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Abstract
The Peterson variety is a special case of a nilpotent Hessenberg variety, a class of
subvarieties of G/B that have appeared in the study of quantum cohomology, repre-
sentation theory and combinatorics. In type A, the Peterson variety Y is a subvariety
of Fl(n; C), the set of complete flags in C

n , and comes equipped with an action by a
one-dimensional torus subgroup S of a standard torus T that acts on Fl(n; C). Using
the Peterson Schubert basis introduced in Harada and Tymoczko (Proc Lond Math
Soc 103(1):40–72, 2011) and obtained by restricting a specific set of Schubert classes
from H∗

T (Fl(n; C)) to H∗
S (Y ), we describe the product structure of the equivariant

cohomology H∗
S (Y ). In particular, we show that the product is manifestly positive in

an appropriate sense by providing an explicit, positive, combinatorial formula for its
structure constants. A key step in our proof requires a new combinatorial identity of
binomial coefficients that generalizes Vandermonde’s identity, andmerits independent
interest.

Keywords Peterson · Schubert calculus · Structure constants · Vandermonde

1 Introduction

Let G = Gl(n, C), B upper triangular matrices, and B− lower triangular matrices.
The quotientG/B = Fl(n; C) is the associated flag variety. Let T be compact form of
the set of diagonal matrices in G, i.e. diagonal matrices in which each entry has norm
1. ThenG/B has a left T action with isolated fixed points, (G/B)T . The fixed point set
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may be identified with theWeyl groupW ∼= Sn , the permutation group on n letters.We
denote by t the Lie algebra of T and by t∗ its dual. Let xi be the i th coordinate function
on T ∼= (S1)n , for i = 1, . . . n. Finally let {αi := xi − xi+1 : i ∈ {1, . . . , n − 1}}
denote a choice of positive simple roots, with the property that the roots spaces of the
Lie algebra b of B are positive.

The ordinary cohomology and the T -equivariant cohomology of G/B have a lin-
ear basis given by Schubert classes σw as w varies over elements of W . Indeed,
they are each free modules over the corresponding ordinary or equivariant coho-
mology of a point. We use cohomology with complex coefficients throughout, and
identify the equivariant cohomology of a point, denoted H∗

T , with the polynomial ring
C[x1, . . . , xn].

The products of Schubert classes define coefficients cw
u,v ∈ H∗

T by expanding in the
basis:

σuσv =
∑

w∈W
cw
u,vσw

for all u, v ∈ W . The coefficients cw
u,v are polynomials in α1, . . . , αn−1 with nonneg-

ative coefficients [12].
This manuscript describes a similar story with a particular subvariety of Fl(n; C),

namely the Peterson variety Y . The Peterson variety is a special nilpotent Hessenberg
variety first introduced in unpublished work by Peterson [17], in which he proposed
a link with the quantum cohomology of Fl(n; C). There are multiple equivalent def-
initions that have been given for the Peterson, and we provide one that works in all
Lie types. In Definition 11, we provide another definition specific to the case that
G/B = Fl(n; C). Let w0 denote the longest word in the Weyl group W , and e ∈ b a
principal nilpotent element in the Lie algebra of B. Define Ge be the centralizer of e.
The Peterson variety is defined as the closure in G/B of an orbit of Ge on the point
w0B, as follows:

Y := Gew0B ↪→ G/B.

Kostant elaborated on the connection to integrable systems, showing that the quan-
tum cohomology ring of Fl(n; C) is isomorphic to the coordinate ring of an open
dense affine subvariety of the Peterson variety [16]. Rietsch generalizes these results
to G/P for any parabolic P , and proved the Peterson variety is paved by these affine
varieties as P varies [18]. Her work revealed an explicit relationship among geometric,
algebraic and combinatorial descriptions of quantum cohomology, which she subse-
quently generalized to equivariant quantum cohomology, noting that each stratummay
also play the role of a “mirror symmetry phenomenon" for G/P [19].

The Peterson variety Y in Fl(n; C) is invariant under the action of a one-
dimensional subgroup S of T (specified in Sect. 3.1).We describe the product structure
of the S-equivariant cohomology H∗

S (Y ) in a specific linear basis, termed the Peterson
Schubert basis. In particular, we show that the product is positive in an appropriate
sense by providing an explicit positive combinatorial formula for the S-equivariant
and ordinary structure constants (see Theorems 1, 3, 5, 6, and their corollaries).
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The (equivariant) cohomology of the Peterson variety has been formulated and
described in several ways. Tymoczko showed the Peterson variety has a paving by
affine cells [21], implying its cohomology groups are nonzero only in even degrees.
Tymoczko and Insko explore the non-equivariant cohomology through the study of
its homology groups [15]. The ring structure has been described both as a quotient
ring and as a subring of a sum of polynomial rings in work by Brion and Carrel [6],
Harada et al. [13], and Fukukawa et al. [9], and via a connection with hyperplane
arrangements [2]. Harada and Tymoczko [14] introduced a Schubert-type basis for the
S-equivariant cohomology of the Peterson variety as a module over the S-equivariant
cohomology of a point and proved a manifestly positive Chevalley–Monk formula for
the equivariant cohomology of the Peterson variety of Fl(n; C). Drellich extended
the Chevalley–Monk formula proved by Harada and Tymoczko to all Lie types as
well as proved Giambelli’s formula for Y in all Lie types [8]. After the appearance of
this manuscript on the arXiv, Abe, Horiguchi, Kuwata, and Zeng posted a paper that
computes the structure constants for the ordinary cohomology of Y [1].

Harada and Tymoczko’s insight was to use a natural composition

j : H∗
T (Fl(n; C)) −→ H∗

S (Fl(n; C)) −→ H∗
S (Y )

to obtain a basis of H∗
S (Y ) (as a module over H∗

S ) as the image of a specific subset of
Schubert classes on Fl(n; C) indexed by subsets

A ⊆ [n − 1] = {1, . . . , n − 1}.
More specifically, let α1, . . . αn−1 denote the simple roots ordered by adjacency in the
Dynkin diagram, and s1, . . . , sn−1 the corresponding reflections. For A = {a1, . . . , ak}
listed in increasing order, let

vA = sa1sa2 . . . sak

and σvA the corresponding Schubert class. The Peterson Schubert classes pA are
defined by

pA = j(σvA).

The set {pA}A⊆[n−1] forms a module basis of H∗
S (Y ). Thus the product of two Peter-

son Schubert classes is an H∗
S -linear combination of Peterson Schubert classes. For

A, B,C ⊆ {1, . . . , n − 1}, define the structure constant bCA,B ∈ H∗
S by

pA pB =
∑

C⊆{1,...,n−1}
bCA,B pC . (1)

Harada and Tymoczko show that bCA,B is a nonnegative integer multiple of a power of
t when A = {i} consists of a single element, and provide a positive (counting) formula
for the coefficients bC{i},B .

Their work raises the enticing question of whether the product structure is positive
in the equivariant sense, i.e. whether the structure constants bCAB are polynomials
with nonnegative coefficients for all A, B,C . Our main results are combinatorially
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positive formulas for these equivariant Peterson Schubert structure coefficients when
G = Gl(n, C). The explicit formulas are found in Theorems 1, 3, 5, and 6, which
together provide manifestly positive formulas for the equivariant structure constants
of H∗

S (Y ) in the basis {pA : A ⊂ {1, . . . , n − 1}} of Peterson Schubert classes. As a
result, we obtain both the statement that structure constants are nonnegative, as well as
simple criteria for when they are positive. The first author explores a geometric proof
of positivity in all Lie types in separate work [10].

We call a subsetCk ⊂ C ⊂ {1, . . . , n−1}maximal consecutive ifCk is consecutive
set such that

(minCk − 1) /∈ C and (maxCk + 1) /∈ C .

Corollary 7, Theorem 8 The equivariant structure constants bCA,B defined by (1)
are nonnegative, integral multiples of powers of t . They have positive coefficients
if and only if A ∪ B ⊆ C and each maximal consecutive subset Ck of C satisfies
|Ck | ≤ |Ck ∩ A| + |Ck ∩ B|.

One consequence of these theorems is amanifestly positive formula for the structure
constants in ordinary Peterson Schubert calculus (Corollary 2).

The proofs in this paper are combinatorial rather than geometric. A crucial step
for the proof is an unexpected combinatorial identity (Theorem 9), a generalization of
Vandermonde’s identity, which we prove using a technique we term bike lock moves.

The structure of the paper is as follows. In Sect. 2 we state the main positivity theo-
rems which together provide a full picture of the positivity of the structure constants.
In Sect. 3 we define the basics of equivariant cohomology, Peterson varieties, and pos-
itivity. We prove the main positivity theorems in Sect. 4, and the crucial combinatorial
theorem in Sect. 5.

2 Positivity Theorems

In this section, we describe the main results on the structure constants for the equivari-
ant cohomology H∗

S (Y ) of the Peterson variety Y in Fl(n; C) (both defined in Sect. 3),
which show directly their positivity. To each subset A ⊆ {1, 2, . . . , n − 1}, we define
an element pA ∈ H∗

S (Y ) in Sect. 3.3 as the pullback of a specific Schubert class from
G/B. We call pA a Peterson Schubert class, The collection {pA : A ⊂ {1, . . . , n−1}}
a free module basis for the equivariant cohomology H∗

S (Y ) over H∗
S := H∗

S (pt).
Define the structure constants bCA,B ∈ H∗

S by

pA pB =
∑

C⊆{1,2,...,n−1}
bCA,B pC . (2)

By construction, p∅ = 1, and thus the coefficients bCA,B are easy to calculate when

A, B or C is empty: bAA,∅ = bA∅,A = 1 for all A ⊆ {1, . . . , n − 1}, and all other
coefficients vanish.

For A, B,C nonempty, Theorem 1 gives an explicit positive, integral formula for
the coefficients bCA,B when A and B are consecutive. Theorems 3, 5 and 6 describe
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the constants in the nonconsecutive cases. Nonvanishing conditions for the structure
constants are described in Theorem 8. Proofs are relegated to Sect. 4.

We recall notation found in [14]. For A ⊆ {1, . . . , n − 1} with A nonempty and
consecutive, let TA = min{a ∈ A} and HA = max{a ∈ A}, called the tail and head
of A, respectively.

Theorem 1. (A, B,C consecutive) Let A, B,C ⊆ {1, . . . , n − 1} be nonempty con-
secutive subsets. If C ⊇ A ∪ B and |C | ≤ |A| + |B|, then

bCA,B = d!
( HA − TB + 1

d, TA − TC , HC − HB

)( HB − TA + 1

d, TB − TC , HC − HA

)
td (3)

for d := |A| + |B| − |C |.
Example 1 Let A = {1, 2}, B = {2, 3, 4} and C = {1, 2, 3, 4}. Then C is consecutive,
contains A ∪ B and |C | = 4 ≤ |A| + |B| = 5, so that bCA,B is given by (3). Observe

HA = 2 TA = 1 HB = 4 TB = 2

TC = 1 HC = 4 d = 1

so that bCA,B = 1!( 1
1, 0, 0

)( 4
1, 1, 2

)
t1 = 4!

2! t = 12t .

An immediate consequence of Theorem 1 is a formula for the ordinary cohomology
structure constants. For degree reasons, the product pA pB in ordinary cohomology
requires simply summing over classes pC such that |C | = |A| + |B|.
Corollary 2 Let A, B,C ⊆ {1, . . . , n − 1} be nonempty consecutive subsets. Suppose
A ∪ B ⊆ C, and |C | = |A| + |B|. Without loss of generality, assume that TA ≤ TB.
Then bCA,B is the product of binomial coefficients:

bCA,B =
(HA − TB + 1

TA − TC

)(HB − TA + 1

TB − TC

)
.

Proof By the degree assumption,HC − TC + 1 = (HA − TA + 1) + (HB − TB + 1).
Thus HA − TB + 1 = (TA − TC ) + (HC − HB) and

HB − TA + 1 = (TB − TC ) + (HC − HA).

The corollary follows. 
�
We successively loosen the restrictive demand of Theorem 1 that A, B and C are

each sets with consecutive numbers, as follows:

• Sets A ∪ B and C consecutive (Theorem 3),
• The set C is consecutive (Theorem 5), and
• No constraint on A, B,C (Theorem 6).
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When A, B or C are not consecutive, there are non-equivariant analogs for ordi-
nary cohomology. We won’t list them, however, as each result is identical to the
corresponding theorem with an additional hypothesis to ensure the degree is correct:
any coefficient bGE,F occurring in the formula are set to 0 unless |E | + |F | = |G|.
Theorem 3 (A∪B, C consecutive) Let A, B,C ⊆ {1, . . . , n−1} be nonempty subsets
with A ∪ B and C consecutive. Rename the maximal consecutive subsets of A and B
by E1, . . . , Ev ordered with increasing tails i.e. TE1 ≤ TE2 ≤ · · · ≤ TEv . Then

bCA,B =
∑

(C2,...,Cv−1)

bC2
E1,E2

bC3
C2,E3

bC4
C3,E4

. . . .bCv−1
Cv−2,Ev−1

bCCv−1,Ev
(4)

where the sum is over v − 2-tuples of consecutive sets Ci .

Note that, for each term in the sum of Theorem 3, the factors bC2
E1,E2

and bCi+1
Ci ,Ei+1

are
each calculated using Theorem 1 (as Ci , Ei+1 and Ci+1 are all consecutive).

Example 4 Let A = {1, 2, 4, 5}, B = {2, 3, 4} and C = {1, 2, 3, 4, 5, 6}. We use
Theorem 3 to compute bCA,B noting that A ∪ B is consecutive.

By ordering according to the smallest element in each maximal consecutive set,
choose E1 = {1, 2}, E2 = B, E3 = {4, 5} and note v = 3. Thus the sum (4) is

bCA,B =
∑

(C2)
C2 consecutive

bC2
E1,E2

bCC2,E3
.

By Theorem 1, bC2
E1,E2

�= 0 implies C2 contains E1 ∪ E2 = {1, 2, 3, 4} and |C2| ≤
|E1| + |E2| = 5. Since C2 is consecutive, the two possibilities are C2 = {1, 2, 3, 4}
and C2 = {1, 2, 3, 4, 5}. Thus by Theorem 3

bCA,B = b{1,2,3,4}
E1,E2

bC{1,2,3,4},E3
+ b{1,2,3,4,5}

E1,E2
bC{1,2,3,4,5},E3

.

Each factor of each term can be computed using Theorem 1:

b{1,2,3,4}
E1,E2

= 1!
(

1

1, 0, 0

)(
4

1, 1, 2

)
t1 = 12t

bC{1,2,3,4},E3
= 0!

(
1

0, 0, 1

)(
5

0, 3, 2

)
t0 = 10

b{1,2,3,4,5}
E1,E2

= 0!
(

1

0, 0, 1

)(
4

0, 1, 3

)
t0 = 4

bC{1,2,3,4,5},E3
= 1!

(
2

1, 0, 1

)(
5

1, 3, 1

)
t1 = 40t .

Therefore bCA,B = 12t · 10 + 4 · 40t = 280t .
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The following theorem is a complete description of the product when C is consec-
utive.

Theorem 5 (C consecutive) Let A, B,C ⊆ {1, . . . , n − 1} be nonempty subsets with
C consecutive. Let A∪ B = D1∪· · ·∪Du be a union of maximal consecutive subsets.
Write Ai = Di ∩ A and Bi = Di ∩ B, and note that Di = Ai ∪ Bi . Then

bCA,B =
∑

(E1,...,Eu): Di⊆Ei ,
Ei consecutive

(
u∏

i=1

bEi
Ai ,Bi

)
bCE1,...,Eu

,

where bEi
Ai ,Bi is calculated using Theorem 3, and bCE1,...,Eu

is the coefficient of pC in

the product
∏u

i=1 pEi .
If ∪i Ei is consecutive, bCE1,...,Eu

may be calculated by Theorems 1 and 3. If ∪i Ei

is not consecutive,

bCE1,...,Eu
=

∑

(F (1),F (2),...,F (u−2))
consecutive

bF
(1)

E (1)
j1

,E (1)
k1

bF
(2)

E (2)
j2

,E (2)
k2

. . . bF
(u−2)

E (u−2)
ju−2

,E (u−2)
ku−2

bC
E (u−1)
ju−1

,E (u−1)
ku−1

(5)

where E (1)
i = Ei , and the sets E (s)

i for s = 2, . . . , u − 1 are defined inductively as

follows. E (s)
js

and E (s)
ks

are chosen so that their union is consecutive, the sum is over

consecutive sets F (s) containing E (s)
js

∪ E (s)
ks

, and the sets E (s+1)
i are a relabeling of

the u − s sets

F (s), E (s)
1 , . . . , Ê (s)

js
, Ê (s)

ks
, . . . , E (s)

(u−s+1)

in which the two sets E (s)
js

and E (s)
ks

have been excluded. The sum is independent of

choices involvedwith ordering. Each termbF
(s)

E (s)
js

,E (s)
ks

may be calculated usingTheorem1

as E (s)
i is consecutive.

Note that the sum in (5) is not independent of the order of F (1), . . . F (u−2). The set of
possible F (s) depend on the term F (s−1) in the prior sum, as well as the choice of sets
E (s)

js
and E (s)

ks
whose union is consecutive. Theorem 5 guarantees that these sets exist

for each s when the coefficient is nonzero.
Finally,whenC is not consecutive,bCA,B is a product of coefficientswith consecutive

superscripts.

Theorem 6 Let A, B,C ⊆ {1, . . . , n − 1} be subsets such that bCA,B �= 0. Then

bCA,B =
m∏

k=1

bCk
A∩Ck ,B∩Ck

.

where C = C1 ∪· · ·∪Cm is written as a union of maximal consecutive subsequences.
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An immediate corollary to these theorems is that the structure constants for multi-
plication of {pA} in H∗

S (Y ), and hence in H∗(Y ) are nonnegative.

Corollary 7 For any A, B,C ⊆ {1, . . . , n−1}, bCA,B is a nonnegative, integral multiple
of a power of t .

Proof If A and B are consecutive, then this follows immediately from Theorem 1
as bCA,B is 0, 1, or described by Eq. (3). If A or B is not consecutive, but A ∪ B

is consecutive, then Theorem 3 implies that bCA,B is a sum of products of the terms
for consecutive A and B. Finally, Theorems 5 and 6 show that when A ∪ B is not
consecutive, the terms associatedwith consecutive pieces are nonnegative and integral,
and the terms associated with the product of those terms is also nonnegative and
integral. 
�

Finally, we state a nonvanishing result for arbitrary A, B,C .

Theorem 8 Let A, B,C ⊆ {1, . . . , n−1} be arbitrary subsets. The structure constant
bCA,B �= 0 if and only if

• A ∪ B ⊆ C, and
• For each maximal consecutive subset Ck of C, |Ck | ≤ |Ck ∩ A| + |Ck ∩ B|.
Theorem 8 and Corollary 7 imply these structure constants are positive (i.e. are

monomials with positive coefficients) when they are non-vanishing.
The proof of Theorem 1 relies heavily on the following combinatorial result, a

generalization of Vandermonde’s formula.

Theorem 9 Let m, n, w, x, y, z ∈ Z with w + x = y + z and m, n ≥ 0. Then

(
w + m

w

)(
y + m

x

)(
w + n

y

)(
z + n

z

)

=
∑

0≤i≤m
0≤ j≤n

(
w + i + n

w + i + j

)(
w + m + j

i, j, m − i, x − i − j, z − x + j, y − x + i

)
. (6)

We have thusfar not found this result in the literature, and it may stand alone as a
worthwhile combinatorial identity, proved in Sect. 5.

3 Background and Notation

3.1 FlagVarieties, PetersonVarieties, and Fixed Points

Let G = Gl(n; C), B upper triangular invertible matrices, B− lower triangular invert-
ible matrices, and T the set of diagonal matrices in G. Recall G/B is naturally
isomorphic to the set of complete flags

Fl(n; C) = {V• := (V1 ⊆ · · · ⊆ Vn−1 ⊆ C
n)| Vi is a subspace of C

n, dimC(Vi ) = i}.
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The flag V• corresponds to a a coset gB, where g ∈ Gl(n, C) is any matrix whose
first k columns form a basis for Vk , for k = 1, . . . , n. Note that right multiplication
by an upper triangular matrix (in B) preserves the vector space spanned by the first k
columns, for all k. The fixed points (G/B)T are isolated, and indexed by elements of
the Weyl group, W ∼= Sn . In particular,

(G/B)T = {wB/B : w ∈ W }.

Following Tymoczko [21], we describe Hessenberg varieties in Fl(n; C) as a set
of flags whose vector spaces satisfy linear conditions imposed by a principal nilpotent
operator. The equivalence of this description with the original definition by Kostant is
known to experts and proven in [10].

Definition 10 Let h : {1, . . . , n} → {1, . . . , n} be a function satisfying i ≤ h(i)
for all i ∈ {1, . . . , n} and let M be any n × n matrix M . The Hessenberg variety
H(h, M) corresponding to h and M is the collection of flags V• ∈ Fl(n; C) satisfying
MVi ⊆ Vh(i) for all 1 ≤ i ≤ n.

The Peterson variety Y is a specific Hessenberg variety, with h given by:

h(i) =
{
i + 1 1 ≤ i ≤ n − 1

n i = n.
(7)

Definition 11 The Peterson variety in Fl(n; C) is the Hessenberg variety Y =
H(h, M) where h is the function defined in Eq. (7) and M is a principal nilpotent
operator. Equivalently the Jordan canonical form for M consists of one block and M
has eigenvalue 0.

Example 12 Let n = 3, h(1) = 2, h(2) = 3, h(3) = 3 and M =
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ . The

Peterson variety in Fl(C3) consists of flags represented by matrices of the following
forms:

⎛

⎝
a b 1
b 1 0
1 0 0

⎞

⎠ ,

⎛

⎝
c 1 0
1 0 0
0 0 1

⎞

⎠ ,

⎛

⎝
1 0 0
0 d 1
0 1 0

⎞

⎠ ,

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ (8)

where a, b, c, d ∈ C. We verify the condition that MVi ⊆ Vh(i) for the first matrix
above. We check that MV1 ⊆ V2 (clearly MV2 ⊆ V3 = C

3):

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠

⎛

⎝
a
b
1

⎞

⎠ =
⎛

⎝
b
1
0

⎞

⎠ ∈ span

⎧
⎨

⎩

⎛

⎝
a
b
1

⎞

⎠ ,

⎛

⎝
b
1
0

⎞

⎠

⎫
⎬

⎭ = V2.
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As T consists of diagonal, unitary matrices, we write elements as n-tuples
(a1, . . . an) listing the diagonal entires. The variety Y is not T -stable, however it
is stable under a subgroup isomorphic to S1. Let

S = {(zn, zn−1, . . . , z2, z) : z ∈ C
∗, ||z||2 = 1} ⊆ T .

We observe that S preserves Y , as follows. Let ei ∈ C
n be the vector with 1 in the

i th coordinate, and 0 elsewhere. For any vector v ∈ C
n given by v = ∑n

i=1 ai ei , we
have

Mv =
n−1∑

i=1

ai+1ei .

On the other hand, for each element s of S given by a diagonal matrix with entries
(zn, zn−1, . . . , z), we have s · v = ∑n

i=1 z
n−i+1ai ei . A quick calculation shows that

s · Mv and M(s · v) span the same line:

s · Mv =
n−1∑

i=1

zn−i+1ai+1ei = z
n−1∑

i=1

zn−i ai+1ei = zM(s · v).

It follows that M(s · Vk) is in the span of s · MVk . If V• ∈ Y , then MVk ⊆ Vk+1
implies M(s · Vk) ⊆ s · MVk ⊆ s · Vk+1, and hence s · V• ∈ Y .

As S is a regular one-parameter subgroup of T , the S-fixed points of G/B are the
same as the T -fixed points. It follows that the fixed point set Y S may be described as
the intersection Y S = Y ∩ (G/B)T .

Explicitly, Y S consists of flags represented by block diagonal matrices where the
diagonal blocks are anti-diagonal with 1’s on the anti-diagonal:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 1
...

...
...

1 · · · 0
. . .

0 · · · 1
...

...
...

1 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For example if n = 2 then Y S consists of flags represented by matrices (8) in the
previous example with a = b = c = d = 0.

Each simple root αi corresponds to a simple reflection si := sαi that interchanges i
and i + 1. Recall an element w ∈ Sn can be written as a product of simple reflections
s1, . . . , sn−1, corresponding to the simple roots α1, . . . , αn−1, respectively. When
w = si1si2 · · · si�(w)

is written as a product with as few simple reflections as possible,
�(w) is called the length of w. The expression si1si2 · · · si�(w)

is called a reduced word

123



628 La Matematica (2022) 1:618–665

decomposition for w. To distinguish the product (resulting in w) from a sequence
of �(w) simple reflections in a reduced word decomposition, we refer to the index
sequence (i1, i2, . . . , i�(w)) as a reduced word sequence forw. Recall the Bruhat order
for u, v ∈ Sn : we say u ≤ v if there exists a substring of a reduced word for v whose
corresponding product of reflections is u. There exists a unique element w0 in Sn with
maximal length, and it satisfies w ≤ w0 for all w ∈ Sn .

Elements of Y S are represented by a specific set of permutations:

Y S = {wA ∈ Sn : A ⊆ {1, . . . , n − 1}}, (9)

where the permutation wA associated to a subset A is given as follows. Let A =
A1 ∪ A2 ∪ · · · ∪ Ak where each Ai is a maximal consecutive subset of A. For each i ,
denote by wAi the long word of the subgroup Hi of Sn generated by reflections s j for
j ∈ Ai , noting that Hi ∼= S|Ai |+1 is itself a permutation group. Then

wA = wA1wA2 · · · wAk

is the long word of the subgroup H1 × H2 × · · · × Hk ⊆ Sn . A matrix representing a
wAB ∈ Y S has anti-diagonal blocks of size |Ai | + 1.

3.2 The Equivariant Cohomology Ring of G/B and Schubert Classes

Define B-invariant Schubert varieties Xw := BwB/B inG/B, and let [Xw] denote the
corresponding T -equivariant homology class, following [5]. We use Poincaré duality
between equivariant homology and equivariant cohomology to define a dual basis
{σw : w ∈ W } of H∗

T (G/B) to the equivariant homology basis {[Xw] : w ∈ W }.
These bases satisfy the property that 〈σw, [Xv]〉 = δwv , where 〈 , 〉 denotes the
equivariant cap product, followed by the pushforward to a point.

Alternatively, σw is Poincaré dual to the equivariant homology class of the opposite
Schubert variety Xw := B−wB/B, which has finite codimension in the mixing space
for G/B.

The inclusion (G/B)T ↪→ G/B induces a map on cohomology

H∗
T (G/B) → H∗

T ((G/B)T ) =
⊕

w∈W
H∗
T (wB/B) =

⊕

w∈W
C[x1, . . . , xn] (10)

that is known to be injective [7,11].
Suppose W = (i1, . . . , i�) is a reduced word sequence for w ∈ W . If U =

(i j1, . . . , i jd ) with { j1, . . . , jd} ⊂ {1, . . . , �} and j1 < · · · < jd , we write U ⊆ W . It
is possible that U ⊆ W in multiple ways, if W has repeated indices. If U is also is a
reduced word sequence for u = si j1 · · · si jd , then clearly u ≤ w; we say that U is a
reduced word for u occurring as a subword of W .

The image of Schubert class σu under the map in Eq. (10) may be computed using
the AJS-Billey formula [3,4]:
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Theorem 13 ([3,4], AJS-Billey Restriction Formula) Given a fixed reduced word
sequence V = (i1, i2, . . . i�(v)) for v, define

r(k, V ) := si1 . . . sik−1(αik ).

For U = (i j1, i j2 , · · · , i j�(u)
) ⊆ V , we write

∏

k∈U
r(k, V ) := r( j1, V )r( j2, V ) · · · r( j�(u), V ).

Then for any u, v ∈ Sn,

σu |v =
∑

U⊆V

∏

k∈U
r(k, V ),

where the sum is over reduced words U occurring as subwords of V .

An immediate corollary is that σu |v = 0 unless u ≤ v.

3.3 The Equivariant Cohomology of the Peterson Y and Peterson Schubert Classes

The inclusion S ↪→ T given by z �→ (zn, zn−1, zn−2, . . . , z) for z a complex number
with |z| = 1, induces a map on Lie algebras, s → t given by

1 �→ (n, n − 1, n − 2, . . . , 2, 1).

Using the dual coordinate basis {x j } of t∗ introduced above, the dual map t∗ → s∗
induced by the inclusion is given by x j �→ (n − j + 1)t for j = 1, . . . , n, where
t ∈ s∗ is the dual coordinate to 1 ∈ s. The inclusion S ↪→ T

thus induces a map H∗
T → H∗

S in which

αi �→ t

for i = 1, 2, . . . , n − 1. This observation justifies the decision to call b ∈ H∗
S positive

if it is a polynomial in t with positive coefficients.
The map on equivariant cohomology in turn induces a map of modules for any

T -space X , which we also denote by π :

H∗
T (X)

π−−−−→ H∗
S (X).

When X = G/B, this is a surjective map of free modules. The S-equivariant inclusion
ι : Y ↪→ G/B of the Peterson variety induces a surjective map:

H∗
S (G/B)

ι∗−−−−→ H∗
S (Y ),
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and these maps naturally commute with the restrictions to fixed points. We thus obtain
a commutative diagram:

H∗
T (G/B)

π−−−−→ H∗
S (G/B)

ι∗−−−−→ H∗
S (Y )

⏐⏐�
⏐⏐�

⏐⏐�

H∗
T ((G/B)T ) −−−−→ H∗

S ((G/B)S)
ι∗f ps−−−−→ H∗

S (Y S)
∥∥∥

∥∥∥
∥∥∥

⊕
w∈W H∗

T

⊕
w∈W π−−−−−→ ⊕

w∈W H∗
S −−−−→ ⊕

wA∈Sn H
∗
S

where ι∗ is the map induced by the inclusion Y ↪→ G/B, and ι∗f ps is the induced
map from the inclusion of fixed point sets on Y to those on G/B. The kernel of ι∗f ps
consists of all copies of H∗

S (wB/B) with wB/B not in Y , i.e. w �= wA for any
A ⊆ {1, . . . , n − 1}.

All vertical maps of the commutative diagram are obtained from the inclusion of
fixed point sets. As discussed, the first two vertical maps are injective. In [14], the
authors prove that the third vertical map is injective, and that H∗

S (Y ) is a free module
over the equivariant cohomology of a point.

Theorem 14 ([14], Thoerem 3.2) Let S act on the Peterson variety Y as described
above. Then H∗

S (Y ) is a free module over H∗
S , and in particular,

H∗
S (Y ) � H∗(Y ) ⊗C H∗

S .

In addition, the inclusion Y S ↪→ Y induces an injection

H∗
S (Y ) −→ H∗

S (Y S).

The authors also discovered a basis of H∗
S (Y ) by mapping a subset of Schubert

classes across the vertical arrows of the commuting diagram.
For any subset A ⊆ {1, . . . , n−1}, define thePetersonSchubert class corresponding

to A ⊆ {1, . . . , n − 1} by

pA := ι∗ ◦ π(σvA) ∈ H∗
S (Y ),

where vA = sa1sa2 · · · sak with ai ∈ A and ai < a j whenever i < j , and σvA ∈
H∗
T (G/B) is the corresponding Schubert class. The degree of pA is 2�(vA) = 2|A|.

Theorem 15 ([14], Theorem 4.12) The collection {pA}A⊆{1,...,n−1} form an H∗
S -

module basis for H∗
S (Y ). We call this basis the Peterson Schubert basis of H∗

S (Y ).
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3.4 Peterson Schubert Classes: Basic Properties

Here we collect together a number of properties of Peterson Schubert classes, their
products, and their restrictions.

For A ⊆ {1, . . . , n − 1} with j ∈ A, TA( j) is the smallest integer in the maximal
consecutive subset of A containing j , and similarly, HA( j) is the largest integer of
the same set. Write A = A1 ∪ · · · ∪ Ak as a union of maximally consecutive sets.
Consider the reduced word sequence for the longest word wAi given by

WAi = (TA( j), TA( j) + 1, . . . ,HA( j), TA( j), TA( j) + 1, . . .HA( j) − 1,

. . . , TA( j), TA( j) + 1, TA( j)). (11)

Observe thatWAi is independent of j ∈ Ai since Ai is consecutive. One reduced word
sequenceWA forwA is given by the concatenation of sequencesWAi for i = 1, . . . , k,
i.e. WA = WA1WA2 · · ·WAk .

The following restriction formula is a tiny generalization of a formula proved in
[14, Proposition 5.9].

Lemma 16 Let σu ∈ H∗
T (G/B) be a Schubert class and let wA be the S-fixed point

of the Peterson variety Y associated to A ⊆ {1, . . . , n − 1}. Let A = A1 ∪ · · · ∪ Ak

be written as a union of maximally consecutive sets, and let WA be the reduced word
sequence forwA given by the concatenation WA1WA2 · · ·WAk of sequences WAi given
in Eq. (11) for i = 1, . . . , k. Then

ι∗ ◦ π(σu)|wA =
∑

U

nWA (U )

⎛

⎝
∏

j∈U
( j − TA( j) + 1)

⎞

⎠ t�(u) (12)

where the sum is over distinct reduced words U of u, nWA (U ) is the number times the
word U occurs as a subword of WA.

Since the Peterson Schubert class pA = ι∗ ◦ π(σvA), Lemma 16 implies the fol-
lowing Corollary.

Corollary 17 ([14], Theorem 4.12) pA|wC = 0 unless A ⊆ C.

Observe that in the poset of subsets ordered by inclusion,C = A is the minimal subset
for which pA|wC may not vanish. See Corollary 21. As a consequence, the structure
constants also satisfy support conditions:

Lemma 18 Let A, B,C ⊆ {1, 2, . . . , n − 1}. Then bCA,B �= 0 implies A ∪ B ⊆ C and
|C | ≤ |A| + |B|.
Proof Assume A ∪ B � C , then either A � C or B � C , so the product pA pB |wC

vanishes by Corollary 17. Similarly, pD|wC = 0 unless D ⊆ C . Thus

pA pB |wC =
∑

D⊆C

bDA,B pD|wC = 0. (13)
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Note that D ⊆ C implies A ∪ B � C , else A ∪ B ⊆ C . If |C | = 0, the sum is over
a single term C = ∅, so bCA,B pC |wC = 0. However pC |wC �= 0 by Lemma 16, so

bCA,B = 0. Make the inductive assumption that A ∪ B � C implies bCA,B = 0 for
|C | ≤ k. Then for |C | = k + 1, Eq. (13) may be written

pA pB |wC =
∑

D�C

bDA,B pD|wC + bCA,B pC |wC = 0.

If D is a proper subset of C , if |D| ≤ k, and by the inductive assumption, bDA,B = 0.

Thus as before, we conclude bCA,B pC |wC = 0 and, since pC |wC �= 0 that bCA,B = 0.

Since deg(pA pB) = |A|+|B| (as a polynomial), each summand bCA,B pC in the product

pA pB has degree |A| + |B|, and therefore bCA,B �= 0 implies that |C | = deg(pC ) ≤
|A| + |B|. 
�

Lemma 16 also implies that the restrictions of Peterson Schubert classes remain
constant when nonconsecutive elements are added to a fixed point.

Corollary 19 Let A ⊆ C0 with C0 consecutive, and let C ⊃ C0 be any set so that
C \ C0 is not consecutive with C0. Then

pA|wC0 = pA|wC .

Proof Let A = {a1, . . . , ak} with ai < a j for i < j . There is only one reduced
word decomposition vA = sa1sa1 . . . sak and thus one reduced word sequence VA =
(a1, . . . , ak). Neither TC0 − 1 nor HC0 + 1 are in C , so we may choose WC =
WC0WC\C0 for some choice WC\C0 . Lemma 16 therefore implies

pA|wC0 = nWC0 (VA)

⎛

⎝
∏

j∈VA

( j − TC0( j) + 1)

⎞

⎠ t |A|, and

pA|wC = nWC (VA)

⎛

⎝
∏

j∈VA

( j − TC ( j) + 1)

⎞

⎠ t |A|.

As A ⊆ C0 and WC = WC0WC\C0 , nWC (VA) = nWC0 (VA). Note that the product
over the entries j of VA consists of a single factor for each j ∈ A. Furthermore, j ∈ A
implies TC ( j) = TC0( j) since C does not contain TC0 − 1. Thus the products have
identical factors. 
�
Lemma 20 Suppose A ∪ B ⊆ C0 (not necessarily consecutive) and C ⊃ C0 is any
set so that C \ C0 is nonempty and not consecutive with C0. Then bCA,B = 0.

Proof By Corollary 19, pA pB |wC = pA pB |wC0 . Since the restrictions are the same,

∑

D⊆C

bDA,B pD|wC =
∑

D⊆C0

bDA,B pD|wC0
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and in particular also by Corollary 19,

∑

D:D�C0,D⊆C

bDA,B pD|wC = 0. (14)

We proceed inductively on |C ′|. If C ′ = {m} consists of one element, the sum is
over one set D = C , so bCA,B pC |wC = 0. Since pc|wC �= 0, we conclude bCA,B = 0.
More generally, the sum (14) is

∑

D:C0�D�C

bDA,B pD|wC + bCA,B pC |wC = 0

where the first sum is 0 by the inductive assumption. Thus bCA,B = 0. 
�
Lemma 16 also implies an easy formula for the restriction of any Peterson Schubert

class pA to its minimal fixed point wA.

Corollary 21 Let A be consecutive. Then

pA|wA = |A|! t |A|.

Proof We calculate directly using the Peterson Schubert restriction formula.

pA|wA = ι∗π(σvA |wA ) = nWA (VA)

⎛

⎝
∏

j∈A

( j − TA + 1)

⎞

⎠ t |A|.

Then VA occurs in WA exactly one time, so the restriction is

∏

j∈A

( j − TA + 1)t = |A|! t |A|.


�
A fundamental observation is that pA∪B = pA pB when A and B are disjoint strings

of consecutive integers separated by at least one number.

Lemma 22 ( [14], Lemma 6.7) Let A ⊆ {1, . . . , n − 1} and suppose

A = A1 ∪ A2 ∪ . . . ∪ Ak

where each Ai is a nonempty maximal consecutive string of integers and Ai �= A j for
i �= j . Then

pA =
∏

1≤i≤k

pAi .
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4 Proof of Main Theorems and Lemmas

Here we prove Theorems 1, 3, 5, 6, and 8. There are two substantial cases required to
prove Theorem 1, recalling that A and B are consecutive by hypothesis. In the first
case, either A ∩ B is nontrival but neither set contains the other, or the two sets are
consecutive to each other. In the second case, one set is contained in the other.

Definition 23 Let A and B be consecutive sequences of {1, 2, . . . , n−1}. We say that
A and B are intertwined if TA ≤ TB ≤ HA ≤ HB or TB ≤ TA ≤ HB ≤ HA.

Lemma 24 Suppose A, B and A ∪ B are consecutive. Then

pA|wA∪B =
(HA∪B − TA + 1

|A|
)

(HA − TA∪B + 1)!
(TA − TA∪B)! t |A|.

In particular, if A and B are intertwined or if A and B are consecutive to each other
and nonintersecting,

pA|wA∪B = |A ∪ B|!
|B \ A|! t

|A|.

Proof According to Lemma 16,

pA|wA∪B = nWA∪B (VA)

⎛

⎝
∏

j∈VA

( j − TA∪B( j) + 1)

⎞

⎠ t |A|. (15)

We claim that nWA∪B (VA) = (HA∪B−TA+1
|A|

)
, where VA = (TA, TA + 1, · · · ,HA).

Choose the reduced decomposition WA∪B of wA∪B given by the sequence (read from
left to right and top to bottom) in Fig. 1 (left panel), ignoring the grid and path within.

Each increasing consecutive string of WA∪B is written on its own line, all left-
aligned.All rows finishing in numbersHA or larger contain the stringTATA+1 · · ·HA.
To count the number of occurrences ofVA in this product,wefirst draw a grid around all
of these strings except for the one appearing in the first row. The grid hasHA∪B −HA

rows and HA − TA + 1 columns.
For example, suppose A = {2, 3} and A∪B = {1, . . . , 6}. LetwA∪B be the longest

word for the permutations group generated by {si : i ∈ A ∪ B}. Then

WA∪B = (1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1),

and VA = (2, 3). We have the grid containing the 2 and 3 in the second, third and
fourth rows of WA∪B , pictured in Fig. 1, (right panel).

There is a one-to-one correspondence between paths from the top left corner to the
bottom right corner of this grid (moving only right and down) and occurrences of VA

inside of WA. Each instance of VA inside of WA∪B is “underlined” by the horizontal
components of a path, as indicated with the red path in Fig. 1 (left panel). For example,
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Fig. 1 Finding reduced words VA occurring in WA (left panel) and an example (right panel)

VA is given by the subset of WA∪B underlined by the path in Fig. 1 (right panel), it
selects the subset indicated by boxed elements:

(1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 1, 2 , 3, 4, 1, 2, 3 , 1, 2, 1).

The dimensions of the grid are (HA∪B − HA) × (HA − TA + 1) and hence the
number of reduced words for vA inside of WA∪B is the count of such paths, known to
be the number of “right" (or “down") moves among the total moves given by the sum
of the row and column lengths. Therefore,

nWA∪B (VA) =
(HA∪B − TA + 1

HA − TA + 1

)
=
(HA∪B − TA + 1

|A|
)

.

We turn our attention to the factor
(∏

j∈VA
( j − TA∪B( j) + 1)

)
t |A| in Eq. (15).

Since A ∪ B is consecutive and the product is over |A| elements with the highest j
occurring at j = HA, but only descending |A| terms:

⎛

⎝
∏

j∈VA

( j − TA∪B + 1)

⎞

⎠ t |A| = (HA − TA∪B + 1)!
(HA − TA∪B + 1 − |A|)! t

|A|

= (HA − TA∪B + 1)!
(TA − TA∪B)! t |A|.

We put the two terms together to get the formula.
If A and B are intertwined, then if TA = TA∪B and HB = HA∪B ,

(HA∪B − TA + 1

|A|
)

=
(|A ∪ B|

|A|
)

,
(HA − TA∪B + 1)!

(TA − TA∪B)! = |A|!

so the product is |A∪B|!
(|A∪B|−|A|)! = |A∪B|!

|B\A|! . If TB = TA∪B and HA = HA∪B ,

(HA∪B − TA + 1

|A|
)

=
(|A|

|A|
)

= 1,
(HA − TA∪B + 1)!

(TA − TA∪B)! = |A ∪ B|!
|B \ A|! ,
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resulting in the same product. 
�
The following Lemma serves as the base case for an inductive argument in the proof

of Theorem 1.

Lemma 25 Suppose A, B are consecutive. When A and B are intertwined, or when A
and B are consecutive to each other and nonintersecting,

bA∪B
A,B = |A ∪ B|!

|B \ A|!|A \ B|! t
|A∩B|.

Proof Restrict the product

(pA pB)|wA∪B =
∑

C :A∪B⊆C

bCA,B pC |wA∪B = bA∪B
A,B pA∪B |wA∪B ,

since pC |wA∪B = 0 unless C ⊆ A ∪ B. By Lemma 24,

pA|wA∪B pB |wA∪B = |A ∪ B|!
|B \ A|!

|A ∪ B|!
|A \ B|! t

|A|+|B|.

By Corollary 21, pA∪B |wA∪B = |A ∪ B|!t |A∪B|. We then solve:

bA∪B
A,B = 1

|A ∪ B|!t |A∪B|
|A ∪ B|!
|B \ A|!

|A ∪ B|!
|A \ B|! t

|A|+|B| = |A ∪ B|!
|B \ A|!|A \ B|! t

|A∩B|.


�
When B ⊆ A, the structure constant bCA,B can be recast in terms of another structure

constant with intertwined sets.

Lemma 26 Suppose A, B are consecutive and C any set with B ⊆ A ⊆ C. Then

|A|! |B|! bCA,B = |A′|! |B ′|! bCA′,B′ ,

where A′ = {a ∈ A : a ≤ HB} and B ′ = {b ∈ A : b ≥ TB}.
Proof We show that

|A|! |B|! pA pB = |A′|! |B ′|! pA′ pB′ , (16)

which implies that the coefficients have the desired relationship since {pC } forms a
basis of H∗

S (Y ).
By Lemma 24 if C is consecutive, and Lemma 19 otherwise,

pA|wC =
(HC − TA + 1

|A|
)

(HA − TC + 1)!
(TA − TC )! t |A|

= (HC − TA + 1)!
|A|! (HC − HA)!

(HA − TC + 1)!
(TA − TC )! t |A|
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with a similar formula for pB |wC . Using the relationships

TA′ = TA, HA′ = HB, TB′ = TB, HB′ = HA (17)

and simplifying as above,

pA′ |wC = (HC − TA + 1)!
|A′|! (HC − HB)!

(HB − TC + 1)!
(TA − TC )! t |A′|

with a similar formula for pB′ |wC . Since |A| + |B| = |A′| + |B ′|, we conclude

|A|! |B|! pA|wC pB |wC = |A′|! |B ′|! pA′ |wC pB′ |wC (18)

for all sets C containing A ⊇ B. By Theorem 14, the equality at every fixed point
implies Eq. (16) holds. 
�

Finally, we state the crucial lemma for the proof of Theorem 1.

Definition 27 Let A, B, and A ∪ B be consecutive. Define

i D j := {TA∪B − i, TA∪B − i + 1, . . . ,HA∪B + j − 1,HA∪B + j}.

For convenience, denote D = 0D0 = A ∪ B.

Lemma 28 Let A, B and mDn be consecutive for m = 0, 1, . . . , �, n = 0, 1 . . . , r ,
with D = 0D0 = A∪ B, and |A∩ B| = � + r . If A and B are intertwined or if A and
B are consecutive to each other and disjoint,

bmDn
A,B = |A ∪ B|!|A ∩ B|!

(|A ∩ B| − m − n)! m! n! (|A \ B| + m)! (|B \ A| + n)! t
|A∩B|−m−n .

Proof We prove this by induction on m + n. When m = n = 0, this formula is the
statement of Lemma 25.

For ease of notation, let K denote mDn . Restrict pA pB = ∑
C bCA,B pC to wK .

bKA,B pK |wK = pA|wK pB |wK −
∑

0≤i≤m,0≤ j≤n
i+ j<m+n

bi D j
A,B pi D j |wK . (19)

For all 0 ≤ i ≤ m, 0 ≤ j ≤ n and i + j < m + n assume

bi D j
A,B = |A ∪ B|!|A ∩ B|!

(|A ∩ B| − i − j)! i ! j ! (|A \ B| + i)! (|B \ A| + j)! t
|A∩B|−i− j .

Assume without loss of generality that TA ≤ TB . Then if A or B are intertwined
or disjoint and consecutive to each other, |A ∩ B| = HA − TB + 1 and |A ∪ B| =
HB − TA + 1.
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Using Lemma 24 for each restriction, we obtain:

pA|wK =
(HK − TA + 1

|A|
)

(HA − TK + 1)!
(TA − TK )! t |A| =

(|A ∪ B| + n

|A|
)

(|A| + m)!
m! t |A|.

By the inductive assumption,

bKA,B pK |wK =pA|wK pB |wK −
∑

0≤i≤m
0≤ j≤n

i+ j<m+n

bi D j
A,B pi D j |wK

=
(|A ∪ B| + n

|A|
)

(|A| + m)!
m!

(|B| + n

|B|
)

(|A ∪ B| + m)!
(|A \ B| + m)! t

|A|+|B|

−
∑

0≤i≤m
0≤ j≤n

i+ j<m+n

[ |A ∪ B|!|A ∩ B|!
i ! j !(|A \ B| + i)!(|B \ A| + j)!(|A ∩ B| − i − j)! t

|A∩B|−i− j

(|A ∪ B| + i + n

|A ∪ B| + i + j

)
(|A ∪ B| + m + j)!

(m − i)! t |A∪B|+i+ j
]
.

Multiply both sides of Eq. (19) by 1
|A∪B|! |A∩B|! . Since pK |wK = |K |!t |K |, the

left-hand side of Eq. (19) becomes

1

|A ∪ B|! |A ∩ B|!b
K
A,B pK |wK = (|A ∪ B| + m + n)!

|A ∪ B|! |A ∩ B|! t |A∪B|+m+n bKA,B .

Now by rearranging terms while noting that t |A∩B|−i− j t |A∪B|+i+ j = t |A|+|B|, |A \
B| = TB − TA, and |B \ A| = HB − HA, the right hand side of Eq. (19) becomes

[(|A ∪ B| + m

|A ∪ B|
)(|A| + m

|A ∩ B|
)(|B| + n

|B|
)(|A ∪ B| + n

|A|
)

−
∑

0≤i≤m
0≤ j≤n

i+ j<m+n

(|A ∪ B| + i + n

|A ∪ B| + i + j

)

( |A ∪ B| + m + j

i, j, |A \ B| + i, |B \ A| + j, |A ∩ B| − i − j, m − i

)]
t |A|+|B|.

Let x = |A ∩ B|, w = |A ∪ B|, y = |A| and z = |B| to rewrite the expression as

[(
w + m

w

)(
y + m

x

)(
z + n

z

)(
w + n

y

)

−
∑

0≤i≤m
0≤ j≤n

i+ j<m+n

(
w + i + n

w + i + j

)(
w + m + j

i, j, (y − x) + i, (z − x) + j, x − i − j, m − i

)]
t y+z .
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We recognize the coefficient as the termwith i = m, and j = n of the sum on the right
hand side of Theorem 9. Using the same variables, we then simplify the equation:

(w + m + n)!
w! x ! t |A∪B|+m+n bKA,B

=
(

w + m + n

m, n, x − m − n, z − x + n, y − x + m

)
t |A|+|B|.

Finally, we solve for bKA,B and substitute back for x, y, w, z to obtain

bKA,B = |A ∪ B|! |A ∩ B|!
m! n! (|A \ B| + m)!(|B \ A| + n)!(|A ∩ B| − m − n)! t

|A∩B|−m−n .


�

Proof of Theorem 1 Assume A, B, and C are consecutive and that A ∪ B ⊆ C with
|C | ≤ |A| + |B|. Without loss of generality, assume also that TA ≤ TB .

If A and B are disjoint, then C consecutive and |C | ≤ |A| + |B| forces C = A∪ B
and thus A and B are adjacent. If either A and B are intertwined, or if A and B are
adjacent and disjoint,

|A ∪ B| = HB − TA + 1 |A ∩ B| = HA − TB + 1

|A \ B| = TB − TA |B \ A| = HB − HA.

As C is consecutive, C = mDn where m = TA − TC and n = HC − HB . It follows
that |A \ B| +m = TB − TC and |B \ A| + n = HC −HA. Then by Lemma 28 with
d := |A| + |B| − |C | = |A ∩ B| − m − n,

bCA,B = (HA − TB + 1)!(HB − TA + 1)!
d!(TA − TC )!(HC − HB)!(TB − TC )!(HC − HA)! t

d .

To prove the case when B ⊆ A we construct two intertwined sets from A and B
and apply Lemma 26. Let

A′ := {a ∈ A : a ≤ HB} and B ′ := {b ∈ A : b ≥ TB}.

Then A′ and B ′ are intertwined and also satisfy the relationships in (17) with

d = |A′| + |B ′| − |C | = |A| + |B| − |C |.
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Furthermore, TA′ = TA, TB′ = TB ,HB′ = HA, andHA′ = HB . Thus by the formula
above for the intertwined case,

bCA′,B′ = (HA′ − TB′ + 1)!(HB′ − TA′ + 1)!
d!(TA′ − TC )!(HC − HB′)!(TB′ − TC )!(HC − HA′)! t

d

= (HB − TB + 1)!(HA − TA + 1)!
d!(TA − TC )!(HC − HA)!(TB − TC )!(HC − HB)! t

d .

Applying Lemma 26.

bCA,B =|A′|! |B ′|!
|A|! |B|! b

C
A′,B′

= (HB − TA + 1)!(HA − TB + 1)!
(HA − TA + 1)!(HB − TB + 1)!
· (HB − TB + 1)!(HA − TA + 1)!
d!(TA − TC )!(HC − HA)!(TB − TC )!(HC − HB)! t

d

= (HA − TB + 1)!(HB − TA + 1)!
d!(TA − TC )!(HC − HA)!(TB − TC )!(HC − HB)! t

d .

To make the formula obviously integral, multiply by d!
d! to obtain

bCA,B = d!
( HA − TB + 1

d, TA − TC , HC − HB

)( HB − TA + 1

d, TB − TC , HC − HA

)
td .


�
Proof of Theorem 3 Let A = A1∪· · · Ak and B = B1∪· · ·∪B� bewritten as a union of
disjoint maximal consecutive subsets. Now rename the sets {A1, . . . , Ak, B1, . . . , B�}
by E1, . . . , Ev where v = k + � so that TEi ≤ TEi+1 for all i . By assumption,
A ∪ B = ∪ j E j is consecutive. Since each Ei is consecutive, the reordering implies
Ei ∪ Ei+1 is consecutive. Then by Lemma 22 and expanding the product,

pA pB =
v∏

j=1

pEv = pE1 pE2

v∏

j=3

pEv =
∑

C2

bC2
E1,E2

pC2

v∏

j=3

pEv

=
∑

(C2,C3,C4,...,Cv−1,C)

bC2
E1,E2

bC3
C2,E3

· · · bCCv−1,Ev
pC .

By Lemma 18, bC2
E1,E2

�= 0 implies E1 ∪ E2 ⊆ C2. If C2 weren’t consecutive, there

exists a maximal consecutive subset C0 ⊂ C2 with E1 ∪ E2 ⊆ C0, since E1 ∪ E2
is consecutive. Thus bC2

E1,E2
= 0 by Lemma 20, contrary to assumption. Thus C2 is

consecutive.
Similarly, as C2 is consecutive and the tails of Ei are increasing with ∪ j E j con-

secutive, C2 ∪ E3 is consecutive. Thus bC3
C2,E3

�= 0 implies C3 is consecutive and
C2 ∪ E3 ⊆ C3. Inductively it follows that the sum may be taken over sequences in
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which all Ci are consecutive, and that each coefficient bC2
E1,E2

and bCi+1
Ci ,Ei+1

may be
calculated by Theorem 1 as the corresponding sets are consecutive. Therefore,

bCA,B =
∑

(C2,C3,C4,...,Cv−1)
Ci consecutive

bC2
E1,E2

bC3
C2,E3

· · · bCCv−1,Ev
(20)

is the coefficient of pC , as stated in Theorem 3. 
�
Furthermore, all factors of any term in the sum (20) are nonnegative by Theorem 1.

Corollary 29 claims that, if a consecutive set C contains A ∪ B and |C | ≤ |A| + |B|,
the sum is actually positive.

Corollary 29 If A ∪ B and C are consecutive, A ∪ B ⊆ C and |C | ≤ |A| + |B|, then
bCA,B �= 0.

Proof of Corollary 29 We need only find a single sequence

(C2,C3,C4, . . . ,Cv−1)

forwhich the corresponding summand in (20) is nonzero.As in the proof of Theorem3,
let E1, . . . , Ev be a reordering of the maximally consecutive subsets of A and of B,
as for the proof of Theorem 3. Note that

|A| + |B| =
v∑

i=1

|E j |. (21)

Since A ∪ B is consecutive, E j−1 ∪ E j is consecutive for each j = 2, . . . , v. Let
C1 = E1. We find a set C j for j = 2, . . . , v − 1 inductively. Choose C j ⊂ C of
maximal size such that

(1) C j is consecutive
(2) C j−1 ∪ E j ⊂ C j , and
(3) |C j | ≤ |C j−1| + |E j |.
If |C | > |C j−1| + |E j |, there exists C j satisfying (1)-(2) with |C j | = |C j−1| + |E j |,
the maximal allowable size of property (3). If |C | ≤ |Ck | + |Ek |, for some k, set
C j = C for all j ≥ k + 1 and note that it necessarily satisfies conditions (1)-(3). The
setsC j−1, E j , andC j are consecutive, and satisfy the degree condition of Theorem 1,

ensuring b
C j
C j−1,E j

�= 0.

We have only to show that the last term in the product is nonzero, i.e. bCCv−1,Ev
�= 0.

If Cv−1 = C , then the sets Cv−1, Ev and C satisfy the conditions of Theorem 1 so the
statement holds. If C �= Cv−1, then |C j | = |C j−1| + |E j | for all j = 2, 3, . . . , v − 1.
Then by Eq. (21),

|Cv−1| =
v−1∑

j=1

|E j | = |A| + |B| − |Ev|.
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Then

|C | ≤ |A| + |B| = |Cv−1| + |Ev|,

which is the degree requirement of Theorem 1. Since Cv−1, Ev and C are also con-
secutive, Theorem 1 implies bCCv−1,Ev

�= 0. 
�

Proof of Theorem 5 Let A ∪ B = D1 ∪ · · · ∪ Du be a union of maximal consecutive
components of A ∪ B. Note that each A j and each Bj occurs in exactly one Di . Thus

pA pB = pA1 . . . pAs pB1 . . . pBt

=
u∏

i=1

pAi pBi , where Ai = A ∩ Di , B
i = B ∩ Di

=
u∏

i=1

∑

E

bEAi ,Bi pE

=
∑

E1,...,Eu

u∏

i=1

bEi
Ai ,Bi pEi

=
∑

E1,...,Eu

(
u∏

i=1

bEi
Ai ,Bi

)(
u∏

i=1

pEi

)

where the sum is over sequences of consecutive Ei by Lemma 22, each containing
Di = Ai ∪ Bi by Lemma 18.

Therefore, the coefficient of pC in this product is

bCA,B =
∑

E1,...,Eu

(
u∏

i=1

bEi
Ai ,Bi

)
bCE1,...,Eu

,

as stated by Theorem 5. Each factor bEi
Ai ,Bi is calculated by Theorem 3 since Ai ∪ Bi

and Ei are consecutive.
We now take to calculating

∏u
i=1 pEi to find the coefficient b

C
E1,...,Eu

of pC , noting
that Ei is consecutive for each i .

If ∪i Ei is consecutive, then as before we order E1, . . . , Eu so that their tails are
increasing. Then E1 ∪ E2 must be consecutive, and so we apply Theorem 3 to find

pE1 pE2 =
∑

C consecutive
C⊃E1∪E2

bCE1,E2
pC
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with bCE1,E2
determined by the formula in Theorem 1. Since each C contains E1 and

E2, the union C ∪ E3 is consecutive for all C . Therefore

pE1 pE2 pE3 =
∑

C consecutive
C⊃E1∪E2

bCE1,E2
pC pE3 =

∑

(C1,C2) both consecutive

C1⊃E1∪E2,C2⊃C1∪E3

bC1
E1,E2

bC2
C1,E3

pC2 .

Continuing inductively, we arrive at the equation

u∏

i=1

pEi =
∑

(C1,C2,...,Cu)

bC1
E1,E2

bC2
C1,E3

. . . bCu
Cu−1,Eu

pCu

where the sum is over consecutive Cs with Cs ⊃ Cs−1 ∪ Es+1. We thus conclude

bCE1,...,Eu
=

∑

(C1,C2,...,Cu−1)

bC1
E1,E2

bC2
C1,E3

. . . bCCu−1,Eu
,

where C ⊇ ∪i Ei ⊇ A ∪ B.
Now suppose∪i Ei is not consecutive. If none of the Ei are adjacent or overlapping,

then
∏u

i=1 pEi = p∪i Ei has no pC term, as C is consecutive. Otherwise, there exist
two sets E j1 and Ek1 whose union is consecutive. Then

u∏

i=1

pEi = pE j1
pEk1

∏

i �= j1,k1

pEi =
∑

F1⊃E j1∪Ek1 ,
consecutive

bF1E j1 ,Ek1
pF1

∏

i �= j1,k1

pEi .

For each such F1, expand the product pF1
∏

i �= j1,k1

pEi with one fewer factor. Relabel

the sets F1, E1, . . . , Ê j1 , Êk1 , . . . Eu , and continue inductively. At each step, if the
union of the sets is not consecutive, and if no two sets are adjacent, the coefficient of
pC vanishes. If there are any two sets whose union is consecutive, we may expand
their product using Theorem 3.

Explicitly, for each F1, we relabel the sets F1, E1, . . . , Ê j1 , Êk1 , . . . Eu by

E (2)
1 , . . . , E (2)

u−1. Choose j2, k2 such that E
(2)
j2

∪ E (2)
k2

is consecutive. Then

u∏

i=1

pEi =
∑

F1

bF1E j1 ,Ek1

u∏

i=2

p
E (2)
j

=
∑

F1

bF1E j1 ,Ek1

(
p
E (2)
j2

p
E (2)
k2

) u∏

i �= j2,k2

p
E (2)
j

=
∑

F1

bF1Ek1 ,E j1

⎛

⎝
∑

F2

bF2
E (2)
j2

,E (2)
k2

pF2

⎞

⎠
∏

i �= j2,k2

p
E (2)
j

=
∑

F1,F2

bF1E j1 ,Ek2
bF2
E (2)
j2

,E (2)
k2

pF2
∏

i �= j2,k2

p
E (2)
j

,
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where the sum is over consecutive F1 and F2 such that E j1∪Ek1 ⊆ F1 and E
(2)
j2

∪E (2)
k2

⊆
F2. Note that the choice of F2 over which we sum, and indeed the sets E (2)

j depend on
each F1.We continue inductively. For each sequence F1, . . . , Fs with s < u, there exist
two sets E (s)

js
, E (s)

ks
among Fs, E

(s)
1 , . . . , E (s)

u−s+1 whose union is consecutive. Label the

sets Fs, E
(s)
1 , . . . , Ê (s)

js
, Ê (s)

ks
, . . . , E (s)

u−s+1 by E
(s+1)
1 , . . . , E (s+1)

u−s for s = 1, . . . , u−2,

so that there is one set E (u−1)
1 when the super index is u − 1. We have found:

u∏

i=1

pEi =
∑

(F1,F2,...,Fs )

bF1E j1 ,Ek1
bF2
E (2)
j2

,E (2)
k2

. . . bFs
E (s)
js

,E (s)
ks

pFs
∏

i �= js ,ks

p
E (s)
j

=
∑

(F1,F2,...,Fu−2)

bF1E j1 ,Ek1
bF2
E (2)
j2

,E (2)
k2

. . . bFu−2

E (u−2)
ju−2

,E (u−2)
ku−2

pFu−2

∏

i �= ju−2,ku−2

p
E (u−2)
i

,

which, by relabeling Fu−2 and the single E (u−2)
i in the product,

=
∑

(F1,F2,...,Fu−2)

bF1E j1 ,Ek1
bF2
E (2)
j2

,E (2)
k2

. . . bFu−2

E (u−2)
ju−2

,E (u−2)
ku−2

p
E (u−1)
1

p
E (u−1)
2

=
∑

(F1,F2,...,Fu−2)

bF1E j1 ,Ek1
bF2
E (2)
j2

,E (2)
k2

. . . bFu−2

E (u−2)
ju−2

,E (u−2)
ku−2

(
∑

C

bC
E (u−1)
1 ,E (u−1)

2
pC

)
,

and thus

bCE1,...,Eu
=

∑

(F1,F2,...,Fu−2)

bF1E j1 ,Ek1
bF2
E (2)
j2

,E (2)
k2

. . . bFu−2

E (u−2)
ju−2

,E (u−2)
ku−2

bC
E (u−1)
1 ,E (u−1)

2
.

Finally, to obtain the statement of Eq. (5) in Theorem5we note that ju−1 and ku−1 must
be the two indices 1, 2 as the union of the two sets E (u−1)

1 and E (u−1)
2 are necessarily

consecutive. 
�
Proof of Theorem 6 We want to show that bCA,B = ∏

k b
Ck
A∩Ck ,B∩Ck

where C = C1 ∪
· · · ∪Cm is a union of (nonempty) maximal consecutive subsets of C . As C1, . . . ,Cm

are maximal consecutive subsets, A = ∪k(A ∩ Ck) is nonconsecutive (though for an
individual k, A∩Ck maybe consecutive). Similarly B = ∪k(B∩Ck) is nonconsecutive.
By Lemma 22,

pA =
∏

k

pA∩Ck and pB =
∏

k

pB∩Ck ,

which implies

pA pB =
∏

k

pA∩Ck pB∩Ck =
∏

k

∑

E

bEA∩Ck ,B∩Ck
pE .
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Note that bEA∩Ck ,B∩Ck
= 0 unless E contains (A ∩Ck) ∪ (B ∩Ck) by Lemma 18. We

first argue that the only terms bEA∩Ck ,B∩Ck
�= 0 that contribute to the coefficient pC

are those with E ⊆ Ck .
Clearly, if E contains elements not in C , the corresponding terms pE do not con-

tribute to the coefficient pC , since for any F , bCE,F �= 0 implies C contains E . Thus

we may suppose E = E0 ∪ E ′, where E ′ is not consecutive with, nor intersects, Ck ,
and E0 ⊆ Ck . Then by Lemma 20, bEA∩Ck ,B∩Ck

= 0.
It follows that the coefficient of pC in pA pB is the coefficient of pC in

∏

k

∑

Ek⊆Ck

bEk
A∩Ck ,B∩Ck

pEk .

On the other hand, if Ek �= Ck , then
∏

k pEk = p∪k Ek �= pC , where the first
equality follows because ∪k Ek is a nonconsecutive union (Lemma 22). Therefore

∏

k

bCk
A∩Ck ,B∩Ck

pCk =
(
∏

k

bCk
A∩Ck ,B∩Ck

)
pC ,

as pC = pC1 pC2 . . . pCm (Lemma 22 again). 
�

A slight generalization shows that the non-vanishing of the structure constant holds
also when A and B are not consecutive. To prove the general case, we need the
following lemma.

Lemma 30 Let A and B be arbitrary subsets of {1, . . . , n − 1}, and C consecutive.
Then bCA,B �= 0 if and only if C contains A ∪ B and |C | ≤ |A| + |B|.

Proof of Lemma 30 If bCA,B �= 0, then A ∪ B ⊆ C and |C | ≤ |A| + |B| by Lemma 18.
To prove the converse, let A ∪ B = D1 ∪ · · · ∪ Du where each Di is a maximal

consecutive subset of A ∪ B and let Ai = Di ∩ A and Bi = Di ∩ B. By Theorem 5,
we have the equality

bCA,B =
∑

(E1,...,Eu): Di⊆Ei ,
Ei consecutive

(
u∏

i=1

bEi
Ai ,Bi

)
bCE1,...,Eu

where bCE1,...,Eu
is the coefficient of pC in the product

∏u
i=1 pEi . We prove there exists

a sequence of sets (E1, . . . , Eu) in the index set of the sum such that bEi
Ai ,Bi �= 0

for all i , and bCE1,...,Eu
�= 0. Indeed, consider any sequence (E1, . . . , Eu) with Ei

consecutive and containing Di , with the additional properties that Ei ⊆ C and |Ei | =
min(|Ai | + |Bi |, |C |). Since Di = Ai ∪ Bi is consecutive and |Ei | ≤ |Ai | + |Bi |, by
Corollary 29, bEi

Ai ,Bi �= 0. It remains to show that bCE1,...,Eu
�= 0.
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If ∪i Ei consecutive, then by Lemma 29 bFE1,...,Eu
�= 0 for all consecutive F such

that |F | ≤ ∑
i |Ei | and F contains ∪i Ei . Since

|C | ≤ |A| + |B| =
∑

i

|Ai | + |Bi | =
∑

i

|Ei |,

and ∪i Ei ⊆ C , the coefficient bCE1,...,Eu
�= 0.

If ∪i Ei is not consecutive, then |C | ≤ |A| + |B| = ∑
i |Ei | and C consecutive

containing∪i Ei implies there are at least two sets E j1 , Ek1 whose union is consecutive.
Thus

u∏

i=1

pEi = pE j1
pEk1

∏

i �= j1,k1

pEi =

⎛

⎜⎜⎝
∑

F⊃E j1∪Ek1 ,
consecutive

bFE j1 ,Ek1
pF

⎞

⎟⎟⎠
∏

i �= j1,k1

pEi

and the terms bFE j1 ,Ek1
are nonzero whenever F satisfies the degree condition |F | ≤

|E j1 |+ |Ek2 |. In particular, let F1 ⊂ C be a consecutive set containing E j1 ∪ Ek1 with
|F1| = min(|E j1 | + |Ek1 |, |C |). Then

u∏

i=1

pEi = bF1E j1 ,Ek1
pF1

∏

i �= j1,k1

pEi + nonnegative terms

with bF1E j1 ,Ek1
�= 0. As in the proof of Theorem 5, we relabel the sets

F1, E1, . . . , Ê j1 , Êk1 , . . . , Eu by E (2)
1 , . . . E (2)

u−1,

inwhichwe omit setswith â . By construction of F1, |C | ≤ ∑
i |E (2)

i | and∪i E
(2)
i ⊆ C .

Thus there is a pair of sets E (2)
j1

and E (2)
k1

whose union is consecutive. We continue
inductively, obtaining a sequence of consecutive sets F1, . . . , Fu−2 ⊆ C such that
bFs
E (s)
js

,E (s)
ks

�= 0 and |Fs | = min(|E js |+|Eks |, |C |) for all s. Bypickingout the coefficient
of pC in the product, we obtain:

bCE1,...,Eu
= bF1E j1 ,Ek1

bF2
E (2)
j2

,E (2)
k2

. . . bFu−2

E (u−2)
ju−2

,E (u−2)
ku−2

bC
E (u−1)
1 ,E (u−1)

2
+ nonnegative terms

where the nonnegative terms in the sum are similarly products of coefficients.
The first term is nonzero, as its factors are all nonzero by construction. Thus
bCE1,...,Eu

�= 0. 
�

Proof of Theorem 8. Suppose bCA,B = atd with a > 0. By Lemma 18, A∪ B ⊆ C . Let
C = C1∪· · ·∪Cm be a union of maximal consecutive subsetsCk . Then by Theorem 6,
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bCA,B =
m∏

k=1

bCk
A∩Ck ,B∩Ck

.

The hypothesis implies bCk
A∩Ck ,B∩Ck

�= 0, and thus by degree considerations (or
Lemma 18), |Ck | ≤ |A ∩ Ck | + |B ∩ Ck |.

Now suppose the converse. For k = 1, . . . ,m, let Ak = Ck ∩ A and Bk = Ck ∩ B.
Note that Ak ∪ Bk ⊆ Ck by construction and |Ck | ≤ |Ak |+ |Bk | by assumption. Then
the coefficient bCk

Ak ,Bk �= 0 by Corollary 30 as Ck is consecutive.

We show that bCA,B �= 0. By Lemma 22,

pA pB =
∏

k

pAk

∏

k

pBk =
∏

k

(pAk pBk )

since A = ∪Ak and B = ∪k Bk are disjoint unions. Each product pAk · pBk has at
least one nonzero summand in its expansion, since bCk

Ak ,Bk �= 0. It follows that the
expansion of the product pA pB has a nonzero term

∏

k

(
bCk
Ak ,Bk pCk

)
=
∏

k

bCk
Ak ,Bk

∏

k

pCk =
∏

k

bCk
Ak ,Bk pC ,

where the last equality follows from Lemma 22 as Ck are all disjoint. It is possible
that additional terms in the product contribute to the coefficient of pC , however any
additional terms contribute a nonnegative multiple of td , where d = |A| + |B| − |C |
by Corollary 7. As a result, the coefficient bCA,B has at least one strictly positive

contribution, and thus bCA,B = atd with a > 0. 
�

5 Proof of Theorem 9

Fix m, n, w, x, y, z ∈ Z with x, y, z, w,m, n ≥ 0 and w + x = y + z. Note that
Theorem 9 holds trivially whenever x, y, z or w is less than 0.

We construct an explicit bijection between two sets of sizes given by the right hand
and left sides of (6) in Theorem 9. We carry this out as follows: we define two sets S
and V whose sizes obviously correspond to the left and right hand sides of the identity
in Theorem 9. We construct bijections

BL− : S → S̃ and BL	 : V → Ṽ,

for sets S̃ and Ṽ that will be rather clearly in one-to-one correspondence with one
another. The bijections BL− and BL	 are compositions of bike lock moves, which we
introduce in Sect. 5.2.
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Table 1 The number of each letter in
(F
G
) ∈ S, when i = |P| and j = |T |

O P Q R S T U C −
F m − i i y − x + i x − i − j z − x + j j n − j

G n − j w + i + j m − i

5.1 Two Sets with the Right Size

We begin by describing a set S that indexes the right hand side of Theorem 9. Let S be
the set of 2× (w+m+n)matrices

(F
G

)
where the row F rows is a sequence consisting

of six letters and a placeholder, denoted by O , P , Q, R, S, T and −, respectively,
while row G is a sequence consisting of only two letters and a placeholder,U , C , and
−. We refer to the number of each letter or symbol in the matrix using the absolute
value, e.g. |P| refers to the number of Ps occurring in

(F
G

)
.

We insist that the following relationships hold among the numbers of each letter:

• |O| + |P| = m
• |T | + |U | = n
• |Q| + |R| + |S| = w

• |Q| − |P| = y − x
• |S| − |T | = z − x
• |C | + |O| + |U | = w + n + m
• Letters are left-aligned in both sequences, so that any placeholders − occur to the
right of all the letters, ensuring each sequence has length w + m + n.

For a given pair
(F
G

)
, let i := |P| and j := |T |, then |O| = m − i and |U | = n − j .

It follows that |Q| = y − x + i , and |S| = z − x + j , so the number of letters in F is
|O| + |P| + |Q| + |R| + |S| + |T | = m + w + j , and these letters are followed by
n − j placeholders. Similarly, the number of letters in |G| is |U | + |C | = n + w + i ,
and the letters are followed by m − i placeholders. We tabulate the counts of each
letter in Table 1 for

(F
G

)
.

By allowing i = |P| and j = |T | to vary from 0 to m and n, respectively, we
obtain a count of the number of matrices

(F
G

)
satisfying these conditions. Among the

w + m + j letters in F , we choose where to place i entries in of P , j entries of T ,
y − x + i entries of Q, z − x + j entries of S, and m − i entries for O . The remaining
non-letter entries of F are placeholders and have no part in the count as they must be
placed at the end of the sequence. Similarly, among the w + n + i letters in G, we
choose where to place the n − j copies ofU . The remaining letters are all Cs, and the
entries of G that aren’t letters are placeholders at the end of the sequence. We have
shown:

|S| =
∑

i, j

(w + m + j)!
i !(y − x + i)!(x − i − j)!(z − x + j)! j !(m − i)! · (w + n + i)!

(n − j)!(w + i + j)! .
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Table 2 Counts of 0s, 1s, and 	s
in each of v1, . . . , v4, where
w + x = y + z

1 0 	

v1 w m n

v2 x y − x + m z − x + n

v3 y z − x + n m

v4 z n y − x + m

This expression is the right hand side of the equation in Theorem 9.
Now we define a set V that indexes the left-hand side of Theorem 9. Let V be the

set of 4-tuples of sequences V = (v1, v2, v3, v4) with each vi a sequence of 1s, 0s,
and 	s, with any 	s occurring to the right of all numbers. We additionally require that

• v1 consists of w 1s, m 0s, and n 	s
• v2 consists of x 1s, y − x + m 0s, and z − x + n 	s
• v3 consists of y 1s, z − x + n = w − y + n 0s and m 	s
• v4 consists of z 1s, n 0s, and y − x + m = w − z + m 	s
• Numbers are left-aligned in all 4 sequences, so any placeholders 	 occur to the
right of all the numbers, ensuring each sequence has length w + m + n.

One quickly observes that

|V| =
(

w + m

w

)(
y + m

x

)(
w + n

y

)(
z + n

z

)
,

since the 	 entries are all placed to in the final spots for each sequence. Observe this
is the left-hand side of the equality in Theorem 9.

For future use, we tabulate these values in Table 2.

5.2 Bike Lock Moves

The bijections we construct depend on a series of bike lock moves on r × c matrices.
Each move is indexed by a column k, and specifies a set of set of rows on which it
will operate (which generally depends on the matrix itself). Each affected row is will
rotate its entries from k to c cyclically, by sending the entry in column i to i +1, while
the entry in column c will move to column k.

Definition 31 For each k with 1 ≤ k ≤ c, a bike lock move BLk on a set of matrices
Mc with c > 0 columns is a map Mc → Mc such that, for all M ∈ Mc,

1. BLk(M) is identical to M except in a specified subset of rows RBLk (M).
2. BLk(M) cyclically permutes the entries in row � ∈ RBLk (M) as follows:

• An entry in column m < k is fixed.
• An entry in columnm with k ≤ m < c of M sent to columnm + 1 in the same
row.

• If m = c, the entry is sent to the kth column of the same row.
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Observe that each bike lock move is determined by its row set.

Example 32 Consider the 4 × 5 matrix M on the left below. A bike lock move BL3
on a 4 × 5 matrix with RBL3(M) = {1, 3} can be seen as follows. Impacted entries
are highlighted in red.

d e f

a b c

a41 a42 a43 a44 a45

a31 a32

a21 a22 a23 a24 a25

a11 a12

f d e

c a b

a41 a42 a43 a44 a45

a31 a32

a21 a22 a23 a24 a25

a11 a12

.

Remark 33 Bike lock moves rotate elements starting in a specified column; they do
not change the set of entries on each row, nor the number of any repeated entries.

We capture an immediate but more subtle version of this critical property of bike
lock moves in the following lemma. Let (M)k indicate the kth column of the matrix
M .

Lemma 34 Let M be an r × c matrix, and BLk a bike lock move with k ≤ c. Then M
and BLk(M) satisfy the following properties:

1. The set of entries in the �th row of M is the same as the set of entries in the �th
row of BLk(M).

2. (M)� = (BLk(M))� for � = 1, . . . , k − 1.
3. If � /∈ RBLk (M), then the �th row of BLk(M) is identical to the �th row of M.
4. If � ∈ RBLk (M), each entry in the �th row and jth column of M appears in the �th

row and j + 1st column of BLk(M), for j = k, . . . , c − 1 . In particular, these
entries occur in the same (column) order.

5.3 Bike Lock Moves onS

We define a specific type of bike lock move, and apply a composition of them to
elements of S. The idea of the composition of bike lock moves is intuitive but the
execution is rather technical. Applied to a 2 × 9 matrix

(F
G

) ∈ S,
(
R Q O S P R T R −
C C U C C C C C −

)
,

for example, the sequence of bike lock moves “shuffle” in the −s at the right of the
matrix in order to line up the consonants P , Q, R, S and T in the top row with Cs in
the bottom row, and line up the vowels O and U with the −s:

(
R Q O − S P R T R
C C − U C C C C C

)
.

Details for this example are carried out in Example 36.
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Definition 35 The − bike lock move BL−
k is defined on the set of 2 × c matrices

whose entries in the first row are in the set {O, P, Q, R, S, T ,−}, and whose entries
in the second row are in {C,U ,−}. Let mi j refer to the (i, j)-entry of M . Define:

RBL−
k (M) =

⎧
⎪⎨

⎪⎩

{2} if m1k = O,

{1} ifm2k = U and m1k �= O,

∅ else.

(22)

By definition, BL−
k cyclicly rotates the entries in RBL−

k (M) in columns k, k+1, . . . , c
one column to the right, with the entry in the last column sent to column k.

Let BL− be the composition

BL− := BL−
w+m+n ◦ BL−

w+m+n−1 ◦ · · · ◦ BL−
2 ◦ BL−

1 .

We restrict the domain to S, and let

S̃ := {BL−(S) : S ∈ S}.

Example 36 Let S =
(
R Q O S P R T R −
C C U C C C C C −

)
. We find the result of a series of bike

lock moves

BL−(S) = BL−
9 ◦ BL−

8 ◦ · · · ◦ BL−
2 ◦ BL−

1 (S).

The bike lock moves BL−
2 ◦ BL−

1 do not change S, since in the first two columns there
is no O in the first row orU in the second. When applying BL−

3 , the third column
(O
U

)

indicates by (22) that we must shift the second row to the right:

R Q O S P R T R -

C C U C C C C C -

BL−
3 R Q O S P R T R -

C C - U C C C C C

where we have indicated the shifted row in red. When applying BL−
4 to the result, the

fourth column is
( S
U

)
so we shift the first row.

R Q O S P R T R -

C C - U C C C C C

BL−
4 R Q O - S P R T R

C C - U C C C C C
.

The remaining columns have no Us or Os, so this matrix is left unchanged the bike

lock moves BL−
9 ◦ · · · ◦ BL−

5 . Thus S̃ =
(
R Q O − S P R T R
C C − U C C C C C

)
.

We now prove a basic property of BL− applied to elements of S. For any
(F
G

) ∈ S,
define

N−
k = BL−

k ◦ · · · ◦ BL−
1

(
F

G

)
.
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By convention N−
0 = (F

G

)
.

Lemma 37 For k = 1, . . . , w+m+n, the bike lock move BL−
k applied to N−

k−1 either
leaves it unchanged, or inserts − into the kth column.

Proof Let
(F
G

) ∈ S. There are m − i Os in the first row F (see Table 1), and therefore
the row specification of (22), results indicates there are m − i bike lock moves in the
composition BL− impacting the second row, G. There are m − i placeholders − in
G, so each of these bike lock moves will shift a − from the end of G to some earlier
part of the sequence.

Similarly, there are n − j Us in G, and thus by (22) at most n − j individual bike
lock moves that impact the row F . We argue that exactly n− j bike lock moves in the
composition BL− cycle F by showing that each U results in a cycle of the first row.

Referencing (22), the first row is cycled to the right by BL−
k whenever (N−

k−1)k =(∗
U

)
and ∗ �= O . If (N−

k−1)k = (O
U

)
, then BL−

k cycles the second row of N−
k−1, with

the result that (N−
k ) = (O

−
)
and (N−

k )k+1 = (∗
U

)
; in particular, the same number ofUs

occur in columns k + 1, . . . , w +m + n of N−
k as occur in columns k, . . . , w +m + n

of N−
k−1.

For some � ≥ k, (N−
� )�+1 = (∗

U

)
with ∗ �= O , as the existence of U in the second

row guarantees some non-O entries on the first row (see Table 1). Thus the second
row will be cycled by BL−

� . We have shown that, for each U occurring in G, there is
a shift to the right of the original sequence F . Since there are n − j placeholders − at
the end of F , each move results in the insertion of − into the column associated with
the bike lock move. 
�
Corollary 38 The letters of N−

k are in the same order as the letters of
(F
G

)
for all

k = 0, . . . , w + m + n.

Proof of Corollary 38 Suppose BL−
� acts nontrivially on N−

�−1 for some � ≤ k. By
Lemma 37, BL−

� inserts a − into the �th column. Lemma 34 implies that all letters
in columns � + 1, . . . , w + m + n − 1 in the impacted row are shifted to the right
one column. Thus all letters remain in the same order after each subsequent bike lock
move. 
�
Corollary 39 The composition BL− is bijective map from S to S̃.

Proof of Corollary 39 Let
(F
G

) ∈ S. By Corollary 38, the order of the letters of BL−(F
G

)

in each row are the same as the order of the letters in
(F
G

)
. Observe the letters of

(F
G

)

are left-aligned. If BL−(F ′
G ′
)
for some

(F ′
G ′
) ∈ S, then the letters of

(F ′
G ′
)
are also left-

aligned, and occur in the same order as
(F
G

)
, so that

(F ′
G ′
) = (F

G

)
. Therefore, BL− is

injective. Recall S̃ is the image of BL−. 
�
We now characterize S̃.

Proposition 40 Elements of S̃ are exactly 2× (w +m + n) matrices M satisfying the
following:
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1. The columns of M consist only of 7 types:

(−
U

)
,

(
O
−
)

,

(
P
C

)
,

(
Q
C

)
,

(
R
C

)
,

(
S
C

)
,

(
T
C

)
.

2. There are no pairs of adjacent columns in M of the form

(− O
U −

)
.

3. The number of times each letter or placeholder appears in each row of M is given
in Table 1 for some 0 ≤ i ≤ m and 0 ≤ j ≤ n.

We prove Proposition 40 in a series of lemmas.

Lemma 41 Elements of S̃ satisfy the three conditions of Proposition 40.

Proof of Lemma 41 By Lemma 37, each nontrivial bike lock move inserts a − into the
corresponding column. BL−

k (N−
k−1) has a nontrivial row set exactly when there is an

O or aU in the kth column of N−
k−1. Thus all columns in BL−(F

G

)
with an O or aU are

of the form
(O
−
)
or

(−
U

)
. All other columns are possible, and listed in the proposition,

proving Property 1.
Observe that−s occur before letters in Nk only in columns 1, . . . , k. Thus (Nk)k+1

is not
(−
U

)
for any k, unless no letters follow on the first row, in which case the column(−

U

)
cannot be followed by

(O
−
)
. On the other hand, a column of the form

(O
U

)
results in

a shift on the second row. As a result, the column
(−
U

)
is never followed by

(O
−
)
. This

establishes Property 2.
Finally, Lemma 34 ensures that the counts of BL−(F

G

)
are the same as those of

(F
G

)
.

These counts are given in Table 1, establishing Property 3. 
�
We now show that any matrix M satisfying these conditions is BL−(F

G

)
for some(F

G

) ∈ S. Consider any matrix M satisfying the conditions of Proposition 40 for some
i, j . Observe that the first row of M consists of entries in {O, P, Q, R, S, T ,−}
and the second row consists of entries in {U ,C,−}. In each row of M , remove all
placeholders, left align all letters and place the placeholders to the right of the last
letter. Note that this operation does not change the number of individual letters listed
in each row. The resulting matrix is of the form

(F
G

)
, with the number of letters of

each type given in Table 1. Therefore
(F
G

)
satisfies the bulleted listed in §5.1, implying(F

G

) ∈ S.
We verify that

M = BL−
w+m+n ◦ · · · ◦ BL−

2 ◦ BL−
1

(
F

G

)

using an inductive argument on the columns of each matrix. We begin with some
properties of the series of applications of bike lock moves on

(F
G

)
.

Lemma 42 All letters of N−
k in columns k+1, . . . , w+m+n are left aligned, meaning

that all letters occur before any − in these columns.
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Proof of Lemma 42 Observe that all letters of
(F
G

)
occur to the left of all copies of −.

The application of BL−
1 to

(F
G

)
results in either no change, or a cyclic shift to the right

by one row, resulting in an entry of the first column
(F
G

)
moving to the second column

and all other entries moving to the right, with the last entry of the row cycling to the
first column. If all entries of F or G are −, then a rotation of that row will has entries
that are vacuously left-aligned from the second column. If either begins with a letter,
then a cycling of that row will move that letter to the right one unit, possibly inserting
a − in the first column. The resulting matrix remains left-aligned from column 2.

Similarly, suppose the letters of N−
k−1 are left-aligned among columns k, k +

1, . . . , w + m + n with − occurring at the the end of the matrix and/or possibly
in the first k − 1 columns in N−

k−1. The application of BL−
k to N−

k−1 has either no
effect, or it rotates one row in columns k, k + 1, . . . , w + m + n by one unit to the
right with the entry in column w + m + n moving to column k. If there is no effect,
then clearly N−

k = BL−
k (N−

k−1) is left-aligned in columns k + 1, . . . , w + m + n. If
a rotated row of N−

k−1 has a letter in column k, then that letter is moved to the k + 1st
column and thus N−

k is left-aligned from column k+1. If the entry of a rotated row of
N−
k−1 is−, then N−

k−1 has only− in rows k, k+1, . . . w+m+n, since it is left-aligned
from column k. Therefore N−

k has only− in that row in columns k+1, . . . , w+m+n,
so its letters in these columns are vacuously left-aligned. 
�
Lemma 43 Let

(F
G

)
have counts of letters in Table 1. For k = 0, 1, . . . , w + n + m,

• The number of Os in the first row of N−
k in columns k + 1, . . . , w + m + n is the

same as the number of−s in the second row of N−
k in columns k+1, . . . , w+m+n,

and
• The number of Us in the second row of N−

k in columns k+1, . . . , w+m+n is the
same as the number of −s in the first row of N−

k in columns k+1, . . . , w +m+n.

Proof of Lemma 43 Observe that these two properties hold for
(F
G

)
by a quick check

on Table 1. If
(F
G

)
1 = (O

−
)
, then all entries of G are−which implies by Table 1 that all

entries of F are O . Similarly if
(F
G

)
1 = (−

U

)
, all entries of F are− since the letters of F

are left-aligned, and thus by Table 1, all entries of G are U . In both cases, N−
k = (F

G

)

for all k, so the statement holds.
If
(F
G

)
consists of two consonants, then

(
BL−

1

(F
G

))

1
= (F

G

)
and hence the number

of O , Us, and − in each row and in columns 2, . . . , w + m + n, is the same for N−
1

and
(F
G

)
.

If
(F
G

)
1 = (O

∗
)
for any ∗ �= −, then

(
BL−

1

(F
G

))

1
= (O

−
)
since BL−

1 applied to
(F
G

)

rotates of the second row, and Table 1 ensures there is a − at the end of G (since
there is an O in F). Therefore the first row of BL−

1

(F
G

)
has one fewer O in columns

2, . . . , w + n + m than
(F
G

)
, and one fewer − in the second row in those columns.

Since 1 /∈ RBL−
1 (FG)

, Lemma 34(3) implies The number of − occurring in the first row

of
(F
G

)
is the same as the number in BL−

1

(F
G

)
. By Lemma 34(4), since 2 ∈ RBL−

1 (FG)
,

the number of U in columns 2, . . . , w + m + n in BL−
1

(F
G

)
is also unchanged.
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If
(F
G

)
1 = (∗

U

)
for ∗ �= − and ∗ �= O , then

(
BL−

1

(F
G

))

1
= (−

U

)
since Table 1

ensures there is a − at the end of F . Therefore the first row of BL−
1

(F
G

)
has one fewer

− in columns 2, . . . , w + n+m than
(F
G

)
, and one fewerU in the second row in those

columns. Since ∗ �= O , 1 ∈ RBL−
k (FG)

. Only − are rotated into the first column. By

Lemma 34 the count of O in the first row and the count of − in the second row in
(F
G

)
,

columns 2, . . . , w + n + m, are the same as those in BL−
1

(F
G

)
.

Now suppose that the equalities hold for N−
k−1. If

(
N−
k−1

)
k

= (O
−
)
(or

(−
U

)
, then all

entries of N−
k−1 in columns k, k + 1, . . . w + m + n in the second row (or first row)

are −, since the letters of N−
k−1 are left-aligned (see Lemma 42). By the inductive

assumption, all entries of N−
k−1 in columns k, k + 1, . . . w +m + n in the first row (or

second row) are O (orU ). Then N−
k = N−

k−1 and there are both one fewer − and one
fewer O (or U ) in subsequent columns, preserving the equality of the counts.

If (N−
k−1)k = (O

∗
)
for any ∗ �= −, then BL−

k requires the rotation of the second
row. The inductive assumption ensures that there is a − at the end of the second
row of N−

k−1. Therefore the first row of N−
k has one fewer O and the second row

has one fewer − in columns k + 1, . . . , w + n + m than N−
k−1 has in columns

k, . . . , w + n + m .
To check the other equality, if (N−

k−1)k = (O
∗
)
, then BL−

k rotates the second row,
so that the count of Us in N−

k in columns k + 1, . . . , w + m + n equals the count of
Us in N−

k−1 in columns k, . . . , w + n + m. It follows that the lemma holds for N−
k

when (N−
k−1)k = (O

∗
)
.

Similarly, if (N−
k−1)k = (∗

U

)
for ∗ �= − and ∗ �= O , it must be the case that(

BL−
k (N−

k−1)
)
1

= (−
U

)
since Table 1 ensures there is a − at the end of the first row of

N−
k−1. Thus there is one fewer − in the first row and one fewerU in the second row of

N−
k in columns k + 1, . . . , w + m + n, compared to the counts of the same in N−

k−1
in columns k, k + 1, . . . , w + m + n. As both values are reduced by 1, they remain
equal. The counts of Os in the first row and− in the second row do not change as they
are not present in the kth column of N−

k−1 or N
−
k .

It follows that the lemma holds for N−
k in all cases. 
�

We use an inductive argument to show that (M)k = (N−
k )k for all k. The base case

is established in the following lemma.

Lemma 44 Let (M)1 denote the first column of M. Then (M)1 = (N−
1 )1.

Proof of Lemma 44 If the entries of column (M)1 are consonants, then BL−
1 does not

change
(F
G

)
. Therefore, (N−

1 )1 = (BL−
1

(F
G

)
)1 = (M)1 in this case.

Suppose (M)1 = (O
−
)
. It follow that the first column of

(F
G

)
is
(O
U

)
,
(O
C

)
, or

(O
−
)
In

all cases, the bike lock move BL−
1 rotates the second row of

(F
G

)
(see (22)). Table 1

guarantees a − at the end of the second row of
(F
G

)
because there exists an O in the

first row. It follows that
(
N−
1

)
1 = (O

−
) = (M)1 .

Suppose (M)1 = (−
U

)
. The first column of

(F
G

)
is thus

(∗
U

)
, where ∗ is an element of

{O, P, Q, R, S, T ,−}. If ∗ = O , then the first non-placeholder in the first row of M
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would be O . If this occurs in column �, then (M)� = (O
−
)
, as this is the only permitted

column with an O in the first row. For the same reason, (M)�−1 = (−
U

)
, and so M

contains a disallowed pair

(− O
U −

)
.

On the other hand, if ∗ is one of {P, Q, R, S, T ,−}, then by (22) BL−
1 cycles the

first row starting in column 1, and introduces the last element in F to column 1. Table 1
ensures this symbol is − since the U in the second row ensures a − at the end of F .

Thus
(
BL−

1

(F
G

))

1
= (−

U

) = (M)1 . 
�

Having established the base case, we assume that (N−
k−1)� = (M)� for � ≤ k − 1

and show that

(
N−
k

)
�

=
(
BL−

k ◦ BL−
k−1 ◦ · · · ◦ BL−

1

(
F

G

))

�

= (M)� , for � ≤ k

in each three cases of the possible columns ofM in Proposition 40:when (M)k consists
of consonants, when (M)k = (O

−
)
and when (M)k = (−

U

)
.

Observe that (N−
k−1)� = (M)� for all � ≤ k − 1 implies that (N−

k )� = (M)� for
all � ≤ k − 1 as BL−

k does not change any of the first k − 1 columns (see Lemma 34,
Property 2). Thus we need only show that (N−

k )k = (M)k .

Lemma 45 Suppose (M)k consists of consonants, and (N−
k−1)� = (M)� for all � ≤

k − 1. Then (N−
k )k = (M)k .

Proof of Lemma 45 Suppose (M)k = (m1k
m2k

)
. ByRemark 33, the number of each symbol

that occur in M and in N−
k−1 are the same. The two matrices agree on the first k − 1

columns., so m1k and m2k appear in the first and second rows of N−
k−1 in columns �1

and �2, respectively, where �1, �2 ≥ k. By Corollary 38, the order of the letters are
the same in M and in N−

k−1, so m1k and m2k are the the first letters to appear in N−
k−1

in column k or later, in their respective rows. By Lemma 42, the letters in columns
k, k + 1, . . . , w + m + n of N−

k−1 are left-aligned, and thus �1 = �2 = k. It follows
that (N−

k−1)k = (M)k , and thus (N−
k−1)k consists of consonants. By Definition 35,

N−
k = N−

k−1, and thus (N−
k )k = (N−

k−1)k = (M)k , as desired. 
�
Lemma 46 Suppose (M)k consists of

(O
−
)
and

(N−
k−1)� = (M)� for all � ≤ k − 1. Then (N−

k )k = (M)k .

Proof of Lemma 46 By Corollary 38, the letters of F are in the same order as the letters
of M . Thus the first row entry of (N−

k )k is either O or −.

Case 1 Suppose (N−
k )k = (O

∗
)
for ∗ either C or U . Then either (N−

k−1)k = (O
∗
)
, in

which case BL−
k does not change the first entry, or (N−

k−1)k = (∗
U

)
for ∗ some symbol

not O . Observe that in the latter case, the bike lock move BL−
k whose row shifts are

specified in (22) results in a shift of the first row. Following Lemma 43, there are
exactly as many copies ofU in the second row, columns k, . . . , w+m+n as there are
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− in the first row in these columns of N−
k−1. By Lemma 42, there is a − at the end of

the first row of N−
k−1. As a consequence,

(
N−
k

)
k = (

BL−
k (N−

k−1)
)
k

= (−
U

)
, contrary

to assumption. Thus we may assume that (N−
k−1)k = (O

∗
)
. Using Lemma 43 again,

there are as many − in the second row in columns k, . . . , w +m + n of N−
k−1 as there

are Os in the first row, so that

(
N−
k

)
k = (

BL−
k (N−

k−1)
)
k

=
(
O

−
)

= (M)k .

This establishes that (N−
k )k = (O

∗
)
implies (N−

k )k = (M)k .

Case 2 Suppose
(
N−
k

)
k = (−

∗
)
for some symbol ∗. Since N−

k = BL−
k (N−

k−1), the

specification of row shifts in (22) of BL−
k implies (N−

k−1)k = (−
∗
)
for some symbol ∗,

or (N−
k−1)k = (∗

U

)
for a symbol ∗ that is not O .

If (N−
k−1)k = (∗

U

)
with ∗ �= O , then by Lemmas 43 and 42, there is a− at the end of

N−
k−1 in the first row. As a result, (N

−
k )k = (BL−

k (N−
k−1)k = (−

U

)
. On the other hand,

if (N−
k−1)k = (−

∗
)
, but ∗ �= U , then (N−

k )k = (−
∗
)
as BL−

k has no effect. In either case,
by Corollary 38, N−

k must have an O in the first row of some column � > k and − in
rows k, k + 1, . . . , � − 1, since M has an O in the first row in column k. But then the
letters of N−

k are not left-aligned from from column k + 1, contrary to Lemma 42.

These two cases establish that (M)k = (O
−
)
implies (N−

k )k = (M)k . 
�
Lemma 47 Suppose (M)k = (−

U

)
and (N−

k−1)� = (M)� for all � ≤ k − 1. Then
(N−

k )k = (M)k .

Proof of Lemma 47 The letters of the second row of N−
k−1 are in the same order as

those of M by Corollary 38. Thus the second entry of (N−
k )k is either U or −.

Case 1 Suppose (N−
k )k = (∗

U

)
. By Definition 35, (N−

k−1)k has either an O in the first

row or a U in the second row. If (N−
k−1)k = (O

∗
)
, then BL−

k rotates the second row
of N−

k−1 starting in column k. By Lemmas 43 and 42, there is a − at the end of the

second row of N−
k−1 Therefore, using (22), (N−

k )k = (O
−
)
, contrary to assumption.

Alternatively (N−
k−1)k = (∗

U

)
with ∗ �= O . Then Lemmas 43 and 42 imply that

there is a − at the end of the first row of N−
k−1. It follows that

(
N−
k

)
k =

(−
U

)
= (M)k .

Case 2 Suppose (N−
k )k = (∗

−
)
. If (N−

k−1)k also has a − in the kth column second row,
then all the entries in the second row of N−

k−1 in columns k, k + 1, . . . w + m + n
are − as letters are left-aligned (see Lemma 42). However, this contradicts the fact
that (M)k has a U in the second row, as the letters must be the same as those in M in
columns k, k + 1, . . . w + m + n (by Lemma 43).

We may therefore assume that the second row of (N−
k−1)k is not −. In this case

BL−
k moves the second row to ensure that (N−

k )k = (∗
−
)
. However BL−

k moves the
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second row if and only if the first entry is O , so (N−
k−1)k = (O

∗
)
. It follows that

(N−
k )k = (O

−
)
. Then by Corollary 38, the first letter occurring in the first row in

columns k + 1, . . . w +m + n of M must be O . If this occurs in column � with � > k,
then (M)� = (O

−
)
, since this is the only permitted column with an O . For the same

reason, (M)�−1 = (−
U

)
, and so M contains a disallowed pair

(− O
U −

)
. We conclude

that Case 2 cannot occur. 
�

We finally have the ingredients to prove Proposition 40.

Proof of Proposition 40 If S ∈ S̃, then S satisfies the three properties of the proposition,
by Lemma 41. On the other hand, if M satisfies these three properties, then construct(F
G

)
by removing all − from each row, left aligning all letters, and placing all − at the

end of the corresponding row, as done earlier.
Observe that (BL−(F

G

)
)� = (N−

k )� whenever � ≤ k (seeLemma34).ByLemma44,

the first columns of M and N−
1 agree. Therefore, the first columns of M and BL−(F

G

)

agree.
Byway of inductionwe assume that the first k−1 columns ofM and BL−(F

G

)
agree.

Then by Lemma 34, the first k − 1 columns of M and of N−
k−1 agree. Lemmas 45,

46 and 47 imply that the kth columns of M and N−
k agree, and hence that the kth

columns of M and of BL−(F
G

)
agree. We conclude that all columns of M agree with

all columns of BL−(F
G

)
, i.e. M = BL−(F

G

)
. 
�

5.4 Bike Lock Moves on Elements ofV

Definition 48 We define a bike lock move BL	
k on the set of 4 × c matrices M with

entries in {0, 1, 	}, with row shifts listed in Table 3. By definition, BL	
k cyclicly rotates

the entries in each row of RBL	
k (M) and columns k, k + 1, . . . , c one column to the

right, with the entry in the last column sent to column k.

The rows RBL	
k (M) that BL

	
k shifts depend on the columns of M, as indicated in

Table 3. Let (M)k denote the kth column of M .

Example 49 We show that

BL	
5 ◦ BL	

4 ◦ BL	
3 ◦ BL	

2 ◦ BL	
1

⎛

⎜⎜⎝

0 1 0 	 	

0 0 0 	 	

0 1 0 	 	

0 0 	 	 	

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0 	 1 0 	

0 	 0 0 	

	 0 1 	 0
	 0 	 	 0

⎞

⎟⎟⎠ .

Apply each bike lock move referring to RBL	
k (M) in (3) for the appropriate rows to

shift. In each case we highlight the column that determines the row shift, and color
the impacted cells that have changed with each bike lock move.
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Table 3 Rows moved by BL	
k ,

depending on the kth column
(M)k RBL	

k (M)

⎛

⎜⎜⎝

0
1
1
0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
1
1
0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
	

0
0

⎞

⎟⎟⎠ {1}

⎛

⎜⎜⎝

1
0
0
1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
1
0
1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

	

1
0
0

⎞

⎟⎟⎠ {2}

⎛

⎜⎜⎝

0
1
0
1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0
1
1
1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0
0
1
	

⎞

⎟⎟⎠ {3}

⎛

⎜⎜⎝

1
0
1
0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
0
1
1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0
0
	

1

⎞

⎟⎟⎠ {4}

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0
1
0
0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
1
0
0

⎞

⎟⎟⎠ {1, 2}

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0
0
1
1

⎞

⎟⎟⎠ {3, 4}

else ∅

0 1 0 	 	

0 0 0 	 	

0 1 0 	 	

0 0 	 	 	

BL	
1

0 1 0 	 	

0 0 0 	 	

	 0 1 0 	

	 0 0 	 	

BL	
2

0 	 1 0 	

0 	 0 0 	

	 0 1 0 	

	 0 0 	 	

BL	
3

0 	 1 0 	

0 	 0 0 	

	 0 1 0 	

	 0 	 0 	

BL	
4

0 	 1 0 	

0 	 0 0 	

	 0 1 	 0

	 0 	 	 0

BL	
5

0 	 1 0 	

0 	 0 0 	

	 0 1 	 0

	 0 	 	 0

We prove a series of properties of BL	
k that will allow us to completely describe

Ṽ := {BL	(V ) : V ∈ V}. Let

N 	
k := BL	

k ◦ · · · ◦ BL	
1(V )

with the convention N 	
0 = V .

Lemma 50 All 0s and 1s of N 	
k in columns k + 1, . . . , w + m + n are left-aligned,

meaning that all numbers occur before any 	 in these columns.
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Proof The 0s and 1s in V are all left-aligned by definition. If a row of V consists of
all 	s it is vacuously left-aligned. Assume inductively that for all � ≤ k that the 0s and
1s in N 	

� in columns k + 1, . . . , w +m + n are left aligned. We consider BL	
k+1(N

	
k ).

By hypothesis the numbers in the rows of columns k + 1 through w + m + n are left
aligned; if BL	

k(N
	
k ) is trivial they remain left aligned and in particular the numbers

in columns k + 2 to w + m + n remain left-aligned.
If BL	

k+1(N
	
k ) rotates one of the rows of N 	

k , then in inserts the last entry in the
rotated row into (N 	

k )k+1 and shifts the remaining entries to the right by one. Thus the
numbers in the affected row remain left-aligned in columns k + 2 and any unchanged
rows also preserve the property. 
�
Corollary 51 All the 	s of N 	

k are right aligned, meaning that if the �th row of N 	
k is a

	, then so is every entry of row � in columns k + 2 to w + m + n.

Proof Since the numbers in rows k + 1 to w + m + n are left-aligned by Lemma 50,
the entries to the right of all of the numbers in a row in columns k + 2 to w + m + n
must all be 	s. 
�
Lemma 52 Suppose V ∈ V , or V has counts of 0s, 1s, and 	s given in Table 2. For
k = 0, 1, . . . , w + n + m,

• The number of 	s in the first row of N 	
k in columns k + 1, . . . , w + m + n is the

same as the number of 0s in the fourth row of N 	
k in columns k+1, . . . , w+m+n;

• The number of 	s in the second row of N 	
k in columns k + 1, . . . , w +m + n is the

same as the number of 0s in the third row of N 	
k in columns k+1, . . . , w +m+n;

• The number of 	s in the third row of N 	
k in columns k + 1, . . . , w + m + n is the

same as the number of 0s in the first row of N 	
k ; and• The number of 	s in the fourth row of N 	

k in columns k + 1, . . . , w +m + n is the
same as the number of 0s in the second row of N 	

k .

Proof By referencing Table 2 the above statement is true for k = 0. Assume by
induction that the statements in the lemma hold for all 0 ≤ � < k and consider
BL	

k(N
	
k−1). We consider each row separately.

By Lemma 50, if there is a 	 in the first row of (N 	
k−1)k then all the remaining

entries of the first row must also be 	s and therefore by the inductive assumption all
the remaining entries in the fourth row of N 	

k−1 must be 0.
Note that 1 or 2 is in the row set of BL	

k applied to N 	
k−1 implies neither 3 nor 4 is

in the row set (see Table 3). In particular, in these cases, the third and fourth rows of
N 	
k and N 	

k−1 are identical.
If 1 ∈ RBL	

k (N
	
k−1)

then by referring to Table 3 we see that there must be a 0 in the
fourth row of (N 	

k−1)k . By the inductive hypothesis there must be a 	 in the first row
in columns k through w + m + n, by Corollary 51 a 	 occur in the last entry of the
first row. Thus BL	

k rotates a 	 into the first row of (N 	
k−1)k . Since the fourth row of

N 	
k is identical to that of N 	

k−1, both the number of 	s in the first row and 0s in the
fourth row of columns k + 1 to w + m + n of N 	

k decrease by one.
Similarly, if 2 ∈ RBL	

k (N
	
k−1)

, then Table 3 implies there is a 0 in the third row
of (N 	

k−1)k , and also that 3 /∈ RBL	
k
. By the inductive assumption there must be a 	
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in the second row among columns k, . . . , w + m + n of N 	
k−1 of (N 	

k−1)k , and by
Corollary 51, such a 	 is found at the end of the second row. Furthermore, since the
third row is not cycled by BL	

k , the matrix N 	
k has one fewer 0 in row 3, and one fewer

	 in row 2, in columns k + 1, . . . , w + m + n, compared to the number of each in
columns k, . . . , w + m + n of N 	

k−1. Thus the properties of the Lemma hold for N 	
k .

A similar argument applies to prove the case when 3 or 4 is in the row set of BL	
k

applied to N 	
k−1. 
�

Corollary 53 For k = 1, . . . , w + m + n, the bike lock move BL	
k applied to N 	

k−1
either leaves it unchanged, or inserts 	 into the kth column.

Proof If BL	
k shifts the first row of N 	

k−1 then there is a 0 in the fourth row of (N 	
k−1)k .

By Lemma 52 and Corollary 51 there is a 	 in the first row of N 	
k−1 in the w +m + n

column. Thus BL	
k rotates a 	 into the first row of (N 	

k−1)k .
Similar arguments apply to prove the cases when BL	

k shifts the second, third, and
fourth rows of N 	

k−1. Thus if BL
	
k shifts the �th of N 	

k−1, it cycles a 	 into the �th row
of (N 	

k−1)k . 
�
Corollary 54 The numbers of N 	

k are in the same order as the numbers of V for all
k = 0, . . . , w + m + n.

Proof By Corollary 53 if BL	
k shifts row � of N 	

k−1 then it cycles the entries of row �

in columns k to w + m + n to the right by 1. By Corollary 53 BL	
k always shifts a 	

into the kth column of N 	
k−1 and so the original order of the numbers is preserved. 
�

Lemma 55 The composition

BL	 := BL	
w+m+n ◦ · · · ◦ BL	

2 ◦ BL	
1

is a bijective map from V to Ṽ := {BL	(V ) : V ∈ V}.
Proof of Lemma 55 We verify that BL	 is injective. Suppose that BL	(V ) = BL	(V ′)
for some V , V ′ ∈ V . By Corollary 54 the order of the 0s and 1s is preserved from V
to BL	(V ) and V ′ to BL	(V ′), implying that the sequence of 0s and 1s in each row
of V and V ′ are the same since BL	(V ) = BL	(V ′). Since the 0s and 1s in V and V ′
are left-aligned, it must be the case that V = V ′. Hence BL	 injects onto its image. 
�

We now characterize the elements of Ṽ by a careful accounting of what each bike
lock move BL	

k does to columns of N 	
k := BL	

k ◦ . . . BL	
1(V ) for V ∈ V .

Proposition 56 Elements of Ṽ are exactly 4× (w +m + n) matrices M satisfying the
following:

1. The columns consist only of 7 types:

⎛

⎜⎜⎝

	

1
1
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
	

0
1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
1
	

1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
0
1
	

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

	

	

0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
	

	

⎞

⎟⎟⎠ , or

⎛

⎜⎜⎝

1
1
1
1

⎞

⎟⎟⎠ .

123



662 La Matematica (2022) 1:618–665

2. There are no pairs of adjacent columns of the form

⎛

⎜⎜⎝

	 0
	 0
0 	

0 	

⎞

⎟⎟⎠ .

3. The number of times each 1, 0, or 	 appears in each row of M is given in Table 2.

We prove Proposition 56 via a series of lemmas.

Lemma 57 Elements of Ṽ satisfy the three conditions of Proposition 56.

Proof of Lemma 57 Wefirst show that elements BL	(V ) ∈ Ṽ satisfy Property 1, noting
that (BL	(V ))k = (N 	

k )k .
If the kth column of N 	

k−1 consists of only 0s and 1s, then by referencing Table 3
and by Corollary 53 the possibilities for the kth column of N 	

k are

(BL	(V ))k = (N 	
k )k =

⎛

⎜⎜⎝

	

1
1
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
	

0
1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
1
	

1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
0
1
	

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

	

	

0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
	

	

⎞

⎟⎟⎠ , or

⎛

⎜⎜⎝

1
1
1
1

⎞

⎟⎟⎠ .

Suppose the kth column of N 	
k−1 contains a 	. We consider each row separately. If 	

is the entry of the first row of (N 	
k−1)k , then every subsequent entry in the first row is

	 since the 0s and 1s of N 	
k−1 are left aligned (see Corollary 51). Hence by Table 2

and Lemma 52, every entry in the fourth row, columns k, . . . , w + m + n, must be a
0. Since there are no 	s in the fourth row in columns k, . . . , w + m + n, no entry in
the second row of N 	

k−1 in these columns can be a 0. Therefore the second entry of
(N 	

k−1)k is 1 or 	.
If the entry in the second row of (N 	

k−1)k is a 	, by a similar argument the entry in
the third row of (N 	

k−1)k must be a 0 and so (N 	
k−1)k = (	, 	, 0, 0)T .

Suppose (N 	
k−1)k has 1 in its second row. Since there are no 0s in the first row of

N 	
k−1, columns k, . . . , w + m + n, there are no 	s in the third row in these columns.

Thus the only possibilities for (N 	
k−1)k are (N 	

k−1)k = (	, 1, 1, 0)T , which is one
of the 7 types listed in the first property, or (N 	

k−1)k = (	, 1, 0, 0)T . If (N 	
k−1)k =

(	, 1, 0, 0)T , then BL	
k rotates the second row of N 	

k−1 and Corollary 53 ensures that
(BL	(V ))k = (N 	

k )k = (	, 	, 0, 0)T , also one of the types listed in Property 1.
Similar arguments show that if the second, third, or fourth rows of (N 	

k−1)k are 	

then either (N 	
k−1)k is already one of the 7 types or BL

	
k shifts a 	 into an appropriate

row so that (BL	(V ))k = (N 	
k )k is one of the types listed in Property 1.

To prove the second property we check that if the kth column of M ∈ Ṽ is
(	, 	, 0, 0)T then the k + 1st column cannot be (0, 0, 	, 	)T . There are three pos-
siblities for (N 	

k−1)k that could lead to (M)k = (N 	
k )k = (	, 	, 0, 0)T .

First suppose that RBL	
k (N

	
k−1)

= ∅, in which case (N 	
k−1)k = (	, 	, 0, 0)T . By

Corollary 51 and Lemma 52 (N 	
k−1)� = (	, 	, 0, 0)T for all k ≤ � ≤ w + m + n; in

particular (N 	
k+1)k+1 �= (0, 0, 	, 	)T .
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The second possibility is that RBL	
k (N

	
k−1)

= {1}. By Table 3 the only choice for

(N 	
k−1)k is (1, 	, 0, 0)T . By Lemma 51 every subsequent entry in the second row of

N 	
k−1 must be 	, which excludes (N 	

k+1)k+1 = (0, 0, 	, 	)T .
The last possibility is that RBL	

k (N
	
k−1)

= {2}. Again by referencing Table 3 it must

be the case that (N 	
k−1)k = (	, 1, 0, 0)T . Thus once again by Lemma 51 every entry

in the second row of N 	
k−1 to the right of the kth column must also be a 	 and so

(M)k+1 = (N 	
k+1)k+1 �= (0, 0, 	, 	)T .

Finally, Property 3 is immediately satisfied by Corollary 54. 
�
We now verify that any M satisfying the properties of Proposition 56 is BL	(V )

for some V ∈ V , and hence M ∈ Ṽ .

Lemma 58 Let M be any matrix satisfying Properties 1, 2, and 3 in Proposition 56,
and let V be the matrix obtained by right justifying the 	s in M. Then BL	(V ) = M.

Proof Observe that V ∈ V due to Property 3. Suppose that the first k − 1 columns
of BL	(V ) and M agree, and consider the kth column (k could be 1). If the kth
column of BL	(V ) is any of (	, 1, 1, 0)T , (1, 	, 0, 1)T , (0, 1, 	, 1)T , (1, 0, 1, 	)T , or
(1, 1, 1, 1)T , so too must be the kth column of M , to have preserved the order of the
0s and 1s when removing 	s from M to form V .

Suppose the kth column of BL	(V ) is (	, 	, 0, 0)T . An appearance of a 1 in the
3rd or 4th row of the kth column of M would disrupt the order of 0s and 1s. Thus the
kth column of M must contain only 	 or 0s in the 3rd and 4th rows. Only (	, 	, 0, 0)T

and (0, 0, 	, 	)T satisfy this condition.
If M has (	, 	, 0, 0)T in the kth column, we’re done. If not, then it must have

(0, 0, 	, 	)T in the kth column. Then the appearance of a 1 in the first or second row
of the (k + 1)st column of BL	(V ) would disrupt the order of the 0s and 1s. Thus
the (k + 1)st column of BL	(V ) must contain only 	 or 0s in the 1st or 2nd rows.
Of the seven possibilities, only (	, 	, 0, 0)T and (0, 0, 	, 	)T satisfy this condition.
By the same reasoning, BL	(V ) has (	, 	, 0, 0)T in all subsequent columns, until the
first occurrence of (0, 0, 	, 	)T , guaranteed to occur by a simple count. It follows that
BL	(V ) has two adjacent columns of the form disallowed by Property 2.

A similar argument works if the kth column of BL	(V ) is (0, 0, 	, 	)T . If M has
(0, 0, 	, 	)T in the kth column, we’re done. If not, then it must have (	, 	, 0, 0)T in the
kth column. By the same reasoning, M has (	, 	, 0, 0)T in all subsequent columns,
until the first occurrence of (0, 0, 	, 	)T , guaranteed to occur by a simple count. Then
M has two adjacent columns of the form disallowed by Property 2. 
�
Proof of Proposition 56 By Lemma 57 any M ∈ Ṽ satisfies the conditions listed in
Proposition 56; by Lemma 58 any matrix M satisfying the properties is BL	(V ) for
some V ∈ V and hence M ∈ Ṽ . 
�

5.5 Bijection BetweenV andS

Finally, we complete the proof of Theorem 9 by establishing the bijection between
sets of the right size.
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Proposition 59 There is a bijection between sets V and S.

Proof We establish a bijection between the sets Ṽ and S̃, by mapping the seven vectors⎛

⎜⎜⎝

	

1
1
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
	

0
1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
1
	

1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
0
1
	

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

	

	

0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
	

	

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
1
1
1

⎞

⎟⎟⎠ listed in Lemma 56 for elements of Ṽ

to the seven 2-vectors
(
T
C

)
,

(
S
C

)
,

(
P
C

)
,

(
Q
C

)
,

(−
U

)
,

(
O
−
)

,

(
R
C

)

of elements of S̃, respectively. Note that the excluded configurations of Ṽ correspond
exactly to the excluded configurations of S̃

Lemmas 39 and 55 establish bijections from S to S̃ and from V to Ṽ , respectively.
Thus there is a bijection S → V . 
�
It follows that |S| = |V|. Since |V| is given by the left-hand side of Eq. (6) and |S| is
given by the right side of Eq. (6), we have concluded the proof of Theorem 9.

As an immediate corollary, we obtain Verdermonde’s Identity. Let n = 0 in Theo-
rem 9, and substitute a = x , b = y − x + m, s = m, and r = i .

Corollary 60 (Vandermonde) Let a, b ∈ Z. Then

(
a + b

s

)
=
∑

r

(
a

r

)(
b

s − r

)
.
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