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Propagating uncertainty in the two-
stage approach resulted in more precise 
estimates of the focal effect at small 
sample sizes (Figure 1). At n = 25 and n 
= 100, the standard deviation of the food 
effect in the uncertainty model was 60% 
and 86%, respectively, of that from the 
model without uncertainty (Figure  1). 
At n = 1000, the standard deviation of 
the food effect in the uncertainty model 
was slightly larger (102%) than that 
from the model without uncertainty 
(Figure  1). Paradoxically, propagating 
uncertainty in such analyses may lead to 
more precise estimated effects when 
sample sizes are low. The model without 
uncertainty likely produces more uncer-
tain results at the small sample sizes 
because the point estimates from the 
first stage are inaccurate. By more fully 
approximating the effect of catch, the 
model with uncertainty can better esti-
mate the effect of food. However, eco-
logical data are rarely as clean-cut as this 
simulation; propagating uncertainty in 
many, if not most, empirical settings 
likely avoids overconfidence in esti-
mated quantities (Behney 2020).

Not propagating uncertainty in two-
stage least squares is a specific case of 
omitting uncertainty in covariates. Regres-
sion analyses assume that covariates are 
measured without error. However, 

the uncertainty from the first stage to the 
second. Bayesian inference provides a 
solution: all parameters are viewed as 
random variables with associated uncer-
tainty distributions, and thus unobserved 
latent variables can be incorporated with 
their uncertainty.

We replicated the authors’ analysis in 
a Bayesian framework (considering 
three sample sizes: n = 25, 100, and 
1000). In addition to their three models, 
we ran a modified version of their two-
stage model in which uncertainty was 
propagated between the two regressions. 
The key feature of this fourth model is 
that the entire distribution of the fitted 
values for catch was used in the second 
regression, rather than a single point 
estimate. We wrote the models in the 
rstan version 2.26.9 interface to Stan 
(Carpenter et al. 2017). Code is available 
at https://github.com/n-a-gilbe​rt/uncer​
tainty and on Zenodo (Gilbert  2022). 
While such an approach could be pur-
sued using a maximum likelihood 
framework (eg Besbeas et al.  2002; 
Bromaghin et al.  2010; Maunder and 
Punt 2013), it is typically more challeng-
ing to implement with standard soft-
ware and likely to perform poorly for 
the small sample sizes common in eco-
logical studies (Clark  2005; Royle and 
Dorazio 2008).

Propagating uncertainty in 
ecological models to 
understand causation
Addicott et al. (2022) demonstrated that 
model selection via Akaike information 
criterion (AIC) may lead researchers to 
choose models in which the causal effects 
of focal variables are biased (Tredennick 
et al. 2021; Arif and MacNeil 2022). We 
agree that model selection approaches 
applied to a suite of correlative models 
are unlikely to provide causal inferences, 
particularly when researchers do not 
choose variables a priori to evaluate spe-
cific hypotheses. Rather, critical thinking 
about the focal system’s causal structure 
(that is, “science before statistics”; 
McElreath 2020) is necessary. We appre-
ciate the effort to bring this issue to the 
attention of the ecological community 
but wish to comment on the use of two-
stage least squares in the analysis – in 
which point estimates of fitted values 
from one regression are used in a second 
regression as data – and highlight an 
alternative approach in which the uncer-
tainty from the first stage is propagated 
to the second stage.

The authors simulated (see Addicott 
et al.’s  [2022] Figure  1) fish population 
growth as a function of food (observed) 
and fishing effort (not observed). Catch 
(a proxy for effort) is observed but is 
confounded by growth rate. A naive 
model containing food and catch pro-
duces a biased effect of food but is “pre-
ferred” by AIC over a simpler – but 
unbiased – model containing only food. 
The authors evaluated a third approach 
in which the confounding variable 
(catch) is modeled as a function of food 
and the number of nets (an instrumental 
variable affecting catch but not growth 
rate). The resultant point estimates of 
catch (along with food) are then used in 
a second regression to estimate growth 
rate, leading to an unbiased estimate of 
food’s effect. While this two-stage 
approach can be effective and is com-
monly applied, particularly in fields such 
as economics (Angrist and Krueger 1995; 
McElreath  2020), it does not propagate 

Figure 1. Estimated effects of food availability using Addicott et al.’s  (2022) simulation, from four 
models run with three different sample sizes. Note the increased precision of the estimated effects 
for the two-stage model with uncertainty at low sample sizes. Solid circles are posterior means and 
bars are 95% credible intervals; the dashed vertical line is the true value of the effect.
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researchers often measure variables (eg 
vegetation height) multiple times within a 
plot and then use the plot mean as a covar-
iate (Behney  2020). The true mean is 
unobserved and thus uncertainty is lost 
when the sample mean is used. Beh-
ney  (2020) found that Bayesian models 
accounting for uncertainty in a covariate 
generated less precise estimates of its effect 
than models that used site-level means of 
the covariate.

Importantly, not propagating uncer-
tainty may have real-world implications if 
management or conservation decisions 
are made in accordance with the estimated 
effects of environmental variables on 
quantities such as abundance or occur-
rence (Walsh et al.  2012, 2015). Thus, 
omitting uncertainty in covariates may 
lead managers to take costly and time-
intensive actions that are not merited 
(Behney  2020). Bayesian inference is 
becoming increasingly accessible 
(Monnahan et al. 2017), creating opportu-
nities to adapt age-tested approaches – 
such as two-stage least squares – to 
propagate uncertainty and more thor-
oughly answer today’s ecological 
questions.
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improved understanding of causation in 
the ecological sciences (Addicott et 
al. 2022). Gilbert et al. concur with our 
central argument that understanding 
causal effects does not align with the 
burgeoning use in ecology of correla-
tive model selection criteria such as the 
Akaike information criterion (AIC). 
They emphasize the need for “…critical 
thinking about the focal system’s causal 
structure” and cite McElreath  (2020) 
that “science before statistics” is neces-
sary. While our arguments reflected the 
same emphasis on causal structure, we 
differ by adopting the American Statis-
tical Association’s assertion that good 
statistical practice is an essential com-
ponent of good scientific practice (Was-
serstein and Lazar  2016). We consider 
statistics and science inseparable when 
the goal is causal inference. Our pri-
mary focus was on generating plausibly 
accurate causal effect sizes, where we 
emphasize “plausibly accurate” because 
we acknowledge that truth in ecological 
systems will be unknowable.

Although precision is valuable, the 
heart of causal understanding is accu-
racy. We believe that Gilbert et al. would 
agree with this contention, given their 
agreement that information-theoretic 
methods are not tailored for identifying 
causal effect sizes. Indeed, we retrieved 
highly precise but inaccurate parameter 
estimates using AIC because the 
approach is blind to whether the sys-
tem’s causal structure is accurately 
resolved. Similarly, recent high-profile 
examples of the “Big Data Paradox” 
reflect how poor causal understanding 
can lead to precise but inaccurate esti-
mates (Bradley et al. 2021). The com-
mon issue here is inaccurate causal 
understanding, where the inaccuracy is 
generated at the study design, measure-
ment, or statistical analysis stages of the 
scientific process. Gilbert et al.’s com-
ment addresses precision once a plausi-
bly accurate causal effect has been 
identified.

The three arguments that Gilbert et al. 
advance about the precision of a plausi-
bly accurate estimate are (1) that two-
stage least squares analyses do not 
address measurement error, (2) that 

Reply to Gilbert, Eyster, 
and Zipkin

In their letter, Gilbert et al. apply a 
Bayesian framework to the motivating 
example in our paper Toward an 
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