10

15

Sim-to-Lab-to-Real: Safe Reinforcement Learning with Shielding
and Generalization Guarantees

Kai-Chieh Hsu®', Allen Z. Ren®?, Duy P. Nguyen?, Anirudha Majumdar®2, Jaime F. Fisac®?

aDepartment of Electrical and Computer Engineering, Princeton University, United States
bDepartment of Mechanical and Aerospace Engineering, Princeton University, United States

Abstract

Safety is a critical component of autonomous systems and remains a challenge for learning-based policies to be
utilized in the real world. In particular, policies learned using reinforcement learning often fail to generalize to
novel environments due to unsafe behavior. In this paper, we propose Sim-to-Lab-to-Real to bridge the reality
gap with a probabilistically guaranteed safety-aware policy distribution. To improve safety, we apply a dual
policy setup where a performance policy is trained using the cumulative task reward and a backup (safety)
policy is trained by solving the Safety Bellman Equation based on Hamilton-Jacobi (HJ) reachability analysis.
In Sim-to-Lab transfer, we apply a supervisory control scheme to shield unsafe actions during exploration; in
Lab-to-Real transfer, we leverage the Probably Approximately Correct (PAC)-Bayes framework to provide
lower bounds on the expected performance and safety of policies in unseen environments. Additionally,
inheriting from the HJ reachability analysis, the bound accounts for the expectation over the worst-case safety in
each environment. We empirically study the proposed framework for ego-vision navigation in two types of
indoor environments with varying degrees of photorealism. We also demonstrate strong generalization
performance through hardware experiments in real indoor spaces with a quadrupedal robot. See https:
//sites.google.com/princeton.edu/sim-to-lab-to-real for supplementary material.

Keywords: Reinforcement Learning, Sim-to-Real Transfer, Safety Analysis, Generalization

1. Introduction

Reinforcement Learning (RL) techniques have been increasingly popular in training autonomous robots to
perform complex tasks such as traversing uneven outdoor terrains [1] and navigating through cluttered indoor
environments [2]. Through interactions with environments and feedback in the form of a reward signal, robots

learn to reach target locations relying on onboard sensing (e.g., RGB-D cameras). In order to achieve good

empirical generalization performance in different environments, the robot needs to be trained in multiple
environments and collect experiences continuously. Due to tight hardware constraints and high sample
complexities of RL techniques, in most cases, the training is performed solely in simulated environments.

However, the robots’ performance often degrades sharply when they are deployed in the real world,
where there can be substantial changes in environments such as different lighting conditions and noise in
robot actuation. This performance drop opens the need for research on Sim-to-Real transfer. The typical
approach is to simulate a large number of environments with randomized properties and train the policy to
work well across environments, with the expectation that real environments at deployment time will be well
captured by the rich distribution of training variations. This technique, namely domain randomization, has
helped bridge the Sim-to-Real gap substantially [3-5]. In the field of visual navigation, conditions such as
camera poses, scene layout, and wall textures can be randomized. However, previous Sim-to-Real techniques

Email addresses: kaichieh@princeton.edu (Kai-Chieh Hsu), allen.ren@princeton.edu (Allen Z. Ren)
1Equal contributions in alphabetical order
2Equal contributions in advising

Preprint submitted to Artificial Intelligence June 12, 2023

https://sites.google.com/princeton.edu/sim-to-lab-to-real
https://sites.google.com/princeton.edu/sim-to-lab-to-real

20

25

30

35

40

Sim-to-Lab-to-Real

My \/\/12
/7 A A
(\
\ " a = A /
~ 7 ~ _ e
D1 - - - D2
Pre-Training Diverse Policies in Simulator Safely Fine-Tuning Policies in Lab
Latent Latent
Distribution N, Sim pistribution Vv
—Z> Safety-Aware n a L» Probabilistically g,
= nY —_— S
Dual Policy T Safe Dual Policy T
: i
! i
Observations O I Observations O |
E T
L e — - i

Figure 1: Overview of the Sim-to-Lab-to-Real framework. Top Left: During Sim stage, we train robot policies in a
wide variety of environments and conditions M (Blue circles). Then the same policies from Sim can be fine-tuned in different,
more specific settings M1,2,... (Green triangles/rectangles) during Lab training, which are in the same distribution Dy,5, . of
Real environments (Red triangles/rectangles). For example, we may first train using environments of randomized furniture
configurations in Sim, and then fine-tune policies in realistic room layouts [6] before deploying in Real indoor spaces. Bottom: In
Sim stage, Sim-to-Lab-to-Real trains a safety-aware dual policy conditioned on latent variable sampled from a distribution, and
then safely fine-tunes the latent distribution in Lab stage to adapt to a specific environment distribution. Top right: Sample
trajectory of a quadrupedal robot running trained policy in a real kitchen environment. The backup policy (Green arrow)
overrides the performance policy (Red arrow) when the safety critic value (colored trajectory) exceeds some threshold, steering
the robot away from obstacles.

do not explicitly address safety of the robots. Usually, it is worth compromising the performance (e.g.,
success rate and time needed for reaching the target) to allow better safety of the system (e.g., avoiding
dangerous collisions with humans or furniture). While safety violations are inconsequential in simulation,
robots trained without safety considerations will tend to exhibit similar unsafe behavior once deployed in real
environments. Another drawback of these techniques is that they do not provide any guarantees on robots’
performance or safety when they are deployed in different real environments. A “certificate” of robots’
generalization performance and safety is necessary before they are deployed in safety-critical environments
(e.g., households with children).

In this work, we explore an intermediate training stage between Sim and Real, which we call Lab, that
aims to systematically bridge the Sim-to-Real gap by explicitly enforcing hard safety constraints on the
robot and certifying the performance and safety before deployment in Real. The proposed Sim-to-Lab-to-
Real framework is motivated by the conventional engineering practice whereby, before deploying autonomous
systems in the real world, designers usually test them in a realistic but controlled environment, such as a
test track for autonomous cars or testing warehouse facilities for quadrupeds at Boston Dynamics [7]. This
standard pipeline opens up an opportunity for autonomous systems to further improve performance and
safety in the Lab stage. Our insight is that (1) in simulation, where environments can be easily randomized
and data is easily collected, the robot can be trained in a wide range of environments and conditions; (2)
after that, the robot needs to fine-tune in more specific environments before being deployed in similar ones
in the real world; (3) this training stage can also certify the system before Real deployment, especially if the
training can provide guarantees on its performance and safety in the real world. Through such extensive
training and validation, we can deploy the system confidently in the real environments. Fig. 1 demonstrates
the overview of the proposed Sim-to-Lab-to-Real framework.

Fine-tuning in the Lab stage differs from training in the Sim stage in that the Lab stage is more safety-
critical. In other words, we want the autonomous system to safely explore in this stage to improve the

45

50

55

60

65

70

75

80

85

90

performance. In order to realize safe Sim-to-Lab transfer, we need to consider both (1) how safety is
formulated and (2) how safety is ensured throughout training. Typical approaches in safe RL combine the
safety objective with the performance objective, including adding large negative reward when violating the
safety constraints or minimizing the worst-case performance using conditional value at risk (CVaR)
formulation [8, 9]. However, these methods do not attempt to explicitly enforce hard safety constraints and
face a fragile balance between performance and safety. Specifically, these methods require hand-tuning the
weights of different components in the objective function, which makes them often fail to generalize well to
unseen tasks or environments. Our approach instead builds upon a dual policy setup, where a performance
policy optimizes task reward and a backup (safety) policy keeps the robot away from failure conditions.
We then apply a least-restrictive control law [10] (or shielding) with the safety state-action value function
from the backup policy: the performance policy is only overridden by the backup policy when the safety
state-action value function predicts that the proposed performance action would result in an inevitable safety
violation in the future. The backup policy is pre-trained in the Sim stage and ready to ensure safe exploration
once Lab training starts. Based on the safety policy training developed in [11, 12] using Hamilton-Jacobi (HJ)
reachability-analysis, our backup agent can learn from near-failure with dense signals. Unlike previous work
that uses binary safety failure indicators [13, 14], our training does not rely on experiencing safety violations,
which enables the backup policy to be updated in safety-critical conditions. As we show in Sec. 7.2.1, the
number of safety violations is reduced by 4%—77% compared to previous safe RL work in different settings.
We also would like to provide “certificates” on the performance and safety of the robot after Lab training.
However, this can be very challenging since typically it is not possible to fully specify the environment
distribution where the robot is deployed (e.g., range of wind velocities for drone navigation, or minimum
distance between obstacles for home robot navigation). Traditional techniques that provide performance
guarantees for control policies, such as from robust control [15, 16] and model-based reachability analysis
[17, 18], typically assume an explicit description of such uncertainty affecting the system (e.g., bound on
actuation noise) and/or the environment. To tackle the challenge, we apply the Probably Approximately
Correct (PAC)-Bayes Control framework [19-21], which provides lower bounds on the expected performance
and safety when testing learned policies in unseen environments, while (1) not assuming explicit knowledge
of the environment and (2) suited for systems with high-dimensional observations like vision. The framework
also naturally fits our setup, as the two training stages of PAC-Bayes Control, prior and posterior, can be
assigned to the Sim and Lab stages. As required by the PAC-Bayes setup, we train a distribution of policies by
conditioning the performance (and backup) policy on latent variables sampled from a distribution. After
training a prior policy distribution in Sim stage, we fine-tune the distribution in Lab, obtaining a posterior
policy distribution and its associated generalization guarantee. While previous work in PAC-Bayes Control
does not consider explicit policy architecture for safety, we now combine it with HJ reachability analysis and
improve the generalization bounds for performance and safety by 40% (Sec. 7.2.2).

1.1. Statement of Contributions

The primary contribution of this work is to propose Sim-to-Lab-Real, a framework that combines HJ
reachability analysis and the PAC-Bayes Control framework to improve safety of robots during training
and real-world deployment, and provide generalization guarantees on robots’ performance and safety in real
environments. Additionally, we make the following contributions:

e We propose an algorithm for concurrently training the performance policy that optimizes task reward
and a backup policy that follows the Safety Bellman Equation (5) in Sec. 5. We introduce annealing
parameters that allow gradual learning of performance and safety in the Sim stage. We also demon-
strate that HJ-reachability RL can learn the safety state-action value function end-to-end from images
and enable safe exploration with a shielding scheme.

* We propose a modification of off-policy actor-critic algorithms that incorporates the policy distribution
regularization from PAC-Bayes Control in Sec. 6. By constraining the KL divergence between the prior
and posterior policy distribution in expectation with batch samples and a weighting coeficient, we op-
timize the generalization bound in the Lab stage eficiently. With a shielding-based policy architecture,
we are able to significantly improve the bound compared to previous PAC-Bayes Control works.

95

100

e We demonstrate the ability of our framework to reduce safety violations during training and improve
empirical performance and safety, as well as generalization guarantees, compared to other safe learning
techniques and previous work in PAC-Bayes Control in Sec. 7. We set up ego-vision navigation tasks in
two types of environments including one with realistic indoor room layout and visuals. We also
validate our approach and generalization guarantees with a quadruped robot navigating in real indoor
environments (Sec. 7.2.3).

2. Related Work

Safe Exploration. Ensuring safety during training has long been a problem in the reinforcement learning
community. On one hand, the RL agent usually needs to experience failure in order to learn to be safe. On the
other hand, being too conservative hinders exploring the state/action space suficiently. Constrained MDP
(CMDP) is a frequently used framework in safe exploration to satisfy constraints by changing the optimization
objective to include some forms of risk [22]. CMDP faces two main challenges: how to incorporate the safety
constraints in RL algorithms and how to eficiently solve the constrained optimization problem. Chow et al. [9]
use Lagrangian methods to transform the constrained optimization into an unconstrained one over the

primal variable (policy) and the dual variable (penalty coeficient). A recent line of works building on
reachability analysis argues that optimizing the sum of rewards and penalties is not an accurate encoding of
safety [12]. Instead, they encode the safety specification of dynamical systems by finding the optimal safety
value function, which is a solution to a Hamilton-Jacobi-Bellman/Isaacs variational inequality [23, 24]. With
this safety value function, they apply a least-restrictive control law to shield any performance-oriented policy
by overriding with an optimal safe action only when the agent is at states with critically low safety values
[10, 25]. Cheng et al. [26] propose a similar shielding framework, utilizing the related control barrier function
(CBF) concept. If the system dynamics are control-afine and a CBF is available, a smooth safety override
can be computed eficiently by solving a quadratic program with a linear CBF constraint. However, these
methods all assume that the dynamics and the environment are at least approximately known. Moreover,
they also require that the reachability value function or CBF is available before the learning starts, which is
non-trivial for high-dimensional dynamics and/or unknown environments.

To mitigate the curse of dimensionality and address generalization to novel environments, we build upon
reachability RL [11, 12], which finds an approximate safety value function. Recent methods in [13, 14, 27, 28]
address the safety problem by similar learning-based methods and shielding schemes as proposed in this work.
However, the major differences lie in how the safety state-action value function, or safety critic, is trained and
where the backup actions come from. Dalal et al. [27] assume the safety of systems can be ensured by
adjusting the action in a single time step (no long-term effect). Thus, they learn a linear safety-signal model
and formulate a quadratic program to find the closest control to the reference control such that the safety
constraints are satisfied. Srinivasan et al. [13] and Thananjeyan et al. [14] learn the safety state-action value

function from only sparse and binary safety labels. Srinivasan et al. [13] use this function to filter out the
unsafe actions from the performance policy and resample actions until the backup agent deems the proposed
actions safe, while Thananjeyan et al. [14] let the backup agent directly take over. The concurrent work [28]
uses the same reachability RL to learn the backup agent. Our method is distinct in that (1) we propose the
two-stage training to further reduce the safety violations in training and (2) we train the reachability RL
end-to-end from images without pre-training the visual encoder. We compare our reachability critic with risk
critic [13, 14] as detailed in Sec. 7.2.1. Our method reduces the number of safety violations by up to 77%
in Lab training and 38% in testing.

A different line of works use learning-based methods to capture the residual error between the nomi-
nal model and the real dynamics, which results from model mismatch and/or uncertainties. Then, they

combine learned models with model-based RL or model predictive control (MPC) to allow safe exploration.
Berkenkamp et al. [29] use Gaussian process (GP) to estimate the performance of control parameters and
they only deploy parameters that are predicted to be higher than a predefined threshold. On the other hand,
Koller et al. [30] use GP to estimate the residual error and then utilize this model to over-approximate the
forward-reachable set (FRS). They formulate a terminal constraint in MPC to only deploy policies whose

140

160

165

170

175

180

185

FRS reaches a known control-invariant set (under some safety controllers). Liu et al. [31] learn the unknown
residual with regression and quantify the residual error bound by formulating a covariance shift problem.
Our method is distinct in that we use a model-free approach since we only assume we have high-dimensional
measurements like RG B images, which cannot be easily handled with model-based methods. Secondly, we do
not assume having access to a safe set a priori.

Generalization Theory and Guarantees. In supervised learning, generalization theory provides a principled
guarantee on the true expected loss on new samples drawn from the underlying (but unknown) data distri-
bution, after training a model using a finite number of samples. Foundational frameworks include Vapnik-
Chervonenkis (VC) theory [32] and Rademacher complexity [33]; however the resulting bounds are generally
extremely loose for neural networks. More recent approaches based on PAC-Bayes generalization theory
[34] have provided non-vacuous bounds for neural networks in supervised learning [35, 36]. Majumdar et al [19]
apply the PAC-Bayes framework in policy learning settings and provide generalization guarantees for control
policies in unseen environments. Follow-up work has provided strong guarantees in different robotics settings
including for learning neural network policies for vision-based control [21, 37-40]. Unlike supervised learning
settings where picking a PAC-Bayes prior can be dificult, previous work in control settings has en-
coded different domain knowledge in the prior, such as diverse trajectories from human demonstrations [37].
Our work also encodes diverse navigation strategies into the prior through maximum entropy learning [41].
In addition, previous work has not adopted safety-related policy architectures nor considered safety during
training. Combining PAC-Bayes theory with reachability safety analysis, we are able to provide stronger
guarantees on performance and safety.

Safe Visual Navigation in Unseen Environments. Robot navigation has witnessed a long history of research
[42], and many of the approaches have focused on explicit mapping of the environment combined with long-
horizon planning in order to reach a goal location [43, 44]. Some recent works apply a map-less approach
[2, 45] or builds a map-like belief of the world [46] instead. They often take an end-to-end learning approach
and start to tackle generalization to previously unseen environments. Similar to them, we train from pixels

to actions, and use RGB images as the policy input without any depth information or mapping of the
environment. Furthermore, we place more emphasis on the safety of the robot; we aim to train the robot
avoiding any collision with obstacles and reaching some target location without the need of explicit mapping
(e.g., initial and target locations can be in the same living room). There has been work that explicitly aims
to improve safety of the navigating agent. A popular approach is to detect any novel environment or
location (often using a neural network) and resort to conservative actions when novelty is detected [47, 48]. A
slightly different approach is to estimate the uncertainty of the policy output and act cautiously when the
policy is uncertain where to go [49, 50]. However, these work learn the notion of novelty and uncertainty
purely from data, often in the form of binary signals, which can be sample ineficient and not generalizable to
unseen domains. Closer to our work, there has been a line of work in applying Hamilton-Jacobi reachability
analysis in visual navigation. Bajcsy et al [51] solves for the reachability set at each step but relies on a map
generated using onboard camera. Li et al [52] proposes supervising the visual policy using expert data
generated by solving a reachability problem. As detailed in the following section, our work also leverages
reachability analysis but does not build a map of the environment nor relies on ofline data generated by a
different (expert) agent.

Adaptive Sim-to-Real Transfer. Directly applying policies trained in simulation to real environments can
lead to bad performance and safety, and there has been work that adaptively bridges the Sim-to-Real gap.
One line of work addresses the mismatch in robot and environment dynamics by explicitly searching for
simulation parameters (e.g., mass, friction coeficient) that result in trajectories matching the real rollouts
[53-55]. Mehta et al. [56] propose active domain randomization that looks for simulation parameters that

leads to different trajectories than reference ones, and those parameters are deemed important to train
upon. A different approach [57] searches for simulation parameters by directly optimizing task reward in
real environments without matching the dynamics. A work closer to ours is Multi-Fidelity RL by Cutler

195

200

205

210

215

220

et al. [58], in which lower-fidelity environment (i.e., simulation) determines exploration heuristics for higher-
fidelity environment (i.e., real world), and higher-fidelity environment learns model parameters for lower-
fidelity environment. In a similar spirit, we learn safety-aware policy in lower-fidelity simulation for safer
exploration in the Lab stage, where the policy distribution is fine-tuned. An important distinction of our
work from previous ones is that we jointly address the Sim-to-Real gap in robot perception, environment
configuration and dynamics. In addition, we provide probabilistic guarantees on the performance and safety of
policies being deployed in real environments.

3. Problem Formulation and Preliminaries

We consider a robot with discrete-time dynamics given by
st+1 = fe(se, at), (1)

with state s@S B R"s, control input al@ A B R"=, and environment E @ E that the robot interacts with (e.g.,
an indoor space with furniture including initial and goal locations of the robot). Below we introduce the
different conditions of the environments considered in the three stages. See Figure. la for visualization.

Environment - Sim. In the Sim stage, we assume there is a set of training environments M B E (e.g.,
synthetic indoor spaces with randomized arrangement of furniture), M' := {E1,E2,---, En'}. There is no
assumption on how M is distributed in E.

Environment - Lab. In the Lab stage, we are concerned with more specific conditions, and there can be
different distributions of environments D1, D2, ... (e.g., ofice or home spaces, dimensions of the obstacles),
with which the policies trained in Sim can be fine-tuned. We assume no explicit knowledge of each distri-
bution D;; instead, we assume there is a set of N; training environments drawn i.i.d. from D; available for the
robot to train in; we denote these training datasets by M := {E1,E,,---,En } @D e WitIH a slight abuse of
notations and for convenience, we consider a single target condition when introducing the rest of formulation
and the approach, and denote the concerned distribution D, the training set M, and the number of training
environments N.

Environment - Real. In the Real stage, we assume the robot is deployed in environments from the same
distribution D but unseen during the Lab stage.

Next we introduce the rest of problem settings including the robot sensor, the policy, and robot’s task
involving the reward function and the failure set. These settings hold the same for all three stages, except for
the failure set which we do not require knowledge of at Real deployment.

Sensor. In all environments, we assume the robot has a sensor (e.g., RGB camera) that provides an
observation 0 = hg(s) using a sensor mapping h:S x E - O.

Task and Policy. Suppose the robot’s task can be defined by a reward function, and let Rg (1) denote the
cumulative reward gained over a (finite) time horizon by a deterministic policy m: O = A when deployed in
an environment E. We assume the policy 1t belongs to a space N of policies. We also allow policies that
map histories of observations to actions by augmenting the observation space to keep track of observation
sequences. We assume R () @ [0, 1], but make no further assumptions such as continuity or smoothness.
We use Eé’" :[0,T]x E = S to denote the trajectory rollout from state s using policy 1 in the environment
E up to a time horizon T.

Failure set. We further assume there are environment-dependent failure sets F¢ @S, that the robot is not

allowed to enter. In training stages, we assume the robot has access to Lipschitz functions g : S x E - R

such that F ¢ is equal to the zero superlevel set of ge, namely, sBFg & ge(s) =2 0. For example, ge(s) can
be the signed distance function to the nearest obstacle around state s. Thus, ge(s) is called the safety margin
function throughout the paper.

230

235

240

245

250

3.1. Goal

Our goal is to learn policies that provably generalize to unseen environments at the Real stage. This is
very challenging since we do not have explicit knowledge of the underlying distribution D. We employ a
slightly more general formulation where a distribution P over policies m B M instead of a single policy is
used. In addition to maximizing the policy reward, we want to minimize the number of safety violations, i.e.,
the number of times that the robot enters failure sets. Our goal can then be formalized by the following
optimization problem, which we would like to lower bound as the guarantee:

h i
R® := sup Rp(P), where Rp(P) := E E Re(m) , (2)
PP E@D mn@P
n o
Re(m) :=Re(m)1 Bt@[O, T], § (t) BFe (3)

where Re (1) @ [0, 1] denotes the task reward that does not penalize safety violation, P denotes the space of
probability distributions on the policy space M, and 1{-} is the indicator function. Here the task reward can
be either dense (e.g., normalized cumulative reward) or sparse (e.g., reaching the target or not).

3.2. Generalization Bounds

Recently, PAC-Bayes generalization bounds have been applied to policy learning settings in order to
provide formal generalization guarantees in unseen environments. We briefly introduce this framework here, as
it will be used in our overall approach presented in Section 4. First it requires training a prior policy
distribution Po, which we do in the Sim stage with the set of environments M. Then in the Lab stage, we
fine-tune Po with environments M to obtain the posterior distribution P. Now, define the empirical reward of
P as the average expected reward across training environments in M:

h i
E Re(m) . (4)

1
op
N gom ™

R|\/|(P) =

The following theorem can then be used to lower bound the true expected reward Rp (P).

Theorem 1 (PAC-Bayes Bound for Control Policies; adapted from [19]). Let Po B P be a prior distribution.
Then, for any P B P, and any 6 & (0, 1), with probability at least 1 - & over sampled environments M B DN, the
following inequality holds:
v
KL(PEPo) + log(=,N
2N

b
Rpo(P) = Rpac(P,Po) :=Rm(P) - C(P, Pg), where C(P,Pp) :=

’

and KL(P | | Q) stands for Kullback-Leibler (KL) divergence between probability distribution P and Q.

Maximizing the lower bound Rpac can be viewed as maximizing the empirical reward Ry (P) along with
a regularizer C that prevents overfitting by penalizing the deviation of the posterior P from the prior Py. By
fine-tuning Pp to P and maximizing the bound in the Lab stage, we can provide a generalization guarantee
for trained policies in unseen environments in the Real stage.

Remark 1. In exchange for assuming almost nothing about the environment distribution D and providing
statistical guarantees that hold in arbitrarily high confidence (1 - &) instead of only in expectation over
sampled environments (e.g., conformal prediction [59]), the PAC-Bayes framework requires at least a few
hundred Lab environments (N > 100) to achieve reasonably tight generalization bounds. This requires
substantial resources for training the policies in the Lab stage. In this work we use simulated environments for
Lab training, but we envision that training in real environments is well scalable for industry practitioners with
extensive training resources. Please refer to Sec. 8 for more discussion.

255

265

270

275

280

Disl;:i::;tion Ny Qb(i , | Z) < Viur ?

Z
B LR ETEETEEP e
s o .,

1 N\ Shielding Ash

4 / Discriminator

'

‘

'

1 < Performance a?

: Policy)

' r

i | Environment F

1 L —» Back ﬂ,'b a®

] Policy

S I |
h

Safety-Aware Dual Policy 7*

Observations O

Figure 2: Architecture of the safety-aware policy distribution: we consider a dual policy setup where the performance
policy m_ (and backup policy T, optionally) is conditioned on latent variables sampled from a distribution encoding diverse
behavior. The safety state-action value function Qp(0t, at) from the backup policy is used as the shielding discriminator Ash,
which determines whether the proposed action by the performance policy, ap, is safe. The action from the backup policy, ap,
overrides only if necessary.

4, Method Overview

Our proposed Sim-to-Lab-to-Real framework bridges the reality gap with probabilistic guarantees by
learning a safety-aware policy distribution Fig. 2 shows the architecture of the safety-aware dual policy. It
explicitly handles safety through the use of a shielding discriminator, which monitors the candidate actions
from the performance policy and overrides them with backup actions only when deemed necessary. We
condition the performance policy T, (and the backup policy m, and the shielding discriminator As") on a
latent variable z sampled from some distribution, encoding different trajectories to follow (and different

shielding strategies to take). With these tools, we divide the Sim-to-Real gap into two components, i.e.,
Sim-to-Lab and Lab-to-Real, which we tackle by a two-stage training pipeline as shown in Fig. 1. We show
how to jointly train a dual policy conditioning on a latent distribution in Sec. 5. The details of Lab training and
derivations of generalization guarantees are provided in Sec. 6.

For training, we use a proxy reward function rg : S x A x E = R, such as dense reward in distance
to target, as a single-step surrogate for the task reward Re(m). Additionally, for every interaction with
the environment, the robot receives a safety cost ge(s) (e.g., distance to nearest obstacle). We train both
performance and backup policies with modifications of the off-policy Soft Actor-Critic (SAC) algorithm [60].
We denote the neural network weights of the actor and the critic 8 and w. We use superscripts (-)P and (-)° to
denote critics, actors, and actions from the performance or backup agent. In order to parameterize the
policy distribution, we condition the performance (and the backup) policy on a latent variable z@R":. We
assume the latent variable is sampled from a multivariate Gaussian distribution with diagonal covariance as
ZBN(W,Z), where u@R"z is the mean and £ @ R":*": s the diagonal covariance matrix. For notational
convenience, we denote o B R": the element-wise square-root of the diagonal of Z, and define ¢ = (u, o),
Ny := N(u, diag(o?)). This parameterization enables our framework to quantify the difference between the
policy distribution after Sim training and Lab training, by which we can use PAC-Bayes Control to give
probabilistic guarantees.

5. Pre-Training a Diverse Dual Policy in Simulation

The goal of the first training stage is to train the dual policy jointly with the fixed latent distribution in
simulation, where training is not safety-critical (safety violations are not restricted). In this training stage,
we use the environment dataset M’ that contains environments that are not necessarily similar to those from
the target environment distribution D. Similar to domain randomization techniques, we use environments

285

290

295

300

safe actions from 77(- | z;)

unsafe actions from 7°(- | z;)|

b .

shielded actions from 7

safe actions from 77(- | z,) N , 3

ﬂp R \ .
)
L) \I °
° tsh ﬂs h

Figure 3: Rollout trajectories of the safety-aware policy distribution: the latent variables sampled from the distribution
induce a diverse exploration motives and value-based shielding manages to override the unsafe actions. Red dashed line shows the
unshielded actions; Black/Blue dotted lines show the safe actions by the performance policy; Green lines show the backup actions
overriding unsafe actions. The inset shows safety values Q(o, t?(0)) with the observation o taken when the heading angle fixed
to the one at time instant tgh.

and conditions with randomized properties, such as random arrangement of furniture in indoor space and
random camera tilting angle on the robot.

In the following subsections, we first review how to learn a backup policy by reachability RL optimizing
for the worst-case safety. Then, we propose a shielding scheme with physical meaning to override unsafe
candidate actions proposed by the performance policy. Additionally, we incorporate information-theoretic
objectives to induce diversity into the learned policy distribution, which helps with fine-tuning the policy
distribution and achieve stronger generalization guarantees in the next training stage. Finally, we show how to
jointly train two agents, performance and backup, to realize all the above-mentioned goals.

5.1. Safety through Reachability Reinforcement Learning

Failures are usually catastrophic in safety-critical settings; thus worst-case safety, instead of an average
safety over the trajectory, should be considered. For training the backup policy, we incorporate tools from
reachability reinforcement learning [11, 12] and optimize the discounted safety Bellman equation (DSBE) as
below, n o

Qb(ot,at) :=(1-vy)ge(st) + ymax ge(st), miA Q° ows1, a1,
at+1 0

(5)

where ot = hg(st) and vy is the discount factor. This discount factor represents how much attention theRL
agent places on future outcomes: if y is small, the RL agent only cares about “imminent danger”, andasy =
1, one recovers the infinite-horizon safety state-action value function. In the training, we initialize y = 0.8
and gradually anneal y towards 1 during the process.

The safety state-action value function in (5) captures the maximum cost g¢ along the trajectory starting
from s¢ with action a: assuming that the safest control input is applied at every instant thereafter. Thus,
minatA Q(ot, at) > 0 indicates that the robot is predicted to inevitably violate safety in the future if a; is
taken. By utilizing this (annealed) DSBE, we have an exact encoding of the property we want our system to
satisfy. The DSBE allows the backup agent to learn the safety state-action value function from near-failure
executions, which significantly reduces failure events during training. Additionally, the DSBE enables the
backup agent to update using a dense learning signal, which is suitable for the joint training of performance
and backup agents. To our knowledge, this work demonstrates the first instance of reachability RL in fully
end-to-end training with extremely high-dimensional inputs (RG B images), without the need for pre-training
a vision encoder as in [28].

305

310

315

325

5.2. Shielding

We leverage a least-restrictive control law, i.e., shielding, to reduce the number of safety violations in
both training and deployment. Suppose we have two policies: performance-pursuing policy mP and safety-
pursuing (backup) policy m°. Before we apply a candidate action from the performance-pursuing policy, we
use a shielding discriminator ASP to check if it is safe. We replace the proposed action with the action from
the backup policy if and only if that candidate action is deemed to result in safety violations in the future. The
shielding criterion is summarized in (6). This ensures minimum intervention by the backup policy while the
performance policy guides the robot towards the target [10, 61].

oy M0 AM(o,m, QP = 1 (6)
nP(o), otherwise :

The safety value function learned by DSBE represents the maximum cost along the trajectory in the
future if following the learned policy. If we define the safety margin function ge(s) to be the closest distance to
the obstacles, then QP(o, a) represents the closest distance of the robot to the obstacles in the future. Based
on this, we propose a value-based shielding with the threshold having a physical interpretation, i.e., a margin
from the failure. Once the robot receives the current observation o and uses performance policy to generate
action mP(0), the backup policy overrides the action if and only if QP(0,aP) > vihr. In other words, the
shielding discriminator is defined as below

AN (o, P, QP) 1= 1QP(0, mP(0)) £ Vinr . (7)

Fig. 3 shows an example of shielding that prevents applying unsafe actions from the performance policy
(replace the red dotted lines with green dotted lines in the inset). We compare the safety state-action value
function based on DSBE with ones by sparse safety indicators [13, 14] in Sec. 7.2.1 and Fig. 6; our approach
affords much better safety during training and deployment.

5.3. Diversity through Maximization of Latent-based Mutual Information

During Sim training, we also maximize the diversity of robot behavior encoded by the latent distribution,
which has shown in different work [37, 41] to result in better performance after fine-tuning the distribution,
which we perform in the Lab stage. Each latent variable is sampled from the distribution. As the policy
is conditioned on the latent variable, it should lead to different trajectories around obstacles and towards
the target (Fig. 3). With a single policy instead of a distribution, it is prone to overfit to some set of
environments and fails to adapt in new environments (Fig. 11).

In order to distinguish the resulting trajectories using latent variables, we maximize mutual information
between observations of trajectories &, and latent variables z, which can be IBwered bounded by sum of mutual
information between each observation and the latent variable (&,; z) = T I(ot; z) [62] (observation-
marginal MI). We can further lower bound I(O;2Z) 2 E,gy, ,Op(.mshlz)[lo_g de(z|0)] - Esen, [log p(z)],
where the posterior p(z|o) is approximated by a learned discriminator de(z|0), parameterized boy a neural
network with weights ¢ [41]. Intuitively, in order to make trajectories recognizable by the discriminator, the
trajectories need to be diverse. Similar to [41], before updating the policies after sampling a batch of
experiences, we augment the proxy reward by a weighted mutual information reward with coeficient B:

raug(St, at, 01, z) = r(st, at) + Blogge(z|ot) - logp(z). (8)

This encourages the value function to assign higher reward to regions more recognizable by the discriminator.

Concurrently, we train the discriminator by maximizing log qe(z |0) with Stochastic Gradient Descent (SGD),
h i

@ < @+ BeEo logae(z]o) . (9)

As shown in Fig. 2, we can additionally condition backup policies with the latent distribution; the robot
may avoid obstacles in different directions, and such skills might be beneficial when there is a distributional
shift of obstacle placement and geometry in the Lab stage.

10

340

345

350

360

The backup agent can also depend on a latent variable. Since the backup agent can intervene at any
state and condition on any latent, we instead optimize the conditional mutual information between action
and latent given the current observation I(A; Z|O) (observation-conditional MI). We modify the backup
policy training objective (5) as below

h i
gv" = argminL(8) := Eo,. Eaz g(102Q(0,2;2) - VI(A;Z]O), (10)

where the Q-function is now conditioned on a latent variable and v is the coeficient balancing the safety cost
and the diversity. Through derivations in Appendix A, we modify the SAC formulation and the backup actor is
updated as,

s

1
8 < 8- B E(o,2)a8,a8 R(-]0,2)Q(0,3;2) - v logme(alo, z) + vlog ne(alo, zi), (11)

Ng i=1,ziBp(z)

where B is the replay buffer. Intuitively, for specific action a given current observation o, we want it to have
high probability for policy conditioned on a specific latent variable z and low probability for other latent
variables {z;} sampled from the distribution. Note that when the backup agent is also conditioned on latent
variable z, the shielding discriminator in (7) now becomes QP (o0, mP(0), z) £ Vinr. While similar formulations
have been explored in previous work [41, 63, 64] to achieve diverse trajectories/skills in RL, to our best
knowledge, we are the first to consider a continuous distribution of latent variables instead of a discrete one.
We find this brings dificulty in training, exacerbated by using robot observations instead of true states (e.g.,
ground-truth locations of the robot); nonetheless, we show effectiveness of such diversity-induced training in
Sec. 7.2.4.

5.4. Joint Training of Performance and Backup Policies.

Now we are ready to perform joint training of the dual policy. In the Sim stage, we fix the latent
distribution to be a zero-mean Gaussian distribution with diagonal covariance Ny, , where go = (0, 0o). For
each episode during training, we sample a latent variable z & Ny 0and condition the performance policy
(and the backup policy) on it for the whole episode. The training procedure is illustrated in Algorithm 1.

Since we train both policies with modifications of the off-policy SAC algorithm, we can use transitions
from actions proposed by either backup policy or performance policy. The transitions from both policies are
stored in a shared replay buffer and are sampled at random to update the parameters of actors and critics
for both performance and backup agents. At every step during training, the robot needs to select a
policy to follow. We introduce a parameter p, the probability that the robot chooses an action proposed
by the backup policy. We initialize p to 1, meaning that at the beginning, all actions are sampled from the
backup policy. Our intuition is that the backup policy needs to be trained well before shielding mechanism
is introduced in the training. We gradually anneal p to 0. Additionally, to realize a safe Sim-to-Lab transfer,
we want the performance agent to be aware of the backup agent. Thus, we also apply shielding during Sim
training. However, since the backup actor and critic may not be able to shield successfully in the beginning,
we introduce a parameter €, which is the probability that the shielding is activated at this time step. This
parameter can be viewed as how much we trust the backup policy and to what extent we want it to shield
the performance policy. We typically initialize € to 0 and anneal it to 1 gradually. The influence of p and €
are further analyzed in Sec. 7.2.4.

The details of updating the policies and the discriminator are shown in the Algorithm 2. Notice that
while we train the backup policy m° using the executed action aih, the performance policy rtP is trained using
the originally proposed action a: (“action re-labeling”). This ensures that the performance agent learns to
associate its proposed action with the transition outcome, and avoids keeping proposing unsafe actions.

After the joint training, we obtain the trained dual policies mP and n®, and the latent distribution
Ny, that encodes diverse solutions in the environments. We now fix the weights of the two policies, and
consider the latent variable z also part of their parameterization. This gives rise to the space of policies
n:= {T[Zp,TPZ : O > A |z @ R"}; hence, the latent distribution Ny, can be equivalently viewed as a

11

365

Algorithm 1 Joint training in simulator

Require: M, mP, mt°, gy, Ny, := N(0,01),p= 1,€= 0,y = Vinit

1: Sample E @M and z @ Ny » Feset environment Same latent for whole episode
2: for t & 1 to num_prior_step do

3: With probability p, sample action a; B 1t°(-| oy, z); else sample at @ rtP(-| oy, z)

4: With probability €, apply shielding a$h = n*h(rt®, QP, oy, at, 2)

5: Step environment rt, o, St+1 = fe(st, ash)

6: Save (0t+1, Ot, at, asth, z, r¢) to replay buffer

7: Update 1tP, t°, qo See Algorithm 2
8: Anneal p>0,e > 1,y >1

9: if timeout or failure then

10: Sample E @M’ and z @ Ny , reset environment

11: end if

12: end for

13: return nP, t°, Ny,

Algorithm 2 Updating the performance policy, backup policy, and the discriminator

1: for t < 1 to num_policy_update do

2: Sample batch {(ot+1, 0t, at, z, rt)} from the replay buffer Action re-labeling
3: Augment ry with mutual information reward (8)

4: Update mP to maximize raug with SAC Observation-marginal M|
5: Sample batch {(ot+1, ot, asth, z, r¢)} from the replay buffer

6: Update rtP to minimize ge(s) with modified SAC by (5) and (11) Observation-conditional Ml
7: end for

8: for t € 1 to num_discrminator_update do

9: Sample batch {(ot, z)} from the replay buffer

10: Update go with SGD (9) Observation-marginal Ml
11: end for

distribution on the space I of policies. In the next section, we will consider Ny as a prior distribution Po
on 1t and “fine-tune” it by searching for a posterior distribution P = Ny, which comes with the generalization
guarantee from PAC-Bayes Control.

6. Safely Fine-Tuning Policies in Lab

In the second training stage, we consider more safety-critical training environments such as test tracks
for autonomous cars or indoor lab space, where the conditions can be more realistic and closer to real
environments. After pre-training the performance and backup policies with shielding, the robot can safely
explore and fine-tune the prior policy distribution Pg in a new set of environments M sampled from the
unknown distribution D. Leveraging the PAC-Bayes Control framework, we can provide “certificates” of
generalization for the resulting posterior policy distribution P.

The PAC-Bayes generalization bound Rpac associated with P from Eq. (1) consists of two parts: (1)
Rm (P), the empirical reward of P as the average expected reward across training environments in M (4),
which can be optimized using SAC algorithm; (2) a regularizer C(P, Pg) that penalizes the posterior P for

deviating significantly from the prior Po,
v

KL(PEPo) + log(2 M)
2N '

Note that the only term in C(P, Pg) that involves P is the KL divergence term between P and Pp. To
minimize C(P, Po), we modify the SAC objective to include minimization of the KL divergence term. Also,

C(P, Po) := (12)

12

375

380

385

390

we consider stochasticity of the policy from the latent distribution instead of the policy network; this leads
to removing the policy entropy regularization in SAC and adding a weighted KL divergence term to the
actor loss: h i

maxEo.z Ean 5(-10,2) QP(o,a) - aKL(P, Po), (13)

where a B R is a weighting coeficient to be tuned. In practice, we find the gradient of the KL divergence term
heavily dominates the noisy gradient of actor and critic, and thus we approximate the KL divergence with an
expectation on the posterior:
h .
P(2)
maxEo: Eagn(. P(o,a) - alo —_— 14
b 0,z al g (|o,z)Q () g Po(Z) ()
Below we show the algorithm for this stage of training. To avoid safety violations, we always apply
value-based shielding to the proposed action, and continue to apply action-relabeling when updating P .

Algorithm 3 Safely fine-tuning the policy distribution

Require: M, P, i, P = Po

1: Sample E @M and z[@ P, reset environment
2: for t € 1 to num_posterior_step do

3: Sample a: B tP(-|ot, z)

4: Apply value-based shielding a3 = n=h(n®, Q®, oy, at, 2)

5: Step environment r¢, O¢, St+1 @ P(-|st, a%})

6: Save (ot+1, at, Z, rt) to replay buffer Action re-labeling
7: Update P using SAC with weighted regularization (14)

8: if timeout or failure then

9: Sample E @M, z[RBP, reset environment

10: end if

11: end for

12: return P

6.1. Computing the Generalization Bound.

After training, we can calculate the generalization bound using the optimized posterior P. First, note
that the empirical reward R (P) involves an expectation over the posterior and thus cannot be computed in
closed form. Instead, it can be estimated by sampling a large number of policies z1, ...,z fromP: Rm{P) := NL

E@M iL=1 Re (T[pz’_‘b), and the error due to finite sampling can be bounded using a sample convergence
bound Rwm [65]. The final bound Rpound(P) < Rp(P) is obtained from Rw and C(P, Po) by a slight
tightening of Cpac from Theorem 1 using the KL-inverse function [19]. Please refer to Appendix A2 in [37]
for detailed derivations. Overall, our approach provides generalization guarantees in novel environments from
the distribution D: as policies are randomly sampled from the posterior P and applied in test environments,
the expected success rate over all test environments is guaranteed to be at least Rpound(P) (with probability

1-6 over the sampling of training environments; § = 0.01 for all experiments in Sec. 7). Through reachability
shielding during training and generalization guarantees for the resulting policies, we bridge the Lab-to-Real
gap with a probabilistically guaranteed safety-aware policy distribution.

7. Experiments

Through extensive simulation and hardware experiments, we aim to answer the following questions:
does our proposed Sim-to-Lab-to-Real achieve (1) lower safety violations during Lab training compared to
other safe learning methods, (2) stronger generalization guarantees on performance and safety compared to
previous work in PAC-Bayes Control, and (3) better empirical performance and safety during deployment

13

400

420

425

compared to all baselines? We also evaluate (a) the relative importance of the Sim stage and Lab stage,
(b) how the value threshold in shielding affects safety and eficiency, (c) how the regularization weight in
(14) affects generalization guarantees and empirical performance after training, (d) how the two annealing
parameters during Sim training, € and p, affect training performance, and (e) how diversity components,
mutual information maximization during Sim training and latent dimension, affect performance after Lab
training.

7.1. Experiment Setup

Figure 4: Samples of environments used in experiments: (a) Sim training in Vanilla-Env; (b) Sim training in Advanced-
Env; (c) Advanced-Realistic training; (d) physical robot deployment.

7.1.1. Environments

We evaluate the proposed methods by performing ego-vision navigation task in two types of environment.
The first type (Vanilla-Env) consists of undecorated rooms of 2m x 2m with randomly placed cylindrical
and rectangular obstacles of different dimensions and poses, and the robot needs to bypass them and the
walls to reach a green door (a smaller circular region in front it) (Fig. 4a). A virtual camera is simulated
with 120 degree field of view both vertically and horizontally, outputting RGB images of 48 x 48 pixels. We
treat the robot as a point mass when checking collision.

The second type of environments (Advanced-Env) uses realistic furniture models from the 3D-FRONT
dataset [6] (Fig. 4b); the robot needs to safely reach some target location (a smaller circular region) using
given distance and heading angle towards the target. A virtual camera is simulated at the front of the robot
with 72 degree field of view vertically and 128 degree horizontally (matching the ZED 2 camera used in Real
deployment), outputting RGB images of 90 x 160 pixels. When checking collisions, we approximate the robot
as a circular shape of radius 25cm, roughly the same as the quadrupedal robot in Real deployment.

For both types of environments, the control loop runs at 10Hz and the maximum number of steps is
200. The robot is commanded with forward velocity ([0.5, 1] m/s for performance policy and [0.2,0.5] m/s
for backup policy) and angular velocity ([-1, 1] rad/s for both policies). We use dense proxy reward that is
proportional to the percentage of distance traveled between initial location and goal, and the safety signal
is calculated as the minimum distance to obstacles and walls. Additionally, we assume the robot is given
€e(s) and Ag(s), distance and relative bearing to the goal.

For Sim training, we randomize obstacle and furniture configurations to cover possible scenarios as much
as possible. We also randomize camera poses (tilt and roll angles) in Advanced-Env to account for possible
noise in real experiments. Sim training uses 100 environments in Vanilla-Env and 500 environments in
Advanced-Env. After Sim training, we can fine-tune the policies in different types of Lab environments. For
Vanilla-Env, we consider:

e Vanilla-Normal: shares the same environment parameters as ones in the Sim stage.

e Vanilla-Dynamics: increases the lower bound of forward and angular velocity (more aggressive ma-
neuvers).

e Vanilla-Task: adds an additional condition on success that the the robot needs to enter the target
region with a yaw angle within a small range instead of 2rt (no restriction) in the Sim stage. The robot

14

430

445

450

465

may pass through the target region and re-enter it with the required yaw orientation. The robot knows
the lower bound and the upper bound of the required yaw range.

and for Advanced-Env, we consider:

e Advanced-Dense: assigns a higher density of furniture in the rooms, resulting in smaller clearances
between them.

e Advanced-Realistic: uses realistic room layouts (Fig. 4c) and associated furniture configurations
from the 3D-FRONT dataset, which are similar to real environments. We perform Lab-to-Real transfer
with policies trained in this Lab (Fig. 4d). More details about the dataset and room layouts can be
found in Appendix C.

7.1.2. Policy
We parameterize the performance and backup agents with neural networks consisting of convolutional

layers and then fully connected layers. The actor and critic of each agent share the same convolutional layers.
In Vanilla-Env, a single RGB image is fed to the convolution layers, and the latent variable is appended to the
output of the last convolutional layer before fully connected layers. In Advanced-Env, we stack 4 previous RGB
images while skipping 3 frames between two images to encode the past trajectory of the robot. Then, the
stacked images are concatenated with the first 10 dimensions of the latent variable by repeating each

dimension to the image size. Rest of the dimensions is appended to the output of the last convolutional
layer. In addition to the image observation, the actors and critics also receive two auxiliary signals €¢(s) and
Ag (s), which are also appended to the output of the last convolutional layer. The details of neural network
architecture and training can be found in Appendix B.

7.1.3. Baselines

We compare our methods to five prior RL algorithms that neglect safety violations (Base and PAC_Base
[19]) or address safety by reward shaping (RP and PAC_RP) or use a separate safety agent (SQRL [13] and
Recovery RL [14]). Sim-to-Lab-to-Real varies from SQRL and Recovery RL in that the latter trains the
safety critic by the sparse safety indicators as below,

QP(or,ar) := le(se) + y 1= lg(st) min QP 0w, aw1,
aHlA
where lg(st) = 1{ge(st) > 0} is the indicator function of the safety violations. In Sim-to-Lab-to-Real, the
safety state-action values represent the robot’s closest distance to the obstacles in the future, while in
Recovery RL and SQRL, the values represent the probability that the robot will hit the obstacle (but the
probability strongly depends on the discount factor used). The major distinction between Sim-to-Lab-to-
Real and PAC-Bayes control is that the latter does not handle the safety explicitly but instead hopes to use
diverse policies and fine-tuning to prevent unsafe maneuver. We give a brief description of these methods
below and summarize the similarities and differences in Table 1.

e Sim-to-Lab-to-Real (ours): trains a distribution over dual policies conditioned on latent variables
with guarantees on generalization to novel environments. We present two variants: PA C _Shield_Perf,
whose performance policy is conditioned on latent variables, and PAC _Shield_Both, whose both
performance and backup policies are conditioned on latent variables (Fig. 2).

e Shield (ours): trains a dual policy without conditioning on latent variables, thus no distribution over
policies nor generalization guarantees.

e PAC-Bayes Control [19]: trains a distribution over policies conditioned on latent variables that
optimizes for either only task reward (PAC Base) or reward with penalty (PAC_RP).

e Base: trains a single policy that optimizes the task reward only.

15

475

480

485

495

e Reward Penalty (RP): trains a single policy but augments the task reward with penalty on safety
violations, fe(s,a) = re(s,a) - A1{ge(s) > 0}.

e Safety Critic for RL (SQRL) [13]: trains a dual policy. The backup critic optimizes the Lagrange
relaxation of CMDP, J(rt) = J(m) + VEam 4(vinr — QP(0, a)], with a rejection sampling method that
re-samples action if Q®(0, a) > vinr.

e Recovery RL [14]: trains a dual policy. The backup critic is trained in the same method as SQRL,
but the backup action is from the backup actor instead of being re-sampled from performance policy.

Table 1: Major distinctions among Sim-to-Lab-to-Real and baseline methods.

Generalization

Methods Dual Policy Safety Treatment Guarantees

Sim-to-Lab-to-Real (ours)
Shield (ours)
PAC+Base [19]

v (Reachability safety critic)
Vv (Reachability safety critic)

X
PAC+Reward Penalty [19] Vv (Reward with safety penalty)
Base X

Reward Penalty
Safety Critic for RL [13]
Recovery RL [14]

v (Reward with safety penalty)
v (Risk safety critic)
v (Risk safety critic)

NX X X X XN
XX X X KA xS

7.2. Results

We compare all the methods by (1) safety violations in Lab training and (2) success and safety at
deployment (Figure 5). We calculate the ratio of number of safety violations to the number of episodes
collected during training. For deployment, we show the percentage of failed trials (solid bars in Figure 5)
and unfinished trials (hatched bars). We summarize the main findings below:

1. Across Lab training, our proposed Sim-to-Lab-to-Real (PAC_Shield Perf and PAC_Shield Both) achieves
the fewest safety violations. This demonstrates the eficacy of the reachability safety state-action value
function for shielding. Compared to the risk-based safety critics in SQRL [13] and Recovery RL [14],
our safety critics can learn from near-failure and with dense cost signals, as discussed in 7.2.1. Adding
penalty in the reward function does not reduce safety violations significantly.

2. In testing environments, Sim-to-Lab-to-Real achieves the lowest unsuccessful fraction of trajectories
(solid bars plus hatched bars). This indicates that training a diverse and safe policy distribution
achieves better generalization performance to novel environments. Sim-to-Lab-to-Real also achieves
the fewest safety violations (solid bars) at test time. This suggests that explicitly enforcing hard safety
constraints improves the safety not only in training but also in testing. In Sec. 7.2.2 we show stronger
generalization guarantees (for both performance and safety) compared to PAC-Bayes baselines.

3. In Sec. 7.2.3 we show Sim-to-Lab-to-Real achieves the best performance and safety among baselines
when the policies are deployed on a quadrupedal robot navigating through real indoor environments.
The empirical performance and safety also validate the theoretical generalization guarantees from
PAC-Bayes Control.

4. In Sec. 7.2.4 we show that high diversity of trajectories from the latent distribution results in better
generalization at test time. Without diversity maximization in Sim training, the resulting trajectories
can concentrate close to a single one and hinder downstream fine-tuning in Lab. However, we also find
that in Advanced-Env, PAC Base and PAC RP (distribution over policies) perform worse than Base
and RP (single policy). We find that high diversity without shielding may hinder training progress due
to frequent safety violations interfering with strategy exploration.

16

500

10\/iolations Ratio (Training) o Unsuccessful (Testing)
HEl PAC_Shield_Perf (ours) I Shield (ours)
= I Il PAC_Shield_Both (ours)
EO.S 0.1 —
ZO = I PAC Base Base I SQRL
N PAC_RP s RP I Recovery RL
0.0 0.0 =
10 02 1_0V|olat|ons Ratio (Tralnlng)l_0 Unsuccessful (Testing)
1
8 I
[}
% 05 01 g 05 054
s a
a
0.0 0.0 o 0.0 0.0+
L0 050 1.0 1.0
% _
7
v/ 7
7 A,
% 7 % 7 (@)
v 2 Y 2 2 A w7 B
0 45 1 0.25 % % 2 % % % % !’o_s 051
o QAU A7 =
. 24702499 3
AV A2@ &
7 7
A ¥ I
0.0 0.00 0.0 0.0
(a) Vanilla-Env (averaged over 5 seeds) (b) Advanced-Env (averaged over 3 seeds)

Figure 5: Comparison of safety violations during Lab training and unsuccessful trials at test time: Sim-to-Lab-to-
Real (PAC_Shield_Perf and PAC_Shield_Both) has the lowest safety violations in both training and deployment. First, it
showcases the benefits of using a shielding scheme in contrast with Base, RP and vanilla PAC-Bayes. Second, reachability safety
critic enables safer exploration and safety satisfaction in deployment as compared to SQRL and recovery RL. Additionally, Sim-to-
Lab-to-Real has lower unsuccessful ratio in deployment than Shield, which shows a diverse but safe policy distribution not only
provides a generalization bound but also improves the empirical performance to novel environments.

5. We find that adding latent distribution to the backup policy introduces dificulty during Sim train-
ing, and leading to similar, if not worse, performance and safety at test time. We suspect that
PAC Shield Both would take more samples to converge well in training and requires more careful
tuning of hyperparameters. Following discussions focus on results of PAC Shield Perf, in which only the
performance policy is conditioned on the latent variable.

6. Compared to other Labs, violation ratios in Advanced-Realistic tend to be higher, although our methods
still reduce safety violations by 20-25%. Also, there are few unfinished trials at test time (the robot
neither reaches the target nor collides with obstacles). Given the tight spacing in realistic indoor
environment (Fig. 6b), the non-trivial dimensions of the quadruped robot, and the complex visuals,
the backup policy can fail to ensure safety in some environments.

7.2.1. Reachability vs. Risk-Based Safety Critic
Sim-to-Lab-to-Real and previous safe RL methods differ in the metric used to quantify safety and train
the backup agent. By utilizing reachability RL, we have an exact encoding of the property we want our
system to satisfy, i.e., the distance should be no closer to obstacles than a specific threshold. In contrast,
SQRL and Recovery RL define safety by the risk of colliding with obstacles in the future and use binary
safety indicators. We argue that risk-based threshold can easily overfit to specific scenarios since the prob-
ability heavily depends on the discount factor used. In addition, reachability objective allows the backup
agent to learn from near failure, while the risk critic in SQRL and Recovery RL needs to learn from complete
failures. Fig. 6 shows 2D slices of the safety state-action values in both environment settings. Reachability
critics provide thicker unsafe regions next to obstacles, while risk-based critics fail to recognize many unsafe
regions or consider unsafe only when very close to obstacles. Among different Lab setups, compared to the

17

520

525

535

545

Reachabilit
1]

Safety Indicator
1]

Reachability 05 Safety Indicator 1
. - -
-0.5 0 -0.5 0
(a) Lab: Vanilla-Normal (b) Lab: Advanced-Realistic

Figure 6: 2D slices of safety state-action value functions when the robot is facing to the right: we train the safety
critic using RL modified from Hamilton-Jacobi reachability analysis (“Reachability”), while SQRL and recovery RL train it
with sparse binary indicators (“Safety Indicator”). Reachability safety critic better captures the unsafe region - there is a more
gradual change in safety value near the obstacles (from blue to red color, lower to higher value), indicating that the robot is
getting closer to the obstacles. In contrast, risk-based critic shows a more binary separation between safe and unsafe regions,
leaving the robot little room and time to steer away from obstacles. The unsafe regions are also thinner than those learned with
reachability. Thus, our reachability-based approach achieves fewer safety violations during both training and deployment.

baselines, our method reduces safety violations by 77%, 4%, 76%, 62%, and 23% in training and 38%, 26%,
54%, 34%, and 28% in deployment.

Sensitivity analysis: value threshold. Through experiments, we find the value threshold used in shield-
ing essential to performance and safety. We first investigate how the threshold using during training affects
the final results among the three Lab settings in Vanilla-Env, which are shown in Fig. 8e. vinr = 0 natu-rally
results in more safety violations during training compared to vihr = -0.05 and vinr = -0.10. Policies trained
with vihe = 0 also performs the worst at test time, which indicates that less shielding during training makes the
robot learn unsafe or aggressive maneuver. Next we evaluate how the value threshold affects robot trajectories
at test time. Fig. 7 shows the trajectories using different thresholds in the two settings. Small
threshold leads to robot passing very closely next to obstacles, while a bigger threshold leads to more con-
servative behavior. We also would like to highlight the challenges of learning safe policies in Advanced-Env.
As shown in the figure, with vihr = -0.15 the robot avoids the first obstacle, and then the backup policy
steers the robot away from the target, potentially deeming the clearance next to the target not suficient.
However, this brings the robot near the wall, and due to imperfect training of the backup actor, the robot
fails to escape. With tight spacing and large dimensions of the robot in Advanced-Env, we find the backup
agent more dificult to train, and the final test performance and safety can be sensitive to the shielding
threshold. In Advanced-Realistic, average test success rate with vipr = -0.05,-0.1, -0.15 are 0.678, 0.786,
and 0.762 respectively. Future work could look into adapting the threshold after short experiences in different
environments online.

7.2.2. Generalization Guarantees

In this subsection, we evaluate the PAC-Bayes generalization guarantees obtained after Lab training, and
the effect of adding reachability shielding in the policy architecture to the bounds. Table 2 shows the bounds
and test results on safety (not colliding with obstacles) and success (safely reaching the goal) among Lab
training. The true expected success and safety are tested with environments that are similar to the Lab train-
ing environments (of the same distribution) but unseen before. In all settings, the true expected success and
safety are higher than the bound in all settings, which validates the guarantees derived using PAC-Bayes
Control. Furthermore, we compare the bound trained using PAC Shield Perf with previous PAC-Bayes
Control method (PAC_Base) in the Vanilla-Env and Advanced-Realistic. With shielding, the generalization

18

%
“ Vgpr = 0.00 .
= Venr = — 0.05 »
+ Vihr = — 0.10 --h.
B¢
s
mx
X
2 Tax
X ++ .x
x"xll"+ to.
= X x .! + ...
iﬁ'. ag C ++ L
s vl om W + ",
" X Vgpr=—0.05 7, "faamams
i
s vyr= —0.10 +,
h
+ Ver= —0.15 e
+
(a) Lab: Vanilla-Normal (b) Lab: Advanced-Realistic

Figure 7: Rollout trajectories using different value threshold for shielding: higher threshold (more negative) results in
more conservative maneuver, i.e., keeping farther away from obstacles (purple in (a) and grey in (b)). In Advanced-Env, the
complex visuals and tight spacing cause challenges in learning the backup agent. We tend to find a relatively conservative
threshold (vihr = -0.10) works well in practice, and too high threshold can prevent the robot from reaching the goal and
accidentally steer it towards tight space.

025 Augmented Reward o1 Latent Dimension o1 Divergence Weight o1 # Lab Environments 025 Value Threshold
: —p=2 : = n;=50 : — a=10 : = N=2000 ’ — Vinr=-01
—— B=05 — ;=20 — a=1 —— N=1000 — V= —0.05
B=0 n;=5 a=0.1 N=100 Vine =0 _
-1 ©
—— £
£
o
— -k— =
0.00 0.0 0.0 0.0 0.00
0.0 03 00 03 00 03 00 03 00 06
o 04 0.2 0.2 0.2 0.4
c
£ |
%] wn
(]] =
I_ ——— E
—_— — ©
z — SR
5 -
0 —4= a
[}
Q
O 00 0.0 0.0 0.0 0.0
a 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0 1
c 06 0.5 0.4 0.4 0.6
]

{t
+

+

-

0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.8

(a) (b) (c) (d) (e)
Violations (Training)

Figure 8: Sensitivity analyses: we study the influence of different hyper-parameters to Sim-to-Lab-to-Real. The results are
averaged over 5 seeds in Vanilla-Env. If not specified, the hyper-parameters defaultto B = 2, n; = 20, a= 1, N = 1000, and vV¢hr
= -0.05, as shown in blue. Results suggest the augmented reward in Sim training and the value threshold in shielding are the two
most important hyper-parameters.

bound improves in all settings. In the dificult setting of Advanced-Realistic, the bound improves from 0.366
to 0.786 for task completion and from 0.367 to 0.794 for safety satisfaction. Thus, explicitly enforcing hard
safety constraints not only improves empirical outcomes but also provides stronger certification to policiesin
novel environments. In Sec. 7.2.3 we also demonstrate empirical results of physical robot experiments
validating the guarantees.

19

555

560

565

570

Table 2: Results of PAC-Bayes guarantees and test success and safety: to compute the bound, each environment has
1000 policies sampled from the latent distribution and tested. The results in the first two rows are based on PAC Shield_Perf.

Advanced-Realistic

Method PAC_Shield_Perf PAC_Base SQRL
Lab Environments 1000 1000 1000
Success Bound 0.701 0.297 -
True Expected Success 0.786 0.366 0.712
Real Robot Success 0.767 0.433 0.667
Safety Bound 0.708 0.304 -
True Expected Safety 0.794 0.367 0.713
Real Robot Safety 0.867 0.433 0.667
Vanilla-Normal Vanilla-Dynamics
Method PAC Shield_Perf PAC_Base PAC Shield_Perf PAC_Base
Divergence Weight 1 1 1 10 1 1 1 1 10 1
Lab Environments 100 1000 2000 1000 1000 100 1000 2000 1000 1000
Success Bound 0.778 0.876 0.900 0.896 0.735 0.692 0.820 0.839 0.828 0.778
True Expected Success 0.948 0.945 0.947 0.934 0.886 0.881 0.880 0.878 0.872 0.843
Safety Bound 0.793 0.911 0.917 0.913 0.816 0.717 0.835 0.851 0.837 0.815
True Expected Safety 0.954 0.954 0.954 0.953 0.902 0.888 0.887 0.887 0.883 0.852
Vanilla-Task Advanced-Dense
Method PAC Shield_Perf PAC_Base PAC _Shield_Perf PAC_Base
Divergence Weight 1 1 1 10 1 2 2 2 1 5 2
Lab Environments 100 1000 2000 1000 1000 100 500 1000 500 500 1000
Success Bound 0.578 0.757 0.792 0.777 0.468 0.402 0.578 0.623 0.512 0.557 0.254
True Expected Success 0.847 0.851 0.844 0.853 0.590 0.577 0.663 0.703 0.621 0.644 0.327
Safety Bound 0.769 0.884 0.899 0.887 0.663 0.412 0.579 0.630 0.518 0.564 0.259
True Expected Safety 0.939 0.939 0.940 0.938 0.796 0.583 0.671 0.709 0.629 0.652 0.332

Sensitivity analysis: weight of policy distribution regularization (a). When optimizing the gen-
eralization bound (14), we place a weighting coeficient a to balance gradients of the training reward and
of the estimated KL divergence between the prior and posterior policy distribution, Po and P. Here we
study the effect of using different values of a in the generalization bound and test performance. Fig. 8c
shows that too strong regularization (a = 10) prevents the Lab training from tuning the prior distribution
suficiently, resulting in worse testing performance after training. The effect of different a is more prominentin
Advanced-Dense training. With same 500 training environments, o = 2 achieves 0.578 on success bound while
0.512 for a = 1 and 0.557 for a = 5.

Sensitivity analysis: number of Lab environments (N). Thm. 1 indicates the PAC-Bayes bound
depends on the number of environments used in the Lab training. Fig. 8d demonstrates that in Vanilla-Env,
N does not have a significant effect on training safety violations and test performance. We suspect that
training in Vanilla-Env does not require a large number of environments for generalization. In the more
dificult Advanced-Dense, with the same a = 2, higher N = 1000 achieves the best test success (0.703)
and safety (0.709) compared to smaller N = 100 and N = 500 (Table. 2), which demonstrates that a
higher number of Lab environments help fine-tuning the policies achieving strong generalization in complex
environments.

7.2.3. Physical Experiments

To demonstrate empirical performance and safety of trained policies in real environments (Lab-to-Real
transfer) and verify the generalization guarantees, we evaluate the policies in real indoor environments in

20

575

580

585

590

&

L IR
)
N~ Y

Figure 9: Environments for physical robot experiments and robot trajectories/observations with
PAC Shield Perf: we run the policy three times in each environment by sampling different latent variables from the posterior
distribution. The three numbers in images indicates success/unfinished/failure split. Green dots indicates shielding in effect.
Green star indicates success in reaching the target. Red star indicates colliding with obstacles. We scan the environment using an
iPad Pro tablet before experiments to generate the 2D map (which the robot does not have access to). The robot trajectory is
obtained using localization algorithm of the onboard camera, and is inaccurate at places (intersecting obstacles; not exactly
reaching the target but the robot deems so, which we consider success).

)

the Engineering Quadrangle building at Princeton University. We deploy a Ghost Spirit quadrupedal robot
equipped with a ZED 2 camera at the front (Fig. 4d), matching the same dynamics and observation model
used in Advanced-Realistic Lab. For the distance and relative bearing to the goal, before each trial the robot
is given the ground-truth measurement at the initial location, and then it uses the localization algorithm
native to the stereo camera to update the measurement at each step.

We pick ten different locations with furniture configurations and dificulty similar to those in Advanced-
Realistic Lab. Based on test results after Lab training, we run policies trained with PAC_Shield Perf (best
performance overall), PAC_Base (PAC-Bayes baseline with low generalization guarantees), and SQRL (best
overall among other baselines). Each policy is evaluated at one environment 3 times (30 trials total). The
results are shown in Table. 2. Our policy is able to achieve the best performance (0.767) and safety (0.867),
validating the theoretical guarantees from PAC-Bayes Control. The upper-right of Fig. 1 shows a trajectory
when running policies trained with PAC_Shield in a kitchen environment where the backup policy and the
shielding discriminator help the robot avoid hitting the obstacles and reach the target successfully.

Fig. 9 shows the 10 real environments and robots’ trajectories when running policies trained with
PAC Shield Perf. Green dots indicate shielding in effect, which is activated often near obstacles. The
first and third images on top of the figure show the robot’s view when shielding successfully guides robot
away from the sofa stool and the cabinet. In the second environment, the backup policy keeps shielding the
robot away from center of the room with value threshold vinr = -0.10, and all three trials ended as

21

Success Safety Violations Success Safety Violations
1.0 10000 1.0 50000

oo o & — anneal — anneal
/;/\.J\ NANS A NS — =0 =1
X / 8000 e=1 0.8 40000

0.9

0.8 6000 0.6 30000

0.7 4000 0.4 20000

0.6 2000 0.2 10000

o 0.0+ 0
0 10 20 30 40 50 0 10 20 30 40 50 0 2 8 12 16 20 0 1 8 12 16 20

0.5

The index of steps (x 10000) The index of steps (x 200000)

(a) Vanilla-Env (b) Advanced-Env

Figure 10: Effect of p and e scheduling in Sim training: annealing p and € helps balance between safety violations and task
completion. If not specified, for Vanilla-Env, p initializes at 1 and decays by 0.5 every 25000 steps, and € initializes at 0 with 1
- € decaying by 0.5 every 50000 steps. For Advanced-Env, p initializes at 0.5 and decays by 0.5 every 500000 steps, and €
initializes at 0 with 1 - € decaying by 0.5 every 200000 steps. The results are over 5 random seeds for Vanilla-Env and 3 random
seeds for Advanced-Env.

unfinished. This is possibly due to the cluttered scene of desks at the top half of the observation. We also
test with small value threshold vinr = -0.05 during experiments, and the robot is able to reach the target
without shielding always activated. This highlights the need for adapting the shielding value threshold online
in future work.

7.2.4. Other Studies

Ablation Study: importance of two-stage training. We evaluate the significance of Lab training by
testing the prior policy distribution (without fine-tuning in Lab) in Vanilla-Env. W.ithout Lab training,
the unsuccessful ratio in deployment increases by 16%, 8% and 14%. This suggests that Lab training is
essential to policies adapting to real dynamics and new environment distributions. Additionally, we test the
importance of Sim training with Shield (no policy distribution). Without Sim training, the safety violations
in Lab training increases by 60%, 11% and 65%. This demonstrates that Sim training enables the backup
agent to monitor and override unsafe behavior from the beginning of Lab training.

Sensitivity analysis: the probability of sampling actions from the backup policy (p) and the
probability of activating shielding (€). One of the main contributions of our work is the effective joint
training of both performance and back agents (realized in Sim training). The two parameters, p and e,
directly affect the exploration in Sim training. With high p or high €, the RL agent basically only explores
conservatively within a small safe region. However, in the beginning of the training, we should allow the RL
agent to collect diverse state-action pairs. On the other hand, we also gradually anneal p > 0 and e > 1
since we want the performance policy to be aware of the backup policy. In other words, the performance
policy is effectively in shielded environments towards end of Sim training. Fig. 10 shows the Sim training
progress under different p and € scheduling. With constant p = 0 or € = 0, the number of safety violations is
much higher than that with both parameters annealing. Even worse, € = 0 results in the number of safety
violations increase at constant speed and the training success fluctuates significantly. On the other hand,
with p = 1 or € = 1, the number of safety violations is only half as that with both parameters annealing.
However, this is at the expense of exploration and leads to worse success rate in deployment. In Vanilla-Env p
= 1 leads to very poor training success. Although in Vanilla-Env € = 1 does not have significant effect
on training success, in the Advanced-Env, insuficient exploration hinders training progress. Also note that
Sim training is not safety-critical and we do not aim to reduce safety violations then.

Sensitivity analysis: diversity-induced Sim training. We argue that training a diverse and safe policy

distribution helps improve safety and performance in novel environments. There are two hyper-parameters
in our algorithm affecting the diversity, i.e., augmented reward coeficient B and latent dimension n,. Fig.8a

22

630

635

645

650

655

High Diversity (8 =2) Without Diversity (8 =0)

* 2X
™
. % x
+
L X
+ 2 .
X .
+ X B
b X 5]
: » e
X

+ X

x

*

DU % %
+ m X m
+ %]
+ Dx)(L

8¥ .
' xx XX **
x FRxXXX < my X X% o

Figure 11: High augmented reward coeficient induces a diverse policy distribution: the diversity is essential to fine-
tuning the latent distribution in Lab training and to good generalization to novel environments. Black markers indicate actions
from the performance policy being executed, and green markers are for actions from the backup policy.

and Fig.8b show the violation ratio in Lab training and unsuccessful ratio in testing under different (B, n;)
choices. We find that training without augmented reward (B = 0) results in the lowest violation ratio;
however, the unsuccessful ratio in testing is the highest. In fact, we observe that with B = 0, rollout
trajectories conditioned on different latent variables almost converge to a single trajectory as shown in
Fig. 11. This reflects why safety is better satisfied but at the expense of generalization. On the other hand,
when the coeficient is suficiently large (B = 2), the policy distribution becomes diverse and generalizes well
to unseen testing environments. Note that even with high diversity, safety can still be well ensured with
shielding. For the second source of diversity, our proposed Sim-to-Lab-to-Real is robust to different latent
dimension.

8. Conclusion

In this work, we propose the Sim-to-Lab-to-Real framework that combines Hamilton-Jacobi reachability
analysis and PAC-Bayes generalization guarantees to bridge the Sim-to-Real reality gap with a probabilisti-
cally guaranteed safety-aware policy distribution. Joint training of a performance and a backup policy in Sim
training (1st stage) enables a safety-aware exploration during Lab training (2nd stage). By optimizing the
generalization bounds in Lab training, our approach is able to probabilistically certify robot performance and
safety before deployment. We demonstrate significant reduction in safety violations in training and
stronger performance and safety during test time. Results from experiments with a quadrupedal robot in
real indoor space validate the theoretical guarantees.

8.1. Discussion: Environment distribution.

As elaborated in Sec. 3, the generalization guarantees obtained through our framework assumes no
distribution shift between Lab and Real in terms of environments. To bridge the discrepancy, we model the
real environments by using (1) photorealistic dataset of indoor room layouts and furniture models and (2)
dynamics from system identification of the real robot and camera poses. Additionally, we note that previous
works in PAC-Bayes Control [19, 21, 37] have consistently shown real deployment validating the bounds.
Even under a slight of shift in distribution, we believe that a certificate of performance and safety is useful
and provides confidence for deploying the system.

8.2. Discussion: Large-scale Lab training.

We acknowledge that one limitation of our framework is that, in exchange for assuming close to nothing
about the environment distribution and providing statistical guarantees that hold in arbitrarily high con-
fidence instead of in expectation only (e.g., conformal prediction [59]), we require at least a few hundred

23

660

665

675

680

695

environments for “Lab” training to achieve tight PAC-Bayes generalization guarantees (e.g., < 10% differ-
ence between empirical performance and theoretical guarantee), which means performing “Lab” training with
real conditions can be dificult for us researchers in university labs with limited hardware, computation, and
human resources. In this work, we resort to performing “Lab” training in realistic simulated environments.

Nonetheless, we envision that our framework is well suited for industry practitioners who have access to
either extensive training facilities (e.g. Google’s robot “farms” [66], Boston Dynamics’ testing warehouse [7]),
large-scale distributed systems (e.g. Amazon’s warehouses [67]), or vast amounts of “Lab-like” data collection
(e.g. Cruise and Waymo’s thousands—millions of test driver miles [68]). For these practical and often safety-
critical applications, our framework can improve safety during training and provide generalization guarantees
for performance and safety at deployment. For university labs achieving similar scales of data collection and
training, it would be promising to explore (1) crowdsourcing robots training across labs [69] and (2)
mechanisms for automatically resetting the robot [70] and randomizing the environments.

On the theoretical front, first it would be worth identifying the most representative environments for
training (e.g., using coresets [71]). PAC-Bayes guarantee holds as long as the policies are “evaluated” in
the training environments M and the training reward R v is evaluated. We could potentially obtain similar
tight generalization guarantees by training on a much smaller set of environments compared to M used
in this work. Second, recent growing interest in PAC-Bayes bound [72] and other types of generalization
guarantees [73] could lead to tighter and also more sample-eficient bounds for certifying the generalization
performance and safety.

Acknowledgement

Allen Z. Ren and Anirudha Majumdar were supported by the Toyota Research Institute (TRI), the NSF
CAREER award [2044149], the Ofice of Naval Research [N00014-21-1-2803], and the School of Engineering
and Applied Science at Princeton University through the generosity of William Addy ’82. This article solely
reflects the opinions and conclusions of its authors and not ONR, NSF, TR or any other Toyota entity. We
would like to thank Zixu Zhang for his valuable advice on the setup of the physical experiments.

References

[1] A. Kumar, Z. Fu, D. Pathak, J. Malik, RMA: Rapid Motor Adaptation for Legged Robots, in:
Proceedings of Robotics: Science and Systems (RSS), Virtual, 2021. doi:10.15607/RSS.2021.XVII.011.

[2] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, A. Farhadi, Target-driven visual
navigation in indoor scenes using deep reinforcement learning, in: Proceedings of the |IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 3357-3364. doi:10.1109/ICRA.2017.7989381.

[3] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, P. Abbeel, Domain randomization for trans-
ferring deep neural networks from simulation to the real world, in: Proceedings of the IEEE/RS)
International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 23-30. doi:10.1109/
IROS.2017.8202133.

[4] F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger, J. Peters, Robot learning from randomized
simulations: A review, 2021. arXiv:2111.00956.

[5] F. Sadeghi, S. Levine, Cad2rl: Real single-image flight without a single real image, in: Pro-
ceedings of Robotics: Science and Systems (RSS), Cambridge, Massachusetts, 2017. doi:10.15607/
RSS.2017.XI111.034.

[6] H. Fu, B. Cai, L. Gao, L.-X. Zhang, J. Wang, C. Li, Q. Zeng, C. Sun, R. Jia, B. Zhao, H. Zhang, 3D-
FRONT: 3D Furnished Rooms With layOuts and semaNTics, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp. 10933-10942.

24

http://dx.doi.org/10.15607/RSS.2021.XVII.011
http://dx.doi.org/10.1109/ICRA.2017.7989381
http://dx.doi.org/10.1109/IROS.2017.8202133
http://dx.doi.org/10.1109/IROS.2017.8202133
http://arxiv.org/abs/2111.00956
http://dx.doi.org/10.15607/RSS.2017.XIII.034
http://dx.doi.org/10.15607/RSS.2017.XIII.034

700

725

730

735

[7] Boston-Dynamics, Inside the Lab: Robotics After Hours, https://www.youtube.com/watch?v=
JgOGknnKvXM, 2022.

[8] Y. Chow, M. Ghavamzadeh, Algorithms for cvar optimization in mdps, in: Proceedings of Advances in
Neural Information Processing Systems (NeurlPS), Montreal, Quebec, Canada, 2014, pp. 3509-3517.

[9] Y. Chow, M. Ghavamzadeh, L. Janson, M. Pavone, Risk-constrained reinforcement learning with
percentile risk criteria, Journal of Machine Learning Research (JMLR) 18 (2017) 6070-6120.

[10] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, C. J. Tomlin, A general safety
framework for learning-based control in uncertain robotic systems, |EEE Transactions on Automatic
Control (TAC) 64 (2019) 2737-2752.

[11] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, C. J. Tomlin, Bridging hamilton-jacobi safety
analysis and reinforcement learning, in: Proceedings of the International Conference on Robotics and
Automation (ICRA), 2019, pp. 8550-8556. doi:10.1109/ICRA.2019.8794107.

[12] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, J. F. Fisac, Safety and liveness guarantees through reach-avoid
reinforcement learning, in: Proceedings of Robotics: Science and Systems, Virtual, 2021. doi:10.15607/
RSS.2021.XVII.077.

[13] K. Srinivasan, B. Eysenbach, S. Ha, J. Tan, C. Finn, Learning to be safe: Deep rl with a safety critic,
2020. arXiv:2010.14603.

[14] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K. Srinivasan, M. Hwang, J. E. Gonzalez, J. Ibarz, C.
Finn, K. Goldberg, Recovery RL: Safe reinforcement learning with learned recovery zones, IEEE
Robotics and Automation Letters (RAL) 6 (2021) 4915-4922.

[15] K. Zhou, J. C. Doyle, Essentials of robust control, volume 104, Prentice hall Upper Saddle River, NJ,
1998.

[16] S. Xu, T. Chen, Robust h-infinity control for uncertain stochastic systems with state delay, IEEE
Transactions on Automatic Control (TAC) 47 (2002) 2089-2094.

[17] A. Majumdar, R. Tedrake, Funnel libraries for real-time robust feedback motion planning, The Inter-
national Journal of Robotics Research (1JRR) 36 (2017) 947-982.

[18] S. Singh, A. Majumdar, J.-J. Slotine, M. Pavone, Robust online motion planning via contraction
theory and convex optimization, in: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 5883-5890. doi:10.1109/ICRA.2017.7989693.

[19] A. Majumdar, A. Farid, A. Sonar, PAC-Bayes Control: Learning policies that provably generalize to
novel environments, The International Journal of Robotics Research (I1JRR) 40 (2021) 574-593.

[20] A. Farid, S. Veer, A. Majumdar, Task-driven out-of-distribution detection with statistical guarantees
for robot learning, in: Proceedings of the Conference on Robot Learning (CoRL), 2021.

[21] S. Veer, A. Majumdar, Probably approximately correct vision-based planning using motion primitives, in:
Proceedings of the 2020 Conference on Robot Learning (CoRL), volume 155 of Proceedings of
Machine Learning Research, PMLR, 2021, pp. 1001-1014.

[22] J. Garda, F. Fernandez, A comprehensive survey on safe reinforcement learning, Journal of Machine
Learning Research (JMLR) 16 (2015) 1437-1480.

[23] S. Bansal, M. Chen, S. Herbert, C. J. Tomlin, Hamilton-jacobi reachability: A brief overview and recent
advances, in: Proceedings of the IEEE 56th Annual Conference on Decision and Control (CDC), 2017,
pp. 2242-2253. doi:10.1109/CDC.2017.8263977.

25

https://www.youtube.com/watch?v=Jq0GknnKvXM
https://www.youtube.com/watch?v=Jq0GknnKvXM
http://dx.doi.org/10.1109/ICRA.2019.8794107
http://dx.doi.org/10.15607/RSS.2021.XVII.077
http://dx.doi.org/10.15607/RSS.2021.XVII.077
http://arxiv.org/abs/2010.14603
http://dx.doi.org/10.1109/ICRA.2017.7989693
http://dx.doi.org/10.1109/CDC.2017.8263977

740

745

750

755

760

765

775

780

[24]). F. Fisac, M. Chen, C. J. Tomlin, S. S. Sastry, Reach-Avoid Problems with Time-Varying Dynamics,

Targets and Constraints, in: Proceedings of the 18th International Conference on Hybrid Systems: Com-
putation and Control, HSCC ’15, New York, NY, USA, 2015, p. 11-20. doi:10.1145/2728606.2728612.

[25] K. Leung, E. Schmerling, M. Zhang, M. Chen, J. Talbot, J. C. Gerdes, M. Pavone, On infusing

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]
(35]

(36]

(37]

(38]

(39]

reachability-based safety assurance within planning frameworks for human-robot vehicle interactions,
The International Journal of Robotics Research 39 (2020) 1326-1345.

R. Cheng, G. Orosz, R. M. Murray, J. W. Burdick, End-to-end safe reinforcement learning through
barrier functions for safety-critical continuous control tasks, in: Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19, AAAI Press, 2019. doi:10.1609/
aaai.v33i01.33013387.

G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, Y. Tassa, Safe exploration in continuous
action spaces, 2018. arXiv:1801.08757.

B. Chen, J. Francis, J. Oh, E. Nyberg, S. L. Herbert, Safe autonomous racing via approximate reacha-
bility on ego-vision, 2021. arXiv:2110.07699.

F. Berkenkamp, A. P. Schoellig, A. Krause, Safe controller optimization for quadrotors with gaussian
processes, in: Proceedings of the |IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 491-496. doi:10.1109/I1CRA.2016.7487170.

T. Koller, F. Berkenkamp, M. Turchetta, A. Krause, Learning-based model predictive control for safe
exploration, in: Proceedings of the IEEE Conference on Decision and Control (CDC), 2018, pp. 6059—
6066. d0i:10.1109/CDC.2018.8619572.

A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, Y. Yue, Robust regression for safe exploration in control,
in: Proceedings of the 2nd Conference on Learning for Dynamics and Control, volume 120 of Proceedings
of Machine Learning Research, PMLR, 2020, pp. 608-619. URL: https://proceedings.mlr.press/
v120/liu20a.html.

V. N. Vapnik, A. Y. Chervonenkis, On the uniform convergence of relative frequencies of events to their
probabilities, in: Measures of complexity, Springer, 2015, pp. 11-30.

O. Bousquet, S. Boucheron, G. Lugosi, Introduction to statistical learning theory, in: Summer school
on machine learning, Springer, 2003, pp. 169-207.

D. A. McAllester, Some pac-bayesian theorems, Machine Learning 37 (1999) 355-363.

G. K. Dziugaite, D. M. Roy, Computing nonvacuous generalization bounds for deep (stochastic) neu-
ral networks with many more parameters than training data, in: Proceedings of the Thirty-Third
Conference on Uncertainty in Artificial Intelligence (UAl), Sydney, Australia, August 11-15, 2017.

M. Pérez-Ortiz, O. Rivasplata, J. Shawe-Taylor, C. Szepesvari, Tighter risk certificates for neural
networks, Journal of Machine Learning Research (JMLR) 22 (2021).

A. Z. Ren, S. Veer, A. Majumdar, Generalization guarantees for imitation learning, in: Proceedings
of the 2020 Conference on Robot Learning (CoRL), volume 155 of Proceedings of Machine Learning
Research, PMLR, 2021, pp. 1426-1442.

A. E. Gurgen, A. Majumdar, S. Veer, Learning provably robust motion planners using funnel libraries,
arXiv preprint arXiv:2111.08733 (2021).

A. Agarwal, S. Veer, A. Z. Ren, A. Majumdar, Stronger generalization guarantees for robot learning
by combining generative models and real-world data, arXiv preprint arXiv:2111.08761 (2021).

26

http://dx.doi.org/10.1145/2728606.2728612
http://dx.doi.org/10.1609/aaai.v33i01.33013387
http://dx.doi.org/10.1609/aaai.v33i01.33013387
http://arxiv.org/abs/1801.08757
http://arxiv.org/abs/2110.07699
http://dx.doi.org/10.1109/ICRA.2016.7487170
http://dx.doi.org/10.1109/CDC.2018.8619572
https://proceedings.mlr.press/v120/liu20a.html
https://proceedings.mlr.press/v120/liu20a.html

785

790

815

820

[40] A. Farid, D. Snyder, A. Z. Ren, A. Majumdar, Failure prediction with statistical guarantees for vision-
based robot control, in: Proceedings of the Robotics: Science and Systems (RSS), 2022.

[41] B. Eysenbach, A. Gupta, J. Ibarz, S. Levine, Diversity is all you need: Learning skills without a reward
function, in: Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[42] F. Bonin-Font, A. Ortiz, G. Oliver, Visual navigation for mobile robots: A survey, Journal of Intelligent
and Robotic Systems 53 (2008) 263-296.

[43] R. Sim, J. J. Little, Autonomous vision-based exploration and mapping using hybrid maps and Rao-
Blackwellised particle filters, in: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2006, pp. 2082—-2089. doi:10.1109/IR0S.2006.282485.

[44] S. Thrun, A. Bicken, Integrating grid-based and topological maps for mobile robot navigation, in:
Proceedings of the AAAI Conference on Artificial Intelligence, 1996, pp. 944-951.

[45] S. Bansal, V. Tolani, S. Gupta, J. Malik, C. Tomlin, Combining optimal control and learning for visual
navigation in novel environments, in: Proceedings of the 2020 Conference on Robot Learning (CoRL),
volume 100 of Proceedings of Machine Learning Research, PMLR, 2020, pp. 420-429.

[46] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, J. Malik, Cognitive mapping and planning for visual
navigation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2616-2625.

[47] C. Richter, N. Roy, Safe visual navigation via deep learning and novelty detection, in: Pro-
ceedings of Robotics: Science and Systems (RSS), Cambridge, Massachusetts, 2017. doi:10.15607/
RSS.2017.XI11.064.

[48] L. Wellhausen, R. Ranftl, M. Hutter, Safe robot navigation via multi-modal anomaly detection, IEEE
Robotics and Automation Letters (RAL) 5 (2020) 1326-1333.

[49] B. Lutjens, M. Everett, J. P. How, Safe reinforcement learning with model uncertainty estimates, in:
Proceedings of the International Conference on Robotics and Automation (ICRA), IEEE, 2019, pp.
8662-8668.

[50] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, S. Levine, Uncertainty-aware reinforcement learning for
collision avoidance, arXiv preprint arXiv:1702.01182 (2017).

[51] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, C. J. Tomlin, An eficient reachability-based framework
for provably safe autonomous navigation in unknown environments, in: Proceedings of the IEEE 58th
Conference on Decision and Control (CDC), IEEE, 2019, pp. 1758-1765.

[52] A. Li, S. Bansal, G. Giovanis, V. Tolani, C. Tomlin, M. Chen, Generating robust supervision for learning-
based visual navigation using hamilton-jacobi reachability, in: Proceedings of the 2nd Conference on
Learning for Dynamics and Control, volume 120 of Proceedings of Machine Learning Research, PMLR,
2020, pp. 500-510.

[53] F. Ramos, R. C. Possas, D. Fox, Bayessim: adaptive domain randomization via probabilistic inference
for robotics simulators, arXiv preprint arXiv:1906.01728 (2019).

[54] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, D. Fox, Closing the sim-to-
real loop: Adapting simulation randomization with real world experience, in: 2019 International
Conference on Robotics and Automation (ICRA), 2019.

[55] V. Lim, H. Huang, L. Y. Chen, J. Wang, J. Ichnowski, D. Seita, M. Laskey, K. Goldberg, Planar robot
casting with real2sim2real self-supervised learning, arXiv preprint arXiv:2111.04814 (2021).

27

http://dx.doi.org/10.1109/IROS.2006.282485
http://dx.doi.org/10.15607/RSS.2017.XIII.064
http://dx.doi.org/10.15607/RSS.2017.XIII.064

830

840

845

850

855

860

(56]

(57]

(58]

(59]

(60]

(61]

(62]

(63]

(64]

(65]

(66]

(67]

(68]

B. Mehta, M. Diaz, F. Golemo, C. J. Pal, L. Paull, Active domain randomization, in: Conference on
Robot Learning, 2020, pp. 1162-1176.

F. Muratore, C. Eilers, M. Gienger, J. Peters, Data-eficient domain randomization with bayesian
optimization, IEEE Robotics and Automation Letters 6 (2021) 911-918.

M. Cutler, T. J. Walsh, J. P. How, Reinforcement learning with multi-fidelity simulators, in: Proceedings
of the IEEE/RSJ International Conference on Robotics and Automation (ICRA), 2014.

G. Shafer, V. Vovk, A tutorial on conformal prediction., Journal of Machine Learning Research 9
(2008).

T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft Actor-Critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor, in: Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, PMLR, 2018, pp. 1861—
1870.

M. Alshiekh, R. Bloem, R. Ehlers, B. Kénighofer, S. Niekum, U. Topcu, Safe reinforcement learning
via shielding, in: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAIl Symposium on
Educational Advances in Artificial Intelligence, AAAI Press, 2018.

A. Jabri, K. Hsu, A. Gupta, B. Eysenbach, S. Levine, C. Finn, Unsupervised curricula for visual meta-
reinforcement learning, in: Advances in Neural Information Processing Systems (NeurlPS), volume 32,
2019, pp. 10519-10530.

S. Kumar, A. Kumar, S. Levine, C. Finn, One solution is not all you need: Few-shot extrapolation via
structured MaxEnt RL, in: Advances in Neural Information Processing Systems (NeurlPS), volume 33,
Curran Associates, Inc., 2020, pp. 8198-8210.

A. Sharma, S. Gu, S. Levine, V. Kumar, K. Hausman, Dynamics-aware unsupervised discovery of skills,
in: Proceedings of the International Conference on Learning Representations (ICLR), 2020.

J. Langford, R. Caruana, (Not) bounding the true error, in: Advances in Neural Information Processing
Systems (NeurlIPS), volume 14, MIT Press, 2002.

S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, D. Quillen, Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection, The International Journal of Robotics
Research 37 (2018) 421-436.

Quartz, Amazon - this company built one of the world’s most eficient warehouses by em-
bracing chaos, https://classic.qz.com/perfect-company-2/1172282/this-company-built-one-
of-the-worlds-most-efficient-warehouses-by-embracing-chaos/, 2019.

FutureCar, A look at how waymo’s self-driving test fleet safely traveled 2.7 million miles in san
francisco last year, https://www.futurecar.com/5158/A-Look-at-How-Waymos-Self-Driving-Test-
Fleet-Safely-Traveled-2-7-Million-Miles-in-San-Francisco-Last-Year, 2022.

[69] J. Ichnowski, K. Chen, K. Dharmarajan, S. Adebola, M. Danielczuk, V. Mayoral-Vilches, H. Zhan, D.

Xu, R. Ghassemi, J. Kubiatowicz, et al., Fogros 2: An adaptive and extensible platform for cloud and
fog robotics using ros 2, arXiv preprint arXiv:2205.09778 (2022).

[70] B. Eysenbach, S. Gu, J. Ibarz, S. Levine, Leave no trace: Learning to reset for safe and autonomous

reinforcement learning, in: Proceedings of the 6th International Conference on Learning Representations
(ICLR), 2018. URL: https://openreview.net/forum?id=S1vuO-bCW.

28

https://classic.qz.com/perfect-company-2/1172282/this-company-built-one-of-the-worlds-most-efficient-warehouses-by-embracing-chaos/
https://classic.qz.com/perfect-company-2/1172282/this-company-built-one-of-the-worlds-most-efficient-warehouses-by-embracing-chaos/
https://www.futurecar.com/5158/A-Look-at-How-Waymos-Self-Driving-Test-Fleet-Safely-Traveled-2-7-Million-Miles-in-San-Francisco-Last-Year
https://www.futurecar.com/5158/A-Look-at-How-Waymos-Self-Driving-Test-Fleet-Safely-Traveled-2-7-Million-Miles-in-San-Francisco-Last-Year
https://openreview.net/forum?id=S1vuO-bCW

865

870

[71] Z. Borsos, M. Mutny, A. Krause, Coresets via bilevel optimization for continual learning and streaming,
Advances in Neural Information Processing Systems 33 (2020) 14879-14890.

[72] B. Guedj, A primer on pac-bayesian learning, arXiv preprint arXiv:1901.05353 (2019).

[73] S. Arora, R. Ge, B. Neyshabur, Y. Zhang, Stronger generalization bounds for deep nets via a compression
approach, in: International Conference on Machine Learning, PMLR, 2018, pp. 254-263.

Appendix A. Derivations for Inducing Diversity into Backup Policy Update

We add observation-conditional mutual information term to the loss function of backup policy.

h i
L(6) := Eo,z Eap -1o,2) Q(o, a; z) - vI(A;Z]0)
h i
= Eo,z Eam &(]0,2) Q(o, a; z) - VH(A|O) + vH(A|Z, O)
h i h i
= Eo,z Eam £(]0,2) Qlo,a;2) - viogme(alo,z) + VEo Eapp(.|o) logp(alo) (A.1)

We then approximate the expectation by the transitions sampled from the replay buffer as
L(8) = E(o,2)m8,am A(-10,2) Ql0,3a;2) - vlogme(alo,z)+ viogp(alo) . (A.2)

Finally, we approximate the marginal with the latent variables sampled from the distribution (empirical
measure) as

#

1 X
L(8) = E(o,2)#8,a0 2(-]0,z) Q0,a;z) - vlogme(alo,z)+ v og ne(alo, zi) . (A.3)
s i=1,ziBp(z)

Appendix B. Training Hyperparameters used in Experiments

We show the training hyperparameters used to generate the results in Fig. 5.

29

Table B.3: Hyperparameters for PAC_Shield_Perf in Sim training. Same neural network architecture is used for

performance and backup policies.

Environment Setting

Vanilla-Normal/Dynamics Vanilla-Task

Advanced-Env

training steps 500000 1000000 4000000
Replay buffer size 50000 (steps) 100000 (steps) 5000 (trajectories)
Optimize frequency 2000 2000 20000
updater per optimize 1000 1000 1000
Value shielding threshold -0.05 -0.05 -0.05
Latent Distribution
Latent dimension (nz) 20 20 30
Augmented reward coeficient (B) 2 2 2
Prior standard deviation 2 2 2
Optimization
Optimizer Adam Adam Adam
Batch size (Performance) 128 128 128
Discount factor (Performance) 0.99 0.99 0.99
Learning rate (Performance) 0.0001 0.0001 0.0001
Batch size (Backup) 128 128 128
Discount factor (Backup) 0.8 = 0.999 0.8 - 0.999 0.8 > 0.99
Learning rate (Backup) 0.0001 0.0001 0.001
N N Architecture
Input channels 3 3 222
CNN kernel size [5,3,3] [5,3,3] [7,5,3]
CNN stride [2,2,2] [2,2,2] [4,3,2]
CNN channel size [8,16,32] [8,16,32] [16,32,64]

MLP dimensions [130+n,bP,128] [132+n,P,128] [248+n;" ,256,256]

Hardware Resource

CPU threads 8 8 16
GPU Nvidia V100 (16GB) Nvidia V100 (16GB) Nvidia A100 (40GB)
Runtime 8 hours 14 hours 12 hours

3 We stack 4 previous RGB images while skipping 3 frames between two images and concatenate the stacked
images with the first 10 elements of the latent variable (each element is repeated to match the same shape of a
channel in an image).

b The input of the first linear layer is composed of the output from the convolutional layers, latent variables and
auxiliary signals, which is 128 + nz + 2 in Vanilla-Normal/Dynamics, 128+ nz + 4 in Vanilla-Task and 256 +
(nz - 10) + 2 in Advanced-Env.

Appendix C. Environment Setup for Advanced-Env

In order to train the navigating agent in realistic environments before Real deployment, we use the

3D-FRONT (3D Furnished Rooms with layOuts and semaNTics) dataset [6] that offers a larger number

ss of synthetic indoor scenes with professionally designed layouts and high-quality textured furniture. This is

the richest dataset we find suitable to indoor navigation task, training with domain randomization and PAC-
Bayes Control framework often requires more than 1000 environments.

For Sim training, we use 7m x 7m undecorated rooms as room layouts, and randomly placing 5 pieces of

furniture from the dataset. We use 4 categories of furniture: Soft (2701 pieces available), Chair (1775 pieces

s0 available), Cabinet/Shelf/Desk (5725 pieces available), Table (1090 pieces available). We also randomly

sample textures from the dataset to add to the walls and floor: for walls, we use categories Tile, Wallpaper,

and Paint (911 images available in total), and for floor, we use Flooring, Stone, Wood, Marble, Solid Wood

Flooring (466 images available in total). We set the minimum clearance between furniture, around the initial

location, and around the goal to be 1m. The minimum distance between the initial location and the goal

30

885

890

895

Table B.4: Hyperparameters for PAC Shield_Perf in Lab training.

Environment Setting

Vanilla-Env Advanced-Env
training steps 500000 3000000
Replay buffer size 50000 (steps) 5000 (trajectories)
Optimize frequency 2000 20000
updater per optimize 1000 1000
Value shielding threshold -0.05 -0.05
The number of environments (N) 1000 1000
Optimization
Learning rate for latent mean 0.0001 0.0001
Learning rate for latent std 0.0001 0.0001
KL-divergence coeficient (a) 1 2
Optimizer Adam Adam
Batch size (Performance) 1024 128
Discount factor (Performance) 0.99 0.99
Learning rate (Performance) 0.0001 0.0001
PAC-Bayes Bound
The number of latent variables (L) 1000 1000
Precision (8) 0.01 0.01
Hardware Resource
CPU threads 8 8
GPU Nvidia V100 (16GB) Nvidia A100 (40GB)
Runtime 6 hours 16 hours

is 5m. Fig. C.12 shows samples of observations at the initial locations. For Advanced-Dense Lab where the
furniture density is higher, we place 6 instead of 5 pieces of furniture, and the minimum clearance is 0.8m
instead of 1m.

For Lab training, we instead use the professionally designed room layouts (with furniture configuration)
from the dataset. The dataset contains 6813 different house layouts (each with multiple rooms). Since our
focus is on obstacle avoidance with relatively short horizon, in each house, we try to sample initial and goal
locations within one room. Unfortunately the dataset does not provide corresponding wall and floor textures
in each layout, and we resort to random samples as in Vanilla-Env. Again we maintain a minimum clearance
of 1m between furniture, around the initial and goal locations. To check the environment is solvable, we
extract a 2D occupancy map for each room and run the Dijkstra algorithm. We also ensure there is at least

one piece of furniture along the line connecting the initial and goal locations. We tend to find that many
rooms are too crowded or the found path does not have enough clearance for the quadrupedal robot (about
0.5m wide). At the end, we are able to process about 2000 room environments, which are then split for
training and testing. Fig. C.13 shows samples of observations at the initial locations.

31

Figure C.12: Samples of robot observations in Sim training of Advanced-Env: for better view here, the virtual camera
is placed at a higher location than the robot.

Figure C.13: Samples of robot observations in Advanced-Realistic Lab: for better view here, the virtual camera is
placed at a higher location than the robot.

32

