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Propagating uncertainty in
ecological models to
understand causation

Addicott et al. (2022) demonstrated that
model selection via Akaike information
criterion (AIC) may lead researchers to
choose models in which the causal effects
of focal variables are biased (Tredennick
et al. 2021; Arif and MacNeil 2022). We
agree that model selection approaches
applied to a suite of correlative models
are unlikely to provide causal inferences,
particularly when researchers do not
choose variables a priori to evaluate spe-
cific hypotheses. Rather, critical thinking
about the focal system’s causal structure
(that is, “science before statistics”;
McElreath 2020) is necessary. We appre-
ciate the effort to bring this issue to the
attention of the ecological community
but wish to comment on the use of two-
stage least squares in the analysis - in
which point estimates of fitted values
from one regression are used in a second
regression as data — and highlight an
alternative approach in which the uncer-
tainty from the first stage is propagated
to the second stage.

The authors simulated (see Addicott
et al’s [2022] Figure 1) fish population
growth as a function of food (observed)
and fishing effort (not observed). Catch
(a proxy for effort) is observed but is
confounded by growth rate. A naive
model containing food and catch pro-
duces a biased effect of food but is “pre-
ferred” by AIC over a simpler - but
unbiased - model containing only food.
The authors evaluated a third approach
in which the confounding variable
(catch) is modeled as a function of food
and the number of nets (an instrumental
variable affecting catch but not growth
rate). The resultant point estimates of
catch (along with food) are then used in
a second regression to estimate growth
rate, leading to an unbiased estimate of
food’s effect. While this two-stage
approach can be effective and is com-
monly applied, particularly in fields such
as economics (Angrist and Krueger 1995;
McElreath 2020), it does not propagate

the uncertainty from the first stage to the
second. Bayesian inference provides a
solution: all parameters are viewed as
random variables with associated uncer-
tainty distributions, and thus unobserved
latent variables can be incorporated with
their uncertainty.

We replicated the authors” analysis in
a Bayesian framework (considering
three sample sizes: n = 25, 100, and
1000). In addition to their three models,
we ran a modified version of their two-
stage model in which uncertainty was
propagated between the two regressions.
The key feature of this fourth model is
that the entire distribution of the fitted
values for catch was used in the second
regression, rather than a single point
estimate. We wrote the models in the
rstan version 2.26.9 interface to Stan
(Carpenter et al. 2017). Code is available
at https://github.com/n-a-gilbert/uncer
tainty and on Zenodo (Gilbert 2022).
While such an approach could be pur-
sued using a maximum likelihood
framework (eg Besbeas et al. 2002;
Bromaghin et al. 2010; Maunder and
Punt 2013), it is typically more challeng-
ing to implement with standard soft-
ware and likely to perform poorly for
the small sample sizes common in eco-
logical studies (Clark 2005; Royle and
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Propagating uncertainty in the two-
stage approach resulted in more precise
estimates of the focal effect at small
sample sizes (Figure 1). At n = 25 and n
=100, the standard deviation of the food
effect in the uncertainty model was 60%
and 86%, respectively, of that from the
model without uncertainty (Figure 1).
At n = 1000, the standard deviation of
the food effect in the uncertainty model
was slightly larger (102%) than that
from the model without uncertainty
(Figure 1). Paradoxically, propagating
uncertainty in such analyses may lead to
more precise estimated effects when
sample sizes are low. The model without
uncertainty likely produces more uncer-
tain results at the small sample sizes
because the point estimates from the
first stage are inaccurate. By more fully
approximating the effect of catch, the
model with uncertainty can better esti-
mate the effect of food. However, eco-
logical data are rarely as clean-cut as this
simulation; propagating uncertainty in
many, if not most, empirical settings
likely avoids overconfidence in esti-
mated quantities (Behney 2020).

Not propagating uncertainty in two-
stage least squares is a specific case of
omitting uncertainty in covariates. Regres-
sion analyses assume that covariates are

Dorazio 2008). measured without error. However,
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Figure 1. Estimated effects of food availability using Addicott ef al.’s (2022) simulation, from four
models run with three different sample sizes. Note the increased precision of the estimated effects
for the two-stage model with uncertainty at low sample sizes. Solid circles are posterior means and
bars are 95% credible intervals; the dashed vertical line is the true value of the effect.
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researchers often measure variables (eg
vegetation height) multiple times within a
plot and then use the plot mean as a covar-
iate (Behney 2020). The true mean is
unobserved and thus uncertainty is lost
when the sample mean is used. Beh-
ney (2020) found that Bayesian models
accounting for uncertainty in a covariate
generated less precise estimates of its effect
than models that used site-level means of
the covariate.

Importantly, not propagating uncer-
tainty may have real-world implications if
management or conservation decisions
are made in accordance with the estimated
effects of environmental variables on
quantities such as abundance or occur-
rence (Walsh et al. 2012, 2015). Thus,
omitting uncertainty in covariates may
lead managers to take costly and time-
intensive actions that are not merited
(Behney 2020). Bayesian inference is
becoming  increasingly  accessible
(Monnahan et al. 2017), creating opportu-
nities to adapt age-tested approaches —
such as two-stage least squares - to
propagate uncertainty and more thor-
oughly answer today’s ecological
questions.
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Reply to Gilbert, Eyster,
and Zipkin

In their letter, Gilbert et al. apply a
Bayesian framework to the motivating
example in our paper Toward an
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improved understanding of causation in
the ecological sciences (Addicott et
al. 2022). Gilbert et al. concur with our
central argument that understanding
causal effects does not align with the
burgeoning use in ecology of correla-
tive model selection criteria such as the
Akaike information criterion (AIC).
They emphasize the need for “..critical
thinking about the focal system’s causal
structure” and cite McElreath (2020)
that “science before statistics” is neces-
sary. While our arguments reflected the
same emphasis on causal structure, we
differ by adopting the American Statis-
tical Association’s assertion that good
statistical practice is an essential com-
ponent of good scientific practice (Was-
serstein and Lazar 2016). We consider
statistics and science inseparable when
the goal is causal inference. Our pri-
mary focus was on generating plausibly
accurate causal effect sizes, where we
emphasize “plausibly accurate” because
we acknowledge that truth in ecological
systems will be unknowable.

Although precision is valuable, the
heart of causal understanding is accu-
racy. We believe that Gilbert et al. would
agree with this contention, given their
agreement that information-theoretic
methods are not tailored for identifying
causal effect sizes. Indeed, we retrieved
highly precise but inaccurate parameter
estimates using AIC because the
approach is blind to whether the sys-
tem’s causal structure is accurately
resolved. Similarly, recent high-profile
examples of the “Big Data Paradox”
reflect how poor causal understanding
can lead to precise but inaccurate esti-
mates (Bradley et al. 2021). The com-
mon issue here is inaccurate causal
understanding, where the inaccuracy is
generated at the study design, measure-
ment, or statistical analysis stages of the
scientific process. Gilbert et al’s com-
ment addresses precision once a plausi-
bly accurate causal effect has been
identified.

The three arguments that Gilbert et al.
advance about the precision of a plausi-
bly accurate estimate are (1) that two-
stage least squares analyses do not
address measurement error, (2) that
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