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Abstract

The Peterson variety is a special case of a nilpotent Hessenberg variety, a class of
subvarieties of G/B that have appeared in the study of quantum cohomology, repre-
sentation theory and combinatorics. In type A, the Peterson variety Y is a subvariety
of Fl(n; C), the set of complete flags in C", and comes equipped with an action by a
one-dimensional torus subgroup S of a standard torus 7 that acts on FI(n; C). Using
the Peterson Schubert basis introduced in Harada and Tymoczko (Proc Lond Math
Soc 103(1):40-72,2011) and obtained by restricting a specific set of Schubert classes
from H}(Fl(n; C)) to Hg(Y), we describe the product structure of the equivariant
cohomology Hg(Y). In particular, we show that the product is manifestly positive in
an appropriate sense by providing an explicit, positive, combinatorial formula for its
structure constants. A key step in our proof requires a new combinatorial identity of
binomial coefficients that generalizes Vandermonde’s identity, and merits independent
interest.

Keywords Peterson - Schubert calculus - Structure constants - Vandermonde

1 Introduction

Let G = Gl(n,C), B upper triangular matrices, and B_ lower triangular matrices.
The quotient G/ B = Fl(n; C) is the associated flag variety. Let T be compact form of
the set of diagonal matrices in G, i.e. diagonal matrices in which each entry has norm
1. Then G/ B has aleft T action with isolated fixed points, (G/B)” . The fixed point set

This work was supported by National Science Foundation Grant, Award #1201458.

B Rebecca Goldin
rgoldin@gmu.edu

Brent Gorbutt
bgorbutt@gmu.edu

Department of Mathematical Sciences, George Mason University, 4400 University Dr., Fairfax, VA
22030, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s44007-022-00023-0&domain=pdf
https://orcid.org/0000-0001-7082-0248

La Matematica (2022) 1:618-665 619

may be identified with the Weyl group W = S, the permutation group on n letters. We
denote by t the Lie algebra of 7' and by t* its dual. Let x; be the ith coordinate function
onT = (SYHY" fori = 1,...n. Finally let {o; := x; — xj41 : i € {1,...,n—1}}
denote a choice of positive simple roots, with the property that the roots spaces of the
Lie algebra b of B are positive.

The ordinary cohomology and the T-equivariant cohomology of G /B have a lin-
ear basis given by Schubert classes o,, as w varies over elements of W. Indeed,
they are each free modules over the corresponding ordinary or equivariant coho-
mology of a point. We use cohomology with complex coefficients throughout, and
identify the equivariant cohomology of a point, denoted H7, with the polynomial ring
Clxt, ..., xal.

The products of Schubert classes define coefficients ¢’ , € Hy by expanding in the
basis:

w
0,0y = E CyyOuw

weW

for all u, v € W. The coefficients cb’f’ , are polynomials in o, . .., @y—1 With nonneg-
ative coefficients [12].

This manuscript describes a similar story with a particular subvariety of F/(n; C),
namely the Peterson variety Y. The Peterson variety is a special nilpotent Hessenberg
variety first introduced in unpublished work by Peterson [17], in which he proposed
a link with the quantum cohomology of Fl(n; C). There are multiple equivalent def-
initions that have been given for the Peterson, and we provide one that works in all
Lie types. In Definition 11, we provide another definition specific to the case that
G/B = Fl(n; C). Let wg denote the longest word in the Weyl group W, ande € b a
principal nilpotent element in the Lie algebra of B. Define G° be the centralizer of e.
The Peterson variety is defined as the closure in G/B of an orbit of G¢ on the point
wo B, as follows:

Y := G°woB — G/B.

Kostant elaborated on the connection to integrable systems, showing that the quan-
tum cohomology ring of Fl(n; C) is isomorphic to the coordinate ring of an open
dense affine subvariety of the Peterson variety [16]. Rietsch generalizes these results
to G/ P for any parabolic P, and proved the Peterson variety is paved by these affine
varieties as P varies [18]. Her work revealed an explicit relationship among geometric,
algebraic and combinatorial descriptions of quantum cohomology, which she subse-
quently generalized to equivariant quantum cohomology, noting that each stratum may
also play the role of a “mirror symmetry phenomenon" for G/P [19].

The Peterson variety Y in Fl(n; C) is invariant under the action of a one-
dimensional subgroup S of T' (specified in Sect. 3.1). We describe the product structure
of the S-equivariant cohomology H (Y) in a specific linear basis, termed the Peterson
Schubert basis. In particular, we show that the product is positive in an appropriate
sense by providing an explicit positive combinatorial formula for the S-equivariant
and ordinary structure constants (see Theorems 1, 3, 5, 6, and their corollaries).
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The (equivariant) cohomology of the Peterson variety has been formulated and
described in several ways. Tymoczko showed the Peterson variety has a paving by
affine cells [21], implying its cohomology groups are nonzero only in even degrees.
Tymoczko and Insko explore the non-equivariant cohomology through the study of
its homology groups [15]. The ring structure has been described both as a quotient
ring and as a subring of a sum of polynomial rings in work by Brion and Carrel [6],
Harada et al. [13], and Fukukawa et al. [9], and via a connection with hyperplane
arrangements [2]. Harada and Tymoczko [14] introduced a Schubert-type basis for the
S-equivariant cohomology of the Peterson variety as a module over the S-equivariant
cohomology of a point and proved a manifestly positive Chevalley—Monk formula for
the equivariant cohomology of the Peterson variety of FI(n; C). Drellich extended
the Chevalley—-Monk formula proved by Harada and Tymoczko to all Lie types as
well as proved Giambelli’s formula for Y in all Lie types [8]. After the appearance of
this manuscript on the arXiv, Abe, Horiguchi, Kuwata, and Zeng posted a paper that
computes the structure constants for the ordinary cohomology of Y [1].

Harada and Tymoczko’s insight was to use a natural composition

j i Hj (Fl(n; C)) — H{(Fl(n; C)) — H{(Y)

to obtain a basis of H ;(Y ) (as a module over H g‘) as the image of a specific subset of
Schubert classes on Fl(n; C) indexed by subsets

AChn—11={1,....,n—1}.

More specifically, let «1, . . . o, —1 denote the simple roots ordered by adjacency in the
Dynkindiagram, and sy, .. ., s,—1 the corresponding reflections. For A = {ay, ..., ax}
listed in increasing order, let

VA = Sa;8ay - - - Sap

and o,, the corresponding Schubert class. The Peterson Schubert classes p, are
defined by
pa = Jj(ov,).

The set {pa}ac[n—1) forms a module basis of H ;(Y). Thus the product of two Peter-
son Schubert classes is an H ;—linear combination of Peterson Schubert classes. For

A, B,C C{l1,...,n — 1}, define the structure constant bg,B € H{ by
paps= Y. bSppc. ey
ccll,...n—1}

Harada and Tymoczko show that bg’ p 18 anonnegative integer multiple of a power of
t when A = {i} consists of a single element, and provide a positive (counting) formula
for the coefficients b{cl.}’ B

Their work raises the enticing question of whether the product structure is positive
in the equivariant sense, i.e. whether the structure constants bg g are polynomials

with nonnegative coefficients for all A, B, C. Our main results are combinatorially
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positive formulas for these equivariant Peterson Schubert structure coefficients when
G = Gl(n, C). The explicit formulas are found in Theorems 1, 3, 5, and 6, which
together provide manifestly positive formulas for the equivariant structure constants
of Hg(Y) in the basis {pa : A C {1,...,n — 1}} of Peterson Schubert classes. As a
result, we obtain both the statement that structure constants are nonnegative, as well as
simple criteria for when they are positive. The first author explores a geometric proof
of positivity in all Lie types in separate work [10].

Wecallasubset C, C C C {1, ..., n—1}maximal consecutive if Cy, is consecutive
set such that

(minCy — 1) ¢ C and (max Cy + 1) ¢ C.

Corollary 7, Theorem 8 The equivariant structure constants bgy g defined by (1)
are nonnegative, integral multiples of powers of t. They have positive coefficients
if and only if AU B C C and each maximal consecutive subset Cy of C satisfies
ICk| < |Gk MA|+ [Cr N B

One consequence of these theorems is a manifestly positive formula for the structure
constants in ordinary Peterson Schubert calculus (Corollary 2).

The proofs in this paper are combinatorial rather than geometric. A crucial step
for the proof is an unexpected combinatorial identity (Theorem 9), a generalization of
Vandermonde’s identity, which we prove using a technique we term bike lock moves.

The structure of the paper is as follows. In Sect. 2 we state the main positivity theo-
rems which together provide a full picture of the positivity of the structure constants.
In Sect. 3 we define the basics of equivariant cohomology, Peterson varieties, and pos-
itivity. We prove the main positivity theorems in Sect. 4, and the crucial combinatorial
theorem in Sect. 5.

2 Positivity Theorems

In this section, we describe the main results on the structure constants for the equivari-
ant cohomology H ; (Y) of the Peterson variety Y in Fl(n; C) (both defined in Sect. 3),
which show directly their positivity. To each subset A C {1, 2, ...,n — 1}, we define
an element ps € HS(Y) in Sect. 3.3 as the pullback of a specific Schubert class from
G/B. Wecall py a Peterson Schubert class, The collection {p4 : A C {1,...,n—1}}
a free module basis for the equivariant cohomology H{(Y) over HS = H{(pt).
Define the structure constants bgﬁ g € HS by

pAPB = > 6§ e @)
Cc{l1,2,...,n—1}

By construction, py = 1, and thus the coefficients bgy p are easy to calculate when
A, B or C is empty: bﬁ’w = b(?,A = 1forall A C {1,...,n — 1}, and all other
coefficients vanish.

For A, B, C nonempty, Theorem 1 gives an explicit positive, integral formula for
the coefficients bg, g when A and B are consecutive. Theorems 3, 5 and 6 describe
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the constants in the nonconsecutive cases. Nonvanishing conditions for the structure
constants are described in Theorem 8. Proofs are relegated to Sect. 4.

We recall notation found in [14]. For A € {1,...,n — 1} with A nonempty and
consecutive, let 74 = min{a € A} and H4 = max{a € A}, called the tail and head
of A, respectively.

Theorem 1. (A, B, C consecutive) Let A, B,C C {1,...,n — 1} be nonempty con-
secutive subsets. If C 2 AU B and |C| < |A| + |B|, then

c Ha—Tp+1 Hp —Ta+1 d

by p=d! t 3)
: d, Th —1c, Hc —Hp/\d, Tp —1c, Hc — Ha

ford :=|A|+|B| —|C]|.

Example 1 Let A = {1,2}, B ={2,3,4}and C = {1, 2, 3, 4}. Then C is consecutive,

contains AU B and |C| =4 < |A| + |B| =5, so that b/(i,B is given by (3). Observe

Ha=2 Ty =1 Hp =4 Tp =2

sothat bS 5 = 11(; ¢ o)(; 1 o' = 3t = 121,

An immediate consequence of Theorem 1 is a formula for the ordinary cohomology
structure constants. For degree reasons, the product p4 pp in ordinary cohomology
requires simply summing over classes p¢ such that |C| = |A| + | B|.

Corollary2 Let A, B,C C {1, ...,n — 1} be nonempty consecutive subsets. Suppose
AUB C C,and |C| = |A| + |B|. Without loss of generality, assume that Ty < Tp.
Then bgy g 1 the product of binomial coefficients:

pC Ha—Tp+1\(Hp —Ta+1
ABT\ Ty -Tc Tg—Tc )

Proof By the degree assumption, Hc —Z7c+1=(Ha —74+ 1)+ (Hp -7+ 1).
Thus Hqo —Tg + 1 = (T4 — T¢) + (Hc — Hp) and

Hp —Ta+1=Tp—Tc)+ (Hc — Ha).

The corollary follows. O

We successively loosen the restrictive demand of Theorem 1 that A, B and C are
each sets with consecutive numbers, as follows:

e Sets A U B and C consecutive (Theorem 3),
e The set C is consecutive (Theorem 5), and
e No constraint on A, B, C (Theorem 6).
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When A, B or C are not consecutive, there are non-equivariant analogs for ordi-
nary cohomology. We won’t list them, however, as each result is identical to the
corresponding theorem with an additional hypothesis to ensure the degree is correct:
any coefficient bg’ p occurring in the formula are set to O unless |E| + |F| = |G].

Theorem 3 (AUB, C consecutive) Let A, B, C C {1, ..., n—1} be nonempty subsets
with AU B and C consecutive. Rename the maximal consecutive subsets of A and B

by E|, ..., E, ordered with increasing tails i.e. Tg, < Tg, < -+ < Tg,. Then
c _ C C3 Cy Cy—1 c
bis= ). i ebembeie - bcs e ek, Q)
(C2,...,Cy—1)

where the sum is over v — 2-tuples of consecutive sets C;.
Note that, for each term in the sum of Theorem 3, the factors bgf E and bgﬁfém are
each calculated using Theorem 1 (as C;, E;+1 and C;4 are all consecutive).

Example4 Let A = {1,2,4,5}, B = {2,3,4} and C = {1,2,3,4,5,6}. We use
Theorem 3 to compute bg’ p hoting that A U B is consecutive.

By ordering according to the smallest element in each maximal consecutive set,
choose E; = {1, 2}, E; = B, E3 = {4, 5} and note v = 3. Thus the sum (4) is

c _ C C
bis= D bp pbe.m
()

C2 consecutive

By Theorem 1, bg?,Ez # 0 implies C contains E; U E> = {1, 2, 3,4} and |C7| <
|[E1]l + |E>| = 5. Since C3 is consecutive, the two possibilities are Cr» = {1, 2, 3, 4}
and C> = {1, 2, 3, 4, 5}. Thus by Theorem 3

c (1234}, C (1,2,3,4,5}, C
bA,B _bEl,Ez b{1,2,3,4},E3 +bE1,E2 b{1,2.3,4,5},E3'

Each factor of each term can be computed using Theorem 1:

o =1(, g o) 1 )=
b{cl,2,3,4},E3 = 0!<0’ (1) 1><07 i 2>t0 =10
st =o 0 )01 )=
bi234.5.8 = 1!<1’ (2) 1) (1’ z 1>t‘ = 40r.

Therefore b§ , = 121 - 10 + 4 - 401 = 2801.
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The following theorem is a complete description of the product when C is consec-
utive.

Theorem 5 (C consecutive) Let A, B, C C {1, ...,n — 1} be nonempty subsets with
C consecutive. Let AUB = D1U---UD, be aunion of maximal consecutive subsets.
Write A* = D; N A and B' = D; N B, and note that D; = A' U B'. Then

u
c _ E; C
bip = > [To4 5 ) 5. ...

(E1,.... Ey): DiCE;, \i=1
E; consecutive
. C . . .
where b Af gi is calculated using Theorem 3, and b E...E, 18 the coefficient of pc in

the product [T P
If U; E; is consecutive, bg] .E, May be calculated by Theorems 1 and 3. If U; E
s not consecutive,

C _ FO F® Fu=2)
bEl ..... E, — § bE“) E(l)bE(z) E(z) bE(u -2) E(u 2)bE(u 1) E(u 1) (5)
(F(l) FQ F(u,z)) J1 Ju—2"""ky—2 Ju—1""ky—1
’Conse’cutive
1 . .
where El( ) = E;, and the sets El.(s) fors =2,...,u — 1 are defined inductively as
follows. Eﬁj) and E ,Ef) are chosen so that their union is consecutive, the sum is over

consecutive sets F®) containing E;f) UE (j), and the sets Ef””

the u — s sets

are a relabeling of

OO =0 ®)
FOEM, L EYEY, . ES) )

in which the two sets E (‘Y) and E} (‘Y) have been excluded. The sum is independent of

choices involved with ordermg Each termb’ (?) E® may be calculated using Theorem 1
ks

as E l( $) is consecutive.

Note that the sum in (5) is not independent of the order of F M F#=2 The set of
possible F®) depend on the term F©~1 in the prior sum, as well as the choice of sets

E;S) and E; ) whose union is consecutive. Theorem 5 guarantees that these sets exist
for each s when the coefficient is nonzero.

Finally, when C is not consecutive, I3 AB is aproduct of coefficients with consecutive
superscripts.

Theorem6 Let A, B,C C {1, ...,n — 1} be subsets such that bg,B # 0. Then

A B= H bAﬂCk BNCy*

where C = C1U---U Gy, is written as a union of maximal consecutive subsequences.
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An immediate corollary to these theorems is that the structure constants for multi-
plication of {p4} in H{(Y), and hence in H*(Y) are nonnegative.

Corollary7 Forany A, B,C C {1,...,n—1}, bg’B is a nonnegative, integral multiple
of a power of t.

Proof If A and B are consecutive, then this follows immediately from Theorem 1
as bg, g 18 0, 1, or described by Eq. (3). If A or B is not consecutive, but A U B

is consecutive, then Theorem 3 implies that bgy p 1s a sum of products of the terms
for consecutive A and B. Finally, Theorems 5 and 6 show that when A U B is not
consecutive, the terms associated with consecutive pieces are nonnegative and integral,
and the terms associated with the product of those terms is also nonnegative and
integral. O

Finally, we state a nonvanishing result for arbitrary A, B, C.

Theorem8 Let A, B, C C {1,...,n— 1} be arbitrary subsets. The structure constant
b g # 0 if and only if

e AUB CC, and
e For each maximal consecutive subset Cy of C, |Cx| < |Cr N A| 4+ |Cx N BY.

Theorem 8 and Corollary 7 imply these structure constants are positive (i.e. are
monomials with positive coefficients) when they are non-vanishing.

The proof of Theorem 1 relies heavily on the following combinatorial result, a
generalization of Vandermonde’s formula.

Theorem9 Letm,n,w,x,y,z € Zwithw+x =y +zandm,n > 0. Then
w+m\[(y+m\[fw+n\[(z+n
w X y z

_ Z w—+i+n w+m+j ©)
N wHi+j)\i, jom—i, x—i—j, z—x+j, y—x+i)

0<i<m
0<j<n

We have thusfar not found this result in the literature, and it may stand alone as a
worthwhile combinatorial identity, proved in Sect. 5.

3 Background and Notation

3.1 Flag Varieties, Peterson Varieties, and Fixed Points

Let G = Gl(n; C), B upper triangular invertible matrices, B_ lower triangular invert-
ible matrices, and T the set of diagonal matrices in G. Recall G/B 1is naturally

isomorphic to the set of complete flags

Fl(n;C) ={Vy :=(V; C--- CV,_1 CC"|V; isasubspace of C"*, dim¢(V;) = i}.

@ Springer



626 La Matematica (2022) 1:618-665

The flag V, corresponds to a a coset gB, where g € Gl(n, C) is any matrix whose
first kK columns form a basis for Vi, for k = 1, ..., n. Note that right multiplication
by an upper triangular matrix (in B) preserves the vector space spanned by the first k
columns, for all k. The fixed points (G/B)” are isolated, and indexed by elements of
the Weyl group, W = §,,. In particular,

(G/B)T ={wB/B: we W).

Following Tymoczko [21], we describe Hessenberg varieties in Fi/(n; C) as a set
of flags whose vector spaces satisfy linear conditions imposed by a principal nilpotent
operator. The equivalence of this description with the original definition by Kostant is
known to experts and proven in [10].

Definition10 Let 2 : {1,...,n} — {1,...,n} be a function satisfying i < h(i)
foralli € {1,...,n} and let M be any n x n matrix M. The Hessenberg variety
H (h, M) corresponding to /& and M is the collection of flags V, € Fl(n; C) satisfying
MV; C Vi foralll <i <n.

The Peterson variety Y is a specific Hessenberg variety, with / given by:

. i+1 1<i<n-—1
h(i) = @)

n i =n.

Definition 11 The Peterson variety in Fl(n; C) is the Hessenberg variety ¥ =
H (h, M) where h is the function defined in Eq. (7) and M is a principal nilpotent
operator. Equivalently the Jordan canonical form for M consists of one block and M
has eigenvalue 0.

010
Example 12 Letn = 3, h(1) = 2, h(2) =3, h(3) =3 and M = [001]. The

000
Peterson variety in FI(C>) consists of flags represented by matrices of the following
forms:

abl cl0 100 100
b10], 100}, {0d1], (010 )
100 001 010 001

where a, b, c,d € C. We verify the condition that MV; C Vj ;) for the first matrix
above. We check that MV| C V; (clearly MV, C V3 = C3):

010 a b a b
001 bl=1]1] €span bl.,|1 = W,.
000 1 0 1

@ Springer



La Matematica (2022) 1:618-665 627

As T consists of diagonal, unitary matrices, we write elements as n-tuples
(ay, ...ap) listing the diagonal entires. The variety Y is not T-stable, however it
is stable under a subgroup isomorphic to S!. Let

S={" """ ....2%2): zeC ||z] =1} C T.

We observe that S preserves Y, as follows. Let ¢; € C" be the vector with 1 in the
ith coordinate, and 0 elsewhere. For any vector v € C" givenby v = >, a;e;, we
have

n—1
Mv = Z ajy1e;.
i=1

On the other hand, for each element s of S given by a diagonal matrix with entries
24,77 z), wehave s v = Y 2" tlaie;. A quick calculation shows that
i=1 q

s - Mv and M (s - v) span the same line:

n—1 n—1

s-Mv = Zzn_“rla,ur]ei =z Zz"_’ai+1ei =zZM(s - v).

i=1 i=1

It follows that M (s - Vi) is in the span of s - MVy. If V, € Y, then MV}, C V4
implies M(s - Vx) Cs- MV, Cs- Viyi,andhences - Vy € Y.

As § is a regular one-parameter subgroup of 7', the S-fixed points of G/B are the
same as the T-fixed points. It follows that the fixed point set ¥ may be described as
the intersection Y5 = ¥ N (G/B)T.

Explicitly, ¥ consists of flags represented by block diagonal matrices where the
diagonal blocks are anti-diagonal with 1’s on the anti-diagonal:

0..-1

1---0

For example if n = 2 then Y consists of flags represented by matrices (8) in the
previous example witha =b =c=d =0.

Each simple root «; corresponds to a simple reflection s; := 54, that interchanges i
and i 4 1. Recall an element w € S, can be written as a product of simple reflections
S1,...,8,—1, corresponding to the simple roots «fp, ..., a,—1, respectively. When
W = i Siy " Siy(,, 18 Written as a product with as few simple reflections as possible,
£(w) is called the length of w. The expression s;, s;, - - - Sipm) is called a reduced word
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decomposition for w. To distinguish the product (resulting in w) from a sequence
of £(w) simple reflections in a reduced word decomposition, we refer to the index
sequence (i1, 12, ..., i¢w)) as a reduced word sequence for w. Recall the Bruhat order
foru,v € S,: we say u < v if there exists a substring of a reduced word for v whose
corresponding product of reflections is u. There exists a unique element wy in S, with
maximal length, and it satisfies w < wq for all w € §,,.

Elements of Y3 are represented by a specific set of permutations:

YS={wsaeS,:AC{l,....,n—1}}, )

where the permutation w4 associated to a subset A is given as follows. Let A =
A1 UAyU---U Ay where each A; is a maximal consecutive subset of A. For each i,
denote by wy, the long word of the subgroup H; of S, generated by reflections s for
J € A;, noting that H; = S|4, |41 is itself a permutation group. Then

WA = WA WA, - WA

is the long word of the subgroup H; x H> x --- x Hy € S,. A matrix representing a
w4 B € Y has anti-diagonal blocks of size |A;| + 1.

3.2 The Equivariant Cohomology Ring of G/B and Schubert Classes

Define B-invariant Schubert varieties X* := BwB/Bin G/B, and let [ X" ] denote the
corresponding T-equivariant homology class, following [5]. We use Poincaré duality
between equivariant homology and equivariant cohomology to define a dual basis
{ow : w e W}of H;(G/B) to the equivariant homology basis {{X"] : w € W}.
These bases satisfy the property that (oy,, [X"]) = &yy, where ( , ) denotes the
equivariant cap product, followed by the pushforward to a point.

Alternatively, oy, is Poincaré dual to the equivariant homology class of the opposite
Schubert variety X, := B_wB/B, which has finite codimension in the mixing space
for G/B.

The inclusion (G/B)T < G/B induces a map on cohomology

H;(G/B) — H}((G/B)") = @ HfwB/B) = @ Clxi.....x,] (10)

weW weW
that is known to be injective [7,11].
Suppose W = (i1,...,i¢) is a reduced word sequence for w € W.If U =
jysonsij)with{j1,...,ja} C{l,...,€}and j1 <--- < jg, wewrite U C W.1It

is possible that U € W in multiple ways, if W has repeated indices. If U is also is a
reduced word sequence for u = s; o Sigy then clearly u < w; we say that U is a
reduced word for u occurring as a subword of W.

The image of Schubert class o, under the map in Eq. (10) may be computed using
the AJS-Billey formula [3,4]:
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Theorem 13 ([3,4], AJS-Billey Restriction Formula) Given a fixed reduced word
sequence V = (i1, iz, ...i¢w)) for v, define

r(k, V) =si ...85_, ().

ForU = (ij,ij, - ,lmu)) C V, we write

[1rt vy =rii, VirGa V) rGew, V).
keU

Then for any u, v € S,

oulv=Y_ []rk. V),

UCV keU
where the sum is over reduced words U occurring as subwords of V.

An immediate corollary is that o, |, = O unless u < v.

3.3 The Equivariant Cohomology of the Peterson Y and Peterson Schubert Classes

The inclusion § < T given by z — (7", L2 ) forza complex number

with |z| = 1, induces a map on Lie algebras, s — t given by
I~ nn—-1,n-2,...,2,1).
Using the dual coordinate basis {x;} of t* introduced above, the dual map t* — s*
induced by the inclusion is given by x; — (n — j + 1)t for j = 1,..., n, where
t € 5* is the dual coordinate to 1 € s. The inclusion § < T
thus induces a map H; — Hg in which
o >t

fori =1,2,...,n— 1. This observation justifies the decision to call b € H ; positive
if it is a polynomial in ¢ with positive coefficients.

The map on equivariant cohomology in turn induces a map of modules for any
T-space X, which we also denote by 7:

Hi(X) —— H3(X).

When X = G/ B, this is a surjective map of free modules. The S-equivariant inclusion
t : Y < G/ B of the Peterson variety induces a surjective map:

HE(G/B) —— HX(Y),
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and these maps naturally commute with the restrictions to fixed points. We thus obtain
a commutative diagram:

H:(G/B) —X— HiG/B) —— HEY)

! l l

*
Ltps

H}((G/B)T) —— H{(G/B)S) —— H{(Y%)

&b T
* weW *
@weW HT

Duew H5 —— @wAes,, Hg

where * is the map induced by the inclusion ¥ < G/B, and (%, is the induced
map from the inclusion of fixed point sets on Y to those on G/B. The kernel of t?ps
consists of all copies of H{(wB/B) with wB/B not in Y, i.e. w # wy for any
AcC{l,....,n—1}.

All vertical maps of the commutative diagram are obtained from the inclusion of
fixed point sets. As discussed, the first two vertical maps are injective. In [14], the
authors prove that the third vertical map is injective, and that Hg(Y) is a free module

over the equivariant cohomology of a point.

Theorem 14 ([14], Thoerem 3.2) Let S act on the Peterson variety Y as described
above. Then H ;‘(Y) is a free module over H, and in particular,

Hi(Y) ~ H*(Y) ®c Hy.
In addition, the inclusion YS < Y induces an injection
Hi(Y) — Hi(YS).

The authors also discovered a basis of Hg(Y) by mapping a subset of Schubert
classes across the vertical arrows of the commuting diagram.

Forany subset A C {1, ..., n—1}, define the Peterson Schubert class corresponding
toAC{l,...,n—1}by

pai=1"om(oy,) € H{(Y),

where va4 = $4Sq, - Sq, With @; € A and a@; < a; whenever i < j, and 0y, €
HY(G/B) is the corresponding Schubert class. The degree of p, is 2£(vs) = 2|Al.

Theorem 15 ([14], Theorem 4.12) The collection {pa}acqi,...n—1} form an H;-
module basis for Hg(Y). We call this basis the Peterson Schubert basis of Hg(Y).
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3.4 Peterson Schubert Classes: Basic Properties

Here we collect together a number of properties of Peterson Schubert classes, their
products, and their restrictions.

For A C {1,...,n— 1} with j € A, 74(j) is the smallest integer in the maximal
consecutive subset of A containing j, and similarly, H 4 (j) is the largest integer of
the same set. Write A = A U --- U Ay as a union of maximally consecutive sets.
Consider the reduced word sequence for the longest word w4, given by

Wa, = (Ta()D)- Ta() + 1, oo HAG), Ta(), Ta() + 1, .. . HA() — 1,
o Ta()D Ta(G) + 1, Ta(G)). Y

Observe that Wy, is independent of j € A; since A; is consecutive. One reduced word
sequence W4 for w4 is given by the concatenation of sequences Wy, fori =1, ..., k,
i.e. WA = WA] WA2 s WAk-

The following restriction formula is a tiny generalization of a formula proved in
[14, Proposition 5.9].

Lemma 16 Let o, € H}(G/B) be a Schubert class and let w4 be the S-fixed point
of the Peterson variety Y associatedto A C {1,...,n —1}. Let A= A1 U---U Ag
be written as a union of maximally consecutive sets, and let W 4 be the reduced word
sequence for w 4 given by the concatenation Wa, Wy, - - - Wa, of sequences Wy, given
inEq.(11)fori =1,...,k. Then

Fom@)lw, =Y nw O | [TG = TaG)+ 1) | £ (12)
U jeu

where the sum is over distinct reduced words U of u, ny, (U) is the number times the
word U occurs as a subword of W 4.

Since the Peterson Schubert class py = (* o 7(0,,), Lemma 16 implies the fol-
lowing Corollary.

Corollary 17 ([14], Theorem 4.12) pa|w. = O unless A € C.

Observe that in the poset of subsets ordered by inclusion, C = A is the minimal subset
for which p |, may not vanish. See Corollary 21. As a consequence, the structure
constants also satisfy support conditions:

Lemma18 Let A, B,C C{1,2,...,n—1}. ThenbgB # 0 implies AU B C C and
IC| < |Al+ |BI.

Proof Assume AU B ¢ C, then either A ¢ C or B ¢ C, so the product pspg|uw,
vanishes by Corollary 17. Similarly, pply. = O unless D € C. Thus

PAPBlue = Y, b3 ppplwe =0. (13)
DccC
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Note that D € C implies AU B §Z C,else AUB C C.If |C| = 0, the sum is over
a single term C = {J, so bg gPclwc = 0. However pcly. # 0 by Lemma 16, so

bg p = 0. Make the inductive assumption that A U B ¢ C implies b ap = 0 for
|C| < k. Then for |C| = k + 1, Eq. (13) may be written

pApBle = Z b/[g)’BpD|wc +bg,BpC|wc =0.
DCC

If D is a proper subset of C, if |[D| < k, and by the inductive assumption, bE’B =0.
Thus as before, we conclude bg’ch|wC = 0 and, since pcly, 7 O that bg’B =0.
Sincedeg(pa pp) = |A|+|B] (asapolynomial), each summand bgy g Pc inthe product
papp has degree |A| 4 |B|, and therefore bg’B # 0 implies that |C| = deg(pc) <
|Al + |B|. mi

Lemma 16 also implies that the restrictions of Peterson Schubert classes remain
constant when nonconsecutive elements are added to a fixed point.

Corollary 19 Let A C CO with C° consecutive, and let C > C° be any set so that
C \ CY is not consecutive with C°. Then

pA|wC0 = pA|wC~

Proof Let A = {ay,...,a;} with a; < aj fori < j. There is only one reduced
word decomposition v4 = 84,84, - - . S, and thus one reduced word sequence V4 =
(ai, ..., ax). Neither 700 — 1 nor Hco + 1 are in C, so we may choose W¢ =

WcoWe co for some choice Wy co. Lemma 16 therefore implies

Palwe =nwo(Va) [ [T G —Zco() + 1) | 1, and
JE€Va

palue =nwe(Va) | [T G —Te+1) | .
JEVA

As A C C%and We = WeoWeycos nwe (Va) = nW o (V4). Note that the product
over the entries j of V4 consists of a single factor for each j € A. Furthermore, j € A
implies 7¢(j) = Zco(j) since C does not contain 7o — 1. Thus the products have
identical factors. O

Lemma 20 Suppose AU B C C° (not necessarily consecutive) and C > C° is any
set so that C \ C° is nonempty and not consecutive with C°. Then bg s =0.

Proof By Corollary 19, papgluw. = PAPBlw- Since the restrictions are the same,

Z bg,BpD|wc = Z bZBpD|wco

DcC Dcco
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and in particular also by Corollary 19,

> bR ppplue =0. (14)
D:DCCO DcC

We proceed inductively on |C’|. If C" = {m} consists of one element, the sum is
over one set D = C, so bg,chle = 0. Since p¢|w. # 0, we conclude bg,B = 0.
More generally, the sum (14) is

D C
> Y prolue + b5 gpclue =0
D:COCDCC

where the first sum is 0 by the inductive assumption. Thus bg g =0. O

Lemma 16 also implies an easy formula for the restriction of any Peterson Schubert
class p4 to its minimal fixed point wy.

Corollary 21 Let A be consecutive. Then
palw, = A1,

Proof We calculate directly using the Peterson Schubert restriction formula.

Palwy =700 lwy) =nw, (V) | []G = Ta+ 1) | 14
JjeEA

Then V4 occurs in W4 exactly one time, so the restriction is

H(j—TA+1)t= |AJ! 1Al
jeA

]

A fundamental observation is that psup = p4 pp wWhen A and B are disjoint strings
of consecutive integers separated by at least one number.

Lemma 22 ([14], Lemma 6.7) Let A C {1, ...,n — 1} and suppose

where each A; is a nonempty maximal consecutive string of integers and A; # Aj for
i # j. Then

PA = 1_[ PA;-

1<i<k
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4 Proof of Main Theorems and Lemmas

Here we prove Theorems 1, 3, 5, 6, and 8. There are two substantial cases required to
prove Theorem 1, recalling that A and B are consecutive by hypothesis. In the first
case, either A N B is nontrival but neither set contains the other, or the two sets are
consecutive to each other. In the second case, one set is contained in the other.

Definition 23 Let A and B be consecutive sequences of {1, 2, ..., n — 1}. We say that
A and B are intertwined if Ty < Tp < Ha < HporTg <7Tx < Hp < Ha.

Lemma 24 Suppose A, B and A U B are consecutive. Then

| _ (Haup —Ta+1 (HA—TAUB'Fl)!tlA‘
Palwaos = 1A Ta—Taop)!

In particular, if A and B are intertwined or if A and B are consecutive to each other
and nonintersecting,

| _JAUBJ
PAlwavs = T\ Al
Proof According to Lemma 16,
Palwaos =mwass (Va) [ [T G —Tavs () + 1) | 114, (15)
JEVA
We claim that ny, ,(Va) = (”AUBlngA“), where V4 = (Ta, Ta + 1, -, Ha).

Choose the reduced decomposition W4yup of waup given by the sequence (read from
left to right and top to bottom) in Fig. 1 (left panel), ignoring the grid and path within.

Each increasing consecutive string of Wyyp is written on its own line, all left-
aligned. All rows finishing in numbers H 4 or larger contain the string 7y 74 +1 - - - H 4.
To count the number of occurrences of V4 in this product, we first draw a grid around all
of these strings except for the one appearing in the first row. The grid has Haup — Ha
rows and H4 — 74 + 1 columns.

For example, suppose A = {2,3}and AUB = {1, ..., 6}. Let waup be the longest
word for the permutations group generated by {s; : i € A U B}. Then

Waup =(1,2,3,4,5,6,1,2,3,4,5,1,2,3,4,1,2,3, 1,2, 1),

and V4 = (2, 3). We have the grid containing the 2 and 3 in the second, third and
fourth rows of W4up, pictured in Fig. 1, (right panel).

There is a one-to-one correspondence between paths from the top left corner to the
bottom right corner of this grid (moving only right and down) and occurrences of V4
inside of W4. Each instance of V4 inside of W4yp is “underlined” by the horizontal
components of a path, as indicated with the red path in Fig. 1 (left panel). For example,
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Taus Tavp+1---Ta--- Ha oo+ Haus 123 456
. N (T 7 R 1 Y2T314 5

. . JR e 112134
TauB : s Tal - HaHa+1 11213

Taus : | Tal - Ha

. D 1 2

Taus Taup+1-------- )

Tauv Taus +1
TauB

Fig.1 Finding reduced words V4 occurring in Wy (left panel) and an example (right panel)

V4 is given by the subset of W4 p underlined by the path in Fig. 1 (right panel), it
selects the subset indicated by boxed elements:

(1,2,3,4,5,6,1,2,3,4,5,1,[2],3,4,1,2,[3] 1,2, ).

The dimensions of the grid are (Haup — Ha) X (Ha — 74 + 1) and hence the
number of reduced words for v4 inside of W4 p is the count of such paths, known to
be the number of “right" (or “down") moves among the total moves given by the sum
of the row and column lengths. Therefore,

Hauvp —Ta+1 Haup — T4 +1
nwus(Va) = = .

Ha—Ta+1 |A]

We turn our attention to the factor (]_[jevA (j — Tau(j) + 1)) t'4'in Eq. (15).

Since A U B is consecutive and the product is over |A| elements with the highest j
occurring at j = H 4, but only descending |A| terms:

) (Ha — Taus + 1)!
~Tap+ 1) | M= Al
[1G=Taws+1 Hor — Trop + 1 JA])!

_ (HA - TAUB + 1)!I|A|
(T4 — Taus)! '

JEVA

We put the two terms together to get the formula.
If A and B are intertwined, then if 74 = 74up and Hp = Hausg,

(HAUB ~Th+ 1) _ (lAum) (Ma—Taop + D! _

|A] |A] (Ta — Taup)!

. ! !
so the product is (|ALABU|€||A|)! = l“gff“!‘. If 7p = Taup and Ha = Haus,

(HAUB—TA-H)_CAI)_l (Ha —Taup + 1! |AUB|!
|A] |A] ’ (Ta — Taup)! B\ Al!
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resulting in the same product. O

The following Lemma serves as the base case for an inductive argument in the proof
of Theorem 1.

Lemma 25 Suppose A, B are consecutive. When A and B are intertwined, or when A
and B are consecutive to each other and nonintersecting,

pAUB _ |AU B! A|ANB]
AB T B\ AlllA\ B! '

Proof Restrict the product

C AUB
(PaPBlwass = O bS sPClwsss = bAE PaUBlwaus-
C:AUBCC

since pclw,,; = O unless C € AU B. By Lemma 24,

[AUB|!'[AUBI|! (41418
pAlwAUBpBlu)AUB :Wmtl [+] ‘

By Corollary 21, pauslu,,; = |A U B|!t/AYBl. We then solve:

pAUB _ 1 [AUBI'[AUB|! s |AUBIY  janp
4B AU B|1IAUBL B\ A|l |A\ B! |B\ Al!|A\ B!

O

When B C A, the structure constant bg p can be recast in terms of another structure
constant with intertwined sets.

Lemma 26 Suppose A, B are consecutive and C any set with B C A C C. Then
|AIV B! bS 5 = A B|'DS, 5.
where A ={ac€ A: a<Hpland B ' ={bec A: b>Tp).
Proof We show that
|AI'BIY paps = |A'I1|B'|! parppr, (16)

which implies that the coefficients have the desired relationship since {pc} forms a
basis of Hg(Y).
By Lemma 24 if C is consecutive, and Lemma 19 otherwise,

|A| (T4 — 1¢)!
_ (Hc —=Ta+ 1! (Ha—"1c + 1)!t|A|
|A|! (Hc — Hp)!  (Ta —1¢)!

(HC —Ta+ 1) (Ha —7c + D! |A|
Palwe = —
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with a similar formula for pg|y,.. Using the relationships
Ty =Ta, Ha=Hp, Ty =T, Hp =Ha (17)
and simplifying as above,

Hc—Ta+ D! (Hp—T1c+ 1)!I|A/|

Pk = [0 GHe —Hp) (T — To)!
with a similar formula for pg|y,.. Since |A| + |B| = |A’| 4+ |B’|, we conclude
|AIYBI! palwe PBlwe = |A1N B! parlwe PB lwe (18)

for all sets C containing A © B. By Theorem 14, the equality at every fixed point
implies Eq. (16) holds. O

Finally, we state the crucial lemma for the proof of Theorem 1.

Definition 27 Let A, B, and A U B be consecutive. Define
iDj:={Taup —i,Tavp —i+1,...,Haup +j— 1, Haus + Jj}.

For convenience, denote D = gDy = A U B.

Lemma 28 Let A, B and ,, D, be consecutive form = 0,1,...,¢,n =0,1...,r,
with D = ¢Dg = AUB, and |ANB| = {+r. If A and B are intertwined or if A and
B are consecutive to each other and disjoint,

D _ |AUBJ|!|AN B|! ANB|—m—n
AB T (JANB—m—n)m!'n! A\ Bl +m)! (|B\ A| +n)! ‘

Proof We prove this by induction on m + n. When m = n = 0, this formula is the
statement of Lemma 25.
For ease of notation, let K denote ,, D,,. Restrict ps pp = ZC bg gDcC 1o wk.

bX spklwk = PalugPBlux — Y. Dy pPiD; - (19)
0<i<m,0<j<n
i+j<m+n

Forall0 <i <m,0<j<nandi+ j <m+ n assume
D; |AU B|!|AN B! |ANB|—i—j

byp =
ABT(JANBI—i— pli! jLIA\ Bl + D! (IB\ Al + ))!

Assume without loss of generality that 74 < 7p. Then if A or B are intertwined
or disjoint and consecutive to each other, |A N B| = H4 — 7 + 1 and |[AU B| =
Hp — 74+ 1.
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Using Lemma 24 for each restriction, we obtain:

Mk —Ta+ 1\ (Ha =T + D! g (IAUB|+n\ (Al +m)! |,
PA|wK_ —_—1 = —_—t"

|A] (Ta — Tg)! [A| m!

By the inductive assumption,

bA,BpK‘wK :pAle pBle - Z blA,éP[DﬂwK

0<i<m

0<j<n
i+j<m+n
:<\AUB|+n) (|A|+m)!<\B|+n> (AUBI+m)! 418
|A] m! Bl ) (IA\ B| +m)!
S [ |AUB|IAN B! A=~
17! 1)! i — 71— 1)
o5z, LILMANBI+ DB\ A[+ HIIAN B[ =i = j)!
O<j=n
i+j<m+n
[AUBI+i+n) (AUBI+m+ D! aupsiv
[AUB|+i+j (m —i)! '

Multiply both sides of Eq. (19) by m Since pilw, = |K|'t'K!, the
left-hand side of Eq. (19) becomes

1 I _(AUBl+m+m!
AU B[l |ANB| ABPEIve = Z 0B (A N B!

|AUB|+m+n K
A,B

Now by rearranging terms while noting that t1ANBI=i—jAUBI+i+] — (AIFIBI |4\
B| =T — T4, and |B \ A| = Hp — H4, the right hand side of Eq. (19) becomes

[AUB| +m\ [|A] +m\ [|B| +n\ [|AUB| +n
|[AU B| |AN B| |B| [A]
3 (|AUB|+i+n>
o2, \AUBI+i+]

O0<j=n
i+j<m+n

< AU Bl +m+j >:|,|A|+|B
i, j, IA\B|+i, |[B\Al+j, [ANB|—i—j,m—i '

Letx =|ANB|,w=|AUB]|,y =|A| and z = | B| to rewrite the expression as
w+m\[(y+m\[(z+n\[(w-+n
w x z y

_ Z (w+i+n>< w+m+j )]t-V+Z
wHi+j/\i, j, =0+, =0 +j, x—i—j, m—i :

0<i<m
0<j=n
i+j<m+n
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We recognize the coefficient as the term withi = m, and j = n of the sum on the right
hand side of Theorem 9. Using the same variables, we then simplify the equation:

(w+m+ n)!tlAUBHern
w! x!

_ wtm+n JJAI+B]
m,n, x—m-—n,Z—Xx+n,y—x+m

Finally, we solve for b§ p and substitute back for x, y, w, z to obtain

K
bA,B

bK |[AUB|!|AN B! ANB|—m—n
AB T mint JA\ Bl +m)!(IB\ Al +m)!(JAN B| —m — n)! ’

O

Proof of Theorem 1 Assume A, B, and C are consecutive and that A U B € C with
|C| < |A| + | B|. Without loss of generality, assume also that 74 < 7p.

If A and B are disjoint, then C consecutive and |C| < |A|+ | B| forces C = AUB
and thus A and B are adjacent. If either A and B are intertwined, or if A and B are
adjacent and disjoint,

JAUB| =Hp —Ta +1 JANB| =Ha—Tp+1
A\ B| =Tp — T 1B\ Al =Hp — Ha.

As C is consecutive, C = ,,D,, where m = T4 — Tc and n = H¢c — Hp. It follows
that |A\ B|+m = Tg —Tc and |B \ A| +n = H¢c — H4. Then by Lemma 28 with
d:=|A|+|B|—-|C|=|ANB|—m —n,

(Ha—Tg+ DI(Hp — T4 + 1! d

bS 5 = e
AE T ANTh — To)(He — Hp)!(Tp — T0)!(He — Ha)!

To prove the case when B C A we construct two intertwined sets from A and B
and apply Lemma 26. Let

A={acA:a<Hpland B :={bec A: b> T3}
Then A’ and B’ are intertwined and also satisfy the relationships in (17) with

d=|A|+|B'| - |C| = |A| +|B| = |C|.
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Furthermore, 74 = Ty, Tpr = Tp, Hpr = Ha, and Hy = Hp. Thus by the formula
above for the intertwined case,

pC = (Har — Tp + DW(Hp — Ty + 1)! a
AT AN Ty — To)(He — Hp)(Tp — To)!(He — Ha)!
_ (Hp —Tp + D!(Ha — Ta + 1)! y
d\(Ty — To)'(He — HA)! (T — Te) ! (He — Hp)!
Applying Lemma 26.
o _ANBI
A,B — |A|‘|B|' A, B’

_(Hp —Ta+ DI(Ha —Tp + 1)!
C(Ha —Ta+ D!(Hp — T + 1)!

. (He — T+ DI(HA —Ta + D! d
d\(Ta —Tc)!(He — H)'(Tg — Tc)!(He — Hp)!
(Ha — T+ D!(Hp —Ta + ! d

T d\(Ty — To)(He — Ha)\(Tg — T0)!(He — HB)!t

To make the formula obviously integral, multiply by % to obtain

bC —d'< Ha—Tp +1 )( Hp—Ta+1 )td
ABTENd, Ta —Te, He — He)\d, T — Tc, He — Ha)

m}

Proof of Theorem 3 Let A = A{U- .- Ay and B = B;U- - -U B, be written as a union of
disjoint maximal consecutive subsets. Now rename the sets {A1, ..., A, By, ..., By}
by Ei,..., Ey, where v = k + £ so that T, < Tg,,, for all i. By assumption,
AU B = U, E; is consecutive. Since each E; is consecutive, the reordering implies
E; U E; 4 is consecutive. Then by Lemma 22 and expanding the product,

v v v

c

PAPB = 1_[ PE, = PE,PE, l_[ PE, = ZbEiEchz 1_[ PE,
Jj=1 j=3 G2 Jj=3

= G2 Cs C
a Z bEl,Ezbcz.E3 "'bCuq,Evl)C-
(C2,C3,Cq,...,Cy—1,0)

By Lemma 18, bgf g, 7 0implies Ey U E3 € Co. If C; weren’t consecutive, there
exists a maximal consecutive subset C° C C, with E; U E; € C°, since E; U E;
is consecutive. Thus bgi g, = 0 by Lemma 20, contrary to assumption. Thus C5 is
consecutive.

Similarly, as C; is consecutive and the tails of E; are increasing with U; E; con-
secutive, Co» U E3 is consecutive. Thus bgg Es # 0 implies C3 is consecutive and
C> U E3 C (3. Inductively it follows that the sum may be taken over sequences in
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which all C; are consecutive, and that each coefficient bgz g, and bg’:%_ may be
1,£2 iy i1

calculated by Theorem 1 as the corresponding sets are consecutive. Therefore,

¢ = &) C3 c
bas = Z bEl,Esz2,E3 ~+be,_ E, (20)
(C2,C3,Cy4,....Cy—1)
C; consecutive

is the coefficient of pc, as stated in Theorem 3. O

Furthermore, all factors of any term in the sum (20) are nonnegative by Theorem 1.
Corollary 29 claims that, if a consecutive set C contains AU B and |C| < |A| + |B|,
the sum is actually positive.

Corollary 29 If AU B and C are consecutive, AU B C C and |C| < |A| + | B, then
b 5 #0.

Proof of Corollary 29 We need only find a single sequence

(CZa C3a C47 MR CU—])

for which the corresponding summand in (20) is nonzero. As in the proof of Theorem 3,
let Eq, ..., E, be a reordering of the maximally consecutive subsets of A and of B,
as for the proof of Theorem 3. Note that

v
Al + 1Bl =Y |Ej|. @1)
i=1
Since A U B is consecutive, E;_1 U E; is consecutive for each j = 2,..., v. Let

C1 = Ey. We find a set C; for j = 2,...,v — I inductively. Choose C; C C of
maximal size such that

(1) C; is consecutive
(2) C;-1UE; C Cj,and
3) ICjl = ICj-1l + |EjI.
If [C| > |Cj—1| + |E}|, there exists C; satisfying (1)-(2) with |C;| = |C; 1| + |E}],
the maximal allowable size of property (3). If |C| < |Ck| + |Ek|, for some k, set
Cj = Cforall j > k + 1 and note that it necessarily satisfies conditions (1)-(3). The
sets Cj_1, E, and C; are consecutive, and satisfy the degree condition of Theorem 1,
. C;

ensuring ij_th #0.

We have only to show that the last term in the product is nonzero, i.e. bgH E 7 0.
If C,—1 = C, then the sets C,_1, E, and C satisfy the conditions of Theorem 1 so the
statement holds. If C # Cy_1, then |C;| = |C; 1|+ |Ej| forall j =2,3,...,v— L
Then by Eq. (21),

v—1
ICotl =Y _IEj| = Al +|B| — |Ey.

j=1
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Then
IC] < |Al+ |B| = |Cy—1]| + | Evl,

which is the degree requirement of Theorem 1. Since C,_1, E, and C are also con-
secutive, Theorem 1 implies bgv_l g, 7 0. O

Proofof Theorem5 Let AUB = D; U---U D, be a union of maximal consecutive
components of AU B. Note that each A ; and each B; occurs in exactly one D;. Thus

PADPB = PA; ---PA;DPBy --- DB,

u
=l_[pA,-pBi, where A' = AN D;, B' = BN D;
i=1

u
HZbEi’BipE

i=1 E

B3 [12% s

LE,i=1

> (11%) (I17+)

Eq,..., E, \i=1 i=1

where the sum is over sequences of consecutive E; by Lemma 22, each containing
D; = A' U B' by Lemma 18.
Therefore, the coefficient of p¢ in this product is

u
e Y (nb)b

Eq,....E, \i=1

as stated by Theorem 5. Each factor b Ei s calculated by Theorem 3 since A’ U B!

Al Bi
and E; are consecutive.
We now take to calculating [ [/, pg; to find the coefficient bgl,..., E, of pc, noting
that E; is consecutive for each i.
If U; E; is consecutive, then as before we order E, ..., E, so that their tails are

increasing. Then E1 U E» must be consecutive, and so we apply Theorem 3 to find

PE\PEy = Z bgl,EzpC

C consecutive

CDE|UE;
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with b<. E\.E» determined by the formula in Theorem 1. Since each C contains E and
E», the union C U E3 is consecutive for all C. Therefore

— C _ C Cy
PE\PE,PE; = E bEl,EZPCPE3 = E bEl Ezbcl E;PCa-
C consecutive (C] ,Cz) both consecutive
CDE|UE, C1DE|UE7,CoDCIUES

Continuing inductively, we arrive at the equation

u

_ Cq Cr Cy
HPEf = Z b, g, k5 -+ b, £, PC
i=1 (C1,C,...,Cy)

where the sum is over consecutive Cy with C; D Cs—1 U E11. We thus conclude

C _ Ci G C
berr = 2. bElmbele - DC, ks
(ClsCZV'“sClt—l)

where C D U;E; D AU B.

Now suppose U; E; is not consecutive. If none of the E; are adjacent or overlapping,
then ]_[;‘:1 PE; = py;E; has no pc term, as C is consecutive. Otherwise, there exist
two sets £, and Ey, whose union is consecutive. Then

u
— — bFl
PE; = PEj, PEy, PE; = Ej.Ex, PFi PE;-
i=1 i#j1,k1 FIDEjIUEkls i#Jj1,k1

consecutive

For each such Fj, expand the product pr, [[ pg; with one fewer factor. Relabel
i#j1.ki
the sets Fi, Ey, ..., Ej, Eg,, ... Ey, and continue inductively. At each step, if the
union of the sets is not consecutive, and if no two sets are adjacent, the coefficient of
pc vanishes. If there are any two sets whose union is consecutive, we may expand
their product using Theorem 3.
Explicitly, for each Fi, we relabel the sets Fi, Ey,..., Ej, Ei,...E, by

E gz) e, E,iz_) 1- Choose jo, k> such that Eg) UE g) is consecutive. Then

u
HPE" = Eu Ekl HPEO) - ZbEjl Ek (pE(z)pE(2)> 1_[ pE(z)
i=1

Fi i#j2.k2

F 12
bEk,,Ejl ZbE@ E(Z)sz l_[ PE(Z)
A LI i#J2.k2

b o b PF l_[ P
By BV p® 0 PP ED
F1,F k2 i#j2.k2
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where the sumis over consecutive /] and F> suchthat £ ; UE, C Fyand E 2) UE; (2) -

F>. Note that the choice of F;, over which we sum, and indeed the sets E;z) depend on

each F. We continue inductively. For each sequence F1, ..., Fy withs < u, there exist
two sets E;f), E ,ES) among Fy, E| ©  E (A)A 1 Whose union is consecutive. Label the
sets Fy, E”, ..., EY, E(‘) . fj_)m by ECTY L ES T Vfors = 1, ... u—2,
so that there is one set £ ( ) when the super index is # — 1. We have found:
u
_ Fi F Fy
l—[PEi = Z bEjl,Ekle(_Z)yEEZ) --~bE<s> g0 PEs H PE®
i= (F1,F2,....Fs) S b i#Js ks
_ F P Fy—2
= Z bE,1 Ekle(Z) E(Z) -bE(u > gl »PF,_, 1_[ PE;”—ZJ’
(F1,F2,....Fy—2) Ju=2 k=2 i ju—2.ky—2
which, by relabeling F,_» and the single El.(”_Z) in the product,
_ Fi P, Fu—
- Z bEjl,Ek1 bE(z) E® "'bE<“ 2) E(u z)PE(u l)PE(u 1)
(F1,F2,....Fy_2) 2"k Ju—2"""ky—

F F. F,» C

= E b b2 L.b E b

Ej, . E, E(vz),E,fz) ) E/iu 2) E;u—l)’Eéu—l)pC )
(F1,F2,....Fy—2) 2R =22\

C _ Fi F, Fy—2 C
bg, B, = § , bEjl,Ekle@ E{z)"'bE“‘ 2) E(” 2)bE(u D gD
(F1.F3,....Fy_2) 27 Ju=2 -2

Finally, to obtain the statement of Eq. (5) in Theorem 5 we note that j,_; and k,,_| must
be the two indices 1, 2 as the union of the two sets E(" Y and E, (=D are necessarily
consecutive. O

Proof of Theorem 6 We want to show that bA B = Hk Aka snc, Where C = C U

-U C,, is a union of (nonempty) maximal consecutive subsets of C. As Cy, ..., Cp,
are maximal consecutive subsets, A = Ui (A N Cy) is nonconsecutive (though for an
individual X, ANCy may be consecutive). Similarly B = Ui (BNCy) is nonconsecutive.
By Lemma 22,

pa=][]panc, and  pp=]]prsnc.
k k

which implies

PAPB = 1_[ PANCPBNC, = H bemck,gmckPE-
k
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Note that bfmck,Bka = O unless E contains (A N Cx) U (B N Cy) by Lemma 18. We

first argue that the only terms bgmck, BAC, # 0 that contribute to the coefficient pc
are those with £ C Cy.

Clearly, if E contains elements not in C, the corresponding terms pg do not con-
tribute to the coefficient pc, since for any F, bg r # 0implies C contains E. Thus

we may suppose E = EO U E’, where E’ is not consecutive with, nor intersects, Cr,
and E° C Cy. Then by Lemma 20, bfﬂck e, = 0-
It follows that the coefficient of pc in p4 pp is the coefficient of pc in

Ey
H Z bancy.Bnc, PEx

k ExCCy

On the other hand, if E; # Cg, then ]_[k DE, = DUE, 7 Pc, where the first
equality follows because Uy E} is a nonconsecutive union (Lemma 22). Therefore

Ci _ Cr
l_[bAﬁCk,BﬂCkka = <l_[ bAﬁCk‘BﬂCk) pc,
k k

as pc = pc,Pc, - - - pc,, (Lemma 22 again). O

A slight generalization shows that the non-vanishing of the structure constant holds
also when A and B are not consecutive. To prove the general case, we need the
following lemma.

Lemma 30 Let A and B be arbitrary subsets of {1, ...,n — 1}, and C consecutive.
Then bg’B # 0 if and only if C contains AU B and |C| < |A| + |B].

Proof of Lemma 30 Ifbg’B #0,then AUB C C and |C| < |A| + |B| by Lemma 18.

To prove the converse, let AU B = Dy U ---U D, where each D; is a maximal
consecutive subset of A U B and let A’ = D; N A and B = D; N B. By Theorem 5,
we have the equality

u

c _ E; C

bip = > (l_[ bAi,Bf) bE,...E,
(Ev,....Ey): DiCE;, \i=l

E; consecutive

where bgl Ed is the coefficient of p¢ in the product [ [/, pEg,. We prove there exists

a sequence of sets (Eq, ..., E,) in the index set of the sum such that bfﬁ gi =0
for all i, and bgl ’’’’’ E, # 0. Indeed, consider any sequence (E, ..., E,) with E;

consecu_tive and containing D;, with the additional properties that E; C C and |Ei| =
min(|A*| 4+ |B'|, |C]). Since D; = A" U B' is consecutive and |E;| < |A'| + |B'|, by
Corollary 29, bfjf i # 0. It remains to show that bgl,...,Eu # 0.
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If U; E; consecutive, then by Lemma 29 bgl

E, 7 0 for all consecutive F such
that |F| <), |E;| and F contains U; E;. Since

.....

ICI <A+ Bl =) _|Ail + |Bi| = ) |Eil.

1 1

and U; E; C C, the coefficient bgl

.....

If U; E; is not consecutive, then |C| < |A| + |B| = ), |E;| and C consecutive
containing U; E; implies there are at least two sets £ j, , Ex, whose union is consecutive.
Thus

u
— — bE
PE; = PEjI PEkl PE; = E./I,EklpF PE;
i=1 i#j1,k1 FDEj UEg,, i#ji.ki

consecutive

and the terms bg E,, are nonzero whenever F satisfies the degree condition |F| <
J1> 7K1

|Ej, | +|E,|. In particular, let 1 C C be a consecutive set containing E j; U Ey; with
|Fi| = min(|Ej, | + |Ek, |, |C]). Then

u

l_[ DE;, = bg‘, E, Ph l_[ PE; + nonnegative terms
J1° K]

i=1 i#J1.k1

with bg'jl Eyy # 0. As in the proof of Theorem 5, we relabel the sets

= = 2 2
Fi,Er,....Ej, Exy, ..., E,by EP, . E®

u—1°

in which we omit sets with a". By construction of Fi, |C| < ), |Ei(2) | and U; Ei(z) cC.
Thus there is a pair of sets E;lz) and E g) whose union is consecutive. We continue
inductively, obtaining a sequence of consecutive sets Fp, ..., F,_» € C such that
bt 7 0and|Fy| = min(|Ej|+|Ey,|, |C]) forall s. By picking out the coefficient

A(-f)
B B

of pc in the product, we obtain:

C Fy 2] Fu— C
b, ..k b b .b b

L= Ej B Ppo po - Uputy pu £ pa=1) -+ nonnegative terms
j2 Tk Ju—2 Tky—p TL 72

where the nonnegative terms in the sum are similarly products of coefficients.
The first term is nonzero, as its factors are all nonzero by construction. Thus

c
bEleu # 0. O

Proof of Theorem 8. Suppose b ; = ar? witha > 0. By Lemma 18, AUB C C. Let
C = C1U---UC,, be aunion of maximal consecutive subsets Cy. Then by Theorem 6,
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c
byp= 1_[ bAﬁCk BNCy*

The hypothesis implies bg’%ck, snc, 7 0, and thus by degree considerations (or
Lemma 18), |Cx| < |ANCk|+ |B N Ck|.

Now suppose the converse. Fork =1, ..., m,let Ak = CrN A and B¥ = CrNB.
Note that AKU BX € ¢y by construction and |Ck| < |AK|+|B¥| by assumption. Then
the coefficient b A',ﬁ g« 7 0 by Corollary 30 as Cy is consecutive.

We show that bg’ g 7 0. By Lemma 22,

PAPB = HPAk HPBk = H(PAkPBk)
k k k

since A = UAK and B = Uy B¥ are disjoint unions. Each product p 4« - ppr has at
least one nonzero summand in its expansion, since b B" # 0. It follows that the
expansion of the product p4 pp has a nonzero term

H(A"B"pck) HbAkBkl—[ka l—[bﬁi,kac,
k k

where the last equality follows from Lemma 22 as Cy are all disjoint. It is possible
that additional terms in the product contribute to the coefficient of pc, however any
additional terms contribute a nonnegative multiple of 4, where d = |A| + |B| — |C|
by Corollary 7. As a result, the coefficient bgy g has at least one strictly positive

contribution, and thus bg B = at? witha > 0. O

5 Proof of Theorem 9

Fix m,n,w,x,y,z € Z with x,y,z,w,m,n > 0 and w + x = y + z. Note that
Theorem 9 holds trivially whenever x, y, z or w is less than 0.

We construct an explicit bijection between two sets of sizes given by the right hand
and left sides of (6) in Theorem 9. We carry this out as follows: we define two sets S
and V whose sizes obviously correspond to the left and right hand sides of the identity
in Theorem 9. We construct bijections

L :S— & and BL*:V — Y,

for sets S and V that will be rather clearly in one-to-one correspondence with one
another. The bijections BL™ and BL* are compositions of bike lock moves, which we
introduce in Sect. 5.2.
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Table 1 The number of each letter in ((F;) € S,wheni = |P|and j = |T|

o P 0 R N T U C -

F m—i i y—x+i x—i—j Z—x+7] Jj n—j
G n—j wHi+j m—i

5.1 Two Sets with the Right Size

We begin by describing a set S that indexes the right hand side of Theorem 9. Let S be
the set of 2 x (w +m + n) matrices (g) where the row F rows is a sequence consisting
of six letters and a placeholder, denoted by O, P, Q, R, S, T and —, respectively,
while row G is a sequence consisting of only two letters and a placeholder, U, C, and
—. We refer to the number of each letter or symbol in the matrix using the absolute
value, e.g. | P| refers to the number of Ps occurring in (g)

We insist that the following relationships hold among the numbers of each letter:

|O|+|P|=m

IT|+|U|=n

1Ol + R+ [S|=w

IOl = |P[=y—x

IS|—|T|=z—x

ICI+ 0|+ |Ul=w+n+m

Letters are left-aligned in both sequences, so that any placeholders — occur to the
right of all the letters, ensuring each sequence has length w + m + n.

For a given pair (g),leti :=|P|land j := |T|,then |O| =m —iand |U| =n—j.
It follows that |Q| = y — x 4+ i, and |S| = z — x + j, so the number of letters in F is
O]+ |P|+ 10|+ |R|+|S|+|T| = m+ w + j, and these letters are followed by
n — j placeholders. Similarly, the number of letters in |G| is |U| + |C| =n+ w + 1,
and the letters are followed by m — i placeholders. We tabulate the counts of each
letter in Table 1 for (g)

By allowing i = |P| and j = |T| to vary from O to m and n, respectively, we
obtain a count of the number of matrices (g) satisfying these conditions. Among the
w + m + j letters in F, we choose where to place i entries in of P, j entries of T,
y —x +1 entries of Q, z — x + j entries of §, and m — i entries for O. The remaining
non-letter entries of F are placeholders and have no part in the count as they must be
placed at the end of the sequence. Similarly, among the w 4 n + i letters in G, we
choose where to place the n — j copies of U. The remaining letters are all Cs, and the
entries of G that aren’t letters are placeholders at the end of the sequence. We have
shown:

|S|=Z (w+m+ j)! (w+n+1i)!

My —x + DI =i = Pl —x + P =) = )l w+i+ )
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Table 2 Counts of Os, 1s, and xs 1 0 N

in each of vy, ..., vg4, where

w+x=y+z v w m n
17} X y—x-+m Z—Xx+n
v3 y Z—Xx+n m
V4 z n y—x-+m

This expression is the right hand side of the equation in Theorem 9.

Now we define a set V that indexes the left-hand side of Theorem 9. Let V be the
set of 4-tuples of sequences V = (v1, v, v3, v4) With each v; a sequence of 1s, Os,
and s, with any s occurring to the right of all numbers. We additionally require that

v1 consists of w 1s, m Os, and n *s

vy consists of x 1s, y —x +m Os, and z — x + n s

vz consistsof y 1s,z —x +n =w — y +n Os and m »s

v4 consistsof z 1s,n 0s,and y — x +m = w — z + m %8

Numbers are left-aligned in all 4 sequences, so any placeholders * occur to the
right of all the numbers, ensuring each sequence has length w + m + n.

One quickly observes that

V| = w+m\[(y+m\[fw+n\[(z+n
N w X y z ’
since the x entries are all placed to in the final spots for each sequence. Observe this

is the left-hand side of the equality in Theorem 9.
For future use, we tabulate these values in Table 2.

5.2 Bike Lock Moves

The bijections we construct depend on a series of bike lock moves on r x ¢ matrices.
Each move is indexed by a column &, and specifies a set of set of rows on which it
will operate (which generally depends on the matrix itself). Each affected row is will
rotate its entries from k to c cyclically, by sending the entry in column i to i + 1, while
the entry in column ¢ will move to column k.

Definition 31 For each k with 1 < k < ¢, a bike lock move BLj on a set of matrices
M, with ¢ > 0 columns is a map M, — M, such that, for all M € M.,

1. BLy(M) is identical to M except in a specified subset of rows Rpy, ().
2. BLy(M) cyclically permutes the entries in row £ € Ry, (m) as follows:

e An entry in column m < k is fixed.

e Anentry in column m with k < m < c of M sent to column m + 1 in the same
row.

e If m = ¢, the entry is sent to the kth column of the same row.
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Observe that each bike lock move is determined by its row set.

Example 32 Consider the 4 x 5 matrix M on the left below. A bike lock move B L3
on a 4 x 5 matrix with Rpy,(M) = {1, 3} can be seen as follows. Impacted entries
are highlighted in red.

ai | ap | a b © an | an | c a b
azy azn a3 a4 azs azy an a3 az4 azs
az | axn d e f a1 | asxn f d e
asy asy | asz | as4 | aas as asy | asz | as4 | ass

Remark 33 Bike lock moves rotate elements starting in a specified column; they do
not change the set of entries on each row, nor the number of any repeated entries.

We capture an immediate but more subtle version of this critical property of bike
lock moves in the following lemma. Let (M), indicate the kth column of the matrix
M.

Lemma34 Let M be an r x ¢ matrix, and B Ly a bike lock move with k < c¢. Then M
and B L (M) satisfy the following properties:

1. The set of entries in the £th row of M is the same as the set of entries in the {th
row of BL(M).

2. M) =(BL(M))pforte=1,...,k—1.

3. If £ ¢ Rppr,(m), then the Lth row of BL (M) is identical to the £th row of M.

4. If € Rpr,(m), each entry in the £th row and jth column of M appears in the £th
row and j + 1st column of BLy(M), for j = k,...,c — 1. In particular, these
entries occur in the same (column) order.

5.3 Bike Lock Moveson S

We define a specific type of bike lock move, and apply a composition of them to
elements of S. The idea of the composition of bike lock moves is intuitive but the
execution is rather technical. Applied to a 2 x 9 matrix (g) €S,

RQOSPRTR-
ccucccceccec-)

for example, the sequence of bike lock moves “shuffle” in the —s at the right of the

matrix in order to line up the consonants P, O, R, S and 7T in the top row with Cs in
the bottom row, and line up the vowels O and U with the —s:

RQO-SPRTR
cc-vccccc)

Details for this example are carried out in Example 36.
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Definition 35 The — bike lock move BL, is defined on the set of 2 x ¢ matrices
whose entries in the first row are in the set {O, P, Q, R, S, T, —}, and whose entries
in the second row are in {C, U, —}. Let m;; refer to the (i, j)-entry of M. Define:

{2} ifmy =0,
RBL;(M) = {1} ifmy = U and m; # O, (22)
) else.
By definition, BL X cyclicly rotates the entries in R Ly (M) incolumnsk,k+1,...,c

one column to the right, with the entry in the last column sent to column .

Let BL™ be the composition

BL™ :=BLy,,,,0BL, -oBL, o BL7.

wHm4n—1°""

We restrict the domain to S, and let
S:={BL(S): SeS&).

RQOSPRTR-—

Example 36 Let S = (C cuccccc -

). We find the result of a series of bike
lock moves
BL™(S) =BLy oBLg o---0BL; o BL{ (S).

The bike lock moves BL, o BL| do not change S, since in the first two columns there

isno O in the first row or U in the second. When applying B L5, the third column (8)
indicates by (22) that we must shift the second row to the right:

R|lQ|ofsfefr|[z|r]|-| BL3 Rle|lo|s|rp|rR|[T]|R

C « 10) C C C C C - C C - U C C C C C

where we have indicated the shifted row in red. When applying BL to the result, the

fourth column is ( LS/) so we shift the first row.
R|Q|o]|s|p|rR|T]|R]|- BL, R|lQ|lo|-|s|ep|[rR|[T]|Rr
C C = 10] C C C C C C C - 10 C C C C C

The remaining columns have no Us or Os, so this matrix is left unchanged the bike

3 - ~ (RQO-SPRTR
lock moves BL, o--'OBLs-ThUSS_<CC—UCCCCC>'

We now prove a basic property of BL™ applied to elements of S. For any (g) €S,
define

F
N, :BLk_o-~-oBL1_<G>.
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By convention Ny = (5)-

Lemma37 Fork =1,..., w+m+n, the bike lockmove BL, appliedto N, _ either
leaves it unchanged, or inserts — into the kth column.

Proof Let (g) € S. There are m — i Os in the first row F (see Table 1), and therefore
the row specification of (22), results indicates there are m — i bike lock moves in the
composition BL™ impacting the second row, G. There are m — i placeholders — in
G, so each of these bike lock moves will shift a — from the end of G to some earlier
part of the sequence.

Similarly, there are n — j Us in G, and thus by (22) at most n — j individual bike
lock moves that impact the row F. We argue that exactly n — j bike lock moves in the
composition BL™ cycle F by showing that each U results in a cycle of the first row.

Referencing (22), the first row is cycled to the right by BL, whenever (N,_ | )x =
(;) and * # O. If (N, _ ) = (8) then BL, cycles the second row of N,_,, with
the result that (N, ) = (?) and (N, )i4+1 = (;); in particular, the same number of U's
occurincolumnsk+1,...,w+m+n oka_ asoccurincolumnsk, ..., w+m+n
of Ni_ ;.

For some £ > k, (N, )¢+1 = (;) with % #£ O, as the existence of U in the second
row guarantees some non-O entries on the first row (see Table 1). Thus the second
row will be cycled by BL, . We have shown that, for each U occurring in G, there is
a shift to the right of the original sequence F'. Since there are n — j placeholders — at
the end of F', each move results in the insertion of — into the column associated with
the bike lock move. O

Corollary 38 The letters of N,  are in the same order as the letters of (g) for all
k=0,...,w+m+n.

Proof of Corollary 38 Suppose BL, acts nontrivially on N,_, for some £ < k. By
Lemma 37, BL, inserts a — into the £th column. Lemma 34 implies that all letters

in columns £ + 1,..., w +m + n — 1 in the impacted row are shifted to the right
one column. Thus all letters remain in the same order after each subsequent bike lock
move. O

Corollary 39 The composition BL™ is bijective map from S to S.

Proof of Corollary 39 Let () € S. By Corollary 38, the order of the letters of BL™(()
in each row are the same as the order of the letters in (g) Observe the letters of (g)
are left-aligned. If BL’(g) for some (g:) e S, then the letters of (gi) are also left-

aligned, and occur in the same order as (g), so that (gi) = (g) Therefore, BL™ is
injective. Recall § is the image of BL™. O

We now characterize S.

Proposition 40 Elements of S are exactly 2 x (w + m + n) matrices M satisfying the
following:
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1. The columns of M consist only of 7 types:

(0)-(2)-(€)-(€)-(€)- (&) (&)

U —
3. The number of times each letter or placeholder appears in each row of M is given
in Table 1 for some 0 <i <mand0 < j <n.

2. There are no pairs of adjacent columns in M of the form

We prove Proposition 40 in a series of lemmas.
Lemma 41 Elements of S satisfy the three conditions of Proposition 40.

Proof of Lemma 41 By Lemma 37, each nontrivial bike lock move inserts a — into the
corresponding column. BL; (N,_,) has a nontrivial row set exactly when there is an
O oraU in the kth column of N, _ ;. Thus all columns in BL™ (g) withan O ora U are
of the form (2) or (L_,) All other columns are possible, and listed in the proposition,
proving Property 1.

Observe that —s occur before letters in Ng only in columns 1, ..., k. Thus (Ng)x+1
is not (;) for any k, unless no letters follow on the first row, in which case the column
(l_]) cannot be followed by (9) On the other hand, a column of the form (3) results in
a shift on the second row. As a result, the column (;;) is never followed by (?) This
establishes Property 2.

Finally, Lemma 34 ensures that the counts of BL™ (g) are the same as those of (g)
These counts are given in Table 1, establishing Property 3. O

We now show that any matrix M satisfying these conditions is BL_(g) for some
(g) € §. Consider any matrix M satisfying the conditions of Proposition 40 for some
i, j. Observe that the first row of M consists of entries in {O, P, Q, R, S, T, —}
and the second row consists of entries in {U, C, —}. In each row of M, remove all
placeholders, left align all letters and place the placeholders to the right of the last
letter. Note that this operation does not change the number of individual letters listed
in each row. The resulting matrix is of the form (g), with the number of letters of
each type given in Table 1. Therefore ( g) satisfies the bulleted listed in §5.1, implying
()es.

We verify that

F
M:BL;+m+no-.-oBL;oBL;<G)

using an inductive argument on the columns of each matrix. We begin with some
properties of the series of applications of bike lock moves on (g)

Lemma42 Allletters of N, incolumnsk+1, ..., w+m-+n are left aligned, meaning
that all letters occur before any — in these columns.

@ Springer



654 La Matematica (2022) 1:618-665

Proof of Lemma 42 Observe that all letters of (g) occur to the left of all copies of —.
The application of BL] to (g) results in either no change, or a cyclic shift to the right

by one row, resulting in an entry of the first column (g) moving to the second column
and all other entries moving to the right, with the last entry of the row cycling to the
first column. If all entries of F' or G are —, then a rotation of that row will has entries
that are vacuously left-aligned from the second column. If either begins with a letter,
then a cycling of that row will move that letter to the right one unit, possibly inserting
a — in the first column. The resulting matrix remains left-aligned from column 2.
Similarly, suppose the letters of N,_, are left-aligned among columns k, k +
1,...,w+ m + n with — occurring at the the end of the matrix and/or possibly
in the first K — 1 columns in N,_,. The application of BL, to N,_, has either no
effect, or it rotates one row in columns k, k + 1, ..., w + m + n by one unit to the
right with the entry in column w + m + n moving to column k. If there is no effect,
then clearly N~ = BL, (N,_,) is left-aligned in columns k + 1, ..., w +m +n. If
a rotated row of N 1 hasa letter in column k, then that letter is moved to the k£ + 1st
column and thus N, is left-aligned from column & + 1. If the entry of a rotated row of
N,_,is —,then N;_, hasonly —inrowsk, k+1, ... w-+m+n, since itis left-aligned

from column k. Therefore N, has only — in thatrow in columns k+1, ..., w+m+n,
so its letters in these columns are vacuously left-aligned. O
Lemma43 Let (g) have counts of letters in Table 1. Fork =0,1,...,w +n+m,
o The number of Os in the first row of Ny in columns k + 1, ..., w +m + n is the
same as the number of —s inthe second row of N;_ incolumnsk+1, ..., w+m+n,
and
e The number of Us in the second row of N, in columnsk+1, ..., w+m-+nisthe
same as the number of —s in the first row of N, in columnsk+1, ..., w+m+n.

Proof of Lemma 43 Observe that these two properties hold for ((F;) by a quick check
on Table 1. If (g)1 = (), then all entries of G are — which implies by Table 1 that all
entries of F are O. Similarly if ((F;)1 = (l_]), all entries of F' are — since the letters of F'

are left-aligned, and thus by Table 1, all entries of G are U. In both cases, N, = (g)
for all k, so the statement holds.

If (f;) consists of two consonants, then (B Ly (g))l = (%) and hence the number
of O, Us, and — in each row and in columns 2, ..., w + m + n, is the same for N~
and (g)

If ((F;)1 = (2) for any * # —, then (BLI(g))l = (?) since BL| applied to (g)
rotates of the second row, and Table 1 ensures there is a — at the end of G (since
there is an O in F). Therefore the first row of BL] (g) has one fewer O in columns

2,...,w+ n + m than (g), and one fewer — in the second row in those columns.
Since 1 € Ry, - (5> Lemma 34(3) implies The number of — occurring in the first row
1 \G

Fy . . —(F .
of (G) is the same as the number in BL; (G) By Lemma 34(4), since 2 € RBLT(Z)’

the number of U in columns 2, ..., w +m +nin BL (g) is also unchanged.
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If (Z)l = (;)) for % # — and % # O, then (BLl_(g))1 = () since Table 1

ensures there is a — at the end of F. Therefore the first row of BL| (g) has one fewer

—incolumns 2, ..., w+#n +m than (g) and one fewer U in the second row in those
columns. Since x # O, 1 € RBL—(F). Only — are rotated into the first column. By
k \G

Lemma 34 the count of O in the first row and the count of — in the second row in (g),
columns 2, ..., w + n + m, are the same as those in BL;(g).

Now suppose that the equalities hold for N,_ ;. If (N 1 ) P = (9) (or (l_]) then all
entries of N;_, in columns k, k + 1, ... w + m + n in the second row (or first row)
are —, since the letters of N,_, are left-aligned (see Lemma 42). By the inductive
assumption, all entries of N;_; in columns k, k + 1, ... w +m + n in the first row (or
second row) are O (or U). Then N~ = N,_, and there are both one fewer — and one
fewer O (or U) in subsequent columns, preserving the equality of the counts.

If (N_ i = (2) for any * # —, then BL, requires the rotation of the second

row. The inductive assumption ensures that there is a — at the end of the second
row of N, _,. Therefore the first row of N,  has one fewer O and the second row

has one fewer — in columns k + 1,..., w + n + m than N,_, has in columns
k,...,w+n+m.

To check the other equality, if (N,_)x = ((j), then BL, rotates the second row,
so that the count of Us in N, in columns k 4+ 1, ..., w + m 4 n equals the count of
Usin N,_, in columns k, ..., w + n + m. It follows that the lemma holds for N,
when (N, e = (9).

Similarly, if (N,_)x = (Z) for * # — and * # O, it must be the case that
(BL; (N;_)), = () since Table 1 ensures there is a — at the end of the first row of
N _,. Thus there is one fewer — in the first row and one fewer U in the second row of
Ny incolumns k + 1, ..., w +m + n, compared to the counts of the same in N;_,
in columns k, k + 1,..., w + m + n. As both values are reduced by 1, they remain
equal. The counts of Os in the first row and — in the second row do not change as they
are not present in the kth column of N,_, or N, .

It follows that the lemma holds for N, in all cases. O

We use an inductive argument to show that (M) = (N, )i for all k. The base case
is established in the following lemma.

Lemma44 Let (M) denote the first column of M. Then (M) = (N[ )1.

Proof of Lemma 44 If the entries of column (M); are consonants, then BL| does not
change (g) Therefore, (N{ )1 = (BLf(g))l = (M), in this case.

Suppose (M) = (9) It follow that the first column of (g) is (2), (g), or (9) In

all cases, the bike lock move BL| rotates the second row of (g) (see (22)). Table 1
guarantees a — at the end of the second row of (g) because there exists an O in the

first row. It follows that (Nl_)l = (?) = (M), .

Suppose (M) = (;;). The first column of (g) is thus (;;), where # is an element of
{O,P,Q,R,S, T,—}. If x = O, then the first non-placeholder in the first row of M
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would be O. If this occurs in column £, then (M), = (?), as this is the only permitted
column with an O in the first row. For the same reason, (M),_| = ({]), and so M

contains a disallowed pair (; ?)

On the other hand, if * is one of {P, O, R, S, T, —}, then by (22) BL| cycles the
first row starting in column 1, and introduces the last element in F to column 1. Table 1
ensures this symbol is — since the U in the second row ensures a — at the end of F.

Thus (BL7 (§)), = () = @1 o

Having established the base case, we assume that (N, _,)¢ = (M), for £ <k —1
and show that

F
N, = (BLk_ oBL,_jo---o0 BL;<G>>Z = (M),, for €<k

in each three cases of the possible columns of M in Proposition 40: when (M) consists
of consonants, when (M) = (9) and when (M) = ().

Observe that (N, _ ;)¢ = (M), for all £ < k — 1 implies that (N, )¢ = (M), for
all £ <k —1as BL; does not change any of the first kK — 1 columns (see Lemma 34,
Property 2). Thus we need only show that (N, )x = (M)y.

Lemma45 Suppose (M) consists of consonants, and (N,_)¢ = (M)¢ for all £ <
k — 1. Then (N, )i = (M).
mik

mok
that occur in M and in N,_; are the same. The two matrices agree on the first k — 1

Proof of Lemma 45 Suppose (M); = (I'*). By Remark 33, the number of each symbol

columns., so m1; and my; appear in the first and second rows of N,_; in columns £,
and ¢, respectively, where €1, £ > k. By Corollary 38, the order of the letters are
the same in M and in N,_ |, so m1; and myy are the the first letters to appear in N,_,
in column k or later, in their respective rows. By Lemma 42, the letters in columns
k,k+1,...,w+m+nof N_, are left-aligned, and thus £; = ¢, = k. It follows
that (N,_ )k = (M), and thus (N,_,); consists of consonants. By Definition 35,
N, = N, _, and thus (N )k = (N, _ )k = (M), as desired. O

Lemma 46 Suppose (M) consists of(g) and
(Ni_De = (M) forall € < k — 1. Then (N, ) = (M)x.

Proof of Lemma 46 By Corollary 38, the letters of F are in the same order as the letters
of M. Thus the first row entry of (N, )i is either O or —.

Case 1 Suppose (N, )i = (g) for x either C or U. Then either (N,_ )i = ((j), in
which case BL, does not change the first entry, or (N, _ ) = (;}) for * some symbol

not O. Observe that in the latter case, the bike lock move BL; whose row shifts are
specified in (22) results in a shift of the first row. Following Lemma 43, there are
exactly as many copies of U in the second row, columns &, ..., w+m +n as there are
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— in the first row in these columns of N,_ ;. By Lemma 42, there is a — at the end of
the first row of N,_,. As a consequence, (Nk_)k = (BLk_ (Nk_—l))k = (5), contrary
to assumption. Thus we may assume that (N;_ )k = ((j) Using Lemma 43 again,

there are as many — in the second row in columns k, ..., w+m +n of N «_1 as there
are Os in the first row, so that

0} = (B 0i), = (7) = o

This establishes that (N, )x = (g) implies (N, )k = (M)y.

Case 2 Suppose (Nk_)k = (;) for some symbol *. Since N, = BL, (N,_,), the
specification of row shifts in (22) of BL, implies (N, _)x = (;) for some symbol x*,
or (N Dk = (;;) for a symbol « that is not O.

If (N, _ Dk = (;}) with % # O, then by Lemmas 43 and 42, there is a — at the end of
N,_, in the first row. As a result, (N, )k = (BL; (N;_ )k = (;;). On the other hand,
it (N _ Dk = (;), but x # U, then (N, ) = (;) as BL,; has no effect. In either case,
by Corollary 38, N, must have an O in the first row of some column £ > k and — in

rowsk,k+1,...,¢—1, since M has an O in the first row in column k. But then the
letters of N, are not left-aligned from from column k + 1, contrary to Lemma 42.

These two cases establish that (M) = (?) implies (N; )k = (M)y. o

Lemma 47 Suppose (M) = () and (N;_ )¢ = (M) for all £ < k — 1. Then
(N )k = (M)

Proof of Lemma 47 The letters of the second row of N,_, are in the same order as
those of M by Corollary 38. Thus the second entry of (N, )i is either U or —.
Case 1 Suppose (N, )i = (;}) By Definition 35, (N, _ ) has either an O in the first
row or a U in the second row. If (N,_)x = (2), then BL, rotates the second row
of N,_, starting in column k. By Lemmas 43 and 42, there is a — at the end of the
second row of N,_ | Therefore, using (22), (N )k = (9), contrary to assumption.
Alternatively (N,_)x = (;}) with % # O. Then Lemmas 43 and 42 imply that
there is a — at the end of the first row of N,_,. It follows that

)= () = 0.

Case 2 Suppose (N; )k = (). If (N,_ )k also has a — in the kth column second row,
then all the entries in the second row of N,_ | in columns K,k +1,...w +m +n
are — as letters are left-aligned (see Lemma 42). However, this contradicts the fact
that (M) has a U in the second row, as the letters must be the same as those in M in
columns k, k + 1, ... w + m + n (by Lemma 43).

We may therefore assume that the second row of (NV,_ )i is not —. In this case
BL, moves the second row to ensure that (N )r = (f) However BL, moves the
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second row if and only if the first entry is O, so (N,_ )k = (). It follows that
(N = (9) Then by Corollary 38, the first letter occurring in the first row in
columnsk+1,...w+m-+nof M mustbe O. If this occurs in column £ with £ > k,
then (M), = (?), since this is the only permitted column with an O. For the same

0]
U _). We conclude

that Case 2 cannot occur. O

reason, (M)¢—1 = (), and so M contains a disallowed pair <

We finally have the ingredients to prove Proposition 40.

Proof of Proposition 40 If S € S, then S satisfies the three properties of the proposition,
by Lemma 41. On the other hand, if M satisfies these three properties, then construct
(g) by removing all — from each row, left aligning all letters, and placing all — at the
end of the corresponding row, as done earlier.

Observe that (BL™ (g))g = (N, )¢ whenever £ < k (see Lemma 34). By Lemma 44,
the first columns of M and N, agree. Therefore, the first columns of M and BL™ (g)
agree.

By way of induction we assume that the first k — 1 columns of M and BL™ (g) agree.
Then by Lemma 34, the first k — 1 columns of M and of N,_, agree. Lemmas 45,
46 and 47 imply that the kth columns of M and N, agree, and hence that the kth
columns of M and of BL™ (g) agree. We conclude that all columns of M agree with

all columns of BL_(g), ie. M = BL_(g). O

5.4 Bike Lock Moves on Elements of V

Definition 48 We define a bike lock move BL} on the set of 4 x ¢ matrices M with
entries in {0, 1, x}, with row shifts listed in Table 3. By definition, B L}, cyclicly rotates
the entries in each row of Rp LE(M) and columns &,k + 1, ..., c one column to the
right, with the entry in the last column sent to column k.

The rows Rp LE(M) that BLj shifts depend on the columns of M, as indicated in
Table 3. Let (M) denote the kth column of M.

Example 49 We show that

010 %% Ox10x

* * * * * 000** 0*00*
BLSoBLyoBL30o BL50o BL] 010x+l1=1x01x0
00 % % * *x0xx0

Apply each bike lock move referring to Rpg Ly (M) in (3) for the appropriate rows to
shift. In each case we highlight the column that determines the row shift, and color
the impacted cells that have changed with each bike lock move.
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Table 3 Rows moved by BL;,

depending on the kth column (M) Ry Ly
0 1 1
1 1 *
1 1 0 n
0 0 0
1 1 *
0 1 1
0 0 0 {2}
1 1 0
0 0 0
1 1 0
0 1 1 3
1 1 *
1 1 0
0 0 0
1 1 * 4
0 1 1
1 0 1
0 1 1
0 0 0 {1,2}
0 0 0
0 0 0 0
0 0 0 0
0 1 0 1 3.4}
0 0 1 1

¢
—
17
o
=

We prove a series of properties of BLj that will allow us to completely describe
V:={BL*(V): V € V}. Let

Nf:=BL}o---0oBL(V)

with the convention Ny = V.

Lemma 50 All Os and 1s of N,: in columns k + 1, ..., w4+ m + n are left-aligned,
meaning that all numbers occur before any  in these columns.
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Proof The Os and 1s in V are all left-aligned by definition. If a row of V consists of
all xs it is vacuously left-aligned. Assume inductively that for all £ < k that the Os and
Isin Ny incolumns k +1,..., w+m +n are left aligned. We consider BL;+1 (ND).
By hypothesis the numbers in the rows of columns k 4 1 through w 4 m + n are left
aligned; if BL}(Ny) is trivial they remain left aligned and in particular the numbers
in columns k + 2 to w + m + n remain left-aligned.

If BL | (N}) rotates one of the rows of N}, then in inserts the last entry in the
rotated row into (N;)g1 and shifts the remaining entries to the right by one. Thus the
numbers in the affected row remain left-aligned in columns & + 2 and any unchanged
rows also preserve the property. O

Corollary 51 All the xs of Ny are right aligned, meaning that if the £th row of N} is a
*, then so is every entry of row £ in columns k + 2 to w + m + n.

Proof Since the numbers in rows k + 1 to w + m + n are left-aligned by Lemma 50,
the entries to the right of all of the numbers in a row in columns k +2tow +m +n
must all be s. O

Lemma 52 Suppose V € V, or V has counts of Os, 1s, and xs given in Table 2. For
k=0,1,...,w+n-+m,

o The number of *s in the first row of N} in columns k + 1, ..., w + m + n is the
same as the number of Os in the fourth row of Ny in columns k+1, ..., w+m+n;

o The number of s in the second row of Ny in columns k+1, ..., w+m +n is the
same as the number of Os in the third row oka* incolumnsk+1,...,w+m-+n;

e The number of s in the third row ofN,: incolumnsk+1,...,w+m+nisthe
same as the number of Os in the first row of N{'; and

o The number of xs in the fourth row of Ny in columns k+1, ..., w+m +n is the

same as the number of Os in the second row of N};.

Proof By referencing Table 2 the above statement is true for &k = 0. Assume by
induction that the statements in the lemma hold for all 0 < ¢ < k and consider
BL}(N;_,). We consider each row separately.

By Lemma 50, if there is a * in the first row of (N;_,)« then all the remaining
entries of the first row must also be s and therefore by the inductive assumption all
the remaining entries in the fourth row of N;/_; must be 0.

Note that 1 or 2 is in the row set of BLj applied to N;_; implies neither 3 nor 4 is
in the row set (see Table 3). In particular, in these cases, the third and fourth rows of
Ny and N}_, are identical.

Ifl € Ry LENE_ ) then by referring to Table 3 we see that there must be a 0 in the
fourth row of (N;_,)x. By the inductive hypothesis there must be a x in the first row
in columns k through w + m + n, by Corollary 51 a % occur in the last entry of the
first row. Thus B L} rotates a x into the first row of (N;_,). Since the fourth row of
Ny is identical to that of N}, both the number of s in the first row and Os in the
fourth row of columns k + 1 to w + m + n of N}’ decrease by one.

Similarly, if 2 € Rpg LE(NE_)) then Table 3 implies there is a O in the third row

of (Ny_ )k, and also that 3 ¢ Rp L:- By the inductive assumption there must be a
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in the second row among columns k, ..., w +m + n of N;_, of (N,:_l)k, and by
Corollary 51, such a % is found at the end of the second row. Furthermore, since the
third row is not cycled by BLj, the matrix N} has one fewer 0 in row 3, and one fewer
* in row 2, in columns k + 1, ..., w + m + n, compared to the number of each in
columns k, ..., w+m +n of N,‘(L]. Thus the properties of the Lemma hold for N ,: .

A similar argument applies to prove the case when 3 or 4 is in the row set of BL}
applied to N;_ ;. O

Corollary 53 Fork = 1,...,w + m + n, the bike lock move BL} applied to N} _,
either leaves it unchanged, or inserts x into the kth column.

Proof If B Lj shifts the first row of N;_, then there is a 0 in the fourth row of (N}, )«.
By Lemma 52 and Corollary 51 there is a * in the first row of N}_, inthe w +m +n
column. Thus B L} rotates a x into the first row of (N;_ ).

Similar arguments apply to prove the cases when B L} shifts the second, third, and
fourth rows of N;_;. Thus if BL7 shifts the £th of &, ,:7] , it cycles a * into the £th row
of (N}_ k- m]

Corollary 54 The numbers of Ny are in the same order as the numbers of V for all
k=0,...,w+m-+n.

Proof By Corollary 53 if BLj shifts row £ of N}'_, then it cycles the entries of row £
in columns k to w + m + n to the right by 1. By Corollary 53 BL} always shifts a x
into the kth column of N;_, and so the original order of the numbers is preserved. O

Lemma 55 The composition
BL*:=BL} . ,0---0oBL>oBLj

is a bijective map from'V to V= {BL*(V): V e V}.

Proof of Lemma 55 We verify that BL* is injective. Suppose that BL*(V) = BL*(V')
for some V, V' € V. By Corollary 54 the order of the Os and 1s is preserved from V
to BL*(V) and V' to BL*(V’), implying that the sequence of Os and 1s in each row
of V and V' are the same since BL*(V) = BL*(V’). Since the Os and 1sin V and V’
are left-aligned, it must be the case that V = V’. Hence BL* injects onto its image. O

We now characterize the elements of V by a careful accounting of what each bike
lock move B L} does to columns of N; := BLjo...BL}(V)forV e V.

Proposition 56 Elements 0f§ are exactly 4 x (w + m + n) matrices M satisfying the
following:

1. The columns consist only of 7 types:

(=l
—_— O % =
—_— 2 = O
* * O O
—_
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* 0
0
*
0 %
3. The number of times each 1, 0, or x appears in each row of M is given in Table 2.

2. There are no pairs of adjacent columns of the form 6

We prove Proposition 56 via a series of lemmas.
Lemma 57 Elements of V% satisfy the three conditions of Proposition 56.
Proof of Lemma 57 We first show thatelements BL*(V) € V satisfy Property 1, noting
that (BL*(V))x = (N})k.

If the kth column of N;’_; consists of only Os and 1s, then by referencing Table 3
and by Corollary 53 the possibilities for the kth column of N} are

(BL*(V)k = (NDk =

S — — %
—
H;-io
* = O =
oc:**
*;oo
— e

Suppose the kth column of N}_, contains a x. We consider each row separately. If »
is the entry of the first row of (N}_,), then every subsequent entry in the first row is
 since the Os and s of N;_, are left aligned (see Corollary 51). Hence by Table 2
and Lemma 52, every entry in the fourth row, columns k, ..., w 4+ m + n, must be a
0. Since there are no s in the fourth row in columns k, ..., w + m + n, no entry in
the second row of N}_, in these columns can be a 0. Therefore the second entry of
(N;_ )k is 1 or *.

If the entry in the second row of (N;_,) is a x, by a similar argument the entry in
the third row of (N}_,); must be a 0 and so (N}_;)x = (x, x,0, 0.

Suppose (N;_,) has 1 in its second row. Since there are no Os in the first row of
N,:_l, columns &, ..., w + m + n, there are no s in the third row in these columns.
Thus the only possibilities for (N;_)x are (N;_)x = (x, 1,1, 0)7, which is one
of the 7 types listed in the first property, or (N;_ )k = (%, 1,0, 07, 1f (NI_ Dk =
(>, 1,0, O)T, then BL; rotates the second row of N,:_ | and Corollary 53 ensures that
(BL*(V))r = (NDk = (*, %, 0, 0)7, also one of the types listed in Property 1.

Similar arguments show that if the second, third, or fourth rows of (N ,:71 )i are *
then either (N;_, )y is already one of the 7 types or BLj shifts a » into an appropriate
row so that (BL*(V))x = (N}) is one of the types listed in Property 1.

To prove the second property we check that if the kth column of M € Y is
(%, %,0,0)7 then the k + 1st column cannot be (0,0, x, x)7. There are three pos-
siblities for (N;_ )« that could lead to (M) = (N;)x = (*, %, 0, 07

First suppose that RBLZ(NZ_|) = {J, in which case (N}_))r = (x,*,0, 0. By
Corollary 51 and Lemma 52 (N]:_l)g = (%, x, 0, O)T forallk < ¢ < w+m+n;in
particular (N 41 # (0,0, %, %)7.
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The second possibility is that Rprany ) = {1}. By Table 3 the only choice for
(N 1:71)1( is (1, %, 0, O)T. By Lemma 51 every subsequent entry in the second row of
N}_, must be x, which excludes (N}, Di+1 = (0,0, %, %)7.

The last possibility is that Rg LE(NE ) = {2}. Again by referencing Table 3 it must
be the case that (N;_)r = (x, 1,0, 0)”. Thus once again by Lemma 51 every entry
in the second row of N;_; to the right of the kth column must also be a x and so

(M1 = (NF i1 # (0,0, %, )7
Finally, Property 3 is immediately satisfied by Corollary 54. O

We now verify that any M satisfying the properties of Proposition 56 is BL*(V)
for some V € V, and hence M € V.

Lemma 58 Let M be any matrix satisfying Properties 1, 2, and 3 in Proposition 56,
and let V be the matrix obtained by right justifying the xs in M. Then BL*(V) = M.

Proof Observe that V € V due to Property 3. Suppose that the first k — 1 columns
of BL*(V) and M agree, and consider the kth column (k could be 1). If the kth
column of BL*(V) is any of (x, 1, 1,007, (1,,0, DT, (0, 1, , DT, (1,0, 1, %7, or
(1,1,1, l)T, so too must be the kth column of M, to have preserved the order of the
0Os and 1s when removing s from M to form V.

Suppose the kth column of BL*(V) is (%, , 0, 0)”. An appearance of a 1 in the
3rd or 4th row of the kth column of M would disrupt the order of Os and 1s. Thus the
kth column of M must contain only « or Os in the 3rd and 4th rows. Only (x, *, 0, O)T
and (0, 0, x, *)T satisfy this condition.

If M has (%, %, 0, O)T in the kth column, we’re done. If not, then it must have
(0,0, %, %)T in the kth column. Then the appearance of a 1 in the first or second row
of the (k + 1)st column of BL*(V) would disrupt the order of the Os and 1s. Thus
the (k + 1)st column of BL*(V) must contain only % or Os in the Ist or 2nd rows.
Of the seven possibilities, only (x, *, 0, O)T and (0, 0, x, *)T satisfy this condition.
By the same reasoning, BL*(V) has (, x, 0, O)T in all subsequent columns, until the
first occurrence of (0, 0, x, x)7, guaranteed to occur by a simple count. It follows that
BL*(V) has two adjacent columns of the form disallowed by Property 2.

A similar argument works if the kth column of BL*(V) is (0, 0, *, AT If M has
0,0, , *)T in the kth column, we’re done. If not, then it must have (x, , 0, O)T in the
kth column. By the same reasoning, M has (%, x, 0, O)T in all subsequent columns,
until the first occurrence of (0, 0, x, 7T, guaranteed to occur by a simple count. Then
M has two adjacent columns of the form disallowed by Property 2. O

Proof of Proposition 56 By Lemma 57 any M € V satisfies the conditions listed in
Proposition 56; by Lemma 58 any matrix M satisfying the properties is BL*(V) for
some V € )V and hence M € V. O

5.5 Bijection Between V and S

Finally, we complete the proof of Theorem 9 by establishing the bijection between
sets of the right size.

@ Springer
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Proposition 59 There is a bijection between sets V and S.

Proof We establish a bijection between the sets Vand S, by mapping the seven vectors
* 1 0 1 * 0 1

1 * 1 0 * 0 1] .. . ~
b lolb el il tolb Lo L listed in Lemma 56 for elements of V
0 1 1 * 0 * 1

to the seven 2-vectors

()-(2)-(€)-(€)- (o) (%) ()

of elements of S, respectively. Note that the excluded configurations of % correspond
exactly to the excluded configurations of S ~ -

Lemmas 39 and 55 establish bijections from S to S and from V to V, respectively.
Thus there is a bijection S — V. O

It follows that |S| = |V|. Since |V] is given by the left-hand side of Eq. (6) and |S| is
given by the right side of Eq. (6), we have concluded the proof of Theorem 9.

As an immediate corollary, we obtain Verdermonde’s Identity. Let n = 0 in Theo-
rem 9, and substitutea = x, b=y —x +m,s =m,andr = i.

Corollary 60 (Vandermonde) Let a, b € 7. Then

(9)-2C)62)
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