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ABSTRACT

Thermal ionization is a critical process at temperatures T > 103 K, particularly during star formation. An increase in ionization leads
to a decrease in nonideal magnetohydrodynamics (MHD) resistivities, which has a significant impact on protoplanetary disks and
protostar formation. We developed an extension of the fast computational ionization method presented in our recent paper to include
thermal ionization. The model can be used to inexpensively calculate the density of ions and electrons and the electric charge of each
size of grains for an arbitrary size distribution. This tool should be particularly useful for the self-consistent calculation of nonideal
MHD resistivities in multidimensional simulations, especially of protostellar collapse and protoplanetary disks.
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1. Introduction

In Marchand et al. (2021, hereafter Paper I), we presented a novel
method to calculate the coagulation and ionization of grains at a
low computational cost. The only ionization source in that model
was cosmic rays, which are dominant for isolated dense cores in
the interstellar medium. At high temperatures, however, thermal
ionization plays a major role in determining the ionization equi-
librium of the gas-grain mixture, with a significant impact on the
nonideal magnetohydrodynamics (MHD) resistivities.

The first stage of the protostellar collapse is isothermal at
∼10 K until density reaches ∼10−13 g cm−3. At this point, the
dust-gas mixture becomes opaque to its own thermal radiation
and the temperature rises as a core forms and contracts slowly
(Larson 1969). At 2000 K, the dissociation of H2 molecules
absorbs energy, allowing a rapid second collapse that leads to the
creation of the protostar when all H2 is depleted. The thermal
ionization of hydrogen occurs during the second collapse, and
all hydrogen becomes ionized early in the protostar’s life, pro-
voking a drop in resistivities to virtually zero (Marchand et al.
2016). Accounting for the thermal ionization of hydrogen is
therefore critical to accurately describe the transition between
the first core and the protostar, and thus from the nonideal to
ideal MHD regime.

Another example of how this could be applicable pertains
to chondrule formation. Chondrules are molten grains found in
meteorites, whose formation requires rapid heating to ∼2000 K
(Ebel et al. 2012). While there is no consensus on this topic, it
has been proposed that their creation takes place in magnetic
current sheets in protoplanetary disks, which may reach temper-

atures >1500 K (Joung et al. 2004; McNally et al. 2014). Those
high temperatures would trigger the thermal ionization of K and
Na, leading to a sharp decrease in resistivities. Subsequently,
the downward gradient in resistivities may create an instabil-
ity that would allow the magnetic field to pile up in the cur-
rent sheet (Hubbard et al. 2012). That phenomenon may be the
origin of thunderclaps and extremely localized heating of the
grains and gas (McNally et al. 2013), which are necessary condi-
tions for chrondrule formation. However, readers should refer to
Desch & Turner (2015), who argue that insufficient alkali metals
would evaporate from grains to allow for this instability to act.

In this paper, we focus on extending the ionization model
of Paper I by including the thermal ionization of one gas-
phase species. In Sect. 2 we analytically derive the grain charge
(Sect. 2.1) and thermal ionization equilibrium (Sect. 2.2), whose
numerical implementations are described in Sect. 3. In Sect. 4 we
discuss applications, and in Sect. 5 we present our conclusions.

2. Analytical method

2.1. Grain charge

Let us consider the two ionic species i and s of number density ni

and ns. Species i corresponds to all the ions that are exclusively
ionized by cosmic rays in the same manner as in Paper I, for
which we assume an average atomic mass µi = mi/mH. Species
s, however, undergoes both cosmic-ray and thermal ionization.
We define ns,0 as the total abundance of species s (both neutral
and charged), so that ns,0 is an upper bound for ns. We also con-
sider an arbitrary size distribution of dust grains.
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Grain charges Ze, with e being the electron charge, fluctuate
stochastically due to the collection of electrons and the recom-
bination of ions on their surfaces. The grain charge equilibrium
(Eq. (4.3) of Draine & Sutin 1987, and Eq. (24) of Paper I) can
be written as

f (Z, τk)(Ji(Z, τk) + Js(Z, τk)) = f (Z + 1, τk)Je(Z + 1, τk), (1)

where

τk =
akkBT

e2
(2)

is the reduced temperature of a grain of radius ak and tempera-
ture T , while kB is the Boltzmann constant. Furthermore, f (Z, τk)
is the distribution function of grain charges for a grain of reduced
temperature τk, and Ji, Js, and Je are the fluxes of species i,
s, and electrons onto the grains, respectively. The fluxes are
(Draine & Sutin 1987)

J j(Z, τk) = n js jv jπa2
k J̃(Ze/q j, τk), (3)

with n j being the abundance of species j (for j = i, s, or e), s j

being the sticking probability of species j on grains, m j and q j

being the mass and charge of species j, and v j = (8kBT/πm j)
1/2

being the thermal speed of j. The polarization factor of grains
for species j is J̃, which depends on the relative signs of Z and
q j.

Similarly to the case without thermal ionization, presented
in Paper I, we need to solve Eq. (1) for small grains and low
temperatures, for which τk � 1 and f (Z) is only significant for
Z = −1, 0 and 1; that is, these grains hold a maximum of one
charge. Therefore

f (−1, τk) + f (0, τk) + f (1, τk) = 1. (4)

Equation (1) can be rewritten for Z = 0 and Z = −1 as follows:

f (−1, τk) = f (0, τk)
Je(0, τk)

Ji(−1, τk) + Js(−1, τk)
, (5)

f (1, τk) = f (0, τk)
Ji(0, τk) + Js(0, τk)

Je(1, τk)
. (6)

As in Paper I, we have

J̃(0, τk) ≈ (π/2τk)
1
2 , (7)

J̃(−1, τk) ≈ (2/τk), (8)

where J̃(0, τk) appears in Je(0, τk), Ji(0, τk), and Js(0, τk), while
J̃(−1, τk) appears in Je(1, τk), Ji(−1, τk), and Js(−1, τk). We can
then solve the equation system (4)–(6). With si = ss = 1, we
obtain

f (0, τk) =
1

1 + 1
αk

[

εΘ + 1
εΘ

] , (9)

f (−1, τk) =
ε2Θ2

1 + αkεΘ + ε2Θ2
, (10)

f (1, τk) =
1

1 + αkεΘ + ε2Θ2,
(11)

where Θ = se(µimH/me)
1
2 , qis = (µi/µs)

1
2 , and

ε =
ne

ni + qisns

· (12)

The main difference with Paper I is the appearance of the term
qis. While ni + ns is the total abundance of ions, ni + qisns is

an effective abundance that reflects the relative flux of ions onto
grains. The average charge of grains

Zk =

Z=1
∑

Z=−1

Z f (Z, τk) (13)

and the grain-ion recombination enhancement factor

〈J̃(τk)〉 =

Z=1
∑

Z=−1

J̃(Ze/qi, τk) f (Z, τk) (14)

thus are given by the same expressions as in Paper I,

Zk =
1 − ε2Θ2

1 + αkεΘ + ε2Θ2
, (15)

〈J̃(τk)〉 =

2
τk

(ε2Θ2 + εΘ)

ε2Θ2 + αkεΘ + 1
, (16)

where we neglected the recombination of ions on positively
charged grains (J̃(1, τk)).

For the larger grains (τk � 1), the same kind of change needs
to be made to the Spitzer equation (Spitzer 1949; Draine & Sutin
1987) that governs the grain’s electric potential ψ. For ψ < 0, eψ

represents the repulsion of the flux of electrons by the negatively
charged grains, while 1−ψ characterizes the attraction of the flux
of ions. The flux equilibrium can thus be written as

(nevese)eψ = (nivisi + nsvsss)(1 − ψ). (17)

Introducing the same notations as above, we can write

ε =
1 − ψ

Θeψ
, (18)

which is the same equation as the one-ion model of Paper I
(Eq. (34)) with the modified expression for ε. The average charge
of large grains and the grain-ion recombination enhancement
factor yield the same expressions as in Paper I,

Zk = ψτk, (19)

〈J̃(τk)〉 = (1 − ψ). (20)

The average charge and recombination enhancement factor for
a mix of small and large grains is assumed to be the sum of
the contributions from both Eqs. (15),(19) and Eqs. (16),(20)
(Draine & Sutin 1987).

2.2. Ionization equilibrium

We always assume charge neutrality,

ni + ns − ne +
∑

nkZk = 0. (21)

This allows us to find the ionization equilibrium for species i.
In Paper I, we considered the balance between the creation of
species i by cosmic-ray ionization, and the destruction of species
i by recombination with electrons and with grains. In this two-
ion model, we also need to consider the charge exchange reac-
tions between species i and s. The one-ion model hides and
summarizes all the charge transfer reactions between gas-phase
species in the choice of µi. Here, we have to explicitly account
for the creation of species i by the destruction of species s, and
vice versa. The ionization equilibrium is then

ζ(nH − ns,0 − ni) + ks,i(nH − ns,0 − ni)ns

= 〈σv〉ieneni + nivi

∑

nkπa2
k Jk + ki,s(ns,0 − ns)ni, (22)
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where ζ is the cosmic-ray ionization rate, ks,i and ki,s are the
chemical reaction rates of species s → i and i → s, respec-
tively, and we consider the recombination rate of ions i with

electrons to be 〈σv〉ie = 2 × 10−7(T/300)
1
2 cm3 s−1, based on the

recombination rate of HCO+ taken from the UMIST database
(McElroy et al. 2013). The terms of the form ka,bnanc are the
transformation of species c to species b, through the chemical
reaction with species a. Hence the term (nH−ns,0−ni) represents
the total abundance of neutral species that can be ionized into
ion i, as (ns,0 − ns) is the total abundance of neutral species s that
can be ionized to ion s.

The ionization equilibrium for species s is similar, with
the addition of a thermal ionization term (Pneuman & Mitchell
1965, also see Sect. 4)

(

dns

dt

)

thermal

ionization

= βsnHT 1/2e−T0,s/T (ns,0 − ns), (23)

with the values of β and T0 depending on the species. Table 1
summarizes the values of constants specific to species s for the
cases of sodium, potassium, and hydrogen. The ionization equi-
librium equation is then

ζ(ns,0 − ns) +

(

dns

dt

)

thermal

ionization

+ ki,s(ns,0 − ns)ni

= 〈σv〉senens + nsvs

∑

nkπa2
k Jk + ks,i(nH − ns,0 − ni)ns. (24)

Those equations are valid if the Saha equation is valid as well,
meaning that there should be a large number of particles within
a Debye length of each other. The validity condition is then

4

3
πnHλ

3
D � 1, (25)

with

λD =

√

kBT

4πnie2
· (26)

3. Numerical implementation and tests

Equations (18), (21), (22), and (24) need to be solved for ψ, ε,
ni, and ns. In this section, we discuss the solution for this sys-
tem with four equations and four unknowns. The system could
be reduced to three equations, as Eq. (18) is an explicit expres-
sion of ψ as a function of ε. That would, however, significantly
increase the analytical and numerical complexity of the calcula-
tion, and it is unclear whether this would lead to better perfor-
mances or not.

3.1. Numerical convergence

Although the system of equations is valid for a wide range of
physically valid parameters, we need to be cautious to ensure
numerical convergence toward the solution, especially at high
density and temperature. At high density, ψ converges toward
zero by a negative value and becomes very small in an absolute
value. At high temperature, ns overwhelmingly dominates ni due
to the thermal ionization. Therefore, the numerical implementa-
tion has to be robust for the cases |ψ| � 1 and ns/ni � 1.

For this purpose, the four equations must be normalized so
that they can be written in the form 1 + x = 0 to avoid sums

of very large or very small numbers. It is therefore necessary to
include species s in the normalization of the equations to avoid
convergence issues at large temperatures when ns grows much
larger than ni. We therefore normalized Eq. (21) by the total
number of ions ni + ns, we used both the cosmic-ray ionization
rate and the chemical reaction rate s → i to normalize Eq. (22),
and we included the thermal ionization term in the normalization
of Eq. (24).

Another issue arises from the average grain charge (15).
Before the thermal ionization starts to be relevant and ni �

ns, ε converges toward 1/Θ as density increases (see Fig. 2
of Paper I). When the difference between ε and 1/Θ becomes
close to machine precision, the term 1 − (εΘ)2 reaches a lower
bound1 which prevents the convergence of the charge neutral-
ity (Eq. (21)), as the grain charge fails to decrease. A solution to
avoid this issue is to replace ε by ε′+ε0, with ε0 = 1/Θ. This sub-
stitution has to be made in all the equations. The new variable to
find is ε′ which converges toward zero instead of 1/Θ. The term
1 − (εΘ)2 in Eq. (15) is then mathematically equal to and can be
replaced by −2ε′Θ−(ε′Θ)2, which avoids the lower-bound issue.

3.2. The normalized system of equations

The numerical solution of this system requires its normalization,
as discussed in Sect. 3.1. We define the function F(ψ, ε′, ni, ns) =
( f1, f2, f3, f4), with

f1 =
1 − ψ

(ε′ + ε0)Θeψ
− 1 = 0, (27)

f2 = 1 − (ε′ + ε0)
ni + qisns

ni + ns

+
1

ni + ns

∑

nkZk = 0, (28)

f3 = 1 −
ns,0 + ni

nH

−
〈σv〉ie(ε′ + ε0)ni(ni + qisns)

(ζ + ks,ins)nH

−
nivi

∑

nkπa2
k
〈J̃(τk)〉

(ζ + ks,ins)nH

−
ki,sni(ns,0 − ns)

(ζ + ks,ins)nH

= 0, (29)

f4 =

(

1 −
ns

ns,0

)















1 +
ki,sni

ζ + βT
1
2 e−

T0
T nH















−
〈σv〉se(ε′ + ε0)ns(ni + qisns)

(ζ + βT
1
2 e−

T0
T nH)ns,0

−
nsvs

∑

nkπa2
k
〈J̃(τk)〉

(ζ + βT
1
2 e−

T0
T nH)ns,0

−
ks,ins(nH − ns,0 − ni)

(ζ + βT
1
2 e−

T0
T nH)ns,0

= 0, (30)

where

Zk = ψτk +
−2ε′Θ − (ε′Θ)2

1 + αk(ε′ + ε0)Θ + (ε′ + ε0)2Θ2
, (31)

〈J̃(τk)〉 = (1 − ψ) +

2
τk

((ε′ + ε0)2Θ2 + (ε′ + ε0)Θ)

(ε′ + ε0)2Θ2 + αk(ε′ + ε0)Θ + 1
, (32)

ε =
ne

ns

= ε′ + ε0, (33)

ε0 =
1

Θ
, (34)

1 For example, for a machine precision of 10−16, if |ε − 1/Θ| < 10−10,
then 1 − (εΘ)2 > 10−6.
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Table 1. Constants depending on the choice of species s for sodium, potassium, and hydrogen.

Species µs ns,0/nH βs (cm3 s−1 K−
1
2 ) T0,s (K) ki,s (cm3 s−1) ks,i (cm3 s−1) 〈σv〉se (cm3 s−1)

Na 22.99 3.1 × 10−9 1.4 × 10−15 6.0 × 104 6.2 × 10−9 0 2.78 × 10−12(T/300)−0.68

K 39.09 2.2 × 10−10 6.5 × 10−15 5.1 × 104 6.2 × 10−9 0 2.78 × 10−12(T/300)−0.68

H 1.0 1.0 2.0 × 10−10 15.8 × 104 3.7 × 10−14 3.8 × 10−9 3.5 × 10−12(T/300)−0.75

Notes. The values of βs and T0,s are taken from Pneuman & Mitchell (1965) (see Sect. 4 for an important discussion about those rates), while
ns,0/nH are the same as in Umebayashi & Nakano (1990). The values of ki,s, ks,i, and 〈σv〉se are taken from the UMIST database (McElroy et al.
2013), by summing the rates over all reactions involving those species in the reduced network of Marchand et al. (2016).

and

vi,s =

(

8kBT

πµi,smH

)1/2

. (35)

Here, vi,s and µi,s stand for either vi and µi or vs and µs.

3.3. Solving the system

Similarly to Paper I, we used a Newton–Raphson method to
solve the equation system. Let X = (ψ, ε, ni, ns). Starting from
an educated guess X0, we iterated

Xn+1 = Xn − J(Xn)−1F(Xn), (36)

until ||F(Xn)|| < δ � 1. The matrix J is the Jacobian of the
system defined by Ji, j = ∂ fi/∂X j. The full analytic components
of the Jacobian matrix are given in Appendix A.

For reliable convergence, this iterative solution for the sys-
tem of equations is best started from as close an estimate as pos-
sible. For low density (nH < 107 cm−3) and low temperature
(typically 10 K), a good starting point is

ψ = ψ0, (37)

ε = 0.9999, (38)

ni = 10−7nH, (39)

ns = 10−4ni, (40)

where ψ0 is the solution of

1 − ψ

Θeψ
= 1. (41)

For larger densities and temperatures, we recommend solving
the system for a gradual increase in those quantities, using the
previous solution as a first estimate. In particular, ns increases
very quickly with density and temperature once the thermal
ionization starts, and large leaps may lead to convergence
failure.

3.4. Tests

We solved the normalized system of Eqs. (27)–(30). For test-
ing purposes, we used typical parameters of star-forming envi-
ronments to compare with the existing literature, but the reader
should keep in mind that a wide range of physically sound
parameters is possible. The density spans nH = 104–1025 cm−3,
starting from the lowest density and increasing nH gradu-
ally. We assumed the same barotropic equation of state as in
Marchand et al. (2016) to emulate the rise in temperature dur-
ing a protostellar collapse

T = T0















1 +

[

nH

n1

]0.8














1
2
(

1 +

[

nH

n2

])−0.3 (

1 +

[

nH

n3

])− 1.7
3

, (42)

with T0 = 10 K, n1 = 1011 cm−3, n2 = 1016 cm−3, and
n3 = 1021 cm−3. We assumed a nonevolving Mathis, Rumpl,
Nordsieck (MRN) grain-size distribution (Mathis et al. 1977),
with a slope of −3.5 between minimum grain size amin =

5 nm and maximum grain size amax = 250 nm, sampled by
26 bins. The grain bulk density is ρ = 2.9 g cm−3 and the
dust-to-gas mass ratio is 1%, which is typical of the inster-
stellar medium (Bohlin et al. 1978). We set ζ = 5 × 10−17 s−1

(Padovani et al. 2013), se = 0.5 (Umebayashi & Nakano 1990),
and µi = 25 (close to the molecular mass of Mg, Fe, or HCO+,
Marchand et al. 2016).

In this test, the temperature exceeds several 103 K, above
which all grains should be quickly destroyed by evaporation or
sputtering (Lenzuni et al. 1995). This is, however, not an issue
since at such high temperatures, the contribution of the (com-
puted) charge of grains is negligible compared to that from ions
and electrons. It is also possible to combine our method with any
grain destruction model. Marchand et al. (2016) assumed that
the grain evaporation would occur between ∼800 K and ∼1600 K
in the density range nH ≈ 1016−1019 cm−3, which coincides with
the beginning of the thermal ionization of K and Na. The species
s is assumed to be K, Na, or H, using the values of Table 1.
Desch & Turner (2015) show that K and Na may originally be
confined to grains and have to be evaporated before being avail-
able for thermal ionization. Our method is compatible with mod-
els accounting for that process since ns,0 can be freely modified
at any time. For simplicity, however, we assume here that K and
Na are already present in the gas phase in quantities given by
ns,0 in the table. Here, we present the evolution of ni/nH, ns/nH,
ne/nH and the average grain charge for several bins. The results
are displayed in Figs. 1–3, respectively.

These figures can be compared to Fig. 7 of Marchand et al.
(2016). Although the abundances of Na+ and K+ seem overes-
timated compared to ne, and that of H+ seems underestimated
(with a negligible impact on the resistivities), our model repro-
duces the evolution of abundances of this more detailed calcula-
tion at the key points fairly well: K and Na start their ionization
around nH = 1018 cm−3 and T = 1600 K, and they saturate
around nH = 1022 cm−3 and T = 1.5 × 104 K at the maxi-
mum fractional abundance of their respective species. Furether-
more, H has a similar behavior, starting its thermal ionization at
nH = 1020 cm−3 and T = 2650 K, turning virtually all neutrals
into ions by nH = 1023 cm−3 and T = 7× 104 K. The main differ-
ence with Fig. 7 of Marchand et al. (2016) is the earlier rise of
electron density at nH ≈ 1016 cm−3 due to the thermionic emis-
sion of grains included in the complete chemical calculation.
This emission is associated with a drop in neutral grain density
and rise in positively and negatively charged grains.

In all three cases, the large input of electrons into the gas
significantly increases the grain charges as well. We note that
at the hydrogen ionization fraction nH+/nH > 0.1 reached at
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Fig. 1. Test of our method for protostellar collapse conditions. Evolution
of the average charge of grains (left axis) for several grain sizes (color
lines), and the fractional abundance (right axis) of cosmic-ray ionized
ions ni/nH (solid line), thermally ionized K+ ions ns/nH (dotted line),
and electrons ne/nH (dashed line).
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Fig. 2. Same as Fig. 1, but for Na. The only ions present are the cosmic-
ray ionized ones i and Na (ion s), which is both cosmic-ray and ther-
mally ionized.
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Fig. 3. Same as Fig. 1, but for H. The only ions presents are the cosmic-
ray ionized ones i and H (ions s), which is both cosmic-ray and ther-
mally ionized.
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Fig. 4. Evolution of the Ohmic (yellow), Hall (blue), and ambipolar
(dark red) resistivities for the thermal ionization of K. The dashed line
represents the Hall resistivity in negative values. The thin dotted lines
are the resistivities in the absence of thermal ionization.
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Fig. 5. Same as Fig. 4, but for Na.

nH > 1023 cm−3, the Saha equation is no longer valid, so our
model becomes imprecise. However, the resistivities are so low
in this regime that ideal MHD is a valid approximation; thus this
is never an issue in practice.

Figures 4–6 display the associated nonideal MHD resistivi-
ties using the formulae provided by Marchand et al. (2016). For
display purposes only, we prescribe a magnetic field (Li et al.
2011)

B = 1.43 × 10−7G n
1/2

H
, (43)

which corresponds to the critical magnetic field strength of a
spherical cloud. The magnetic field strength and the resistiv-
ities are therefore overestimated compared to protostellar col-
lapse simulations with nonideal MHD for nH & 1012 cm−3.

The nonideal MHD terms significantly affect the MHD evo-
lution of protostellar collapse and protoplanetary disks for resis-
tivities larger than ≈1018 cm2 s−1. Nonideal MHD terms are then
important at all densities before thermal ionization starts (except
the Ohmic diffusion at a low density). At this point, the abun-
dance of charged species in the gas significantly increases, lead-
ing to a sharp decrease in all resistivities. The overall behavior
is consistent with previous works (Kunz & Mouschovias 2010;
Marchand et al. 2016; Wurster et al. 2016; Koga et al. 2019).
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Fig. 6. Same as Fig. 4, but for H.

4. Discussion

The method presented here is applicable in a wide variety of
environments, and it is particularly suited for modeling proto-
star formation and protoplanetary disks. At later stages of the
star formation process, or in the presence of nearby massive
stars, photoionization by UV or X-rays may become relevant
(Getman & Feigelson 2021). In this case, their ionization rate
can simply be added to the cosmic-ray ionization rate ζ in the
system of Eqs. (27)–(30).

We describe our method to calculate the resistivities as fast in
comparison to solving a full chemical network. We have imple-
mented the algorithm in the 3D MHD RAMSES code (Teyssier
2002). The code previously calculated the resistivities by interpo-
lating on the precalculated table of Marchand et al. (2016). With-
out the Hall effect, our thermal ionization algorithm is faster than
reading the chemical table, as the calculation needs to be per-
formed only once per cell per time-step. This is different with the
Hall effect, which requires, in addition, the self-consistent calcu-
lation of resistivities on cell edges (Marchand et al. 2018). In this
case, the code runs at similar speeds for both methods (it is impor-
tant to note that this may vary with different implementations).
However, the method presented in this paper is much more flex-
ible than a precalculated table because the physical conditions,
the chemical composition, and the grain size-distribution can be
changed at any point for a self-consistent calculation.

In Table 1, we provide the thermal ionization coefficients for
K, Na, and H from Pneuman & Mitchell (1965), which is a theo-
retical work, to match the rates used in Marchand et al. (2016). In
the 1960s and 1970s, there were many discussions about the ion-
ization rates of alkali metals. Flame experiments to measure those
rates (Hollander et al. 1963; Ashton & Hayhurst 1973) resulted
in much larger cross sections than theoretically predicted (Aller
1961; Hollenbach & Salpeter 1969, see Schofield & Sugden
1965; Shui 1977 for review). Desch & Turner (2015) argue that
the experimental value of Ashton & Hayhurst (1973) should be
preferred to the theoretical value of Pneuman & Mitchell (1965).
This is debatable as the conditions in flames may be difficult to
control and different from astrophysical plasmas (pressure, chem-
ical composition), where Na and K ionize by colliding with H2.
The larger coefficient rates would suggest thermal ionization of
K and Na at a lower temperature, typically T = 1200 K instead
of T = 1600 K, which could be of importance in protoplane-
tary disks. For reference, we provide the experimental values of
Ashton & Hayhurst (1973) for K and Na:

βK = 1.0 × 10−8 cm3 s−1 K−
1
2 , (44)

T0,K = 5.6 × 104 K, (45)

βNa = 2.0 × 10−9 cm3 s−1 K−
1
2 , (46)

T0,Na = 5.6 × 104 K. (47)

5. Conclusions

We detail an extension of the ionization model of
Marchand et al. (2021) to include the thermal ionization of
one gas species. It is possible to increase the number of ionized
species by adding their contribution in the same manner, at
the price of a higher numerical cost. We have presented the
examples of K, Na, and H. Both the chemical abundances and
the resistivities show a behavior consistent with previous work.
This method is then a powerful tool to self-consistently calcu-
late the ionization of the dust-grain mixture and the nonideal
MHD resistivities in hydrodynamical simulations, faster than a
complete chemical network. The method is flexible and valid
in a wide variety of environments, including star formation and
protoplanetary disks.
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Appendix A: Jacobian components

The components of the normalized Jacobian matrix required for
the solution of equation (36) are

J1,1 =
∂ f1

∂ψ
=

ψ − 2

(ε′ + ε0)Θeψ
, (A.1)

J1,2 =
∂ f1

∂ε′
= −

1 − ψ

(ε′ + ε0)2Θeψ
, (A.2)

J1,3 =
∂ f1

∂ni

=0, (A.3)

J1,4 =
∂ f1

∂ns

=0, (A.4)

J2,1 =
∂ f2

∂ψ
=

1

ni + ns

∑

nkτk, (A.5)

J2,2 =
∂ f2

∂ε′
= −

ni + qisns

ni + ns

+
1

ni + ns

∑

nk

∂Zk

∂ε′
, (A.6)

J2,3 =
∂ f2

∂ni

= − (ε′ + ε0)ns

1 − qis

(ni + ns)2
−

1

(ni + ns)2

∑

nkZk, (A.7)

J2,4 =
∂ f2

∂ns

= − (ε′ + ε0)ni

qis − 1

(ni + ns)2
−

1

(ni + ns)2

∑

nkZk, (A.8)

J3,1 =
∂ f3

∂ψ
=

nivi

(ζ + ks,ins)nH

∑

nkπa2
k , (A.9)

J3,2 =
∂ f3

∂ε′
= −
〈σv〉ieni(ni + qisns)

(ζ + ks,ins)nH

−
nivi

(ζ + ks,ins)nH

∑

nkπa2
k

∂Jk

∂ε′
, (A.10)

J3,3 =
∂ f3

∂ni

= −
1

nH

−
〈σv〉ie(ε′ + ε0)(2ni + qisns)

(ζ + ks,ins)nH

−
vi

∑

nkπa2
k
〈J̃(τk)〉

(ζ + ks,ins)nH

−
ki,s(ns,0 − ns)

(ζ + ks,ins)nH

, (A.11)

J3,4 =
∂ f3

∂ns

= −
〈σv〉ie(ε′ + ε0)ni(qisζ − ks,ini)

(ζ + ks,ins)2nH

+
ks,inivi

∑

nkπa2
k
〈J̃(τk)〉

(ζ + ks,ins)2nH

+
ki,sni(ζ + ks,ins,0)

(ζ + ks,ins)2nH

(A.12)

J4,1 =
∂ f4

∂ψ
=

nsvs

(ζ + βT
1
2 e−

T0
T nH)ns,0

∑

nkπa2
k , (A.13)

J4,2 =
∂ f4

∂ε′
= −

〈σv〉sens(ni + qisns)

(ζ + βT
1
2 e−

T0
T nH)ns,0

−
nsvs

(ζ + βT
1
2 e−

T0
T nH)ns,0

∑

nkπa2
k

∂Jk

∂ε′
, (A.14)

J4,3 =
∂ f4

∂ni

=

(

1 −
ns

ns,0

)

ki,s

ζ + βT
1
2 e−

T0
T nH

+
−〈σv〉se(ε′ + ε0)ns + ks,ins

(ζ + βT
1
2 e−

T0
T nH)ns,0

, (A.15)

J4,4 =
∂ f4

∂ns

= −
1

ns,0

−
ki,sni + 〈σv〉se(ε′ + ε0)(ni + 2qisns)

(ζ + βT
1
2 e−

T0
T nH)ns,0

−
vs

∑

nkπa2
k
〈J̃(τk)〉

(ζ + βT
1
2 e−

T0
T nH)ns,0

−
ks,i(nH − ns,0 − ni)

(ζ + βT
1
2 e−

T0
T nH)ns,0

,

(A.16)

with

∂Zk

∂ε′
=
−(ε′ + ε0)2Θ3αk − 4(ε′ + ε0)Θ2 − αkΘ

(1 + αk(ε′ + ε0)Θ + (ε′ + ε0)2Θ2)2
, (A.17)

∂Jk

∂ε′
=

2

τk

(αk − 1)(ε′ + ε0)2Θ3 + Θ + 2(ε′ + ε0)Θ2

(1 + αk(ε′ + ε0)Θ + (ε′ + ε0)2Θ2)2
. (A.18)
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