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Abstract—IoT devices are being exploited as entry points for
cyberattacks due to security weaknesses. IoT malware variants
have evolved as a result of vulnerabilities in IoT devices. This
study investigates whether IoT malware can be detected with var-
ious types of malware family. An opcode sequence of malware can
represent its family characteristics by utilizing opcode categories.
Opcode categories are divided into 6 or 11 depending on opcode
functions. Thus, a sequence of opcode categories can identify
intrinsic characteristics of the family to which it belongs. By
applying the entropy histogram, a 2D representation of a category
sequence visually reveals innate patterns within homogeneous
families. We find that benign and malware can be differentiated
visually, as well as correlated and uncorrelated malware. For the
designed feature representation, machine learning algorithms (5-
NN, SVM, Decision Tree, and Random Forest) are used, with the
best case having a mean MCC or F1-score of over 98.0%. Overall,
the 11 opcode category outperforms the 6 opcode category. The
experiments have shown that evolved malware can be detected
with a model learned from its precedent malware.

I. INTRODUCTION

IoT (Internet of Things) devices have become the most
attractive targets for malware due to well-known weaknesses
such as weak passwords, a lack of secure update procedures,
and insecure network services [1], [2], [3]. As a result,
cyberattacks are leveraging IoT devices as attack entry points.

Mirai, the notorious IoT malware, scans for vulnerable
IoT devices and performs brute-force login attacks using
Telnet or Secure Shell (SSH) protocols based on predefined
login and password dictionaries [4]. In 2016, Mirai malware
infected hundreds of thousands of IoT devices in an attempt
to launch a distributed denial-of-service (DDoS) attack [5].
Mirai mutations are still being created on a daily basis, and
they can spread and cause serious damage utilizing the same
intrusion mechanisms as the original malware [5]. According
to Kaspersky’s DDoS attack report, Simps malware, which
appeared in 2021, evolved from Mirai and Gafgyt. Mirai
was also used by ZHtrap malware, which appeared in the
same year [6]. There are major IoT malware families, such
as Gafgyt, Mirai, and Tsunami. They appear to share a
significant amount of code that is critical to IoT malware [7].
Many researchers are using known malware variants and their
correlations to detect IoT malware [8], [9].

For IoT malware detection, machine learning (ML) ex-
plores classification rules based on feature vectors or employs
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similarity metrics. In general, classification prediction is ac-
complished through the learning process by discovering hidden
pattern rules. Such detection methods can also distinguish
intrinsic but hidden patterns among benign and malware. To
obtain a robust learning model, it is a prerequisite to design
distinguishable features of a fixed size for malware and benign.
Low-dimensional features have been studied due to time or
problem complexity. Operation code (opcode) and binary are
used to create features, such as opcode sequences [10], [11],
opcode CFG (control flow graph, [12], [13]). byte sequence
sequence from ELF (executable linkable format) header [14],
and 2D images from ELFs [15].

This paper deals with the IoT malware detection model
in terms of category-based opcode sequence and evolutionary
relationships among families. The category-based sequence is
used to design features. The evolution relationship is to analyze
whether a model trained with a precedent malware family is
able to detect descendent IoT malware.

The contributions of this study are as follows:

e The feature of this study utilizes category-based opcode
sequences. We create 11 opcode category based on 6 op-
code category and the Armv6-M Architecture Reference
Manual. This strategy can save training time and has the
benefit of being able to deal with opcodes that differ
depending on the architecture.

e The entropy histogram approach is used to visualize
intrinsic patterns within IoT malware families.

e When using ascendant malware to train ML-based mod-
els, evolved or correlated IoT malware can be detected.
This analyzes if a model learns from ascendant malware
can detect descendant malware which is excluded in the
training dataset.

This paper is organized as follows. Section II discusses
related work on IoT malware detection using opcode features.
Section III addresses IoT feature extraction methods. Sec-
tion IV describes the experimental procedures and evaluates
each feature and machine learning models for identifying IoT
malware. Finally, Section V concludes this paper with future
works.

II. RELATED WORK

Because signature-based approaches are difficult to de-
tect unknown malware, most security vendors have recently



TABLE I: 6 and 11 opcode categories

[ Opcode | Category | Opcode
AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC,
TST, TEQ, CMP, CMN, ORR, MOV, BIC, MVN, CDP C1 B, BL, BLX, BX
AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, TST,

MUL, MULL, MLA, MLAL C2 | TEQ, CMP, CMN, ORR, MOV, MOVT, BIC, MVN, CDP

B, BL, BX c3 ASR, LSL, LSR, ROR, RRX

DM, STM, LDR, STR, LDC, STC, MRC, MCR Ca MUL, MULL, MLA, MLAL

MRS, MSR c5 SXT, UXT

DMB, DSB, ISB, NOP, SEV, SVC, WFE, WET,

SWI, SWP, ADR, FLDM, YIELD Cé REV, REV16, REVSH
c7 MRS, MSR, CPS
C8 DR, STR
o DM, STM, PUSH, POP
C10 LDC, STC, MRC, MCR
o1l DMB, DSB, 1SB, NOP, SEV, SVC, WEE,

WEFI, UDF, SWI, SWP, ADR, FLDM, YIELD

adopted an ML-based analysis for malware detection and mit-
igation. ML methods can learn feature patterns from malware
families found so far and use the learned model to detect
new malware with high efficiency and accuracy. An opcode
sequence is one of the popular features to detect IoT malware
over ML approach.

Kang et al. [10] presented an approach based on the opcode
n-gram function for classifying Android malware families
using NB, SVM (Support Vector Machine), partial Decision
Tree (DT), and Random Forests (RF). Opcode CFG (control
flow graph) can configure learning features that reflect the
structure indicating executing order among instructions [12].
Su et al. [15] designed 2D grayscale image features from
malware in terms of file size and byte sequence. Shahzad
et al. [16] extracted 383 structural features, including sec-
tion headers, symbolic sections, and program headers, from
ELF files. Darabian et al. [11] expressed malware features
by applying MSP (maximal sequential pattern) from opcode
sequences. To extract MSPs, maximum order subpatterns were
extracted by using MapReduce-based MG-FSM. The opcodes
were classified into 6 categories by function, and training
features were constructed by calculating the frequency of
category change in the maximum-order pattern.

Although the aforementioned approaches were able to
achieve high accuracy in malware detection and classification,
they did not reflect the diversity of CPU architectures and
an robust feature of IoT executables [17]. Because different
CPU architectures employ different instruction sets, the opcode
sequence of an executable on one CPU architecture is different
from that of another architecture. A methodology designed us-
ing IoT malware found in a specific architecture is unlikely to
be applied in other IoT environments. Feature engineering for
machine learning analysis is dependent on CPU architecture.
Thus, generalization performance cannot be expected due to
various CPU architectures.

Researchers investigate the relationship or correlation be-
tween IoT malware through code reuse. As a result, it is
able to reconstruct family lineage, and trace evolution [7],
[18], [4], [19]. This study can help to detect various malware
through the genealogy of the family. Cozzi et al. [7] listed
Gafgyt, Mirai, and Tsunami as top 3, which share large

common functions compared with other malware families.
Donno et al. [18] showed how the different families are
related or unrelated to each other. Vignau et al. [19] addressed
a taxonomy and the evolution of IoT malware using the
evolutionary development.
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III. RESEARCH APPROACH

A. Opcode categorization

The dataset is denoted by D = {Py, Ps,..., Py} where
P; is a benign or malware executable file and /V is the total of
files. The objdump' is a tool for extracting opcodes from
P;. The extracted opcode sequence is defined as P, =<
01,02, ...,0p, > where n; is the number of opcodes in F;. The
approach proposed by Darabian et al. [11] is adopted to encode
P; with opcode categories. According to Table I, every opcode
o; of P; is mapped to ¢, in which o; is included. The opcode
category sequence of P; becomes C; =< ¢y, ¢a,...,Cp, >.

i

Table T shows 6 and 11 opcode categories, and each
category is divided according to the functional type of the
opcode. Table II illustrates how 6 opcode category [11] is
expanded to 11 opcode category by reflecting the most frequent
functional types. Based on Armv6-M Architecture Reference
Manual?, the 11 opcode category is created from the 6 opcode
category that Darabian et al. [11] proposed.

C1 is branch instructions. According to their functions in
the data-processing instructions, C2, C3, C4, C5, and C6 are
divided into five categories. C7 is status register access instruc-
tions. According to the load and store instructions, C8, C9, and
C10 are divided into three categories. C11 has miscellaneous
instructions, including exception-generating instructions.

Figure 1 presents the frequency ratio of 6 and 11 opcode
categories in the IoT malware dataset. As 6 opcode category
is changed to the 11 opcode category, other instruction is
1/2 times less for benign files and 1/10 times less for other
malware. Other instructions are distributed through C3, CS5,
C6, C7, and C9 in 11 opcode category; most of instructions
are moved to C3 and push and pop of C9. The ratio of benign
and malware files are similar in C9, while C3 is found 1.5 to
2 times more frequently in malware files than in benign files.

The code sequences of malware variants evolved from
the same family tend to be very similar. Opcode based IoT
malware detection is performed by comparing the inserted or
modified parts of two opcode sequence. Since the number
of opcode categories is less than the number of opcodes, it
is easier to compare opcode category sequences than opcode
sequences and allows for quick comparison.

B. Feature extraction

The entropy histogram transition [20] is introduced to
design feature vectors from opcode category sequences. The
entropy histogram FE; is computed from C; within a slid-
ing window of size 256 and stride size 128. If C; has K
windows, then E; =< wi,ws,...,wx > where w; =<
e1,e2,...,e, > and ey is the entropy value of the kth opcode
category frequency within the j sliding window. Here, 7 is
6 or 11, indicating the number of opcode categories (Table I).
So, the proposed feature F; = [f¢;]rx- of P; becomes a 2D
matrix. The column of Fj represents opcode category indexes
and the row of F; indicates L discretized values. For a small
constant 6, F; is calculated from all windows of E; and

Uhttps://sourceware.org/binutils/docs/binutils/index.html
Zhttps://developer.arm.com/documentation/ddi0419/latest

(=1,2,...,L.
for = for +epifep € (6(0—1),6¢0] and k =1,2,...,7

Each entropy value is mapped to one of L sorted ranges. The
value fy, accumulates the ey of all sliding windows if ey is
between §(¢ — 1) and 6¢.

The change of the kth opcode changed within the specific
sliding window area is caught by foy.

The y-axis of the 2D entropy map captures changes in
opcode function type (z-axis) within a sliding window that
changes over time. It reflects the characteristics of malware
with a fixed length. In addition, fixed-size features are required
for machine learning analysis.

IV. EXPERIMENT
A. Experimental setting

Malwares? offered 19,890 IoT benign/malware files execut-
ing on ARM CPU structure as a dataset for malware detection.
according to Kaspersky’s categorization criteria, the gathered
malware consists of four families, such as Dofloo, Gafgyt,
Mirai, and Tsunami as in Table III.

TABLE III: EX1 dataset

[ Type [ Family | No. of Data |
Benign - 2,593
Dofloo 844
Gafayt 8,582
Malware —yzrs 7,404
Tsunami 467
Total 19,890

TABLE 1V: EX2 dataset

[ Dataset [ Type [ Family | No. of Data |
- Benign - 2,126
Training Set Malware | Tsunami 467
Benign - 467
Test Set Malware Gafgyt 467

TABLE V: EX3 dataset

[ Dataset [ Type [ Family [ No. of Data |
Benign - 2,093
Training Set Malware Tsunami 467
Gafgyt 8,582
Benign - 500
Test Set Malware Mirai 500

3https://www.malwares.com/



TABLE II: category transition

High level [ Low level | 6 category [ 11 category |
Branch instruction - C3 Cl
Standard data-processing instructions Cl C2
Shift instructions C6 C3
Data-processing instructions Multiplication instructions C2 Cc4
Packing and unpacking instructions C6 C5
Miscellaneous data-processing instructions Co6 C6
Status register access instructions - C5 C7
Load and store (single) instructions C8
Load and store instruction Load multiple and store multiple instructions C4 9
Load and store coprocessor instructions C10
Other instructions - C6 Cl1

TABLE VI: EX4 dataset

[ Dataset [ Type [ Family [ No of Data |
.. Benign - 2,093
Training Set Malware | Dofloo 844
Benign - 500
Tsunami 467
Test Set Malware | Gafgyt 8,582
Mirai 7,404

Depending on the evolutionary relationship among four
families, we define the four classification problems for mal-
ware detection. Each experiment’s dataset is divided into four
parts. EX1 dataset is composed of the full dataset to check
the robustness of an ML-based malware detection (Table III).
EX?2 dataset is composed of benign and malware including
Tsunami and Gafgyt (Table IV). Ex2 evaluates whether a
model trained on the ancestor Tsunami can detect Gafgyt
as Tsunami descent [19], [18]. EX3 dataset is composed
of benign and malware including Tsunami, Gafgyt, and
Mirai (Table V) in order to test whether an ML model
can detect Mirai samples when it is trained on benign and
malware from Tsunami and Gafgyt. Mirai is known to
have evolved from Tsunami and Gafgyt. EX4 dataset is
composed of benign files and maleare including Dofloo,
Tsunami, Gafgyt, and Mirai (Table VI). In EX4 exper-
iment, we analyze how data learned with unrelated malware
(Dofloo) affects other malware (Tsunami, Gafgyt, and
Mirai).

IoT malware has been updated over time as a result of code
reuse and improvement. We analyze whether a model trained
with only the ancestor IoT malware family can detect descen-
dant malware. Four classification experiments are conducted
based on the dataset configuration. Each experiment uses five
features as follows.

e MSP: MSP (maximal sequential pattern) feature was
proposed by Darabian et al. [11]. This feature is used
to compare to the ones we created (listed above).

e OCS,=2,c=¢: OCS (Opcode Category Sequence) is 2-
gram feature generated from 6 opcode category.

o OCS,,—2,c=11: OCS is 2-gram feature generated from 11
opcode category.

e EHOC,—¢,—¢: EHOC (Entropy Histogram for Opcode
Category) is a feature generated from 6 opcode category.

e EHOC,—¢c=11: EHOC is a feature generated from 11
opcode category.

ML algorithms are 5-NN, SVM, DT, and RF. As perfor-
mance indicators, accuracy (ACC), true positive rate (TPR),
false positive rate (FPR), AUC-ROC (ROC), and F1-score (F1),
and Matthews Correlation Coefficient (MCC, [21]) are utilized
[22]. MCC is chosen as a balance measure for unbalanced two
classes. MCC values range from -1 to +1, where +1 indicates
a perfect prediction, -1 indicates a wrong prediction, and 0
indicates a random prediction. Accuracy, recall, precision, and
F1-score can be misleading when evaluating imbalanced clas-
sification problems because classifiers tend to predict majority
classes.

B. Evaluation and Discussion

Table VII shows the size of a feature vector. The ex-
perimental results for EX1 are shown in Table VIII. Dim.
(dimension) indicates that low-dimension features with fixed
size are used to reduce training time. MSP, OCS,—2 .—¢,
and EHOC,;—¢ .—¢ achieved greater than 98% ACC across
all models. OCS;,—2 =11, and EHOC;—¢ =11, the features
generated in the 11 opcode category, had an ACC of over 99%,
and FPR was reduced by more than 50% when compared to
the 6 opcode category. RF performed best, with a detection
rate of 99.8% and FPR of 0.6% in OCS,—2.=11 while an
ACC was 99.7% and FPR of 1.0% for EHOC;—¢ ¢c—11.

Table IX shows the experimental results of EX2. The 11
opcode category outperformed the 6 opcode category. In RF,
EHOC;—¢,c—6 has an ACC of 96.5% while EHOC;—¢ =11
has an ACC of 98.2%. OCS,,—2 .—¢ has an MCC of 86.7%
while OCS,,—3 .—11 reaches at an ACC of 99.4%. Gafgyt
can be detected using features created only from Tsunami.
This result is consistent with the study that Tsunami and
Gafgyt had the most shared functions [7].

TABLE VII: Dimension for feature vectors

[ Feature | Dimension |
MSP 36
0CS, 2006 36
0CSy 2011 21
EHOC, —¢,c=¢ 36
EHOC=6,c=11 121




TABLE VIII: Experimental results for EX1

[ Feature [ Model [ ACC | TPR [ FPR [ ROC | F1 [ MCC |
5NN [ 0988 | 0997 | 0.077 | 0985 | 0.972 | 0.945
MSP SVM | 0986 | 0.991 | 0.051 | 0.993 | 0.969 | 0.938
DT 0.987 | 0.997 | 0.082 | 0.953 | 0.969 | 0.939
RF 0.995 | 0.997 | 0.018 | 0.999 | 0.990 | 0.980
5NN [ 0989 | 0999 | 0.075 | 0.987 | 0.975 | 0.951
OCS,_ oo SVM | 0.989 [ 0.995 | 0.052 | 0.989 | 0975 | 0.950
n=2e= DT 0.991 | 0.998 | 0.054 | 0.969 | 0.980 | 0.96I
RF 0.997 [ 0.999 | 0.014 | 1.000 | 0.993 | 0.987
5NN [ 0992 | 0999 | 0.053 | 0.991 | 0.982 | 0.964
OCS—3 oes SVM | 0992 [ 0.999 | 0.053 | 0.991 | 0982 | 0.964
n=2e= DT 0.995 | 0.998 | 0.024 | 0.980 | 0.990 | 0.979
RF 0.998 [ 0.999 | 0.006 | 1.000 | 0.996 | 0.992
5NN [ 0985 | 0.998 | 0.104 | 0.980 | 0.965 | 0.931
EHOC)—g oo SVM | 0.986 | 0.994 | 0.063 | 0.990 | 0.970 | 0.939
=0.e= DT 0.987 [ 0.996 | 0.073 | 0961 | 0971 | 0.942
RF 0.996 | 0.998 | 0.020 | 1.000 | 0.990 | 0.981
5NN | 0991 | 0998 | 0.058 | 0.991 | 0.980 | 0.960
EHOC)_a . SVM | 0991 | 0.994 [ 0.029 | 0.992 | 0.980 | 0.960
1=6,e=11 DT 0.994 | 0.998 | 0.034 | 0972 | 0986 | 0972
RF 0.997 | 0.998 | 0.010 | 1.000 | 0.993 | 0.987
TABLE IX: Experimental results for EX2
Feature [ Model [ ACC | TPR [ FPR [ ROC | F1 [ MCC |
5-NN_[ 0.933 [ 0.884 | 0.019 | 0970 [ 0.932 | 0.869
MSP SVM | 0930 | 0.876 | 0.015 | 0.987 | 0.930 | 0.866
DT 0.901 | 0.818 | 0.0I5 | 0901 | 0901 | 0.814
RF 0.904 | 0.807 | 0.000 | 0.997 | 0.903 | 0.823
5-NN_ | 0.984 | 0.987 | 0.019 | 0.993 | 0.984 | 0.968
OCS,_ oo SVM | 0938 | 0.878 | 0.002 | 0.997 | 0.938 | 0.882
=2e= DT 0.914 | 0.837 | 0.009 | 0915 | 0914 | 0.839
RF 0.929 [ 0.859 | 0.000 | 0.999 | 0.929 | 0.867
5-NN_| 0987 | 0.989 | 0.015 | 0.998 | 0.987 | 0.974
OCS1_s o SVM | 0985 | 0976 | 0.006 | 0.996 | 0.985 | 0.970
n=2e= DT 0.997 | 0.998 | 0.004 | 0997 | 0.997 | 0.994
RF 0.997 | 0.997 | 0.000 | 1.000 | 0.997 | 0.994
5NN [ 0970 | 0976 | 0.036 | 0.990 | 0.970 | 0.940
EHOC_g . | _SYM_| 0039|0882 | 0.004 [70.994 | 0.939 | 0.88%
=6.e= DT 0.945 | 0.906 | 0.015 | 0.945 | 0945 | 0.894
RF 0.965 | 0.929 | 0.000 | 0999 | 0.965 | 0.932
5-NN_| 0989 [ 0991 | 0.013 | 0.997 | 0.989 | 0.979
EHOC_g o1y |_SYM | 0972 | 0.943 70000 | 0.997 | 0972 | 0.946
=6.e= DT 0.955 | 0.921 | 0.011 | 0991 | 0955 | 0912
RF 0.982 | 0.964 | 0.000 | 1.000 | 0.982 | 0.964
TABLE X: Experimental results for EX3
Feature [ Model [ ACC | TPR [ FPR [ ROC | F1 [ MCC |
5NN [ 0954 | 0950 | 0.042 | 0.976 | 0.954 | 0.908
MSP SVM | 0966 | 0.962 | 0.030 | 0.982 | 0.966 | 0.932
DT 0.959 | 0.966 | 0.048 | 0.963 | 0.959 | 0918
RF 0.961 | 0.934 | 0.012 | 0988 | 0.961 | 0.923
5NN | 0970 | 0978 | 0.038 | 0.984 | 0.970 | 0.940
OCS,—3 oo SVM | 0980 | 0.982 [ 0.022 | 0.993 | 0.980 | 0.960
=2e= DT 0.923 | 0.874 | 0.028 | 0919 | 0.923 | 0.850
RF 0.986 | 0.978 | 0.006 | 0.992 | 0.986 | 0.972
5NN | 0977 | 0976 | 0.022 | 0.986 | 0.977 | 0.954
OCS1—s o SVM | 0.984 | 0.980 | 0.012 | 0.997 | 0.984 | 0.964
n=e= DT 0.982 | 0.970 | 0.006 | 0.982 | 0.982 | 0.964
RF 0.986 | 0.974 | 0.002 | 0.989 | 0.986 | 0972
5NN | 0937 | 0940 | 0.066 | 0.970 | 0.937 | 0.874
EHOC_g . |_SYM_| 0065 70966 | 0.036 | 0.99T | 0.965 | 0.930
=6.e= DT 0.931 | 0.904 | 0.042 | 0.964 | 0.931 | 0.863
RF 0.968 | 0.942 | 0.006 | 0.984 | 0.968 | 0.937
5NN | 0974 | 0970 | 0.022 | 0.989 | 0.986 | 0.972
EHOC_g o1y |_SYM | 0981 70976 | 0.014 | 0.993 | 0.981 | 0.962
1=6,c= DT 0.979 | 0.974 | 0.016 | 0975 | 0979 | 0.958
RF 0.985 | 0.974 | 0.004 | 0.985 | 0.985 | 0970

Table X shows the experimental results of EX3. In both
DT and RF, OCS,,—3 =11 has an ACC of 98.0%. Overall, the
results of this experiment show that Mirai can be detected

using a dataset of Tsunami and Gafgyt only. To put
it another way, it demonstrates that Tsunami or Gafgyt
evolved into Mirai. In terms of FPR, the experimental result
of EX3 (1.23%) is slightly better than that of EX1 (3.08%),
yet it is slightly lower than that of EX2 (0.61%). The FPR
mean of EHOC;—¢ =11 and OCS,,—=3 =11 is 3.08% for EX1,
0.61% for EX2, and 1.23% for EX3. This argues that malware
is closely related in terms of code sharing and evolutionary
development. This finding is that malware is closely related
in terms of code sharing. Tsunami and Gafgyt share more
code than Tsunami and Mirai [7]. There are 189 functions
common by Tsunami and Gafgyt, 63 functions common
by Tsunami and Mirai, and 115 functions common by
Gafgyt and Mirai [7]. This analysis reveals the effect of
Mirai on the evolution of Tsunami and Gafgyt. Accord-
ing to the results of the EX2 and EX3 experiments, it is
a verified fact that descendant malware can be detected as
ancestor malware.

TABLE XI: Experimental results for EX4

[ Feature [ Model | ACC | TPR | FPR | ROC | F1I_| MCC
5-NN | 0.029 | 0.000 | 0.004 | 0.496 | 0.029 | -0.043

MSP SVM | 0.029 | 0.000 | 0.000 | 0.910 | 0.029 | 0.000

DT | 0.029 | 0.000 | 0.004 | 0498 | 0.029 | -0.043

RF | 0.030 | 0.000 | 0.000 | 0.471 | 0.029 | 0.002

5-NN | 0.030 | 0.000 | 0.002 | 0.497 | 0.029 | -0.017

OCS,_y o SVM | 0.030 | 0.00I | 0.004 | 0.836 | 0.029 | -0.017
n=2,e=6 DT | 0.030 | 0.000 | 0.000 | 0.500 | 0.029 | 0.002

RF | 0.030 | 0.000 | 0.000 | 0473 | 0.029 | 0.002

5-NN | 0.030 | 0.000 | 0.004 | 0.494 | 0.029 | -0.034

0Cs SVM | 0.030 | 0.00I | 0.002 | 0.942 | 0.029 | -0.008
n=2,c=11 DT | 0.030 | 0.000 | 0.000 | 0.500 | 0.029 | 0.001

RF | 0.030 | 0.000 | 0.000 | 0.469 | 0.029 | 0.002

5-NN | 0.030 | 0.000 | 0.004 | 0.498 | 0.029 | -0.038

EHOC_s o SVM | 0.029 | 0.000 | 0.006 | 0.785 | 0.029 | -0.052
1=6,c=6 DT | 0.029 | 0.000 | 0.000 | 0.500 | 0.029 | 0.000

RF | 0.030 | 0.000 | 0.000 | 0473 | 0.029 | 0.002

5-NN | 0.030 | 0.000 | 0.002 | 0.495 | 0.029 | -0.052

EHOC SVM | 0.029 | 0.000 | 0.006 | 0.859 | 0.029 | -0.052
l=6,e=11 DT | 0.030 | 0.000 | 0.002 | 0.499 | 0.029 | -0.024

RF | 0.030 | 0.000 | 0.000 | 0.477 | 0.029 | 0.002

We analyze whether a model trained on Dof 1 oo can detect
Tsunami, Gafgyt, and Mirai (Table XII). The detection
rates, on the other hand, were close to 0%. The reason is that
Dofloo belonging to the Spike family has no correlation
with Tsunami, Gafgyt, and Mirai [18]. Although the
malware Dofloo is unrelated to Tsunami, Gafgyt, or
Mirai, In 5-NN, OCSn:Q,c:ll and EHOCn:Q,C:H have an
ACC of more than 91%.

TABLE XII: EXS5 dataset

[ Dataset [ Type [ Family | No. of Data |
Benign - 2.003
Training Set Tsunami 467
g Malware | Gafgyt 8582
Mirai 7,404
Benign - 500
Test Set Ml Dofics 0

ROC (Receiver Operating Characteristic) graphs examine
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Fig. 2: ROC analysis for EX2 and EX3
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Fig. 3: Feature visualization over 11 opcode category

the trade-off between FPR and TPR in terms of malware and
benign instances in the test datasets. In Figure 2, the ROC
analysis for EX2 and EX3 reveals that the proposed approach
is effective for detection analysis because it does not cause
overfitting and the effect of class imbalance. The AUC value
(close to 0.99) of 5-NN, SVM and RF is higher than that of
DT: 0.97 for EX2 and 0.96 for EX3. In both graphs, the AUC
value of EX3 approaches 1.0 as the similar trends occur for the
chosen classifiers except for DT. This result indicates that the
proposed feature method is suitable for IoT malware analysis.

C. Feature visualization and Analysis

To demonstrate the relationship between the detection
result and the proposed feature, a 2D graph of the proposed
feature is employed. Figure 3 depicts the feature patterns of
benign and malware. Figure 3(a) represents the image of 2-
grams while Figure 3(b) shows those of entropy histograms
for opcode sequence. It clearly visualizes the similarities and
differences between IoT malware. Malware and benign can
be visually distinguished in 3(a) and (b). Each malware has
a similar pattern. Gafgytand Tsunami are more similar
than Mirai as in EX2 in Table IX. Gafgyt, Mirai, and



Tsunami are similar as the experimental results in EX3 in
Table X. Dofloo and other malware (i.e., Gafgyt, Mirai,
and Tsunami) can easily be separated as the experimental
results in EX4 in Table XI.

V. CONCLUSION

This paper performed IoT malware detection and malware
family detection according to evolution. The proposed fea-
ture is opcode category sequences derived from an opcode
sequence, which allows for simple comparison of two malware
files. However, for machine learning analysis, the training
feature of malware with varying sizes must be configured with
a fixed length. A training feature pattern was constructed by
adopting an entropy histogram for a fixed-length feature from
a variable-length category sequence. The entropy histogram
feature can include a partial change within the sliding window,
and provides a fixed-length training feature according to a pre-
defined level. The 2D visualization of the entropy histogram,
on the other hand, has the advantage of allowing for malware
family association. The proposed training feature outperformed
the 2-gram feature and MSPs in the IoT malware detection
experiment.

IoT malware detection was conducted in accordance with
the malware’s evolutionary development. Various classification
problems were constructed based on the evolutionary order
from Dofloo, Gafgyt, Mirai and Tsunami. As a result
of the experiment, the model trained with the ancestor family
was able to detect descendant malware families. However,
the model trained only with benign and Dofloo performed
poorly in detecting other malware. These results showed that
malware that has evolved from prior malware can be detected
while emerging malware is still difficult to detect. Thus, it is
necessary to learn malware according to the evolution system
in order to build a robust IoT malware detection system.
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