchmarks
saturating the limit in eq. (2.5) and assuming a scale-invariant spectrum:

1. (=5 x 1073, fpr ~ 9 x 1073, and Tspm(tgec) = 100 GeV (purple).
2. ¢~ 1072, fpr &~ 4.5 x 1073, and Tsp(taec) = 300 GeV (orange).

The mass function for these benchmarks is shown in figure 4 (a). We have checked that
both of these benchmarks satisfy the criterion in eq. (4.26). It is clear that PBH production
constraints ¢, < 1072 on small scales.

For a quick and more intuitive comparison with the constraints, we can take advantage
of the roughly monochromatic appearance of our mass functions. In figure 4 (b), we therefore
indicate where their monochromatic best fits would lie. While these points are so close to
the constraints that the more refined criterion of eq. (4.26) is necessary to confidently check
that our benchmarks are not excluded, what is clear is that the most relevant constraints
are from microlensing.

Interestingly, our eMD model produces a sharply peaked PBH mass function without
any sharp peaks in either P¢ or Pc,. The peak corresponds to PBH produced from kg (i.e.
the co-moving mode that re-enters right at the start of eMD). Such a spectrum is typically
achieved by introducing a scale-invariance-breaking feature in the inflationary potential
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Figure 4. (a) Fraction of DM energy density in PBH per logarithmic interval as a function of PBH
mass in units of solar mass Mg. (b) Relevant constraints on monochromatic PBH mass functions
from CMB distortions and microlensing (taken from [43, 44]). In (a), we show PBH mass distributions
for two benchmarks in our eMD model: ¢, = 5 x 1073, fpr ~ 9 x 1072, Tsm(tdec) = 100 GeV in
purple, and ¢, ~ 1072, fpp &~ 4.5 x 1073, Tsm(taec) = 300 GeV in orange. Noting the roughly
monochromatic shape of these distributions, we have also shown their monochromatic best fits in
(b) for an intuitive comparison with the constraints.

that can significantly enhance power at a specific k. In our model, the same can be achieved
simply by the interplay of energy densities of two sectors, where both have scale-invariant
fluctuations albeit of different amplitudes. Also note that for the second benchmark, PBH
can make up the entirety of DM. A larger PBH fraction can be obtained at lower Tgn(tdec)
by taking smaller fpr (and not saturating eq. (2.5)). Generally, ¢, < 1072 is required to
avoid overproduction of PBH. The exact bound depends on the values of Tsy(tgec) and
fer as they can shift the location of the peak, exposing it to stricter constraints. However,
egs. (4.15) and (4.16) suggest that even moderately smaller ¢, will be sufficient to evade
these constraints.

In conclusion, we require ¢y < 102 on small scales to avoid overproduction of PBH. If
the power spectrum of y is nearly scale-invariant, as we have considered in this paper for
simplicity, this also constrains ¢, and dgw on the large scales relevant for GW detectors.
However, ¢y 2 102 on large scales can be made consistent with PBH constraints if the
power spectrum is significantly red-tilted. This would require special model-building for y
potential, which we do not consider in this paper.

4.2.3 Scalar-induced gravitational waves

A weaker gravitational wave background can be induced by curvature perturbations at second
order in perturbation theory (see [51] for a recent review). Larger curvature perturbations
and the presence of eMD can enhance its production.'’ Here, we estimate the strength of
such induced-GWB and compare it to the gravitational waves from the phase transition.

"Enhancement of primordial GWB in the presence of eMD generated by f(R) gravity has been stud-
ied in [52].
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Figure 5. Strength of the GWB from phase transition (orange) occurring at Tpr(tpr) ~ 100 TeV
and that induced from curvature perturbations at second order (brown), compared with the power-
law integrated sensitivities of LISA, BBO, and DECIGO (taken from [54]). The GWBs are computed
for the benchmark that saturates PBH constraint (see discussion in section 4.2.2) with ¢, = 1072,
fer = 4.5 x 1073, and Ty (tgec) = 300 GeV.

The fraction of energy density in the induced-GWB per logarithmic k is

2
Qi (1, k) = — ’“(n)) Puln F) (4.27)

Bz (a(n)H

where Pp(n, k) is the time-averaged tensor power spectrum. It is related to the power
spectrum of curvature perturbations as

2
Pa(n, k) = 4 /0 dv /| 1; ' [4“2 — (14— “2)2] 1(0, u, 2)]*Pr (kv)Pr (ku)  (4.28)

1 4ou

where u = |k — K'|/k, v = k' /k, and © = kn. I(v,u,z) contains information about the
dynamics of scalar and tensor perturbations and is given in ref. [53]. The curvature
perturbations can be related to (first-order) ® as

5+ 3w 2
= 4.2
Pr (3 + 3w) Pe (4.29)

Thus, the magnitude of P}, oc P2.

During radiation dominance, ®(n, k) « 1/5? decays quickly inside the horizon. Thus,
induced-GW are dominantly produced at horizon re-entry for modes that re-enter deep
in the eRD era. This is not the case for modes re-entering during eMD, since ¢ remains
constant even after horizon re-entry during eMD. The result is a relative enhancement of
induced-GW during eMD compared to the case of pure radiation dominance.
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Refs. [53, 55, 56] have analysed production of induced-GW in matter dominance era
for a scale-invariant Pg that remains constant on super-horizon scales.!! We borrow results
of [53] with appropriate rescaling as explained below. While ®(k) ~ ¢, remains constant for
a superhorizon mode during eRD, it decreases during eMD till horizon re-entry as the PT
sector becomes subdominant (see figure 3). After horizon re-entry, ®(k) becomes constant
again till the end of eMD), and this value depends on the time of re-entry for each mode. The
dominant effect of this evolution of ® on the strength of induced-GW is the k-dependent
rescaling of the results in [53] by a factor A(k). This rescaling factor A\(k) can be obtained
by noting that P}, o P3, and using eq. (4.10),

(3 ( _4Afer(ts) !
AE) ~ [2 <5+pr<tk>>] (4.30)

Then the strength of the induced-GW is given as

0.8pr k > 2kma
ME) [k \? -
Q&ﬁT+<( )(1—2k1f
sec(0
0 V& (k) N 14000 \ Kgec
P20, x P05%2%—72%—k16——32%_1——16%‘2}> 2mda > k > Emd
ME) [k \? - - -
L 1792k~ — 2520 + 768k — 105k2 kmd > k > kdec
14000 (k@ec> [ + } d = >N

(4.31)

where k = k /kmd. The frequency of the GW today can be related to the co-moving mode
k as

k k
w:~15xﬂ)m(4)Hz (4.32)
2 1Mpc

™

Figure 5 shows Qgw from phase transition (orange) and that induced from curvature
perturbations (brown) as a function of frequency. We have taken the largest (, ~ 1072
allowed on small scales from PBH consideration (see benchmark 2 from section 4.2.2). We
see that the GW signal from phase transition is much larger than induced-GW. Decreasing
¢y will quickly make induced-GW signal undetectably small given its sensitive dependence
on the curvature perturbations seen in eq. (4.31). Interestingly, while a small fpr suppresses
GW signal from the phase transition, it enhances induced-GW. We will explore this aspect
of induced-GWB in future work.

"1t was pointed out in [57] and [58] that the strength of the induced GW from eMD sensitively depends
on the exact model for the decay of the matter at the end of eMD. It was observed that a slow decay process
suppresses the induced GW signal compared to eq. (4.31), while a quick decay enhances the signal. We
suspect that a typical perturbative decay of the reheaton will fall under ‘slow decay’, suppressing induced
GW signal. However, we have taken a conservative estimate following [53].
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Benchmarks Radiation-dominance eMD

G fer Qgwh?  30Gwh? QG SOGh?
1) 107% 45x107! 6.5x 10710 2.6 x 10713 1.5x107% 1.9x10713
2) 1073 4.5x 1072 6.5 x 10712 2.6 x 1074 1.5x 10719 1.9x 10713
3) 1072 45x1073 6.5x 10714 2.6 x 1071° 1.5x 1071 1.9x 10713
4) 107t 45x1074 6.5x 10716 2.6 x 10716 1.5x 10712 1.9x 10713

Table 1. Benchmarks showing the strength of GWB and its inhomogeneities in the pure radiation-
dominance model of [4] and our eMD model. We take them to saturate the CMB bound in eq. (2.5)
(that is, ¢, fpr = 4.5 % 10~%). For a scale-invariant spectrum, they are consistent with the constraints
from PBH production discussed in section 4.2.2, except for benchmark 4, which would require
significantly red-tilted spectrum for x to evade constraints on small scales (high-k).

5 Benchmarks and observability

The energy density in any GWB is bounded by two considerations. Firstly, it contributes
to Neg as a species of dark radiation, but the Neg constraint is relatively mild:

paw < 0.1p,. (5.1)

Since we are interested in the possibility of dgw > 107>, it necessitates an isocurvature
origin for the GWB. The stronger bounds on isocurvature from CMB give

dpaw < 0.10p-. (5.2)
This can be translated to
5O h% < 107500h? ~ 2.5 x 10710, (5.3)

where ng)hQ ~ 2.5 x 107°. We choose benchmarks that satisfy this constraint and also

show that our modified eMD scenario brings (598\);\, of the signal closer to this upper bound
over a large range of anisotropies.

In table. 1, we consider benchmarks that saturate eq. (2.5), i.e. ¢, fpT = 4.5 107°.
Corresponding GWB signals and their inhomogeneities are computed for the radiation-
dominated model of [4] using egs. (2.10) and (2.12). The same quantities are also computed
for our eMD scenario using egs. (3.3) and (3.7). We see that both the isotropic GWB signal
and the absolute inhomogeneities are comparable or larger in the eMD model for ¢, 2 1074,

Note that benchmark 4 in table 1 above apparently violates PBH bounds discussed in
section 4.2.2. However, that analysis assumed approximately scale-invariant ¢, up to high-%
modes that are relevant for PBH production. This is indeed the case for the minimal model
of a light x with fixed mass during inflation that we have considered. It is however possible
that with non-minimal couplings, ¢, has a suppressed power at high k so that the PBH
bounds are evaded while still having large dcw at observable small & modes.

If the power spectrum of x contains features that are not seen in the CMB, (, fpr <
4.5 x 107> is required (see for example [13]). This means that for the same (,, the fraction
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fpr must be even smaller. For example, consider a case where the PT sector only makes
up about 1% of the final SM+DM density perturbations, i.e. ¢, fpr ~ 4.5 x 10~7. Consider
Gy ~ 107* and fpr ~ 4.5 x 1073, Then in the radiation-dominance scenario, we get
Q(C[})\)N ~ 6.5 x 1071 and 598\),\/ ~ 2.6 x 10717, In our eMD scenario, on the other hand,
Q(C?\)N ~ 1.5 x 107" and 598\),\, ~ 1.9 x 107, Comparing this to the first benchmark in
table 1 makes the advantage of our eMD model even more apparent. Such scenarios with
smaller fpp would require longer periods of eMD, and possibly lower Tgn(tgec) or higher
PT temperature. A lower Tsy(tgec) can be made compatible with our analysis by choosing
an appropriate DM model that freezes out below this reheat temperature.

To access the improvement in the detection prospect of anisotropies with the eMD
model, let us compare the angular power spectrum of GWB to the corresponding angular
sensitivity of experiments. The anisotropies of PT-GWB can be conveniently expressed in
the multipole basis analogous to the CMB,

R W) = - E N 0V cos). (5.4)
V4

where 7 - 7/ = cosf and P, are the Legendre polynomials. The angular power spectrum
CZGW can be related to the amplitude of GW fluctuations as,

dk .
€Y =2 [ Panca ()R o) (5.5)

where j, are spherical Bessel functions and Psq,,, is given by

(27)°

(602 (B)O0 () = 6k + F) 25~

Psagw (k)- (5.6)
For a scale-invariant spectrum, Psq,, (k) is constant. In this case, the integral in eq. (5.5)
can be simplified [29], giving

0+ 1)CEV ~ 14Pso (5.7)

C’ZGW can be directly compared to the noise power spectrum Ny of a given experiment,
which sets the lower limit for detectable GWB power spectra as a function of multipole
¢. Figure 6 (b) shows £(¢ 4+ 1)Ny as a function of multipole ¢ for relevant detectors like
LISA, BBO, and ultimate-DECIGO, which were computed in ref. [59], and are based on
the code of ref. [60]. The design of these space-based detectors gives higher sensitivity to
even multipoles, resulting in the zigzag curves in the plot.

Figure 6 shows the strength of GWB signals for benchmarks 1 (red), 3 (orange), and 4
(yellow) from table 1 in the radiation-dominated (dotted lines) and eMD model (solid lines).
Figure 6 (a) compares the strength of the GWB monopoles with the projected power-law
integrated sensitivities for LISA, BBO, and DECIGO [54]. We have incorporated the shift
in peak frequency following discussion in section 3.2 and appendix A. Figure 6 (b), on the
other hand, illustrates the strength of the anisotropic GWB power spectrum (computed
using eq. (5.7)) in the radiation-dominated and eMD models, against projections of the noise
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Figure 6. Comparison of benchmarks 1 (red), 3 (orange), and 4 (yellow) from table. 1 with the (a)
sensitivities of upcoming space-based experiments like LISA, BBO, and DECIGO, and (b) noise
power spectra Ny as computed in [59]. Solid lines correspond to our modified eMD model while
the dotted lines correspond the radiation-dominance scenario of [4]. In (a), the GWB spectra are
evaluated for a phase transition occurring at Tpr(tpT) ~ 100 TeV in a single-sector scenario, and
contribution from bubble collisions is taken to be the dominant source of gravitational waves. In (b),
all benchmarks for the eMD model lie on the same line at =~ 5 x 1072% and are together represented
by a black line.
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power spectrum for LISA, BBO, and ultimate-DECIGO configurations [59]. As explained
before, there is no additional fpt suppression in the GWB inhomogeneities in the eMD
model, and the power spectrum for all the benchmarks lies at the same position ~ 5 x 1072°

shown as a black line in figure 6 (b).

6 Discussion

LISA is the most sensitive GW detector already under development, with a baseline
sensitivity of Qrisah? ~ 10712 [1, 3] and a power-law integrated sensitivity of Qi , h? ~
10714 [54]. Clearly, it would be important to be able to see at least an isotropic GWB
signal at LISA in order to motivate development of more futuristic proposed detectors,
such as BBO or DECIGO, to measure the anisotropies. We see from figure 6 (a) that for
larger fractional GWB anisotropies, even the isotropic component can be challenging at
LISA for the radiation-domination models, whereas they can be readily detectable in our
early-matter-domination (eMD) models.

Once an isotropic GWB is detected, there would be a guaranteed anisotropic component
to be discovered. In fact we see in figure 6 (b) that with our eMD model, it is possible that
the first few GWB multipoles might be visible already at LISA, above the instrumental noise
anisotropy, for a much larger range of GWB anisotropies. Detection of a highly anisotropic
GWB at LISA would make an even stronger case for more sensitive detectors to mine the
physics of the isocurvature GWB map with higher multipoles. Figure. 6 (b) shows that
such high resolution map-making would be possible within our eMD model. Finally, larger
GWB signals in the eMD model will be significantly easier to distinguish from the various
astrophysical foregrounds [61].
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A fZ. suppression in Qgw in the radiation-dominated model

A first-order phase transition proceeds through the formation and expansion of bubbles of
true vacuum. The rate of bubble formation per unit volume I' can be given by

[ ~ ThpeSTFr) (A1)

where Tpr is the temperature of the PT sector and S(Tpr) is the Euclidean action of a
critical bubble. The transition begins when the rate of bubble formation is comparable to
the Hubble rate, I' ~ H*. Now, in the radiation-dominated model described in section 2,
the Hubble rate can be written in terms of Tpt as

—1p4
Ptotal fPTTPT

H? ~ ~ . (A.2)
Mgl M§1
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Then the phase transition begins at temperature T, = Tpr(tpr) such that

-2
Tie=S(T) for T2

M,
=  —S(T,) ~4log <A14}1> —2log (fpr) .- (A.3)
p

Since gravitational wave production in a single sector (fpp = 1) is well understood, we
compare the multi-sector case of fpr < 1 with the single-sector case of fpr = 1. For this,
we henceforth use ‘~* to denote quantities corresponding to a single-sector system. Then
—S(T.) ~ 4log (]\7/}—;) Now, let us expand Ty = T + AT. Then eq. (A.3) gives

1

= AT g =\ /AT\? AT
- (ﬁTﬁ (w‘ i 5) (%) ) ~atos (L) —lesm (A9

where,

as

sl
dlogT

H

g (A.5)

tpT Ty

B is an important PT parameter as it determines the typical length/time scale of the bubble
dynamics (and hence the typical frequency of gravitational waves at production) relative to
H~'. From eq. (A.4), we see that the temperature shift depends on B. Therefore, let us
consider two cases:

1) Typical E ~ O(100): for a TeV scale phase transition, the typical value of E ~
S(T,) ~ O(100). In this case, the change in the PT temperature is small and eq. (A.4)
simplifies to

AT ~ 2 log pr

A.6
AR S (A.6)

For the smallest fpp ~ 1075 of interest, we get (AT/T,) ~ —0.1. Now, the going rate for the
change in 5 is also expected to be set by the action, i.e. (df/dlog )|z, ~ S(T.) ~ O(100).
So the expected change in 3 due to the shift in the PT temperature is AfS ~ 10 < E Thus,
we can take

B~ p. (A7)

2) “Tuned” § ~ O(10): from the observational perspective, gravitational waves from
phase transitions with smaller /3 are more likely to be observed first. Thus we have considered
3 = 10 in this paper. This requires tuning of parameters such that the rate of change of the
action is an order of magnitude smaller than the action itself at T',. Despite the tuning in f,
we still expect (df3/d log T)|7, ~ O(100). In other words, a shift in the PT temperature due
to fpr < 1 is likely to take the system away from the tuned point to a more typical value

of f ~ O(100). Taking fpr ~ 107> in eq. (A.4) gives (AT/T.) ~ —0.4 and A3 ~ 40. Now
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a larger /3 will lead to an additional suppression in the GW signal on top of the expected
ff%T. This can be seen through the 372 dependence in eq. (2.8). However, since the exact
shift in 3 is model dependent, we make a conservative choice of neglecting change § and
follow eq. (A.7) even in the case of relatively small . Note that correctly including the
suppression due to larger 3 will only strengthen the case for our eMD model described
in section 3.
Let us now look at the gravitational wave emission, which is governed by the transverse
traceless part of the linearized Einstein equations
T(x)
Ohcw Mp21 , (A.8)

where O = (07 + 3HO; — a=2V?) and T is the transverse traceless part of the stress-energy
tensor of the PT sector. It is useful to change to dimensionless coordinates & = Hx and the
stress tensor T = ,OE% 7,12 where T captures the dimensionless “shape” of the dominant
quadrupole GW sources. Then

pprT (%)

Hhaw ~ e
P

~ fprT (%). (A.9)
For the familiar case of fpp = 1, all the length/time scales of the dominant GW sources are

set by 3 [1, 62, 63]. This means that the piece of T that is relevant for GW production is
only parametrized by the dimensionless 5. Given eq. (A.7), we then have

T(&) ~T(z). (A.10)
Thus, eq. (A.9) can be written as
Ohaw ~ ferT (%), (A.11)
giving
haw (%) ~ ferhaw () (A.12)
Now,

PGW Mgl(ahGVV)2

Q) =
oW Ptotal H2M§1
~ ~— 2
~ (Ohaw)? ~ fEr (Dhaw)

where we have used eq. (A.12) in the second line.

2Since we have taken aprt ~ 1.
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The reader may wonder if the GW production from MHD turbulence shows different
dependence on fpr as the turbulence may cascade to smaller scales than S~!. However,
analytic calculations suggest that the dominant MHD contribution is still in frequencies
~ [ [62]. Thus, we expect the above analysis to hold also for MHD turbulence. The
turbulence contribution is therefore expected to remain subdominant compared to the
acoustic and bubble wall collision contributions even in the case fpr < 1.
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