
Sim-to-Lab-to-Real: Safe Reinforcement Learning with Shielding
and Generalization Guarantees

Kai-Chieh Hsua,1, Allen Z. Renb,1, Duy P. Nguyena, Anirudha Majumdarb,2, Jaime F. Fisaca,2

aDepartment of Electrical and Computer Engineering, Princeton University, United States
bDepartment of Mechanical and Aerospace Engineering, Princeton University, United States

Abstract

Safety is a critical component of autonomous systems and remains a challenge for learning-based policies to be
utilized in the real world. In particular, policies learned using reinforcement learning often fail to generalize to
novel environments due to unsafe behavior. In this paper, we propose Sim-to-Lab-to-Real to bridge the reality
gap with a probabilistically guaranteed safety-aware policy distribution. To improve safety, we apply a dual
policy setup where a performance policy is trained using the cumulative task reward and a backup (safety)
policy is trained by solving the Safety Bellman Equation based on Hamilton-Jacobi (HJ) reachability analysis.
In Sim-to-Lab transfer, we apply a supervisory control scheme to shield unsafe actions during exploration; in
Lab-to-Real transfer, we leverage the Probably Approximately Correct (PAC)-Bayes framework to provide
lower bounds on the expected performance and safety of policies in unseen environments. Additionally,
inheriting from the HJ reachability analysis, the bound accounts for the expectation over the worst-case safety in
each environment. We empirically study the proposed framework for ego-vision navigation in two types of
indoor environments with varying degrees of photorealism. We also demonstrate strong generalization
performance through hardware experiments in real indoor spaces with a quadrupedal robot. See h t t p s :
//sites.google.com/princeton.edu/sim- to- lab- to- real for supplementary material.

Keywords: Reinforcement Learning, Sim-to-Real Transfer, Safety Analysis, Generalization

1. Intro duction

Reinforcement Learning (R L) techniques have been increasingly popular in training autonomous robots to
perform complex tasks such as traversing uneven outdoor terrains [1] and navigating through cluttered indoor
environments [2]. Through interactions with environments and feedback in the form of a reward signal, robots

5 learn to reach target locations relying on onboard sensing (e.g., RG B - D cameras). In order to achieve good
empirical generalization performance in different environments, the robot needs to be trained in multiple
environments and collect experiences continuously. Due to tight hardware constraints and high sample
complexities of R L techniques, in most cases, the training is performed solely in simulated environments.

However, the robots’ performance often degrades sharply when they are deployed in the real world,
10 where there can be substantial changes in environments such as different lighting conditions and noise in

robot actuation. This performance drop opens the need for research on Sim-to-Real transfer. The typical
approach is to simulate a large number of environments with randomized properties and train the policy to
work well across environments, with the expectation that real environments at deployment time will be well
captured by the rich distribution of training variations. This technique, namely domain randomization, has

15 helped bridge the Sim-to-Real gap substantially [3–5]. In the field of visual navigation, conditions such as
camera poses, scene layout, and wall textures can be randomized. However, previous Sim-to-Real techniques

Email addresses: kaichieh@princeton.edu (Kai-Chieh Hsu), allen.ren@princeton.edu (Allen Z. Ren)
1 Equal contributions in alphabetical order
2 Equal contributions in advising

Preprint submitted to Artificial Intelligence June 12, 2023

https://sites.google.com/princeton.edu/sim-to-lab-to-real
https://sites.google.com/princeton.edu/sim-to-lab-to-real

Figure 1: O ve r v i e w of the S i m - t o - L a b - t o - R e a l f ramework . To p L e f t : During Sim stage, we train robot policies in a
wide variety of environments and conditions M ′ (Blue circles). Then the same policies from Sim can be fine-tuned in different,
more specific settings M 1 , 2 , . . . (Green triangles/rectangles) during Lab training, which are in the same distribution D 1 , 2 , . . of
Real environments (Red triangles/rectangles). For example, we may first train using environments of randomized furniture
configurations in Sim, and then fine-tune policies in realistic room layouts [6] before deploying in Real indoor spaces. B o t t o m : In
Sim stage, Sim-to-Lab-to-Real trains a safety-aware dual policy conditioned on latent variable sampled from a distribution, and
then safely fine-tunes the latent distribution in Lab stage to adapt to a specific environment distribution. To p r i g ht : Sample
trajectory of a quadrupedal robot running trained policy in a real kitchen environment. The backup policy (Green arrow)
overrides the performance policy (Red arrow) when the safety critic value (colored trajectory) exceeds some threshold, steering
the robot away from obstacles.

do not explicitly address safety of the robots. Usually, it is worth compromising the performance (e.g.,
success rate and time needed for reaching the target) to allow better safety of the system (e.g., avoiding
dangerous collisions with humans or furniture). While safety violations are inconsequential in simulation,

20 robots trained without safety considerations will tend to exhibit similar unsafe behavior once deployed in real
environments. Another drawback of these techniques is that they do not provide any guarantees on robots’
performance or safety when they are deployed in different real environments. A “certificate” of robots’
generalization performance and safety is necessary before they are deployed in safety-critical environments
(e.g., households with children).

25 In this work, we explore an intermediate training stage between Sim and Real, which we call Lab, that
aims to systematically bridge the Sim-to-Real gap by explicitly enforcing hard safety constraints on the
robot and certifying the performance and safety before deployment in Real. The proposed Sim-to-Lab-to-
Real framework is motivated by the conventional engineering practice whereby, before deploying autonomous
systems in the real world, designers usually test them in a realistic but controlled environment, such as a

30 test track for autonomous cars or testing warehouse facilities for quadrupeds at Boston Dynamics [7]. This
standard pipeline opens up an opportunity for autonomous systems to further improve performance and
safety in the Lab stage. Our insight is that (1) in simulation, where environments can be easily randomized
and data is easily collected, the robot can be trained in a wide range of environments and conditions; (2)
after that, the robot needs to fine-tune in more specific environments before being deployed in similar ones

35 in the real world; (3) this training stage can also certify the system before Real deployment, especially if the
training can provide guarantees on its performance and safety in the real world. Through such extensive
training and validation, we can deploy the system confidently in the real environments. Fig. 1 demonstrates
the overview of the proposed Sim-to-Lab-to-Real framework.

Fine-tuning in the Lab stage differs from training in the Sim stage in that the Lab stage is more safety-
40 critical. In other words, we want the autonomous system to safely explore in this stage to improve the

2

performance. In order to realize safe Sim-to-Lab transfer, we need to consider both (1) how safety is
formulated and (2) how safety is ensured throughout training. Typical approaches in safe R L combine the
safety objective with the performance objective, including adding large negative reward when violating the
safety constraints or minimizing the worst-case performance using conditional value at risk (C Va R)

45 formulation [8, 9]. However, these methods do not attempt to explicitly enforce hard safety constraints and
face a fragile balance between performance and safety. Specifically, these methods require hand-tuning the
weights of different components in the objective function, which makes them often fail to generalize well to
unseen tasks or environments. Our approach instead builds upon a dual policy setup, where a performance
policy optimizes task reward and a backup (safety) policy keeps the robot away from failure conditions.

50 We then apply a least-restrictive control law [10] (or shielding) with the safety state-action value function
from the backup policy: the performance policy is only overridden by the backup policy when the safety
state-action value function predicts that the proposed performance action would result in an inevitable safety
violation in the future. The backup policy is pre-trained in the Sim stage and ready to ensure safe exploration
once Lab training starts. Based on the safety policy training developed in [11, 12] using Hamilton-Jacobi (HJ)

55 reachability-analysis, our backup agent can learn from near-failure with dense signals. Unlike previous work
that uses binary safety failure indicators [13, 14], our training does not rely on experiencing safety violations,
which enables the backup policy to be updated in safety-critical conditions. As we show in Sec. 7.2.1, the
number of safety violations is reduced by 4%–77% compared to previous safe R L work in different settings.

We also would like to provide “certificates” on the performance and safety of the robot after Lab training.
60 However, this can be very challenging since typically it is not possible to fully specify the environment

distribution where the robot is deployed (e.g., range of wind velocities for drone navigation, or minimum
distance between obstacles for home robot navigation). Traditional techniques that provide performance
guarantees for control policies, such as from robust control [15, 16] and model-based reachability analysis
[17, 18], typically assume an explicit description of such uncertainty affecting the system (e.g., bound on

65 actuation noise) and/or the environment. To tackle the challenge, we apply the Probably Approximately
Correct (PAC)-Bayes Control framework [19–21], which provides lower bounds on the expected performance
and safety when testing learned policies in unseen environments, while (1) not assuming explicit knowledge
of the environment and (2) suited for systems with high-dimensional observations like vision. The framework
also naturally fits our setup, as the two training stages of PAC-Bayes Control, prior and posterior, can be

70 assigned to the Sim and Lab stages. As required by the PAC-Bayes setup, we train a distribution of policies by
conditioning the performance (and backup) policy on latent variables sampled from a distribution. After
training a prior policy distribution in Sim stage, we fine-tune the distribution in Lab, obtaining a posterior
policy distribution and its associated generalization guarantee. While previous work in PAC-Bayes Control
does not consider explicit policy architecture for safety, we now combine it with HJ reachability analysis and

75 improve the generalization bounds for performance and safety by 40% (Sec. 7.2.2).

1.1. Statement of Contributions
The primary contribution of this work is to propose Sim-to-Lab-Real, a framework that combines HJ

reachability analysis and the PAC-Bayes Control framework to improve safety of robots during training
and real-world deployment, and provide generalization guarantees on robots’ performance and safety in real

80 environments. Additionally, we make the following contributions:

• We propose an algorithm for concurrently training the performance policy that optimizes task reward
and a backup policy that follows the Safety Bellman Equation (5) in Sec. 5. We introduce annealing
parameters that allow gradual learning of performance and safety in the Sim stage. We also demon-
strate that HJ-reachability R L can learn the safety state-action value function end-to-end from images

85 and enable safe exploration with a shielding scheme.

• We propose a modification of off-policy actor-critic algorithms that incorporates the policy distribution
regularization from PAC-Bayes Control in Sec. 6. By constraining the K L divergence between the prior
and posterior policy distribution in expectation with batch samples and a weighting coeficient, we op-
timize the generalization bound in the Lab stage eficiently. With a shielding-based policy architecture,

90 we are able to significantly improve the bound compared to previous PAC-Bayes Control works.

3

• We demonstrate the ability of our framework to reduce safety violations during training and improve
empirical performance and safety, as well as generalization guarantees, compared to other safe learning
techniques and previous work in PAC-Bayes Control in Sec. 7. We set up ego-vision navigation tasks in
two types of environments including one with realistic indoor room layout and visuals. We also

95 validate our approach and generalization guarantees with a quadruped robot navigating in real indoor
environments (Sec. 7.2.3).

2. Related Wo r k

Safe Exploration. Ensuring safety during training has long been a problem in the reinforcement learning
community. On one hand, the R L agent usually needs to experience failure in order to learn to be safe. On the

100 other hand, being too conservative hinders exploring the state/action space suficiently. Constrained MDP
(CMDP) is a frequently used framework in safe exploration to satisfy constraints by changing the optimization
objective to include some forms of risk [22]. C M D P faces two main challenges: how to incorporate the safety
constraints in R L algorithms and how to eficiently solve the constrained optimization problem. Chow et al. [9]
use Lagrangian methods to transform the constrained optimization into an unconstrained one over the

105 primal variable (policy) and the dual variable (penalty coeficient). A recent line of works building on
reachability analysis argues that optimizing the sum of rewards and penalties is not an accurate encoding of
safety [12]. Instead, they encode the safety specification of dynamical systems by finding the optimal safety
value function, which is a solution to a Hamilton-Jacobi-Bellman/Isaacs variational inequality [23, 24]. With
this safety value function, they apply a least-restrictive control law to shield any performance-oriented policy

110 by overriding with an optimal safe action only when the agent is at states with critically low safety values
[10, 25]. Cheng et al. [26] propose a similar shielding framework, utilizing the related control barrier function
(C B F) concept. If the system dynamics are control-afine and a C B F is available, a smooth safety override
can be computed eficiently by solving a quadratic program with a linear C B F constraint. However, these
methods all assume that the dynamics and the environment are at least approximately known. Moreover,

115 they also require that the reachability value function or C B F is available before the learning starts, which is
non-trivial for high-dimensional dynamics and/or unknown environments.

To mitigate the curse of dimensionality and address generalization to novel environments, we build upon
reachability R L [11, 12], which finds an approximate safety value function. Recent methods in [13, 14, 27, 28]
address the safety problem by similar learning-based methods and shielding schemes as proposed in this work.

120 However, the major differences lie in how the safety state-action value function, or safety critic, is trained and
where the backup actions come from. Dalal et al. [27] assume the safety of systems can be ensured by
adjusting the action in a single time step (no long-term effect). Thus, they learn a linear safety-signal model
and formulate a quadratic program to find the closest control to the reference control such that the safety
constraints are satisfied. Srinivasan et al. [13] and Thananjeyan et al. [14] learn the safety state-action value

125 function from only sparse and binary safety labels. Srinivasan et al. [13] use this function to filter out the
unsafe actions from the performance policy and resample actions until the backup agent deems the proposed
actions safe, while Thananjeyan et al. [14] let the backup agent directly take over. The concurrent work [28]
uses the same reachability R L to learn the backup agent. Our method is distinct in that (1) we propose the
two-stage training to further reduce the safety violations in training and (2) we train the reachability R L

130 end-to-end from images without pre-training the visual encoder. We compare our reachability critic with risk
critic [13, 14] as detailed in Sec. 7.2.1. Our method reduces the number of safety violations by up to 77%
in Lab training and 38% in testing.

A different line of works use learning-based methods to capture the residual error between the nomi-
nal model and the real dynamics, which results from model mismatch and/or uncertainties. Then, they

135 combine learned models with model-based R L or model predictive control (MPC) to allow safe exploration.
Berkenkamp et al. [29] use Gaussian process (G P) to estimate the performance of control parameters and
they only deploy parameters that are predicted to be higher than a predefined threshold. On the other hand,
Koller et al. [30] use G P to estimate the residual error and then utilize this model to over-approximate the
forward-reachable set (FRS) . They formulate a terminal constraint in MP C to only deploy policies whose

4

140 F R S reaches a known control-invariant set (under some safety controllers). Liu et al. [31] learn the unknown
residual with regression and quantify the residual error bound by formulating a covariance shift problem.
Our method is distinct in that we use a model-free approach since we only assume we have high-dimensional
measurements like R G B images, which cannot be easily handled with model-based methods. Secondly, we do
not assume having access to a safe set a priori.

145 Generalization Theory and Guarantees. In supervised learning, generalization theory provides a principled
guarantee on the true expected loss on new samples drawn from the underlying (but unknown) data distri-
bution, after training a model using a finite number of samples. Foundational frameworks include Vapnik-
Chervonenkis (VC) theory [32] and Rademacher complexity [33]; however the resulting bounds are generally
extremely loose for neural networks. More recent approaches based on PAC-Bayes generalization theory

150 [34] have provided non-vacuous bounds for neural networks in supervised learning [35, 36]. Majumdar et al [19]
apply the PAC-Bayes framework in policy learning settings and provide generalization guarantees for control
policies in unseen environments. Follow-up work has provided strong guarantees in different robotics settings
including for learning neural network policies for vision-based control [21, 37–40]. Unlike supervised learning
settings where picking a PAC-Bayes prior can be dificult, previous work in control settings has en-

155 coded different domain knowledge in the prior, such as diverse trajectories from human demonstrations [37].
Our work also encodes diverse navigation strategies into the prior through maximum entropy learning [41].
In addition, previous work has not adopted safety-related policy architectures nor considered safety during
training. Combining PAC-Bayes theory with reachability safety analysis, we are able to provide stronger
guarantees on performance and safety.

160 Safe Visual Navigation in Unseen Environments. Robot navigation has witnessed a long history of research
[42], and many of the approaches have focused on explicit mapping of the environment combined with long-
horizon planning in order to reach a goal location [43, 44]. Some recent works apply a map-less approach
[2, 45] or builds a map-like belief of the world [46] instead. They often take an end-to-end learning approach
and start to tackle generalization to previously unseen environments. Similar to them, we train from pixels

165 to actions, and use R G B images as the policy input without any depth information or mapping of the
environment. Furthermore, we place more emphasis on the safety of the robot; we aim to train the robot
avoiding any collision with obstacles and reaching some target location without the need of explicit mapping
(e.g., initial and target locations can be in the same living room). There has been work that explicitly aims
to improve safety of the navigating agent. A popular approach is to detect any novel environment or

170 location (often using a neural network) and resort to conservative actions when novelty is detected [47, 48]. A
slightly different approach is to estimate the uncertainty of the policy output and act cautiously when the
policy is uncertain where to go [49, 50]. However, these work learn the notion of novelty and uncertainty
purely from data, often in the form of binary signals, which can be sample ineficient and not generalizable to
unseen domains. Closer to our work, there has been a line of work in applying Hamilton-Jacobi reachability

175 analysis in visual navigation. Bajcsy et al [51] solves for the reachability set at each step but relies on a map
generated using onboard camera. L i et al [52] proposes supervising the visual policy using expert data
generated by solving a reachability problem. As detailed in the following section, our work also leverages
reachability analysis but does not build a map of the environment nor relies on ofline data generated by a
different (expert) agent.

180 Adaptive Sim-to-Real Transfer. Directly applying policies trained in simulation to real environments can
lead to bad performance and safety, and there has been work that adaptively bridges the Sim-to-Real gap.
One line of work addresses the mismatch in robot and environment dynamics by explicitly searching for
simulation parameters (e.g., mass, friction coeficient) that result in trajectories matching the real rollouts
[53–55]. Mehta et al. [56] propose active domain randomization that looks for simulation parameters that

185 leads to different trajectories than reference ones, and those parameters are deemed important to train
upon. A different approach [57] searches for simulation parameters by directly optimizing task reward in
real environments without matching the dynamics. A work closer to ours is Multi-Fidelity R L by Cutler

5

i
N
i

E

E

et al. [58], in which lower-fidelity environment (i.e., simulation) determines exploration heuristics for higher-
fidelity environment (i.e., real world), and higher-fidelity environment learns model parameters for lower-

190 fidelity environment. In a similar spirit, we learn safety-aware policy in lower-fidelity simulation for safer
exploration in the Lab stage, where the policy distribution is fine-tuned. An important distinction of our
work from previous ones is that we jointly address the Sim-to-Real gap in robot perception, environment
configuration and dynamics. In addition, we provide probabilistic guarantees on the performance and safety of
policies being deployed in real environments.

195 3. Problem Formulation and Preliminaries

We consider a robot with discrete-time dynamics given by

st +1 = fE (st , at), (1)

with state s � S � R n s , control input a � A � R n a , and environment E � E that the robot interacts with (e.g.,
an indoor space with furniture including initial and goal locations of the robot). Below we introduce the
different conditions of the environments considered in the three stages. See Figure. 1a for visualization.
Environment - Sim. In the Sim stage, we assume there is a set of training environments M ′ � E (e.g.,

200 synthetic indoor spaces with randomized arrangement of furniture), M ′ : = {E1 , E2 , · · · , E N ′ } . There is no
assumption on how M ′ is distributed in E.
Environment - Lab. In the Lab stage, we are concerned with more specific conditions, and there can be

different distributions of environments D1, D2, ... (e.g., ofice or home spaces, dimensions of the obstacles),
with which the policies trained in Sim can be fine-tuned. We assume no explicit knowledge of each distri-

205 bution D i ; instead, we assume there is a set of N i training environments drawn i.i.d. from D i available for the
robot to train in; we denote these training datasets by M i : = {E1 , E2 , · · · , E N } � D i . With a slight abuse of
notations and for convenience, we consider a single target condition when introducing the rest of formulation
and the approach, and denote the concerned distribution D , the training set M, and the number of training
environments N .

210 Environment - Real . In the Real stage, we assume the robot is deployed in environments from the same
distribution D but unseen during the Lab stage.

Next we introduce the rest of problem settings including the robot sensor, the policy, and robot’s task
involving the reward function and the failure set. These settings hold the same for all three stages, except for
the failure set which we do not require knowledge of at Real deployment.

215 Sensor. In all environments, we assume the robot has a sensor (e.g., R G B camera) that provides an
observation o = hE (s) using a sensor mapping h : S × E → O.
Task and Pol icy. Suppose the robot’s task can be defined by a reward function, and let R E (π) denote the
cumulative reward gained over a (finite) time horizon by a deterministic policy π : O → A when deployed in
an environment E . We assume the policy π belongs to a space Π of policies. We also allow policies that

220 map histories of observations to actions by augmenting the observation space to keep track of observation
sequences. We assume R (π) � [0, 1], but make no further assumptions such as continuity or smoothness.
We use ξ s,π : [0, T] × E → S to denote the trajectory rollout from state s using policy π in the environment
E up to a time horizon T .
Fai lure set. We further assume there are environment-dependent failure sets F E � S , that the robot is not

225 allowed to enter. In training stages, we assume the robot has access to Lipschitz functions g : S × E → R
such that F E is equal to the zero superlevel set of gE , namely, s � F E ⇔ gE (s) ≥ 0. For example, gE (s) can
be the signed distance function to the nearest obstacle around state s. Thus, gE (s) is called the safety margin
function throughout the paper.

6

P �P � �
n

E

o

1
N

X

π�P

√

2N

3.1. Goal
230 Our goal is to learn policies that provably generalize to unseen environments at the Real stage. This is

very challenging since we do not have explicit knowledge of the underlying distribution D . We employ a
slightly more general formulation where a distribution P over policies π � Π instead of a single policy is
used. In addition to maximizing the policy reward, we want to minimize the number of safety violations, i.e.,
the number of times that the robot enters failure sets. Our goal can then be formalized by the following

235 optimization problem, which we would like to lower bound as the guarantee:

h i
R� : = sup R D (P) , where R D (P) : =

E
E

D π
E

P
R E (π) , (2)

R E (π) : = R E (π)1 �t � [0, T], ξs,π (t) �/ F E , (3)

where R E (π) � [0, 1] denotes the task reward that does not penalize safety violation, P denotes the space of
probability distributions on the policy space Π, and 1{·} is the indicator function. Here the task reward can
be either dense (e.g., normalized cumulative reward) or sparse (e.g., reaching the target or not).

3.2. Generalization Bounds
Recently, PAC-Bayes generalization bounds have been applied to policy learning settings in order to

provide formal generalization guarantees in unseen environments. We briefly introduce this framework here, as
it will be used in our overall approach presented in Section 4. First it requires training a prior policy
distribution P0, which we do in the Sim stage with the set of environments M ′. Then in the Lab stage, we
fine-tune P0 with environments M to obtain the posterior distribution P . Now, define the empirical reward of
P as the average expected reward across training environments in M :

h i
R M (P) : = E R E (π) . (4)

E �M

240 The following theorem can then be used to lower bound the true expected reward R D (P) .

Theorem 1 (PAC-Bayes Bound for Control Policies; adapted from [19]). Let P0 � P be a prior distribution.
Then, for any P � P , and any δ � (0, 1), with probability at least 1 − δ over sampled environments M � D N , the
following inequality holds:

R D (P) ≥ R PA C (P , P 0) : = R M (P) −
p

C (P ,

P0), where C (P , P0) : =

KL(P �P 0) + log(2
δ

N)
,

and KL(P ||Q) stands for Kul lback-Leibler (K L) divergence between probability distribution P and Q.

Maximizing the lower bound R P A C can be viewed as maximizing the empirical reward R M (P) along with
a regularizer C that prevents overfitting by penalizing the deviation of the posterior P from the prior P0. By
fine-tuning P0 to P and maximizing the bound in the Lab stage, we can provide a generalization guarantee

245 for trained policies in unseen environments in the Real stage.

Remark 1. In exchange for assuming almost nothing about the environment distribution D and providing
statistical guarantees that hold in arbitrarily high confidence (1 − δ) instead of only in expectation over
sampled environments (e.g., conformal prediction [59]), the PAC-Bayes framework requires at least a few
hundred Lab environments (N ≥ 100) to achieve reasonably tight generalization bounds. This requires

250 substantial resources for training the policies in the Lab stage. In this work we use simulated environments for
Lab training, but we envision that training in real environments is well scalable for industry practitioners with
extensive training resources. Please refer to Sec. 8 for more discussion.

7

p b

Figure 2: A r ch i t e c t u r e of the safety-aware p ol i cy d i s t r ibut ion: we consider a dual policy setup where the performance
policy π (and backup policy π , optionally) is conditioned on latent variables sampled from a distribution encoding diverse
behavior. The safety state-action value function Qb (ot , at) from the backup policy is used as the shielding discriminator ∆ s h ,
which determines whether the proposed action by the performance policy, ap, is safe. The action from the backup policy, ab,
overrides only if necessary.

4. Metho d Overview

Our proposed Sim-to-Lab-to-Real framework bridges the reality gap with probabilistic guarantees by
255 learning a safety-aware policy distribution Fig. 2 shows the architecture of the safety-aware dual policy. It

explicitly handles safety through the use of a shielding discriminator, which monitors the candidate actions
from the performance policy and overrides them with backup actions only when deemed necessary. We
condition the performance policy πp (and the backup policy πb and the shielding discriminator ∆sh) on a
latent variable z sampled from some distribution, encoding different trajectories to follow (and different

260 shielding strategies to take). With these tools, we divide the Sim-to-Real gap into two components, i.e.,
Sim-to-Lab and Lab-to-Real, which we tackle by a two-stage training pipeline as shown in Fig. 1. We show
how to jointly train a dual policy conditioning on a latent distribution in Sec. 5. The details of Lab training and
derivations of generalization guarantees are provided in Sec. 6.

For training, we use a proxy reward function r E : S × A × E → R, such as dense reward in distance
265 to target, as a single-step surrogate for the task reward R E (π) . Additionally, for every interaction with

the environment, the robot receives a safety cost gE (s) (e.g., distance to nearest obstacle). We train both
performance and backup policies with modifications of the off-policy Soft Actor-Critic (S AC) algorithm [60].
We denote the neural network weights of the actor and the critic θ and w. We use superscripts (·)p and (·)b to
denote critics, actors, and actions from the performance or backup agent. In order to parameterize the

270 policy distribution, we condition the performance (and the backup) policy on a latent variable z � R n z . We
assume the latent variable is sampled from a multivariate Gaussian distribution with diagonal covariance as
z � N (µ, Σ) , where µ � R n z is the mean and Σ � R n z × n z is the diagonal covariance matrix. For notational
convenience, we denote σ � R n z the element-wise square-root of the diagonal of Σ , and define ψ = (µ, σ),
Nψ : = N (µ, diag(σ2)). This parameterization enables our framework to quantify the difference between the

275 policy distribution after Sim training and Lab training, by which we can use PAC-Bayes Control to give
probabilistic guarantees.

5. P r e - Tra i n i n g a Diverse D ua l Po l i cy in Simulation

The goal of the first training stage is to train the dual policy jointly with the fixed latent distribution in
simulation, where training is not safety-critical (safety violations are not restricted). In this training stage,

280 we use the environment dataset M ′ that contains environments that are not necessarily similar to those from
the target environment distribution D . Similar to domain randomization techniques, we use environments

8

a �A

t

Figure 3: R o l l o u t tra jector ies of the safety-aware p ol i cy d i s t r ibut ion : the latent variables sampled from the distribution
induce a diverse exploration motives and value-based shielding manages to override the unsafe actions. Red dashed line shows the
unshielded actions; Black/Blue dotted lines show the safe actions by the performance policy; Green lines show the backup actions
overriding unsafe actions. The inset shows safety values Q(o, πb (o)) with the observation o taken when the heading angle fixed
to the one at time instant tsh .

and conditions with randomized properties, such as random arrangement of furniture in indoor space and
random camera tilting angle on the robot.

In the following subsections, we first review how to learn a backup policy by reachability R L optimizing
285 for the worst-case safety. Then, we propose a shielding scheme with physical meaning to override unsafe

candidate actions proposed by the performance policy. Additionally, we incorporate information-theoretic
objectives to induce diversity into the learned policy distribution, which helps with fine-tuning the policy
distribution and achieve stronger generalization guarantees in the next training stage. Finally, we show how to
jointly train two agents, performance and backup, to realize all the above-mentioned goals.

290 5.1. Safety through Reachability Reinforcement Learning
Failures are usually catastrophic in safety-critical settings; thus worst-case safety, instead of an average

safety over the trajectory, should be considered. For training the backup policy, we incorporate tools from
reachability reinforcement learning [11, 12] and optimize the discounted safety Bellman equation (D S B E) as
below, n o

Qb(ot, at) : = (1 − γ)gE (st) + γ max gE (st), min Qb ot+1 , at+1 , (5)
t + 1

where ot = hE (st) and γ is the discount factor. This discount factor represents how much attention the R L
agent places on future outcomes: if γ is small, the R L agent only cares about “imminent danger”, and as γ →
1, one recovers the infinite-horizon safety state-action value function. In the training, we initialize γ = 0.8
and gradually anneal γ towards 1 during the process.

295 The safety state-action value function in (5) captures the maximum cost g E along the trajectory starting
from st with action at assuming that the safest control input is applied at every instant thereafter. Thus,
mina �A Q(ot, at) > 0 indicates that the robot is predicted to inevitably violate safety in the future if at is
taken. By utilizing this (annealed) D S B E , we have an exact encoding of the property we want our system to
satisfy. The D S B E allows the backup agent to learn the safety state-action value function from near-failure

300 executions, which significantly reduces failure events during training. Additionally, the D S B E enables the
backup agent to update using a dense learning signal, which is suitable for the joint training of performance
and backup agents. To our knowledge, this work demonstrates the first instance of reachability R L in fully
end-to-end training with extremely high-dimensional inputs (R G B images), without the need for pre-training
a vision encoder as in [28].

9

pπ (o),

P T
t = 1

0 0

305 5.2. Shielding
We leverage a least-restrictive control law, i.e., shielding, to reduce the number of safety violations in

both training and deployment. Suppose we have two policies: performance-pursuing policy πp and safety-
pursuing (backup) policy πb. Before we apply a candidate action from the performance-pursuing policy, we
use a shielding discriminator ∆sh to check if it is safe. We replace the proposed action with the action from

310 the backup policy if and only if that candidate action is deemed to result in safety violations in the future. The
shielding criterion is summarized in (6). This ensures minimum intervention by the backup policy while the
performance policy guides the robot towards the target [10, 61].

πsh(o) = πb(o),
∆sh(o, πp, Qb) = 1
otherwise . (6)

The safety value function learned by D S B E represents the maximum cost along the trajectory in the
future if following the learned policy. If we define the safety margin function gE (s) to be the closest distance to
the obstacles, then Qb(o, a) represents the closest distance of the robot to the obstacles in the future. Based
on this, we propose a value-based shielding with the threshold having a physical interpretation, i.e., a margin
from the failure. Once the robot receives the current observation o and uses performance policy to generate
action πp(o), the backup policy overrides the action if and only if Qb(o, ap) > vthr . In other words, the
shielding discriminator is defined as below

∆sh(o, πp, Qb) : = 1Qb(o, πp(o)) ≤ vthr . (7)

Fig. 3 shows an example of shielding that prevents applying unsafe actions from the performance policy
(replace the red dotted lines with green dotted lines in the inset). We compare the safety state-action value

315 function based on D S B E with ones by sparse safety indicators [13, 14] in Sec. 7.2.1 and Fig. 6; our approach
affords much better safety during training and deployment.

5.3. Diversity through Maximization of Latent-based Mutual Information
During Sim training, we also maximize the diversity of robot behavior encoded by the latent distribution,

which has shown in different work [37, 41] to result in better performance after fine-tuning the distribution,
320 which we perform in the Lab stage. Each latent variable is sampled from the distribution. As the policy

is conditioned on the latent variable, it should lead to different trajectories around obstacles and towards
the target (Fig. 3). With a single policy instead of a distribution, it is prone to overfit to some set of
environments and fails to adapt in new environments (Fig. 11).

In order to distinguish the resulting trajectories using latent variables, we maximize mutual information
between observations of trajectories ξo and latent variables z, which can be lowered bounded by sum of mutual
information between each observation and the latent variable I (ξo ; z) ≥ I (ot ; z) [62] (observation-
marginal M I) . We can further lower bound I (O ; Z) ≥ E z �N ψ ,o�p(·|π sh ,z) [log qϕ(z|o)] − E z �N ψ [log p(z)],
where the posterior p(z|o) is approximated by a learned discriminator qϕ(z|o), parameterized by a neural
network with weights ϕ [41]. Intuitively, in order to make trajectories recognizable by the discriminator, the
trajectories need to be diverse. Similar to [41], before updating the policies after sampling a batch of
experiences, we augment the proxy reward by a weighted mutual information reward with coeficient β:

raug(st, at, ot, z) = r(st , at) + βlog qϕ(z|ot) − log p(z). (8)

This encourages the value function to assign higher reward to regions more recognizable by the discriminator.
Concurrently, we train the discriminator by maximizing log qϕ(z|o) with Stochastic Gradient Descent (SGD),

h i
ϕ ← ϕ + �ϕEo log qϕ(z|o) . (9)

As shown in Fig. 2, we can additionally condition backup policies with the latent distribution; the robot
325 may avoid obstacles in different directions, and such skills might be beneficial when there is a distributional

shift of obstacle placement and geometry in the Lab stage.

10

�

θ

ns

n s

0

0

t

0

z
b

The backup agent can also depend on a latent variable. Since the backup agent can intervene at any
state and condition on any latent, we instead optimize the conditional mutual information between action
and latent given the current observation I (A; Z |O) (observation-conditional M I) . We modify the backup
policy training objective (5) as below

h i
θb = arg min L(θ) : = Eo , z Ea�πθ (·|o,z)Q(o, a; z) − ν I (A; Z |O), (10)

where the Q-function is now conditioned on a latent variable and ν is the coeficient balancing the safety cost
and the diversity. Through derivations in Appendix A, we modify the S A C formulation and the backup actor is
updated as,

θ ← θ − �θ E(o,z)�B,a�πθ(·|o,z)Q(o, a; z) − ν log πθ(a|o, z) + ν log
1 X

πθ(a|o, zi), (11)
i = 1 , z i �p (z)

where B is the replay buffer. Intuitively, for specific action a given current observation o, we want it to have
high probability for policy conditioned on a specific latent variable z and low probability for other latent
variables { z i } sampled from the distribution. Note that when the backup agent is also conditioned on latent

330 variable z, the shielding discriminator in (7) now becomes Qb(o, πp(o), z) ≤ vthr . While similar formulations
have been explored in previous work [41, 63, 64] to achieve diverse trajectories/skills in R L , to our best
knowledge, we are the first to consider a continuous distribution of latent variables instead of a discrete one.
We find this brings dificulty in training, exacerbated by using robot observations instead of true states (e.g.,
ground-truth locations of the robot); nonetheless, we show effectiveness of such diversity-induced training in

335 Sec. 7.2.4.

5.4. Joint Training of Performance and Backup Policies.
Now we are ready to perform joint training of the dual policy. In the Sim stage, we fix the latent

distribution to be a zero-mean Gaussian distribution with diagonal covariance Nψ , where ψ0 = (0, σ0). For
each episode during training, we sample a latent variable z � Nψ and condition the performance policy

340 (and the backup policy) on it for the whole episode. The training procedure is illustrated in Algorithm 1.
Since we train both policies with modifications of the off-policy S A C algorithm, we can use transitions

from actions proposed by either backup policy or performance policy. The transitions from both policies are
stored in a shared replay buffer and are sampled at random to update the parameters of actors and critics
for both performance and backup agents. At every step during training, the robot needs to select a

345 policy to follow. We introduce a parameter ρ, the probability that the robot chooses an action proposed
by the backup policy. We initialize ρ to 1, meaning that at the beginning, all actions are sampled from the
backup policy. Our intuition is that the backup policy needs to be trained well before shielding mechanism
is introduced in the training. We gradually anneal ρ to 0. Additionally, to realize a safe Sim-to-Lab transfer,
we want the performance agent to be aware of the backup agent. Thus, we also apply shielding during Sim

350 training. However, since the backup actor and critic may not be able to shield successfully in the beginning,
we introduce a parameter ϵ, which is the probability that the shielding is activated at this time step. This
parameter can be viewed as how much we trust the backup policy and to what extent we want it to shield
the performance policy. We typically initialize ϵ to 0 and anneal it to 1 gradually. The influence of ρ and ϵ
are further analyzed in Sec. 7.2.4.

355 The details of updating the policies and the discriminator are shown in the Algorithm 2. Notice that
while we train the backup policy πb using the executed action ash, the performance policy πp is trained using
the originally proposed action at (“action re-labeling”). This ensures that the performance agent learns to
associate its proposed action with the transition outcome, and avoids keeping proposing unsafe actions.

After the joint training, we obtain the trained dual policies πp and πb, and the latent distribution
360 Nψ that encodes diverse solutions in the environments. We now fix the weights of the two policies, and

consider the latent variable z also part of their parameterization. This gives rise to the space of policies
Π : = {πp, πz : O → A | z � R n z } ; hence, the latent distribution Nψ 0 can be equivalently viewed as a

11

0

0

t

t

t

0

t

0

2 N

2N

Algor i thm 1 Joint training in simulator

Require: M′ , πp, πb, qϕ , Nψ : = N (0, σ I), ρ = 1, ϵ = 0, γ = γinit

1: Sample E � M ′ and z � Nψ , reset environment � Same latent for whole episode
2: for t ← 1 to num prior step do
3: With probability ρ, sample action at � πb(·|ot, z); else sample at � πp(·|ot, z)
4: With probability ϵ, apply shielding ash = πsh(πb, Qb, ot, at, z)
5: Step environment rt , ot , st+1 = fE (st , ash)
6: Save (ot+1, ot , at , ash, z, rt) to replay buffer
7: Update πp,πb, qϕ � See Algorithm 2
8: Anneal ρ → 0, ϵ → 1, γ → 1
9: if timeout or failure then

10: Sample E � M ′ and z � Nψ , reset environment
11: end if
12: end for
13: return πp, πb, Nψ0

A lgor i thm 2 Updating the performance policy, backup policy, and the discriminator
1: for t ← 1 to num policy update do
2: Sample batch {(ot+1 , ot , at , z , rt)} from the replay buffer
3: Augment rt with mutual information reward (8)
4: Update πp to maximize raug with S A C
5: Sample batch {(ot+1 , ot , ash , z, rt)} from the replay buffer
6: Update πb to minimize gE (s) with modified S A C by (5) and (11)
7: end for
8: for t ← 1 to num discrminator update do
9: Sample batch {(ot , z)} from the replay buffer

10: Update qϕ with S G D (9)
11: end for

� Action re-labeling

� Observation-marginal MI

� Observation-conditional MI

� Observation-marginal MI

distribution on the space Π of policies. In the next section, we will consider Nψ as a prior distribution P0
on π and “fine-tune” it by searching for a posterior distribution P = Nψ , which comes with the generalization

365 guarantee from PAC-Bayes Control.

6. Safely F i n e - Tu n i n g Policies in L a b

In the second training stage, we consider more safety-critical training environments such as test tracks
for autonomous cars or indoor lab space, where the conditions can be more realistic and closer to real
environments. After pre-training the performance and backup policies with shielding, the robot can safely

370 explore and fine-tune the prior policy distribution P0 in a new set of environments M sampled from the
unknown distribution D . Leveraging the PAC-Bayes Control framework, we can provide “certificates” of
generalization for the resulting posterior policy distribution P .

The PAC-Bayes generalization bound R P A C associated with P from Eq. (1) consists of two parts: (1)
R M (P) , the empirical reward of P as the average expected reward across training environments in M (4),
which can be optimized using S A C algorithm; (2) a regularizer C (P , P0) that penalizes the posterior P for
deviating significantly from the prior P0,

√

C (P , P0) : =
KL(P �P 0) + log(δ) . (12)

Note that the only term in C (P , P0) that involves P is the K L divergence term between P and P0. To
minimize C (P, P0), we modify the S A C objective to include minimization of the K L divergence term. Also,

12

P

P

P (z)

t

t

ˆ
 1 P P L

z i

we consider stochasticity of the policy from the latent distribution instead of the policy network; this leads
to removing the policy entropy regularization in S A C and adding a weighted K L divergence term to the
actor loss: h i

max Eo,z Ea�πθ (·|o,z) Qp(o, a) − αKL(P , P0), (13)

where α � R is a weighting coeficient to be tuned. In practice, we find the gradient of the K L divergence term
heavily dominates the noisy gradient of actor and critic, and thus we approximate the K L divergence with an
expectation on the posterior:

max Eo,z

h
Ea�πθ (·|o,z)Qp(o, a)

− α log

P0 (z)

i
. (14)

Below we show the algorithm for this stage of training. To avoid safety violations, we always apply
value-based shielding to the proposed action, and continue to apply action-relabeling when updating P .

Algor i thm 3 Safely fine-tuning the policy distribution

Require: M, πp, πb , P = P0

1: Sample E � M and z � P , reset environment
2: for t ← 1 to num posterior step do
3: Sample at � πp(·|ot, z)
4: Apply value-based shielding ash = πsh(πb, Qb, ot, at, z)
5: Step environment rt , ot , st+1 � P (·|st, ash)
6: Save (ot+1 , at , z , rt) to replay buffer � Action re-labeling
7: Update P using S A C with weighted regularization (14)
8: if timeout or failure then
9: Sample E � M , z � P , reset environment

10: end if
11: end for
12: return P

375 6.1. Computing the Generalization Bound.
After training, we can calculate the generalization bound using the optimized posterior P . First, note

that the empirical reward R M (P) involves an expectation over the posterior and thus cannot be computed in
closed form. Instead, it can be estimated by sampling a large number of policies z1, ..., zL from P : R M (P) : = N L

E �M i = 1 RE (πp,b), and the error due to finite sampling can be bounded using a sample convergence
380 bound R M [65]. The final bound Rbound (P) ≤ R D (P) is obtained from R M and C (P , P0) by a slight

tightening of C P A C from Theorem 1 using the KL-inverse function [19]. Please refer to Appendix A2 in [37]
for detailed derivations. Overall, our approach provides generalization guarantees in novel environments from
the distribution D : as policies are randomly sampled from the posterior P and applied in test environments,
the expected success rate over all test environments is guaranteed to be at least Rbound (P) (with probability

385 1− δ over the sampling of training environments; δ = 0.01 for all experiments in Sec. 7). Through reachability
shielding during training and generalization guarantees for the resulting policies, we bridge the Lab-to-Real
gap with a probabilistically guaranteed safety-aware policy distribution.

7. Exp eriments

Through extensive simulation and hardware experiments, we aim to answer the following questions:
390 does our proposed Sim-to-Lab-to-Real achieve (1) lower safety violations during Lab training compared to

other safe learning methods, (2) stronger generalization guarantees on performance and safety compared to
previous work in PAC-Bayes Control, and (3) better empirical performance and safety during deployment

13

compared to all baselines? We also evaluate (a) the relative importance of the Sim stage and Lab stage,
(b) how the value threshold in shielding affects safety and eficiency, (c) how the regularization weight in

395 (14) affects generalization guarantees and empirical performance after training, (d) how the two annealing
parameters during Sim training, ϵ and ρ, affect training performance, and (e) how diversity components,
mutual information maximization during Sim training and latent dimension, affect performance after Lab
training.

7.1. Experiment Setup

(a) (b) (c) (d)

Figure 4: S a m p l e s of env i ronments used i n exp er iments : (a) Sim training in Vanilla-Env; (b) Sim training in Advanced-
Env; (c) Advanced-Realistic training; (d) physical robot deployment.

400 7.1.1. Environments
We evaluate the proposed methods by performing ego-vision navigation task in two types of environment.

The first type (Vani l la -Env) consists of undecorated rooms of 2m × 2m with randomly placed cylindrical
and rectangular obstacles of different dimensions and poses, and the robot needs to bypass them and the
walls to reach a green door (a smaller circular region in front it) (Fig. 4a). A virtual camera is simulated

405 with 120 degree field of view both vertically and horizontally, outputting R G B images of 48 × 48 pixels. We
treat the robot as a point mass when checking collision.

The second type of environments (A d van c ed - E nv) uses realistic furniture models from the 3D-FRONT
dataset [6] (Fig. 4b); the robot needs to safely reach some target location (a smaller circular region) using
given distance and heading angle towards the target. A virtual camera is simulated at the front of the robot

410 with 72 degree field of view vertically and 128 degree horizontally (matching the Z E D 2 camera used in Real
deployment), outputting R G B images of 90 × 160 pixels. When checking collisions, we approximate the robot
as a circular shape of radius 25cm, roughly the same as the quadrupedal robot in Real deployment.

For both types of environments, the control loop runs at 10Hz and the maximum number of steps is
200. The robot is commanded with forward velocity ([0.5, 1] m/s for performance policy and [0.2, 0.5] m/s

415 for backup policy) and angular velocity ([−1, 1] rad/s for both policies). We use dense proxy reward that is
proportional to the percentage of distance traveled between initial location and goal, and the safety signal
is calculated as the minimum distance to obstacles and walls. Additionally, we assume the robot is given
ℓE (s) and ∆ E (s) , distance and relative bearing to the goal.

For Sim training, we randomize obstacle and furniture configurations to cover possible scenarios as much
420 as possible. We also randomize camera poses (tilt and roll angles) in Advanced-Env to account for possible

noise in real experiments. Sim training uses 100 environments in Vanilla-Env and 500 environments in
Advanced-Env. After Sim training, we can fine-tune the policies in different types of Lab environments. For
Vanilla-Env, we consider:

• Vanil la-Normal: shares the same environment parameters as ones in the Sim stage.

425 • Vanil la-Dynamics: increases the lower bound of forward and angular velocity (more aggressive ma-
neuvers).

• Vanil la-Task: adds an additional condition on success that the the robot needs to enter the target
region with a yaw angle within a small range instead of 2π (no restriction) in the Sim stage. The robot

14

a �A

may pass through the target region and re-enter it with the required yaw orientation. The robot knows
430 the lower bound and the upper bound of the required yaw range.

and for Advanced-Env, we consider:

• Advanced-Dense: assigns a higher density of furniture in the rooms, resulting in smaller clearances
between them.

• Advanced-Realist ic: uses realistic room layouts (Fig. 4c) and associated furniture configurations
435 from the 3D-FRONT dataset, which are similar to real environments. We perform Lab-to-Real transfer

with policies trained in this Lab (Fig. 4d). More details about the dataset and room layouts can be
found in Appendix C.

7.1.2. Policy
We parameterize the performance and backup agents with neural networks consisting of convolutional

440 layers and then fully connected layers. The actor and critic of each agent share the same convolutional layers.
In Vanilla-Env, a single R G B image is fed to the convolution layers, and the latent variable is appended to the
output of the last convolutional layer before fully connected layers. In Advanced-Env, we stack 4 previous R G B
images while skipping 3 frames between two images to encode the past trajectory of the robot. Then, the
stacked images are concatenated with the first 10 dimensions of the latent variable by repeating each

445 dimension to the image size. Rest of the dimensions is appended to the output of the last convolutional
layer. In addition to the image observation, the actors and critics also receive two auxiliary signals ℓE (s) and
∆ E (s) , which are also appended to the output of the last convolutional layer. The details of neural network
architecture and training can be found in Appendix B.

7.1.3. Baselines
We compare our methods to five prior R L algorithms that neglect safety violations (Base and PA C Base

[19]) or address safety by reward shaping (R P and PA C R P) or use a separate safety agent (SQR L [13] and
Recovery R L [14]). Sim-to-Lab-to-Real varies from SQ R L and Recovery R L in that the latter trains the
safety critic by the sparse safety indicators as below,

Qb(ot, at) : = I E (s t) + γ

1 − I E (s t)

min Qb
ot+1 , at+1 ,

t + 1

450 where I E (s t) = 1{gE (st) > 0} is the indicator function of the safety violations. In Sim-to-Lab-to-Real, the
safety state-action values represent the robot’s closest distance to the obstacles in the future, while in
Recovery R L and SQRL, the values represent the probability that the robot will hit the obstacle (but the
probability strongly depends on the discount factor used). The major distinction between Sim-to-Lab-to-
Real and PAC-Bayes control is that the latter does not handle the safety explicitly but instead hopes to use

455 diverse policies and fine-tuning to prevent unsafe maneuver. We give a brief description of these methods
below and summarize the similarities and differences in Table 1.

• Sim-to-Lab-to-Real (ours): trains a distribution over dual policies conditioned on latent variables
with guarantees on generalization to novel environments. We present two variants: P A C Shield Perf,
whose performance policy is conditioned on latent variables, and P A C Shield Both, whose both

460 performance and backup policies are conditioned on latent variables (Fig. 2).

• Shield (ours): trains a dual policy without conditioning on latent variables, thus no distribution over
policies nor generalization guarantees.

• PA C - B aye s Control [19]: trains a distribution over policies conditioned on latent variables that
optimizes for either only task reward (PA C Base) or reward with penalty (PA C RP) .

465 • Base: trains a single policy that optimizes the task reward only.

15

ˆ

• Reward Penalty (R P) : trains a single policy but augments the task reward with penalty on safety
violations, r̂E (s, a) = rE (s, a) − λ1{gE (s) > 0}.

• Safety C r i t i c for R L (S Q R L) [13]: trains a dual policy. The backup critic optimizes the Lagrange
relaxation of CMDP, J (π) = J (π) + νEa�π[(vthr − Qb(o, a)], with a rejection sampling method that

470 re-samples action if Qb(o, a) > vthr .

• Recovery R L [14]: trains a dual policy. The backup critic is trained in the same method as SQRL,
but the backup action is from the backup actor instead of being re-sampled from performance policy.

Table 1: Major distinctions among Sim-to-Lab-to-Real and baseline methods.

Methods

Sim-to-Lab-to-Real (ours)
Shield (ours)

PAC + B a s e [19]
PAC+R eward Penalty [19]

Base
Reward Penalty

Safety Critic for R L [13]
Recovery R L [14]

D u a l Po l i c y

✓
✓
✗
✗
✗
✗
✗
✓

Safety Treat ment

✓(Reachability safety critic)
✓(Reachability safety critic)

✗
✓(Reward with safety penalty)

✗
✓(Reward with safety penalty)

✓(Risk safety critic)
✓(Risk safety critic)

Generalization
Guarantees

✓
✗
✓
✓
✗
✗
✗
✗

7.2. Results
We compare all the methods by (1) safety violations in Lab training and (2) success and safety at

475 deployment (Figure 5). We calculate the ratio of number of safety violations to the number of episodes
collected during training. For deployment, we show the percentage of failed trials (solid bars in Figure 5)
and unfinished trials (hatched bars). We summarize the main findings below:

1. Across Lab training, our proposed Sim-to-Lab-to-Real (PA C Shield Perf and PA C Shield Both) achieves
the fewest safety violations. This demonstrates the eficacy of the reachability safety state-action value

480 function for shielding. Compared to the risk-based safety critics in SQ R L [13] and Recovery R L [14],
our safety critics can learn from near-failure and with dense cost signals, as discussed in 7.2.1. Adding
penalty in the reward function does not reduce safety violations significantly.

2. In testing environments, Sim-to-Lab-to-Real achieves the lowest unsuccessful fraction of trajectories
(solid bars plus hatched bars). This indicates that training a diverse and safe policy distribution

485 achieves better generalization performance to novel environments. Sim-to-Lab-to-Real also achieves
the fewest safety violations (solid bars) at test time. This suggests that explicitly enforcing hard safety
constraints improves the safety not only in training but also in testing. In Sec. 7.2.2 we show stronger
generalization guarantees (for both performance and safety) compared to PAC-Bayes baselines.

3. In Sec. 7.2.3 we show Sim-to-Lab-to-Real achieves the best performance and safety among baselines
490 when the policies are deployed on a quadrupedal robot navigating through real indoor environments.

The empirical performance and safety also validate the theoretical generalization guarantees from
PAC-Bayes Control.

4. In Sec. 7.2.4 we show that high diversity of trajectories from the latent distribution results in better
generalization at test time. Without diversity maximization in Sim training, the resulting trajectories

495 can concentrate close to a single one and hinder downstream fine-tuning in Lab. However, we also find
that in Advanced-Env, PA C Base and PA C R P (distribution over policies) perform worse than Base
and R P (single policy). We find that high diversity without shielding may hinder training progress due
to frequent safety violations interfering with strategy exploration.

16

(a) Vanil la-Env (averaged over 5 seeds) (b) Advanced-Env (averaged over 3 seeds)

Figure 5: C o m p a r i s o n of safety v iolat ions d u r i n g L a b t r a i n i n g a n d unsucc ess fu l t r i a l s a t test t ime: Sim-to-Lab-to-
Real (PA C Shield Perf and P A C Shield Both) has the lowest safety violations in both training and deployment. First, it
showcases the benefits of using a shielding scheme in contrast with Base, R P and vanilla PAC-Bayes. Second, reachability safety
critic enables safer exploration and safety satisfaction in deployment as compared to S Q R L and recovery R L . Additionally, Sim-to-
Lab-to-Real has lower unsuccessful ratio in deployment than Shield, which shows a diverse but safe policy distribution not only
provides a generalization bound but also improves the empirical performance to novel environments.

5. We find that adding latent distribution to the backup policy introduces dificulty during Sim train-
500 ing, and leading to similar, if not worse, performance and safety at test time. We suspect that

PA C Shield Both would take more samples to converge well in training and requires more careful
tuning of hyperparameters. Following discussions focus on results of PA C Shield Perf, in which only the
performance policy is conditioned on the latent variable.

6. Compared to other Labs, violation ratios in Advanced-Realistic tend to be higher, although our methods
505 still reduce safety violations by 20-25%. Also, there are few unfinished trials at test time (the robot

neither reaches the target nor collides with obstacles). Given the tight spacing in realistic indoor
environment (Fig. 6b), the non-trivial dimensions of the quadruped robot, and the complex visuals,
the backup policy can fail to ensure safety in some environments.

7.2.1. Reachability vs. Risk-Based Safety Critic
510 Sim-to-Lab-to-Real and previous safe R L methods differ in the metric used to quantify safety and train

the backup agent. By utilizing reachability R L , we have an exact encoding of the property we want our
system to satisfy, i.e., the distance should be no closer to obstacles than a specific threshold. In contrast,
SQ R L and Recovery R L define safety by the risk of colliding with obstacles in the future and use binary
safety indicators. We argue that risk-based threshold can easily overfit to specific scenarios since the prob-

515 ability heavily depends on the discount factor used. In addition, reachability objective allows the backup
agent to learn from near failure, while the risk critic in SQ R L and Recovery R L needs to learn from complete
failures. Fig. 6 shows 2D slices of the safety state-action values in both environment settings. Reachability
critics provide thicker unsafe regions next to obstacles, while risk-based critics fail to recognize many unsafe
regions or consider unsafe only when very close to obstacles. Among different Lab setups, compared to the

17

(a) Lab: Vanilla-Normal (b) Lab: Advanced-Realistic

Figure 6: 2 D sl ices of safety state-act ion va lue funct ions w h en the rob ot is fac ing to the r i g ht : we train the safety
critic using R L modified from Hamilton-Jacobi reachability analysis (“Reachability”), while S Q R L and recovery R L train it
with sparse binary indicators (“Safety Indicator”). Reachability safety critic better captures the unsafe region - there is a more
gradual change in safety value near the obstacles (from blue to red color, lower to higher value), indicating that the robot is
getting closer to the obstacles. In contrast, risk-based critic shows a more binary separation between safe and unsafe regions,
leaving the robot little room and time to steer away from obstacles. The unsafe regions are also thinner than those learned with
reachability. Thus, our reachability-based approach achieves fewer safety violations during both training and deployment.

520 baselines, our method reduces safety violations by 77%, 4%, 76%, 62%, and 23% in training and 38%, 26%,
54%, 34%, and 28% in deployment.

Sensit iv i ty analysis: value threshold. Through experiments, we find the value threshold used in shield-
ing essential to performance and safety. We first investigate how the threshold using during training affects

525 the final results among the three Lab settings in Vanilla-Env, which are shown in Fig. 8e. vthr = 0 natu-rally
results in more safety violations during training compared to vthr = −0.05 and vthr = −0.10. Policies trained
with vthr = 0 also performs the worst at test time, which indicates that less shielding during training makes the
robot learn unsafe or aggressive maneuver. Next we evaluate how the value threshold affects robot trajectories
at test time. Fig. 7 shows the trajectories using different thresholds in the two settings. Small

530 threshold leads to robot passing very closely next to obstacles, while a bigger threshold leads to more con-
servative behavior. We also would like to highlight the challenges of learning safe policies in Advanced-Env.
As shown in the figure, with vthr = −0.15 the robot avoids the first obstacle, and then the backup policy
steers the robot away from the target, potentially deeming the clearance next to the target not suficient.
However, this brings the robot near the wall, and due to imperfect training of the backup actor, the robot

535 fails to escape. With tight spacing and large dimensions of the robot in Advanced-Env, we find the backup
agent more dificult to train, and the final test performance and safety can be sensitive to the shielding
threshold. In Advanced-Realistic, average test success rate with vthr = −0.05, −0.1, −0.15 are 0.678, 0.786,
and 0.762 respectively. Future work could look into adapting the threshold after short experiences in different
environments online.

540 7.2.2. Generalization Guarantees
In this subsection, we evaluate the PAC-Bayes generalization guarantees obtained after Lab training, and

the effect of adding reachability shielding in the policy architecture to the bounds. Table 2 shows the bounds
and test results on safety (not colliding with obstacles) and success (safely reaching the goal) among Lab
training. The true expected success and safety are tested with environments that are similar to the Lab train-

545 ing environments (of the same distribution) but unseen before. In all settings, the true expected success and
safety are higher than the bound in all settings, which validates the guarantees derived using PAC-Bayes
Control. Furthermore, we compare the bound trained using PA C Shield Perf with previous PAC-Bayes
Control method (PA C Base) in the Vanilla-Env and Advanced-Realistic. With shielding, the generalization

18

(a) Lab: Vanilla-Normal (b) Lab: Advanced-Realistic

Figure 7: R o l l o u t tra jector ies u s i n g different va lue threshold for sh ie ld ing : higher threshold (more negative) results in
more conservative maneuver, i.e., keeping farther away from obstacles (purple in (a) and grey in (b)). In Advanced-Env, the
complex visuals and tight spacing cause challenges in learning the backup agent. We tend to find a relatively conservative
threshold (v t h r = −0.10) works well in practice, and too high threshold can prevent the robot from reaching the goal and
accidentally steer it towards tight space.

Figure 8: S e n s i t i v i ty analyses: we study the influence of different hyper-parameters to Sim-to-Lab-to-Real. The results are
averaged over 5 seeds in Vanilla-Env. If not specified, the hyper-parameters default to β = 2, n z = 20, α = 1, N = 1000, and v t h r
= −0.05, as shown in blue. Results suggest the augmented reward in Sim training and the value threshold in shielding are the two
most important hyper-parameters.

bound improves in all settings. In the dificult setting of Advanced-Realistic, the bound improves from 0.366
550 to 0.786 for task completion and from 0.367 to 0.794 for safety satisfaction. Thus, explicitly enforcing hard

safety constraints not only improves empirical outcomes but also provides stronger certification to policies in
novel environments. In Sec. 7.2.3 we also demonstrate empirical results of physical robot experiments
validating the guarantees.

19

Table 2: R e s u l t s of PA C - B a y e s guarantees a n d test success a n d safety: to compute the bound, each environment has
1000 policies sampled from the latent distribution and tested. The results in the first two rows are based on P A C Shield Perf.

Advanced-Realistic

Method
Lab Environments

Success Bound
True Expected Success

Real Robot Success

Safety Bound
True Expected Safety

Real Robot Safety

P A C Shield Perf
1000

0.701
0.786
0.767

0.708
0.794
0.867

P A C Base S Q R L
1000 1000

0.297 -
0.366 0.712
0.433 0.667

0.304 -
0.367 0.713
0.433 0.667

Vanilla-Normal Vanilla-Dynamics

Method
Divergence Weight

Lab Environments

P A C Shield Perf
1 1 1 10

100 1000 2000 1000

P A C Base
1

1000

P A C Shield Perf
1 1 1 10

100 1000 2000 1000

P A C Base
1

1000

Success Bound
True Expected Success

Safety Bound
True Expected Safety

0.778 0.876
0.948 0.945

0.793 0.911
0.954 0.954

0.900 0.896 0.735
0.947 0.934 0.886

0.917 0.913 0.816
0.954 0.953 0.902

0.692 0.820 0.839 0.828 0.778
0.881 0.880 0.878 0.872 0.843

0.717 0.835 0.851 0.837 0.815
0.888 0.887 0.887 0.883 0.852

Vanilla-Task Advanced-Dense

Method
Divergence Weight

Lab Environments

P A C Shield Perf
1 1 1 10

100 1000 2000 1000

P A C Base
1

1000

P A C Shield Perf
2 2 2 1

100 500 1000 500

P A C Base
5 2

500 1000

Success Bound
True Expected Success

Safety Bound
True Expected Safety

0.578 0.757 0.792 0.777 0.468
0.847 0.851 0.844 0.853 0.590

0.769 0.884 0.899 0.887 0.663
0.939 0.939 0.940 0.938 0.796

0.402 0.578
0.577 0.663

0.412 0.579
0.583 0.671

0.623 0.512 0.557 0.254
0.703 0.621 0.644 0.327

0.630 0.518 0.564 0.259
0.709 0.629 0.652 0.332

555 Sensit iv i ty analysis: weight of pol icy distr ibution regularization (α) . When optimizing the gen-
eralization bound (14), we place a weighting coeficient α to balance gradients of the training reward and
of the estimated K L divergence between the prior and posterior policy distribution, P0 and P . Here we
study the effect of using different values of α in the generalization bound and test performance. Fig. 8c
shows that too strong regularization (α = 10) prevents the Lab training from tuning the prior distribution

560 suficiently, resulting in worse testing performance after training. The effect of different α is more prominent in
Advanced-Dense training. With same 500 training environments, α = 2 achieves 0.578 on success bound while
0.512 for α = 1 and 0.557 for α = 5.

Sensit iv i ty analysis: number of L a b environments (N) . Thm. 1 indicates the PAC-Bayes bound
565 depends on the number of environments used in the Lab training. Fig. 8d demonstrates that in Vanilla-Env,

N does not have a significant effect on training safety violations and test performance. We suspect that
training in Vanilla-Env does not require a large number of environments for generalization. In the more
dificult Advanced-Dense, with the same α = 2, higher N = 1000 achieves the best test success (0.703)
and safety (0.709) compared to smaller N = 100 and N = 500 (Table. 2), which demonstrates that a

570 higher number of Lab environments help fine-tuning the policies achieving strong generalization in complex
environments.

7.2.3. Physical Experiments
To demonstrate empirical performance and safety of trained policies in real environments (Lab-to-Real

transfer) and verify the generalization guarantees, we evaluate the policies in real indoor environments in

20

Figure 9: E nv i r o n m e nt s for p hy s i c a l robot exp er iments a n d robot t ra jector ies/observat ions w i t h
P A C S h i e l d Per f : we run the policy three times in each environment by sampling different latent variables from the posterior
distribution. The three numbers in images indicates success/unfinished/failure split. Green dots indicates shielding in effect.
Green star indicates success in reaching the target. Red star indicates colliding with obstacles. We scan the environment using an
iPad Pro tablet before experiments to generate the 2D map (which the robot does not have access to). The robot trajectory is
obtained using localization algorithm of the onboard camera, and is inaccurate at places (intersecting obstacles; not exactly
reaching the target but the robot deems so, which we consider success).

575 the Engineering Quadrangle building at Princeton University. We deploy a Ghost Spirit quadrupedal robot
equipped with a Z E D 2 camera at the front (Fig. 4d), matching the same dynamics and observation model
used in Advanced-Realistic Lab. For the distance and relative bearing to the goal, before each trial the robot
is given the ground-truth measurement at the initial location, and then it uses the localization algorithm
native to the stereo camera to update the measurement at each step.

580 We pick ten different locations with furniture configurations and dificulty similar to those in Advanced-
Realistic Lab. Based on test results after Lab training, we run policies trained with PA C Shield Perf (best
performance overall), PA C Base (PAC-Bayes baseline with low generalization guarantees), and SQR L (best
overall among other baselines). Each policy is evaluated at one environment 3 times (30 trials total). The
results are shown in Table. 2. Our policy is able to achieve the best performance (0.767) and safety (0.867),

585 validating the theoretical guarantees from PAC-Bayes Control. The upper-right of Fig. 1 shows a trajectory
when running policies trained with PA C Shield in a kitchen environment where the backup policy and the
shielding discriminator help the robot avoid hitting the obstacles and reach the target successfully.

Fig. 9 shows the 10 real environments and robots’ trajectories when running policies trained with
PA C Shield Perf. Green dots indicate shielding in effect, which is activated often near obstacles. The

590 first and third images on top of the figure show the robot’s view when shielding successfully guides robot
away from the sofa stool and the cabinet. In the second environment, the backup policy keeps shielding the
robot away from center of the room with value threshold vthr = −0.10, and all three trials ended as

21

(a) Vanil la-Env (b) Advanced-Env

Figure 10: Effect of ρ a n d ϵ s ch ed u l i n g i n S i m t r a i n i n g : annealing ρ and ϵ helps balance between safety violations and task
completion. If not specified, for Vanilla-Env, ρ initializes at 1 and decays by 0.5 every 25000 steps, and ϵ initializes at 0 with 1
− ϵ decaying by 0.5 every 50000 steps. For Advanced-Env, ρ initializes at 0.5 and decays by 0.5 every 500000 steps, and ϵ
initializes at 0 with 1 − ϵ decaying by 0.5 every 200000 steps. The results are over 5 random seeds for Vanilla-Env and 3 random
seeds for Advanced-Env.

unfinished. This is possibly due to the cluttered scene of desks at the top half of the observation. We also
test with small value threshold vthr = −0.05 during experiments, and the robot is able to reach the target

595 without shielding always activated. This highlights the need for adapting the shielding value threshold online
in future work.

7.2.4. Other Studies
Ablat ion Study: importance of two-stage training. We evaluate the significance of Lab training by
testing the prior policy distribution (without fine-tuning in Lab) in Vanilla-Env. Without Lab training,

600 the unsuccessful ratio in deployment increases by 16%, 8% and 14%. This suggests that Lab training is
essential to policies adapting to real dynamics and new environment distributions. Additionally, we test the
importance of Sim training with Shield (no policy distribution). Without Sim training, the safety violations
in Lab training increases by 60%, 11% and 65%. This demonstrates that Sim training enables the backup
agent to monitor and override unsafe behavior from the beginning of Lab training.

605

Sensit iv i ty analysis: the probabil ity of sampling actions from the backup p olicy (ρ) and the
probabil ity of activating shielding (ϵ) . One of the main contributions of our work is the effective joint
training of both performance and back agents (realized in Sim training). The two parameters, ρ and ϵ,
directly affect the exploration in Sim training. With high ρ or high ϵ, the R L agent basically only explores

610 conservatively within a small safe region. However, in the beginning of the training, we should allow the R L
agent to collect diverse state-action pairs. On the other hand, we also gradually anneal ρ → 0 and ϵ → 1
since we want the performance policy to be aware of the backup policy. In other words, the performance
policy is effectively in shielded environments towards end of Sim training. Fig. 10 shows the Sim training
progress under different ρ and ϵ scheduling. With constant ρ = 0 or ϵ = 0, the number of safety violations is

615 much higher than that with both parameters annealing. Even worse, ϵ = 0 results in the number of safety
violations increase at constant speed and the training success fluctuates significantly. On the other hand,
with ρ = 1 or ϵ = 1, the number of safety violations is only half as that with both parameters annealing.
However, this is at the expense of exploration and leads to worse success rate in deployment. In Vanilla-Env ρ
= 1 leads to very poor training success. Although in Vanilla-Env ϵ = 1 does not have significant effect

620 on training success, in the Advanced-Env, insuficient exploration hinders training progress. Also note that
Sim training is not safety-critical and we do not aim to reduce safety violations then.

Sensit iv i ty analysis: diversity- induced Sim training. We argue that training a diverse and safe policy
distribution helps improve safety and performance in novel environments. There are two hyper-parameters

625 in our algorithm affecting the diversity, i.e., augmented reward coeficient β and latent dimension nz . Fig.8a

22

Figure 11: H i g h a u g m ented r e wa r d co ef i c ient induces a d iverse p ol i cy d i s t r i b u t i on : the diversity is essential to fine-
tuning the latent distribution in Lab training and to good generalization to novel environments. Black markers indicate actions
from the performance policy being executed, and green markers are for actions from the backup policy.

and Fig.8b show the violation ratio in Lab training and unsuccessful ratio in testing under different (β , nz)
choices. We find that training without augmented reward (β = 0) results in the lowest violation ratio;
however, the unsuccessful ratio in testing is the highest. In fact, we observe that with β = 0, rollout
trajectories conditioned on different latent variables almost converge to a single trajectory as shown in

630 Fig. 11. This reflects why safety is better satisfied but at the expense of generalization. On the other hand,
when the coeficient is suficiently large (β = 2), the policy distribution becomes diverse and generalizes well
to unseen testing environments. Note that even with high diversity, safety can still be well ensured with
shielding. For the second source of diversity, our proposed Sim-to-Lab-to-Real is robust to different latent
dimension.

635 8. Conclusion

In this work, we propose the Sim-to-Lab-to-Real framework that combines Hamilton-Jacobi reachability
analysis and PAC-Bayes generalization guarantees to bridge the Sim-to-Real reality gap with a probabilisti-
cally guaranteed safety-aware policy distribution. Joint training of a performance and a backup policy in Sim
training (1st stage) enables a safety-aware exploration during Lab training (2nd stage). By optimizing the

640 generalization bounds in Lab training, our approach is able to probabilistically certify robot performance and
safety before deployment. We demonstrate significant reduction in safety violations in training and
stronger performance and safety during test time. Results from experiments with a quadrupedal robot in
real indoor space validate the theoretical guarantees.

8.1. Discussion: Environment distribution.
645 As elaborated in Sec. 3, the generalization guarantees obtained through our framework assumes no

distribution shift between Lab and Real in terms of environments. To bridge the discrepancy, we model the
real environments by using (1) photorealistic dataset of indoor room layouts and furniture models and (2)
dynamics from system identification of the real robot and camera poses. Additionally, we note that previous
works in PAC-Bayes Control [19, 21, 37] have consistently shown real deployment validating the bounds.

650 Even under a slight of shift in distribution, we believe that a certificate of performance and safety is useful
and provides confidence for deploying the system.

8.2. Discussion: Large-scale Lab training.
We acknowledge that one limitation of our framework is that, in exchange for assuming close to nothing

about the environment distribution and providing statistical guarantees that hold in arbitrarily high con-
655 fidence instead of in expectation only (e.g., conformal prediction [59]), we require at least a few hundred

23

environments for “Lab” training to achieve tight PAC-Bayes generalization guarantees (e.g., < 10% differ-
ence between empirical performance and theoretical guarantee), which means performing “Lab” training with
real conditions can be dificult for us researchers in university labs with limited hardware, computation, and
human resources. In this work, we resort to performing “Lab” training in realistic simulated environments.

660 Nonetheless, we envision that our framework is well suited for industry practitioners who have access to
either extensive training facilities (e.g. Google’s robot “farms” [66], Boston Dynamics’ testing warehouse [7]),
large-scale distributed systems (e.g. Amazon’s warehouses [67]), or vast amounts of “Lab-like” data collection
(e.g. Cruise and Waymo’s thousands–millions of test driver miles [68]). For these practical and often safety-
critical applications, our framework can improve safety during training and provide generalization guarantees

665 for performance and safety at deployment. For university labs achieving similar scales of data collection and
training, it would be promising to explore (1) crowdsourcing robots training across labs [69] and (2)
mechanisms for automatically resetting the robot [70] and randomizing the environments.

On the theoretical front, first it would be worth identifying the most representative environments for
training (e.g., using coresets [71]). PAC-Bayes guarantee holds as long as the policies are “evaluated” in

670 the training environments M and the training reward R M is evaluated. We could potentially obtain similar
tight generalization guarantees by training on a much smaller set of environments compared to M used
in this work. Second, recent growing interest in PAC-Bayes bound [72] and other types of generalization
guarantees [73] could lead to tighter and also more sample-eficient bounds for certifying the generalization
performance and safety.

675 Acknowledgement

Allen Z. Ren and Anirudha Majumdar were supported by the Toyota Research Institute (T R I) , the NSF
C A R E E R award [2044149], the Ofice of Naval Research [N00014-21-1-2803], and the School of Engineering
and Applied Science at Princeton University through the generosity of William Addy ’82. This article solely
reflects the opinions and conclusions of its authors and not ONR, NSF, T R I or any other Toyota entity. We

680 would like to thank Zixu Zhang for his valuable advice on the setup of the physical experiments.

References

[1] A. Kumar, Z. Fu, D. Pathak, J . Malik, RMA: Rapid Motor Adaptation for Legged Robots, in:
Proceedings of Robotics: Science and Systems (RSS), Virtual, 2021. doi:10.15607/RSS.2021.XVII.011.

[2] Y . Zhu, R. Mottaghi, E. Kolve, J . J . Lim, A. Gupta, L . Fei-Fei, A. Farhadi, Target-driven visual
685 navigation in indoor scenes using deep reinforcement learning, in: Proceedings of the I E E E International

Conference on Robotics and Automation (I C R A) , 2017, pp. 3357–3364. doi:10.1109/ICRA.2017.7989381.

[3] J . Tobin, R. Fong, A. Ray, J . Schneider, W. Zaremba, P. Abbeel, Domain randomization for trans-
ferring deep neural networks from simulation to the real world, in: Proceedings of the I E E E / R S J
International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 23–30. doi:10.1109/

690 IROS.2017.8202133.

[4] F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger, J . Peters, Robot learning from randomized
simulations: A review, 2021. arXiv:2111.00956.

[5] F. Sadeghi, S. Levine, Cad2rl: Real single-image flight without a single real image, in: Pro-
ceedings of Robotics: Science and Systems (RSS), Cambridge, Massachusetts, 2017. doi:10.15607/

695 RSS.2017.XIII.034.

[6] H. Fu, B. Cai, L . Gao, L.-X. Zhang, J . Wang, C. Li, Q. Zeng, C. Sun, R. Jia, B. Zhao, H. Zhang, 3D-
FRONT: 3D Furnished Rooms With layOuts and semaNTics, in: Proceedings of the I E E E / C V F
International Conference on Computer Vision (I C C V) , 2021, pp. 10933–10942.

24

http://dx.doi.org/10.15607/RSS.2021.XVII.011
http://dx.doi.org/10.1109/ICRA.2017.7989381
http://dx.doi.org/10.1109/IROS.2017.8202133
http://dx.doi.org/10.1109/IROS.2017.8202133
http://arxiv.org/abs/2111.00956
http://dx.doi.org/10.15607/RSS.2017.XIII.034
http://dx.doi.org/10.15607/RSS.2017.XIII.034

[7] Boston-Dynamics, Inside the Lab: Robotics After Hours, https://www.youtube.com/watch?v=
700 Jq0GknnKvXM, 2022.

[8] Y . Chow, M. Ghavamzadeh, Algorithms for cvar optimization in mdps, in: Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), Montreal, Quebec, Canada, 2014, pp. 3509–3517.

[9] Y . Chow, M. Ghavamzadeh, L . Janson, M. Pavone, Risk-constrained reinforcement learning with
percentile risk criteria, Journal of Machine Learning Research (J M L R) 18 (2017) 6070–6120.

705 [10] J . F . Fisac, A. K . Akametalu, M. N. Zeilinger, S. Kaynama, J . Gillula, C. J . Tomlin, A general safety
framework for learning-based control in uncertain robotic systems, I E E E Transactions on Automatic
Control (TA C) 64 (2019) 2737–2752.

[11] J . F . Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, C. J . Tomlin, Bridging hamilton-jacobi safety
analysis and reinforcement learning, in: Proceedings of the International Conference on Robotics and

710 Automation (I C R A) , 2019, pp. 8550–8556. doi:10.1109/ICRA.2019.8794107.

[12] K.-C. Hsu, V. Rubies-Royo, C. J . Tomlin, J . F . Fisac, Safety and liveness guarantees through reach-avoid
reinforcement learning, in: Proceedings of Robotics: Science and Systems, Virtual, 2021. doi:10.15607/
RSS.2021.XVII.077.

[13] K . Srinivasan, B. Eysenbach, S. Ha, J . Tan, C. Finn, Learning to be safe: Deep rl with a safety critic,
715 2020. arXiv:2010.14603.

[14] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K . Srinivasan, M. Hwang, J . E. Gonzalez, J . Ibarz, C.
Finn, K . Goldberg, Recovery R L : Safe reinforcement learning with learned recovery zones, I E E E
Robotics and Automation Letters (R A L) 6 (2021) 4915–4922.

[15] K . Zhou, J . C. Doyle, Essentials of robust control, volume 104, Prentice hall Upper Saddle River, NJ,
720 1998.

[16] S. Xu, T . Chen, Robust h-infinity control for uncertain stochastic systems with state delay, I E E E
Transactions on Automatic Control (TA C) 47 (2002) 2089–2094.

[17] A. Majumdar, R. Tedrake, Funnel libraries for real-time robust feedback motion planning, The Inter-
national Journal of Robotics Research (I J R R) 36 (2017) 947–982.

725 [18] S. Singh, A. Majumdar, J.-J. Slotine, M. Pavone, Robust online motion planning via contraction
theory and convex optimization, in: Proceedings of the I E E E International Conference on Robotics and
Automation (I C R A) , 2017, pp. 5883–5890. doi:10.1109/ICRA.2017.7989693.

[19] A. Majumdar, A. Farid, A. Sonar, PAC-Bayes Control: Learning policies that provably generalize to
novel environments, The International Journal of Robotics Research (I J R R) 40 (2021) 574–593.

730 [20] A. Farid, S. Veer, A. Majumdar, Task-driven out-of-distribution detection with statistical guarantees
for robot learning, in: Proceedings of the Conference on Robot Learning (CoRL) , 2021.

[21] S. Veer, A. Majumdar, Probably approximately correct vision-based planning using motion primitives, in:
Proceedings of the 2020 Conference on Robot Learning (CoRL) , volume 155 of Proceedings of
Machine Learning Research, PML R, 2021, pp. 1001–1014.

735 [22] J . Garcı́a, F. Fernández, A comprehensive survey on safe reinforcement learning, Journal of Machine
Learning Research (J M L R) 16 (2015) 1437–1480.

[23] S. Bansal, M. Chen, S. Herbert, C. J . Tomlin, Hamilton-jacobi reachability: A brief overview and recent
advances, in: Proceedings of the I E E E 56th Annual Conference on Decision and Control (CDC) , 2017,
pp. 2242–2253. doi:10.1109/CDC.2017.8263977.

25

https://www.youtube.com/watch?v=Jq0GknnKvXM
https://www.youtube.com/watch?v=Jq0GknnKvXM
http://dx.doi.org/10.1109/ICRA.2019.8794107
http://dx.doi.org/10.15607/RSS.2021.XVII.077
http://dx.doi.org/10.15607/RSS.2021.XVII.077
http://arxiv.org/abs/2010.14603
http://dx.doi.org/10.1109/ICRA.2017.7989693
http://dx.doi.org/10.1109/CDC.2017.8263977

740 [24] J . F . Fisac, M. Chen, C. J . Tomlin, S. S. Sastry, Reach-Avoid Problems with Time-Varying Dynamics,
Targets and Constraints, in: Proceedings of the 18th International Conference on Hybrid Systems: Com-
putation and Control, HS C C ’15, New York, NY, USA, 2015, p. 11–20. doi:10.1145/2728606.2728612.

[25] K . Leung, E. Schmerling, M. Zhang, M. Chen, J . Talbot, J . C. Gerdes, M. Pavone, On infusing
reachability-based safety assurance within planning frameworks for human–robot vehicle interactions,

745 The International Journal of Robotics Research 39 (2020) 1326–1345.

[26] R. Cheng, G. Orosz, R. M. Murray, J . W. Burdick, End-to-end safe reinforcement learning through
barrier functions for safety-critical continuous control tasks, in: Proceedings of the Thirty-Third A A A I
Conference on Artificial Intelligence, AAAI ’19/IAAI ’19/EAAI ’19, A A A I Press, 2019. doi:10.1609/
aaai.v33i01.33013387.

750 [27] G. Dalal, K . Dvijotham, M. Vecerik, T . Hester, C. Paduraru, Y . Tassa, Safe exploration in continuous
action spaces, 2018. arXiv:1801.08757.

[28] B. Chen, J . Francis, J . Oh, E. Nyberg, S. L . Herbert, Safe autonomous racing via approximate reacha-
bility on ego-vision, 2021. arXiv:2110.07699.

[29] F. Berkenkamp, A. P. Schoellig, A. Krause, Safe controller optimization for quadrotors with gaussian
755 processes, in: Proceedings of the I E E E International Conference on Robotics and Automation (I C R A) ,

2016, pp. 491–496. doi:10.1109/ICRA.2016.7487170.

[30] T . Koller, F. Berkenkamp, M. Turchetta, A. Krause, Learning-based model predictive control for safe
exploration, in: Proceedings of the I E E E Conference on Decision and Control (C D C) , 2018, pp. 6059–
6066. doi:10.1109/CDC.2018.8619572.

760 [31] A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, Y . Yue, Robust regression for safe exploration in control,
in: Proceedings of the 2nd Conference on Learning for Dynamics and Control, volume 120 of Proceedings
of Machine Learning Research, PMLR, 2020, pp. 608–619. URL: https://proceedings.mlr.press/
v120/liu20a.html.

[32] V. N. Vapnik, A. Y . Chervonenkis, On the uniform convergence of relative frequencies of events to their
765 probabilities, in: Measures of complexity, Springer, 2015, pp. 11–30.

[33] O. Bousquet, S. Boucheron, G. Lugosi, Introduction to statistical learning theory, in: Summer school
on machine learning, Springer, 2003, pp. 169–207.

[34] D. A. McAllester, Some pac-bayesian theorems, Machine Learning 37 (1999) 355–363.

[35] G. K . Dziugaite, D. M. Roy, Computing nonvacuous generalization bounds for deep (stochastic) neu-
770 ral networks with many more parameters than training data, in: Proceedings of the Thirty-Third

Conference on Uncertainty in Artificial Intelligence (UAI), Sydney, Australia, August 11-15, 2017.

[36] M. Pérez-Ortiz, O. Rivasplata, J . Shawe-Taylor, C. Szepesvári, Tighter risk certificates for neural
networks, Journal of Machine Learning Research (J M L R) 22 (2021).

[37] A. Z. Ren, S. Veer, A. Majumdar, Generalization guarantees for imitation learning, in: Proceedings
775 of the 2020 Conference on Robot Learning (CoRL) , volume 155 of Proceedings of Machine Learning

Research, PMLR, 2021, pp. 1426–1442.

[38] A. E. Gurgen, A. Majumdar, S. Veer, Learning provably robust motion planners using funnel libraries,
arXiv preprint arXiv:2111.08733 (2021).

[39] A. Agarwal, S. Veer, A. Z. Ren, A. Majumdar, Stronger generalization guarantees for robot learning
780 by combining generative models and real-world data, arXiv preprint arXiv:2111.08761 (2021).

26

http://dx.doi.org/10.1145/2728606.2728612
http://dx.doi.org/10.1609/aaai.v33i01.33013387
http://dx.doi.org/10.1609/aaai.v33i01.33013387
http://arxiv.org/abs/1801.08757
http://arxiv.org/abs/2110.07699
http://dx.doi.org/10.1109/ICRA.2016.7487170
http://dx.doi.org/10.1109/CDC.2018.8619572
https://proceedings.mlr.press/v120/liu20a.html
https://proceedings.mlr.press/v120/liu20a.html

[40] A. Farid, D. Snyder, A. Z. Ren, A. Majumdar, Failure prediction with statistical guarantees for vision-
based robot control, in: Proceedings of the Robotics: Science and Systems (RSS), 2022.

[41] B. Eysenbach, A. Gupta, J . Ibarz, S. Levine, Diversity is all you need: Learning skills without a reward
function, in: Proceedings of the International Conference on Learning Representations (I C L R) , 2019.

785 [42] F. Bonin-Font, A. Ortiz, G. Oliver, Visual navigation for mobile robots: A survey, Journal of Intelligent
and Robotic Systems 53 (2008) 263–296.

[43] R. Sim, J . J . Little, Autonomous vision-based exploration and mapping using hybrid maps and Rao-
Blackwellised particle filters, in: Proceedings of the I E E E / R S J International Conference on Intelligent
Robots and Systems (IROS), 2006, pp. 2082–2089. doi:10.1109/IROS.2006.282485.

790 [44] S. Thrun, A. Bücken, Integrating grid-based and topological maps for mobile robot navigation, in:
Proceedings of the A A A I Conference on Artificial Intelligence, 1996, pp. 944–951.

[45] S. Bansal, V. Tolani, S. Gupta, J . Malik, C. Tomlin, Combining optimal control and learning for visual
navigation in novel environments, in: Proceedings of the 2020 Conference on Robot Learning (CoRL) ,
volume 100 of Proceedings of Machine Learning Research, PMLR, 2020, pp. 420–429.

795 [46] S. Gupta, J . Davidson, S. Levine, R. Sukthankar, J . Malik, Cognitive mapping and planning for visual
navigation, in: Proceedings of the I E E E Conference on Computer Vision and Pattern Recognition
(C V P R) , 2017, pp. 2616–2625.

[47] C. Richter, N. Roy,
ceedings of Robotics:

800 RSS.2017.XIII.064.

Safe visual navigation via deep learning and novelty detection, in: Pro-
Science and Systems (RSS), Cambridge, Massachusetts, 2017. doi:10.15607/

[48] L . Wellhausen, R. Ranftl, M. Hutter, Safe robot navigation via multi-modal anomaly detection, I E E E
Robotics and Automation Letters (R A L) 5 (2020) 1326–1333.

[49] B. Lütjens, M. Everett, J . P. How, Safe reinforcement learning with model uncertainty estimates, in:
Proceedings of the International Conference on Robotics and Automation (I C R A) , I E E E , 2019, pp.

805 8662–8668.

[50] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, S. Levine, Uncertainty-aware reinforcement learning for
collision avoidance, arXiv preprint arXiv:1702.01182 (2017).

[51] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, C. J . Tomlin, An eficient reachability-based framework
for provably safe autonomous navigation in unknown environments, in: Proceedings of the I E E E 58th

810 Conference on Decision and Control (C D C) , I E E E , 2019, pp. 1758–1765.

[52] A. Li, S. Bansal, G. Giovanis, V. Tolani, C. Tomlin, M. Chen, Generating robust supervision for learning-
based visual navigation using hamilton-jacobi reachability, in: Proceedings of the 2nd Conference on
Learning for Dynamics and Control, volume 120 of Proceedings of Machine Learning Research, PML R,
2020, pp. 500–510.

815 [53] F. Ramos, R. C. Possas, D. Fox, Bayessim: adaptive domain randomization via probabilistic inference
for robotics simulators, arXiv preprint arXiv:1906.01728 (2019).

[54] Y . Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J . Issac, N. Ratliff, D. Fox, Closing the sim-to-
real loop: Adapting simulation randomization with real world experience, in: 2019 International
Conference on Robotics and Automation (I C R A) , 2019.

820 [55] V. Lim, H. Huang, L . Y . Chen, J . Wang, J . Ichnowski, D. Seita, M. Laskey, K . Goldberg, Planar robot
casting with real2sim2real self-supervised learning, arXiv preprint arXiv:2111.04814 (2021).

27

http://dx.doi.org/10.1109/IROS.2006.282485
http://dx.doi.org/10.15607/RSS.2017.XIII.064
http://dx.doi.org/10.15607/RSS.2017.XIII.064

[56] B. Mehta, M. Diaz, F. Golemo, C. J . Pal, L . Paull, Active domain randomization, in: Conference on
Robot Learning, 2020, pp. 1162–1176.

[57] F. Muratore, C. Eilers, M. Gienger, J . Peters, Data-eficient domain randomization with bayesian
825 optimization, I E E E Robotics and Automation Letters 6 (2021) 911–918.

[58] M. Cutler, T . J . Walsh, J . P. How, Reinforcement learning with multi-fidelity simulators, in: Proceedings
of the I E E E / R S J International Conference on Robotics and Automation (I C R A) , 2014.

[59] G. Shafer, V. Vovk, A tutorial on conformal prediction., Journal of Machine Learning Research 9
(2008).

830 [60] T . Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft Actor-Critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor, in: Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, PMLR, 2018, pp. 1861–
1870.

[61] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, U. Topcu, Safe reinforcement learning
835 via shielding, in: Proceedings of the Thirty-Second A A A I Conference on Artificial Intelligence and

Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth A A A I Symposium on
Educational Advances in Artificial Intelligence, A A A I Press, 2018.

[62] A. Jabri, K . Hsu, A. Gupta, B. Eysenbach, S. Levine, C. Finn, Unsupervised curricula for visual meta-
reinforcement learning, in: Advances in Neural Information Processing Systems (NeurIPS), volume 32,

840 2019, pp. 10519–10530.

[63] S. Kumar, A. Kumar, S. Levine, C. Finn, One solution is not all you need: Few-shot extrapolation via
structured MaxEnt R L , in: Advances in Neural Information Processing Systems (NeurIPS), volume 33,
Curran Associates, Inc., 2020, pp. 8198–8210.

[64] A. Sharma, S. Gu, S. Levine, V. Kumar, K . Hausman, Dynamics-aware unsupervised discovery of skills,
845 in: Proceedings of the International Conference on Learning Representations (I C L R) , 2020.

[65] J . Langford, R. Caruana, (Not) bounding the true error, in: Advances in Neural Information Processing
Systems (NeurIPS), volume 14, MI T Press, 2002.

[66] S. Levine, P. Pastor, A. Krizhevsky, J . Ibarz, D. Quillen, Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection, The International Journal of Robotics

850 Research 37 (2018) 421–436.

[67] Quartz, Amazon - this company built one of the world’s most eficient warehouses by em-
bracing chaos, https://classic.qz.com/perfect- company- 2/1172282/this- company- built- one-
of- the- worlds- most- efficient- warehouses- by- embracing- chaos/, 2019.

[68] FutureCar, A look at how waymo’s self-driving test fleet safely traveled 2.7 million miles in san
855 francisco last year, https://www.futurecar.com/5158/A- Look-at- How-Waymos-Self- Driving-Test-

F leet- Safely- Traveled- 2- 7- Mi l l ion- Mi les- in- San- Franc isco- Last- Year, 2022.

[69] J . Ichnowski, K . Chen, K . Dharmarajan, S. Adebola, M. Danielczuk, V. Mayoral-Vilches, H. Zhan, D.
Xu, R. Ghassemi, J . Kubiatowicz, et al., Fogros 2: An adaptive and extensible platform for cloud and
fog robotics using ros 2, arXiv preprint arXiv:2205.09778 (2022).

860 [70] B. Eysenbach, S. Gu, J . Ibarz, S. Levine, Leave no trace: Learning to reset for safe and autonomous
reinforcement learning, in: Proceedings of the 6th International Conference on Learning Representations
(I C L R) , 2018. URL: https://openreview.net/forum?id=S1vuO-bCW.

28

https://classic.qz.com/perfect-company-2/1172282/this-company-built-one-of-the-worlds-most-efficient-warehouses-by-embracing-chaos/
https://classic.qz.com/perfect-company-2/1172282/this-company-built-one-of-the-worlds-most-efficient-warehouses-by-embracing-chaos/
https://www.futurecar.com/5158/A-Look-at-How-Waymos-Self-Driving-Test-Fleet-Safely-Traveled-2-7-Million-Miles-in-San-Francisco-Last-Year
https://www.futurecar.com/5158/A-Look-at-How-Waymos-Self-Driving-Test-Fleet-Safely-Traveled-2-7-Million-Miles-in-San-Francisco-Last-Year
https://openreview.net/forum?id=S1vuO-bCW

ns

nX

[71] Z. Borsos, M. Mutny, A. Krause, Coresets via bilevel optimization for continual learning and streaming,
Advances in Neural Information Processing Systems 33 (2020) 14879–14890.

865 [72] B. Guedj, A primer on pac-bayesian learning, arXiv preprint arXiv:1901.05353 (2019).

[73] S. Arora, R. Ge, B. Neyshabur, Y . Zhang, Stronger generalization bounds for deep nets via a compression
approach, in: International Conference on Machine Learning, PML R, 2018, pp. 254–263.

A p p e n d i x A . Derivations for Induc ing Divers i ty into Back u p Po l i c y Up date

We add observation-conditional mutual information term to the loss function of backup policy.

h i
L (θ) : = Eo , z Ea�πθ(·|o,z) Q(o, a; z) − ν I (A; Z |O)

h i
= Eo , z Ea�πθ(·|o,z) Q(o, a; z) − νH(A|O) + νH(A|Z, O)

h i h i
= Eo , z Ea�πθ(·|o,z) Q(o, a; z) − ν log πθ(a|o, z) + νEo Ea�p(·|o) log p(a|o) (A.1)

We then approximate the expectation by the transitions sampled from the replay buffer as

L(θ) ≈ E(o,z)�B ,a�πθ(·|o,z) Q(o, a; z) − ν log πθ(a|o, z) + ν log p(a|o) . (A.2)

Finally, we approximate the marginal with the latent variables sampled from the distribution (empirical
measure) as

" #

L(θ) ≈ E(o,z)�B ,a�πθ(·|o,z) Q(o, a; z) − ν log πθ(a|o, z) + ν
1

log
s

πθ(a|o, zi) . (A.3)
i = 1 , z i �p (z)

870 A p p e n d i x B . Tra i n i n g Hyperparameters used in Exp eriments

We show the training hyperparameters used to generate the results in Fig. 5.

29

Table B.3: Hyperparameters for P A C Shield Perf in Sim training. Same neural network architecture is used for
performance and backup policies.

Environment Setting

training steps
Replay buffer size

Optimize frequency
updater per optimize

Value shielding threshold

L a t e nt D i s t r i b u t i o n

Latent dimension (n z)
Augmented reward coeficient (β)

Prior standard deviation

O p t i m i z a t i o n

Optimizer
Batch size (Performance)

Discount factor (Performance)
Learning rate (Performance)

Batch size (Backup)
Discount factor (Backup)
Learning rate (Backup)

N N A r ch i t e c t u r e

Input channels
C N N kernel size

C N N stride
C N N channel size
M L P dimensions

H a r d w a r e Resource

C P U threads
G P U

Runtime

Vanilla-Normal/Dynamics

500000
50000 (steps)

2000
1000
-0.05

20
2
2

Adam
128
0.99

0.0001
128

0.8 → 0.999
0.0001

3
[5,3,3]
[2,2,2]

[8,16,32]
[130+nz b ,128]

8
Nvidia V100 (16GB)

8 hours

Vanilla-Task

1000000
100000 (steps)

2000
1000
-0.05

20
2
2

Adam
128
0.99

0.0001
128

0.8 → 0.999
0.0001

3
[5,3,3]
[2,2,2]

[8,16,32]
[132+nz b ,128]

8
Nvidia V100 (16GB)

14 hours

Advanced-Env

4000000
5000 (trajectories)

20000
1000
-0.05

30
2
2

Adam
128
0.99

0.0001
128

0.8 → 0.99
0.001

22a

[7,5,3]
[4,3,2]

[16,32,64]
[248+nz b ,256,256]

16
Nvidia A100 (40GB)

12 hours

a We stack 4 previous R G B images while skipping 3 frames between two images and concatenate the stacked
images with the first 10 elements of the latent variable (each element is repeated to match the same shape of a
channel in an image).

b The input of the first linear layer is composed of the output from the convolutional layers, latent variables and
auxiliary signals, which is 128 + n z + 2 in Vanilla-Normal/Dynamics, 128 + n z + 4 in Vanilla-Task and 256 +
(n z − 10) + 2 in Advanced-Env.

A p p e n d i x C . Environment Setup for A d va n c e d - E nv

In order to train the navigating agent in realistic environments before Real deployment, we use the
3D-FRONT (3D Furnished Rooms with layOuts and semaNTics) dataset [6] that offers a larger number

875 of synthetic indoor scenes with professionally designed layouts and high-quality textured furniture. This is
the richest dataset we find suitable to indoor navigation task, training with domain randomization and PAC-
Bayes Control framework often requires more than 1000 environments.

For Sim training, we use 7m × 7m undecorated rooms as room layouts, and randomly placing 5 pieces of
furniture from the dataset. We use 4 categories of furniture: Soft (2701 pieces available), Chair (1775 pieces

880 available), Cabinet/Shelf/Desk (5725 pieces available), Table (1090 pieces available). We also randomly
sample textures from the dataset to add to the walls and floor: for walls, we use categories Tile, Wallpaper,
and Paint (911 images available in total), and for floor, we use Flooring, Stone, Wood, Marble, Solid Wood
Flooring (466 images available in total). We set the minimum clearance between furniture, around the initial
location, and around the goal to be 1m. The minimum distance between the initial location and the goal

30

Table B.4: Hyperparameters for P A C Shield Perf in Lab training.

Environment Setting

training steps
Replay buffer size

Optimize frequency
updater per optimize

Value shielding threshold
The number of environments (N)

O p t i m i z a t i o n

Learning rate for latent mean
Learning rate for latent std

KL-divergence coeficient (α)
Optimizer

Batch size (Performance)
Discount factor (Performance)
Learning rate (Performance)

PA C - B a y e s B o u n d

The number of latent variables (L)
Precision (δ)

H a r d w a r e Resource

C P U threads
G P U

Runtime

Vanilla-Env

500000
50000 (steps)

2000
1000
-0.05
1000

0.0001
0.0001

1
Adam
1024
0.99

0.0001

1000
0.01

8
Nvidia V100 (16GB)

6 hours

Advanced-Env

3000000
5000 (trajectories)

20000
1000
-0.05
1000

0.0001
0.0001

2
Adam

128
0.99

0.0001

1000
0.01

8
Nvidia A100 (40GB)

16 hours

885 is 5m. Fig. C.12 shows samples of observations at the initial locations. For Advanced-Dense Lab where the
furniture density is higher, we place 6 instead of 5 pieces of furniture, and the minimum clearance is 0.8m
instead of 1m.

For Lab training, we instead use the professionally designed room layouts (with furniture configuration)
from the dataset. The dataset contains 6813 different house layouts (each with multiple rooms). Since our

890 focus is on obstacle avoidance with relatively short horizon, in each house, we try to sample initial and goal
locations within one room. Unfortunately the dataset does not provide corresponding wall and floor textures
in each layout, and we resort to random samples as in Vanilla-Env. Again we maintain a minimum clearance
of 1m between furniture, around the initial and goal locations. To check the environment is solvable, we
extract a 2D occupancy map for each room and run the Dijkstra algorithm. We also ensure there is at least

895 one piece of furniture along the line connecting the initial and goal locations. We tend to find that many
rooms are too crowded or the found path does not have enough clearance for the quadrupedal robot (about
0.5m wide). At the end, we are able to process about 2000 room environments, which are then split for
training and testing. Fig. C.13 shows samples of observations at the initial locations.

31

Figure C.12: S a m p l e s of rob ot observat ions i n S i m t r a i n i n g of A d va n c e d - E n v : for better view here, the virtual camera
is placed at a higher location than the robot.

Figure C.13: S a m p l e s of rob ot observat ions i n A d va n c e d - R e a l i s t i c L a b : for better view here, the virtual camera is
placed at a higher location than the robot.

32

