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A b s t r a c t .  Consider a Frobenius kernel G  in a split semisimple alge-
braic group, in very good characteristic. We provide an analysis of sup-
port for the Drinfeld center Z (rep(G)) of the representation category for
G, or equivalently for the representation category of the Drinfeld double
of kG. We show that thick ideals in the corresponding stable category
are classied by cohomological support, and calculate the Balmer spec-
trum of the stable category of Z (rep(G)). We also construct a -point
style rank variety for the Drinfeld double, identify -point support with
cohomological support, and show that both support theories satisfy the
tensor product property. Our results hold, more generally, for Drinfeld
doubles of Frobenius kernels in any smooth algebraic group which ad-
mits a quasi-logarithm, such as a Borel subgroup in a split semisimple
group in very good characteristic.
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1.

In this paper we provide an in depth analysis of support theory for the
Drinfeld double of a Frobenius kernel G  =  G ( r )  in a suciently nice alge-braic
group G. Equivalently, we study support for the Drinfeld center of
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the representation category rep(G). As indicated in the abstract, we cal-
culate the Balmer spectrum of thick prime ideals in the stable category of
representations for the double, classify thick ideals in the stable category,
and construct -point style rank varieties for representations. Our rank
variety construction is in line with that of Suslin-Friedlander-Bendel and
Friedlander-Pevtsova [61, 29, 30].

The present study occupies a somewhat unique position in the literature
in that it is among the rst semi-complete analyses of support for a class
of \properly quantum" nite tensor categories (cf. [62, x3.1]). By properly
quantum here we mean braided, but non-symmetric. In our earlier papers
[28, 44], we veried the nite generation of cohomology for Drinfeld dou-
bles of nite group schemes, a necessary foundational step for a theory of
cohomological support varieties. We also made explicit computations of
cohomology and briey considered support varieties of irreducible represen-
tations. In contrast, our focus in this paper is the establishment of basic
properties of support for Drinfeld doubles.

Support varieties have been employed to study various structural aspects
of representations of groups and Hopf algebras. The stratication they pro-
vide for various stable module categories was presaged by Quillen’s strati-
cation [52, 53] of the spectrum of the cohomology of nite groups. Indeed,
cohomology (including Ext-groups) plays a central role in the formulation
of support theories, revealing a surprising wealth of information about rep-
resentations. Although the cohomology of a Hopf algebra A  does not de-
pend upon the coproduct of A, the tensor product certainly does and the
behavior of tensor products is a fundamental underpinning of many appli-
cations of representation theory. Consequently, \the tensor product prop-
erty" for a support theory V !  supp(V ) asserting that supp(V
 W ) =  supp(V ) \  supp(W ) is of considerable interest.

As mentioned above, this text is dedicated to an analysis of support for the
Drinfeld center Z (rep(G)) of the representation category of an innitesimal
group scheme G. The center Z (rep(G)) can be understood as the universal
braided tensor category which admits a central tensor functor to rep(G), in
the sense of [18, Denition 2.1]. There are, however, a number of more
explicit presentations of the center. For example, one can identify Z (rep(G))
with the category Coh(G)G  of ad-equivariant sheaves on G. Or, even more
concretely, Z (rep(G)) is identied with the representation category of the
smash product

D ( G )  : =  O (G)#ad kG

of the algebra of functions on G  with the group ring of G. The algebra D ( G )  is
called the Drinfeld double, or quantum double, of the group ring kG. For more
details one can see Section 2.3 below.

The Drinfeld center construction plays an essential role in studies of tensor
categories and in related studies in mathematical physics. The important
point here is that, unlike classical (symmetric) tensor categories, such as
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rep(G) itself, Z (rep(G)) =  rep(D(G)) is highly non-symmetric, and so be-
haves more like a quantum group than a classical group. In particular, the
Drinfeld center is what is called a nonsemisimple modular tensor category.1
For applications of modular tensor categories to studies of conformal and
topological eld theories one can see for example [55, 25, 19, 33, 39], and for
some indications of the relevance of cohomology in such studies one can
consult the texts [41, 58, 21, 22].

Let us now turn to the specics of this paper. For the remainder of the
introduction we x a eld k of prime characteristic p, and consider the
following:

- Fix G  to be the r-th Frobenius kernel in a split semisimple algebraic
group G,  in very good characteristic.

- Fix  D  =  D ( G )  to be the corresponding Drinfeld double for kG.
Here r  is arbitrary, so that we are considering the family of normal subgroups
G( r )  in G.

For an explicit example, one could consider G  to be SLn (k )  in odd char-
acteristic p which does not divide n, or the symplectic group Sp (k) in
arbitrary odd characteristic. We note that all of the results listed below
hold more generally when G  is replaced by an arbitrary smooth algebraic

group over k which admits a quasi-logarithm (see Section 4 for a denition).
We recall the notion of cohomological support: For a nite-dimensional

Hopf algebra A, and any A-representation V , we let jAj denote the projec-
tive spectrum of cohomology, and jAjV denote the associated cohomological
support space

jAj =  Pro j ExtA (k; k); jAjV =  SuppjAj Ext  (V; V ):
Here Ext  (V; V ) inherits a graded module structure over Ext  (k; k) via the
tensor structure on rep(A), and Ext  (V; V )  denotes the associated sheaf on
the projective spectrum.

As a rst point, we prove the following.

Theorem (6.11). Consider G  as above, with corresponding Drinfeld double
D .  Cohomological support for D  satises the tensor product property. That is
to say, for nite-dimensional D-representations V and W we have

jDj(V

W ) =  jDjV \  jDjW : (1)

From the perspective of tensor triangular geometry (e.g. [6, 12]), Theorem
6.11 indicates that cohomological support may be used to \structure" both
the derived and stable categories of representations for the double D.  We
elaborate on this point, and also on our ndings in this direction.

Recall that the stable category stab(D) for D  is the quotient of rep(D) by
the ideal of all morphisms which factor through a projective. This category
inherits a triangulated structure from the abelian structure on rep(D), and

1In order for the center Z (rep(G)) to actually be a ribbon category some natural
restrictions must be placed on G. See for example [37, 34].
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a monoidal structure from the monoidal structure on rep(D). Also, by a
thick ideal in stab(D) we mean a thick subcategory{and in particular a full
triangulated subcategory{which is stable under the tensor action of stab(D)
on itself. Finally, by a specialization closed subset in jDj, we mean a subset
jDj which contains the closure x   of any point x  2  . We prove the following.

Theorem (8.1). Cohomological support provides an order preserving bijec-
tion

fSpecialization closed subsets in jDjg  !  fthick ideals in stab(D)g;
!  K ;

where K  is the thick ideal of all objects V in stab(D) which are supported
in the given set jDjV  .

One can compare with analogous classication results for nite groups [57],
and nite group schemes [30]. By a thick prime ideal in stab(D) we mean a
thick ideal P  in stab(D) which satises the following: a product V
 W is in P  if and only if V or W is in P .  Balmer has shown that the
collection of prime ideals in stab(D) admits the structure of a locally ringed
space, which he calls the spectrum of stab(D).

Theorem 8.1 implies the following calculation of the Balmer spectrum
Spec(stab(D)) for the Drinfeld double.

Theorem (8.2). There is an isomorphism of locally ringed spaces

fcoh : jDj  !  Spec(stab(D)):

We note that the proofs of Theorems 8.1 and 8.2 rely on the construction
of a certain \hybrid", Benson-Iyengar-Krause-type support theory [10] for
innite-dimensional D-representations. We discuss this support theory in
Section 7 below.

Let us provide, in closing, an elaboration on the methods employed in
our analysis of the center Z (rep(G)) =  rep(D), and on a related -point
construction which appears in the appendix.

1.1. Elaborations on methods. Our proofs of the above results inter-
twine various approaches to support varieties in the literature. There are,
however, some fundamental mechanism which we leverage throughout the
text.

Our basic approach to support for the double is as follows: We show in
Section 5 that, for G  a Frobenius kernel in a suciently nice algebraic group G,
the representation category of the Drinfeld double D  =  D ( G )  admit an
\eective comparison" with the representation category of an associated
innitesimal group scheme . In particular, there is a linear abelian, non-
tensor, equivalence

L  : rep(D) !  rep() (2)
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which nonetheless transports support theoretic information back and forth.
For example, we have an identication of cohomological supports jDjV =
jjL(V )  for all V in rep(D) (see Lemma 6.9).

The fact that the equivalence L  identies support for D  with that of  is not a
casual one, and requires one to \descend" the equivalence L  to a family of local
Hopf subalgebras D  D  which \covers" D.  This family of sub-algebras f D
g 2V ( G )  is parametrized by the scheme Vr (G) of 1-parameter subgroups in G,
and plays a fundamental role in our study. As a basic point, one can use the
subalgebras D  to detect projectivity of D-representations. In particular, a
given D-representation is projective if and only if its re-striction to each D

is projective (Theorem 3.7). The ability of the D to
detection projectivity of D-representations is the covering property referred
to above.

The eective comparison (2) is integral to our proofs of the tensor product
property jDjV

W =  jDjV \ jDjW  , and also to the classication results listed above.
Additionally, the particular nature of our comparison indicates the existence
of a -point support theory for representations of the double, which we discuss
in more detail below.

One might compare our approach with Avrunin and Scott’s proof of Carl-
son’s conjecture, where a certain change of coproduct result is used to relate
supports for abelian restricted Lie algebras to those of elementary abelian
groups [3]. Similar change of coproduct methods are employed in recent
work of the rst author as well [26].

1.2. Conceptualizations via -points. The introduction of -points by
Pevtsova and the rst author [29, 30] provide an alternate way to conceptu-
alize our results. Our discussion of an analogous theory of -points for the
Drinfeld double D  is relegated to the appendix because they do not gure
directly into the proofs of the results we have summarized. Instead, these
results justify the intuition of -points.

For us, a -point for D  is a choice of eld extension K=k, and a at algebra
map  : K [t]=(tp ) !  D K  which admits an appropriate factorization through
one of the local Hopf subalgebras D  D K  (Denitions A.6 and
A.8). We then construct the space ( D )  of equivalence classes of -points, and
a corresponding -point support theory V !  (D)V  for the double. The
support spaces (D)V  are explicitly the locus of all -points  at which the
restriction res(VK ) of V to K [t]=(t )  is non-projective.

Two of our main results are that -point support for the double D  satises
the tensor product property

(D)V

W =  (D)V  \  (D)W (3)

(Theorem A.14), and also agrees with cohomological support. In the state-
ment of the following theorem we suppose that G  is, as usual, a Frobenius
kernel in a suciently nice algebraic group G, i.e. one which admits a quasi-
logarithm.
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Theorem (A.15). Consider G  as above, and D  =  D (G) .  There is a home-
omorphism of topological spaces

( D )   !  jDj

which restricts to a homeomorphism of support spaces (D)V  !  jDjV for
each V in rep(D).

We furthermore construct a \universal" -point theory
(D)? , and show that our specic -point support theory (D)?  agrees with this
universal theory. One can see Theorem A.16 below.

In considering the -point perspective for support, we open up the pos-
sibility of a deeper analysis of support for the double via explicit nilpotent
operators. One can compare with the introduction of local Jordan types for
group representations in [20, 32], and constructions of vector bundles on
support spaces provided in [31, 14]. Although we won’t discuss the issue
here, our methods also allow us to identify cohomological and hypersurface
supports for Drinfeld doubles of rst Frobenius kernels G(1)  in suciently nice
algebraic groups (cf. [46, Corollary 7.2, x13.3]).

1.3. Acknowledgments. Thanks to Jon Carlson, Srikanth Iyengar, Julia
Pevtsova, and Chelsea Walton for helpful conversation. Thanks also to the
referee for many helpful comments and suggestions.

2. Pre l iminar ies

We recall basic information about Hopf algebras, nite group schemes, and
the Drinfeld double construction. We also recall the notion of cohomo-logical
support, and some basic results about Carlson modules. Throughout this text
we work over a base eld k which is of (nite) characteristic p.

2.1. Hopf algebras and some generic notation. We set some global
notations, and recall a strong form of the Larson-Radford theorem [40].
We assume the reader has some familiarity with Hopf algebras, and our
canonical reference for the topic is Montgomery’s text [43].

For us, a representation of a nite-dimensional algebra A  is the same
thing as an A-module, and all representations/modules are left representa-
tions/modules. For a nite-dimensional Hopf algebra A  we let

rep(A) : =  fthe tensor category of nite-dimensional A-representationsg

and

Rep(A) : =  fthe monoidal category of all A-representationg:

To  be clear, when we say rep(A) is a tensor category we recognize that all
objects in rep(A) admit both left and right duals [23, x2.10], whereas
objects in Rep(A) are not dualizable in general. We let Irrep(A) denote the
collection of all (isoclasses of ) simple A-representations.
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Throughout the text we denote nite-dimensional representations by the
letters V and W , and reserve the letters M and N  for possibly innite-
dimensional representations. This notation is employed throughout the text,
without exception.

We recall the following basic result, which will be of use later.

Theorem 2.1 ([40]). Any nite-dimensional Hopf algebra A  is Frobenius. In
particular, an A-representation M is projective if and only if M is injec-tive.

Proof. The algebra A  is Frobenius by Larson and Radford [40]. We note
that if A  is Frobenius then injectivity is the same as projectivity, even for
innite-dimensional modules, by [24, Theorem 5.3].

2.2. F in i te  group scheme. Al l  group schemes in this text are ane. A
group scheme G, over a base eld k, is called nite if it is nite as a scheme over
Spec(k). Rather, G  is nite if it is ane and has nite-dimensional (Hopf)
algebra of global functions O (G). For such nite G  we let kG denote the
associated group algebra kG =  O (G). A  nite group scheme is called
innitesimal if G  is connected, i.e. if O (G) is local, and unipotent if the
group algebra kG is local.

Following the framework of the previous section, we let rep(G) denote the
category of nite-dimensional kG-modules, and Rep(G) denote the category of
arbitrary kG-modules. Note that kG-modules are identied with O(G)-
comodules as in [43, Lemma 1.6.4], so that nite-dimensional kG-modules are
in fact identied with k-linear representations of the group scheme G.

2.3. T h e  Drinfeld double and the Drinfeld center. Let G  be a nite
group scheme. The adjoint action of G  on itself induces an action of kG on
O (G), and we can form the corresponding smash product, which is known as
the Drinfeld double, or quantum double of kG, D ( G )  =  O (G)#k G. We
usually employ the generic notation D  for the Drinfeld double

D  : =  D (G) :

The algebra D  admits a unique Hopf algebra structure for which the two
algebra inclusions O (G) !  D  and kG !  D  are inclusions of Hopf algebras.
See for example [43, Corollary 10.3.10].

Remark 2.2. There is an analogous construction A D ( A )  of the Drinfeld
double for an arbitrary nite-dimensional Hopf algebra A. So, we are only
discussing a particular instance of a general construction.

Remark 2.3. If one compares directly with the presentation of [43], then
one nds an alternate description of the double as a smash product between the
coopposite Hopf algebra O(G)cop and kG. However, by applying the an-
tipode to the O (G) factor in D,  one sees that the cooposite comultiplication
on O (G) can be replaced with the usual one, up to Hopf isomorphism.
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From a categorical perspective, we can consider the Drinfeld center of the
representation category rep(G). This is the category of pairs 

pairs (V; V )  of an object V in rep(G), and
 
a

choice of half braiding V : V
   !  
 V

Such a half-braiding V is required to be a natural isomorphism of endofunc-
tors of rep(G), and we require that this natural isomorphism satises the
expected compatibilities with the tensor structure on rep(G) [36, Denition
XIII.4.1].

The center Z (rep(G)) inherits a tensor structure from that of rep(G),
and admits a canonical braiding cV;W : V
 W !  W
 V induced by the given half-braidings on objects V;W : V
 W !  W
 V . This braiding on Z (rep(G)) is highly non-symmetric, in any sense which
one might consider
[59]. For example, any object V in Z (rep(G)) for which the square braiding
is trivial c2 =  idV

  must itself be trivial, V  1dim(V ) .
We have the following categorical interpretation of the double.

Theorem 2.4 ([36, Theorem XII I.5.1]). For any nite group scheme G,
there is an equivalence of tensor categories rep(D) =  Z (rep(G)).

As a corollary to this result, we see that the category rep(D) of rep-
resentations for the Drinfeld double is canonically braided. This point is
relevant for many applications in mathematical physics, and is also relevant in
studies of support and cohomology. Specically, many support theoretic
results which are stated in the context of symmetric tensor categories can be
immediately extended to the braided setting.

Remark 2.5. As with the construction of the Drinfeld double, one can
construct the Drinfeld center of an arbitrary nite tensor category. Further-
more, the obvious analog of Theorem 2.4 is valid when we replace rep(G)
with the representation category of an arbitrary nite-dimensional Hopf al-
gebra.

In addition to considering the double D  we also consider a certain class
of Hopf subalgebras D0  D  which one associates to subgroups in G. The
following lemma will prove useful for our analysis of the subalgebras D0.

Lemma 2.6. Suppose that G  is an innitesimal group scheme, and let H   G  be
a closed subgroup in G.  Let H  act on O (G) via the (restriction of the) adjoint
action, and consider the smash product algebra O (G)#k H .

Restriction along the surjective algebra map O ( G ) #k H  !  kH , f
 x  !  ( f )x ,  provides a bijection

Irrep(H )  !  Irrep(O (G)#kH ):

Proof. Same as the proof of [28, Proposition 5.5].
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2.4. Cohomological support.

Denit ion 2.7. We say a nite-dimensional Hopf algebra A  (over k) has
nite type cohomology (over k) if the following two contions hold:

(a) The extensions Ext  (k; k) form a nitely generated k-algebra.
(b) For any pair of nite-dimensional A-representations V and W , the

extensions Ext  (V; W ) form a nitely generated module over Ext  (k; k), via
the tensor action

   : ExtA (k; k)
 ExtA (V ; W ) !  ExtA (V ; W ):

Let A  be a nite-dimensional Hopf algebra, and suppose that A  has nite
type cohomology. We take

jAj : =  Pro j ExtA (k; k):

Formally, Pro j Ext (k; k) is the topological space of homogeneous prime
ideals in Ext  (k; k), which we equip with the Zariski topology. Since Ext  (k; k) is
graded commutative and nitely generated, restriction along the inclu-
sion Extev (k; k) !  Ext  (k; k) provides a homeomorphism Pro j Ext (k; k) =
Proj Extev (k; k). The structure sheaf on Pro j Ext (k; k) is the expected one,
whose sections over a basic open D f ,  f  2  Extn  (k; k), are the degree 0 ele-
ments in the localization Ext  (k; k)f .

For any nite-dimensional A-representation V , we can consider the self-
extensions Ext  (V; V ) and the tensor action of Ext  (k; k) on these exten-sions.
Note that the extensions of V form a graded module over Ext  (k; k), and we
may consider the associated sheaf Ext  (V; V )  on jAj =  Pro j Ext (k; k). We dene
the cohomological support of V as the support of its associated sheaf

jAjV : =  SuppjAj ExtA (V ; V ): (4)

We have the following basic claim.

Lemma 2.8 ([50, Proposition 2]). Suppose that A  has nite type cohomol-ogy.
A  nite-dimensional A-representation V is projective if and only if its support
vanishes, jAjV =  ; .

In considering the aforementioned collection of Hopf subalgebras D0  D
we also take account of the following.

Lemma 2.9. Suppose that A  has nite type cohomology, and that B  !  A  is
an inclusion of Hopf algebras. Then

(1) B  has nite type cohomology.
(2) The restriction map Ext  (k; k) !  Ext  (k; k) is a nite algebra map,

and the induced map on spectra

res : Spec Ext (k; k) !  Spec Ext (k; k) is

such that (res) 1(0) =  f0g.
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Proof. The algebra B  has nite-type cohomology, and the algebra map of
(2) is nite, by [47, Proposition 3.3]. Since this map is nite, the ber

k
E x t A ( k ; k )  ExtB (k; k)

is a nite-dimensional non-negatively graded algebra, and hence the irrele-
vant ideal is the unique prime ideal in this algebra. This implies that the
preimage (res) 1(0) is the singleton f0g.

Lemma 2.9 (2) tells us that restriction res : rep(A) !  rep(B) induces a
well-dened map on projective spectra jB j !  jAj. This map is furthermore
closed and has nite bers.

2.5. Cohomological support for group schemes. In considering a nite
group scheme G  (over k) we adopt the particular notation

jGj : =  jkGj =  Pro j ExtG (k; k):

We may consider cohomological support for G-representations as described
in Section 2.4.

In addition to cohomological support, there are a number of additional
support theories for rep(G) which one might employ in tandem. In particu-
lar, when G  is an innitesimal group scheme, one can consider the k-scheme
Vr (G) of 1-parameter subgroups in G  and its associated support theory of
[61]. Although we do not use this theory explicitly in the text, it does \run in
the background" of our analysis. So we sketch a presentation of this
support theory here.

At xed r   0, Vr (G) is the moduli space of group scheme maps Ga(r )  !  G  [60],
and for any nite-dimensional G-representation W one has an associ-ated
support space Vr (G)W . The support space Vr (G)W is specically a non-
projectivity locus of the representation W in Vr (G). To  elaborate, the group
ring kGa(r )  is a truncated polynomial ring k[t; t(1); : : : ; t(r 1)]=(tp; : : : ; t(r 1)p)
generated by divided powers t(i) , and kGa(r )  is a at extension of the subal-
gebra Atop  Ga(r )  generated by the highest divided power t(r  1). A  k-point  :
Ga(r )  !  G  is in the support Vr (G)W , for example, precisely when the
restriction res(W ) is non-projective when restricted further to this highest
power subalgebra Atop  Ga(r ) . The moduli space Vr (G) is a conical scheme, and
the supports Vr (G)W are closed conical subschemes in Vr (G).

By results of [61], we have a natural scheme map        : P(Vr (G)) !  jGj
from the projectivization of Vr (G), and this map is a homeomorphisms
whenever G  is of height  r. The map        restricts to homeomorphisms W

: P(Vr (G)W ) !  jGjW between support spaces at arbitrary W 2  rep(G),
again when G  is of height  r. So the support theory Vr (G)? provides a
kind of group theoretic \realization" of cohomological support for innites-

imal group schemes.

Remark 2.10. Our notation jGj conicts slightly with the notation of
[60, 61, 30]. Namely, jGj is used to denote the ane spectrum of ExtG (k; k)
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in the aforementioned papers, while we use it to denote the projective spec-
trum.

Remark 2.11. By results of [30], the support theory W !  Vr (G)W for
rep(G) has a reasonable extension to the category Rep(G) of arbitrary kG-
representation.

2.6. Carlson modules and support. Consider a nite-dimensional Hopf
algebra A  with nite type cohomology. Dene the n-th syzygy
nk of the trivial representation via any choice of projective resolution of k, 0 !
nk !  P  (n  1) !   !  P 0 !  k. Given an extension  2  Extn  (k; k), we can
represent  as a map  :
nk !  k and dene

L  : =  ker  :
 k !  k :

The object L  is called a Carlson module associated to .
The object L  is clearly not uniquely dened by , since the denition relies

on a choice of representative for the map  :  nk !  k in the derived category
D b (A).  However, L  is unique up to isomorphism in the stable category for
A, and so is suciently unique for most support theoretic ap-plications.
Carlson modules have a number of exceedingly useful properties. We recall a
few of these properties here.

Proposition 2.12 ([50, Proposition 3]). Consider an arbitrary homoge-
neous extension  2  Extev (k; k). For any nite-dimensional A-representation V
there is an equality of supports

jAj ( L

V )  =  Z ( )  \  jAjV : (5)

As a corollary to Proposition 2.12 we nd

Corol lary 2.13 ([50, Corollary 1]). Any closed subset  in jAj is realizable as
the support of a product L  =  L 1

: : :
L m  of Carlson modules,  =  jAjL .

Carlson modules also enjoy certain naturality properties with respect to
exact tensor functors. We list a particular occurence of such naturality here.

Lemma 2.14. If  : B  !  A  is an inclusion of Hopf algebras, and L  is a
Carlson module associated to an extension  2  Ext  (k; k) over A ,  then the
restriction res(L) is a Carlson module for the image of res() 2  Ext  (k; k) of this
extension in ExtB (k; k).

Proof. By the Nichols-Zoeller theorem [40], A  is projective as a B-module. So
the result just follows from the fact that a projective resolution P  !  k of the
unit over A  restricts to a projective resolution over B .

3. The Hopf  subalgebras D and a  p ro j e c t i v i t y  t es t

Let G  be an innitesimal group scheme. We show that the Drinfeld double
D  =  D ( G )  admits a family of Hopf embeddings f D  !  Dg 21-param which
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is parametrized by the space of 1-parameter subgroups in G. Each of the
Hopf algebras D  is local, and so behaves like a \unipotent subgroup" in D.

We show that the family f D       !  Dg  21-param can be used to check
projectivity of arbitrary (possibly innite-dimensional) D-representations.
One can see Theorem 3.7 below for a specic statement.     We further-
more show that the cohomological support jDjV of a nite-dimensional D-

representation V can be reconstructed from the support spaces jD  jres (V )
of the restrictions of V to the various D  .

The family of embeddings f D !  Dg 21-param plays an integral role
throughout our study, and is therefore a fundamental object of interest. As
implied above, an analysis of support for the double D  will be shown to be
reducible to an analysis of support for the local subalgebras D  . One can
compare with the group theoretic setting, where the support theory of a
nite group scheme is similarly reducible to that of its unipotent subgroups (cf.
[29, 30]).

3.1. 1-parameter subgroups. Let k be a eld of characteristic p >  0, and G
be an innitesimal group scheme over k. We let G K  denote the base change
along any given eld extension k !  K .

Denit ion 3.1. An embedded 1-parameter subgroup for G  is a pair ( K ;  )  of a
eld extension k !  K  and a closed map of group schemes : Ga ( s ) ; K  !
G K .  We call K  the eld of denition for such a 1-parameter subgroup .

Of course, by Ga ( r ) ; K  we mean the base change of the r-th Frobenius kerel
in Ga. Let us take a moment to compare with [60, 61].

In the texts [60, 61], by a 1-parameter subgroup the authors mean an
arbitrary group map 0 : Ga ( r ) ; K  !  G K .  Having xed a preferred quotient
Ga(r )  !  Ga(s)  for each s  r, such a group map species an integer s  r  and a
unique factorization of as a composition of the quotient Ga ( r ) ; K  !  Ga ( s ) ; K
followed by an embedding : Ga ( s ) ; K  !  G K .  In this way, the moduli
space of 1-parameter subgroups Vr (G) employed in [61] is identied with the
moduli space of embedded 1-parameter subgroups for G, provided G  is of
height  r. (One can dene the moduli space of embedded 1-parameter
subgroups in precise analogy with [60, Denition 1.1].) One thus translate
freely between the language of [60, 61] and the language we employ in this
text.

Having claried with this point, we recall the following essential results of
Suslin-Friedlander-Bendel [61, Proposition 7.6] and Pevtsova [48] [49, The-
orem 2.2].

Theorem 3.2 ([61, 48]). Consider an innitesimal group scheme G.  An
arbitrary G-representation M is projective over G  if and only if for every eld
extension k !  K ,  and embedded 1-parameter subgroup : Ga ( s ) ; K  !
G K ,  the base change M K  is projective over Ga( s ) ; K.
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To  be clear, when we say that M K  is projective over Ga ( s ) ; K  we mean
that M K  restricts to a projective Ga(s);K -representation along the given
map : Ga ( s ) ; K  !  G K .

When we consider a nite-dimensional representation V , and k is alge-
braically closed, it suces to check projectivity of V after restricting to all 1-
parameter subgroups which are dened over k.

Theorem 3.3. [61] Consider an innitesimal group scheme G,  and a nite-
dimensional G-representation V . Suppose also that the base eld k is alge-
braically closed. Then V is projective over G  if and only if, for every em-
bedded 1-parameter subgroup : Ga(s)  !  G  which is dened over k, V is
projective over Ga(s) .

Proof. Suppose that V is projective when restricted to all such . Then
[61, Corollary 6.8] tells us that V has no closed points in its support. Since
the support jGjV is closed, we conclude that jGjV =  ; ,  and hence that V is
projective.

Remark 3.4. Since the category Rep(G) is Frobenius, we can replace pro-
jectivity with injectivity, or even atness, in the statements of Theorem 3.2
and 3.3.

3.2. A  family of local subalgebras, and pro jectivity.  As we have just
observed, 1-parameter subgroups play an essential role in studies of support
for innitesimal group schemes. We provide a corresponding family of Hopf
subalgebras for the Drinfeld double.

Denit ion 3.5. Let G  be an innitesimal group scheme, and : Ga ( s ) ; K  !
G K  be an embedded 1-parameter subgroup. Let D  =  D ( G )  denote the
Drinfeld double for G. We dene D      to be the Hopf algebra

D  : =  O ( G K ) # K G a ( s ) ; K ;

where Ga ( s ) ; K  acts on O ( G K )  by restricting the adjoint action of G K  along
the given embedding .

Note that each Hopf algebra D embeds in the double D K  via the map
idO

: D  !  D K .  So we might speak of the D as Hopf subalgebras in
D K ,  via a slight abuse of language.

Lemma 3.6. Consider an innitesimal group scheme G,  with Drinfeld dou-ble
D .  For any embedded 1-parameter subgroup : Ga(s)  !  G  the Hopf
algebra D is local.

Proof. By changing base if necessary we may assume K  =  k. By Lemma 2.6
the restriction map provides an bijection Irrep(Ga(s) ) !  Irrep(D ). Now,
since Ga(s)  is unipotent, the trivial representation is the only simple object in
rep(Ga(s) ). So we observe that rep(D ) has a unique simple object, and
therefore that D      is local.
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We recall that, according to Theorem 3.2, 1-parameter subgroups in a
given innitesimal group scheme can be used to detect projectivity of G-
representations. We observe an analogous detection property for the D  .

Theorem 3.7. Consider an arbitrary representation M over the Drinfeld
double D  of an innitesimal group scheme G.  Then M is projective over D  if
and only if for every eld extension k !  K ,  and every embedded 1-parameter
subgroup : Ga ( s ) ; K  !  G K ,  the base change M K  is projective
over D  .

When M is nite-dimensional, and k is algebraically closed, M is pro-
jective over D  if and only if, for all embedded 1-parameter subgroups :
Ga(s)  !  G  which are dened over k, M is projective over D  .

Proof. Recall that D  is Frobenius, so that projectivity of M is equivalent to
injectivity. It suces to check projectivity/injectivity after changing base to the
algebraic closure k, so that we may assume k =  k. Furthermore, as with any
nite dimensional algebra, injectivity of M is equivalent to vanishing of the
extensions

Ext>0 (S; M ) =  0 from the sum S  of all simple D-reps.

So we seek to establish the above vanishing of cohomology. In what follows
we take O =  O (G).

If M is projective over D,  then M is projective over the Hopf subalgebra
O  D  [43, Theorem 3.1.5]. Thus M is injective over O in this case. Simi-
larly, if M K  is projective over D  , then M K  is projective over OK ,  and thus
injective over O K  as well. It follows that M is injective over O itself. So it
suces to assume that M is injective over O, and prove that in this case M is
injective over D  if and only if M K  is injective over D for all extensions
k !  K  and embeddings : Ga ( s ) ; K  !  G K .

Let us assume that M is injective over O. By Lemma 2.6, all simple D-
representations are restrictions of simple G-representations along the pro-
jection D  !  kG. It follows that we have a spectral sequence

Ext  (S; Ext  (k; M )) )  Ext  (S; M )

which reduces to an identication

Ext  (S; HomO (k; M )) =  Ext  (S; M );

since M is injective over O. Similarly, we have an identication

Ext G a ( s ) ; K  
(K ; HomO K  ( K ; M K ) )  =  Ext D  ( K ; M K )

at any embedded 1-parameter subgroup : Ga ( s ) ; K  !  G K .  Hence M is
injective over D  (resp. M K  is injective over D  ) if and only if the invariant
subspace HomO (k; M ) is injective over G  (resp. HomO     ( K ; M K )  is injective
over Ga(s ) ;K ).
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Given the above information, we seek to establish the claim that

HomO (k; M ) is injective over G
,  for each : Ga ( s ) ; K  !  G K ;  HomO (k; M )K =  HomO     ( K ; M K )

is injective over Ga(s ) ;K :

But this nal claim follows by Theorem 3.2. Similarly, one refers to Theorem
3.3 in the case of nite-dimensional M to obtain the desired result.

3.3. (Re)construct ing  cohomological support. We consider cohomo-
logical support for nite-dimensional representations over the Drinfeld dou-
ble. F ix  an innitesimal group scheme G  and let D  denote its Drinfeld
double D  =  D (G) .  Recall our notation jDj for the projective spectrum of
cohomology, jDj =  Pro j Ext (k; k). We have the following basic result of [28,
44].

Theorem 3.8 ([28, 44]). The Drinfeld double D  has nite type cohomology.

We now apply Lemma 2.9 and Theorem 3.8 to nd

Corol lary 3.9. For any embedded 1-parameter subgroup : Ga ( s ) ; K  !  G K ,
the Hopf algebra D has nite type cohomology, and the induced map on
projective spectra res : jD  j !  jD K j  is a nite map of schemes.

Let us consider an arbitrary eld extension k !  K .  We note that the
natural map K
 ExtD (k; k) !  Ext       ( K ; K )  is an isomorphism, and thus
identies the spectrum jD K j  with the base change jDjK .  For any embedded 1-
parameter subgroup : Ga ( s ) ; K  !  G K ,  we therefore obtain a map of
schemes

f  : jD  j !  jDj (6)
given by composing the map res : jD  j !  j D K j  induced by restriction with
the projection jD K j  =  jD j K  !  jDj.

We note that these f  are not closed morphisms in general. This is simply
because the projection jD j K  !  jDj does not preserve closed points when the
extension k !  K  is innite. On the other hand, we see that any point x  in
jDj is represented by{or rather lifts to{a closed point in the base change
jDjk (x) . So, by employing base change one is able to treat arbitrary points in
the spectrum jDj as closed points, at least to a certain degree. We record a
little lemma.

Lemma 3.10. Consider any nite-dimensional D-representation V .
(1) For an arbitrary eld extension k !  K ,  the support jDK jV of

V K  over D K  is precisely the preimage of jDjV along the projection
jD K j  !  jDj. In particular, the composition jDK jV  jD K j  !  jDj is
a surjection onto jDjV .

(2) For any embedded 1-parameter subgroup : Ga ( s ) ; K  !  G  the map
f restricts to a morphism between support spaces jD  jV !  jDjV .
In particular, the image of jD  jV K  under f      is contained in jDjV .
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Proof. Statement (1) follows from the fact that (a) For any scheme X ,  the
projection X K  !  X  along a eld extension k !  K  is surjective and (b) for
any map of schemes f  : Y !  X ,  and coherent sheaf F  on X ,  we have
Supp( f F )  =  f  1 Supp(F ).  For (2) it suces to prove the result in the case
K  =  k, by (1). We simply consider the diagram

ExtD (k; k)
V

res

ExtD (V ; V )

res

Ext D  (k; k)
V Ext D  (V; V )

induced by the restriction functors, and note that the supports jDjV and jD
jV are the subvarieties associated to the respective kernels of the algebra maps

 V .

We now observe that the support of V over D  can be reconstructed
from the supports of V over the D  , where we allow to vary along all
1-parameter subgroups for G.

Proposition 3.11. Let G  be an innitesimal group scheme and D  =  D ( G )  be
the associated Drinfeld double. For any nite-dimensional D-representation V
there is an equality

jDjV =
[

f  ( jD jV K  ) : (7)
1-param subgroups

To  be clear, the equality (7) is an equality of sets. Indeed, the support of
a representation is itself simply a closed subset in the space jDj. Also, the
union (7) is explicitly taken over the collection of all embedded 1-parameter
subgroups in G, each of which consists of a pair of a eld extension K =k
and an embedding : Ga ( s ) ; K  !  G K .

Proof. If the support jDjV     vanishes, i.e. if V is projective over D,  then
Theorem 3.7 tells us that all of the supports jD  jV vanish as well. So the
claimed equality holds when the support jDjV is empty.

Let us assume now that V is not projective over D,  and hence that the
support jDjV is non-vanishing. By considering base change, and Lemma
3.10, we see that the equality (7) can be obtained from the following claim:

Claim: When k is algebraically closed, and x  is a closed point in jDjV ,
there is a 1-parameter subgroup : Ga(s)  !  G  such that x  is in the image
f  ( jD jV ).

Let us verify this claim.
We suppose that k =  k and consider a closed point x  in jDjV . Let L  be a

product of Carlson modules with jDj L  =  fxg. Then jDj L

V =  fxg  and for
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any 1-parameter subgroup : Ga(s)  !  G  we have

f  ( jD j L

V )  =
fxg      if x  2  f  ( jD jV )

Indeed, the above formula follows from the fact that jD  j L  =  f  1 (x), by
Lemma 2.14, and the subsequent fact that

jD j L

V =  f  1 (x) \  jD  jV ;

by Proposition 2.12.
Recall that, by the projectivity test of Theorem 3.7, projectivity of the

restriction of L
V along each such      would imply that L

V is projective over D.  Equivalently, vanishing of the supports jD  j L

V     along all such would imply vanishing of the support jDj L

V . Since we have chosen L  so that the latter space explicitly does not
vanish, we conclude that some support space jD  j L

V does not vanish. Rather, x  2  f  ( jD j L

V )  for some , and thus x  2  f  ( jD jV )  for some     . So we have proved the
above Claim, and thus establish the identication (7).

We remark, in closing, that one can prove analogs of the results of this
section for arbitrary nite (rather than innitesimal) group schemes. One
simply replaces the \testing groups" Ga(s)  with a larger class of unipotent
group schemes (cf. [29]).

4. Quasi - logarithms f o r  group schemes

In this short aside we recall the notion of a quasi-logarithm for an ane
group scheme. As we recall below, \most" familiar algebraic groups admit
quasi-logarithms. One can see Proposition 4.4 in particular. As our study of
support for Drinfeld doubles becomes more focused, we employ quasi-
logarithms to gain some leverage on the algebra structure of the double D
=  D (G) .

4.1. Quasi-logarithms.

Denit ion 4.1 ([38]). Let G  be an ane group scheme with Lie algebra g. We
consider g as an ane scheme g =  Spec(Sym(g)). A  quasi-logarithm for G  is a
map of schemes l : G  !  g which

(a) is equivariant for the adjoint actions,
(b) sends 1 2  G  to f0g 2  g,
(c) induces the identity on tangent spaces T1l =  idg.

Concretely, if we let m  O (G) denote the maximal ideal associated to the
point 1 2  G, then a quasi-logarithm for G  is a choice of ad-equivariant
splitting g !  m of the projection m !  m=m2 =  g. We note that, when G  is
smooth over the base eld k, such a quasi-logarithm induces an isomor-
phism on the respective formal neighborhoods l : G1 !  g0. Also, when G  is
innitesimal any quasi-logarithm is a closed embedding.
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The following lemma is straightforward.

Lemma 4.2. Suppose a group scheme G  admits a quasi-logarithm l : G  !  g.
Then for any positive integer r , the restriction ljG : G( r )  !  g provides a
quasi-logarithm for the Frobenius kernel G( r ) .

Through the remainder of the text we often adopt the following hy-
potheses: We assume G  is a smooth algebraic group which admits a quasi-
logarithm, then consider the Frobenius kernels G  =  G ( r )  at arbitrary r  >  0.
The previous lemma tells us that all such G  naturally inherit quasi-
logarithms from any choice of quasi-logarithm for the ambient group G. So in
this way we obtain various families of innitesimal group schemes which admit
quasi-logarithms.

4.2. Appearances of quasi-logs in  nature. We discuss the \generic"
presence of quasi-logarithms among reductive algebraic groups. Let G  be an
ane algebraic group which is dened over a localization R  =  Z[1=n] of the
integers, and suppose that G  is generically reductive. That is to say,
suppose that the rational form G Q  is reductive. Take O =  O (G).

Let m  O be the ideal associated to the identity 1 2  G ( R ) ,  and consider the
coadjoint representation g =  m=m2. The surjection m !  g admits an ad-
equivariant splitting g     !  mQ  OQ over the rationals, since G Q  has
semisimple representation theory [42, Theorem 22.42]. This splitting is
dened over a further localization R0 =  Z[1=N ], so that we obtain a quasi-
logarithm G R 0  !  gR0 dened over R0. It follows that for any eld k of
characteristic p which does not divide N , the group G  =  G k  admits a quasi-
logarithm. We record this observation.

Proposition 4.3. Let G  be a algebraic group which is dened over a lo-
calization R  =  Z[1=n] of the integers, and suppose that G  is generically
reductive. Then for any eld k, in all but nitely many characteristics, the k-
form G  =  G k  admits a quasi-logarithm.

If we consider split semisimple algebraic groups, for example, we can be
much more precise about the characteristics at which our group G  =  G k
admits a quasi-logarithm. We can also deduce quasi-logarithms for various
classes of algebraic groups which are related to such semisimple G.

Proposition 4.4 ([28, x6.1]). The following algebraic groups admit a quasi-
logarithm:

 The general linear group G L n ,  over any eld in any characteristic.
Any split simple algebraic group in very good characteristic (relative

to the corresponding Dynkin type).
 Any Borel subgroup inside a split simple algebraic group, in very good

characteristic.
 The unipotent radical in such a Borel, in suciently large charac-

teristic.
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5. The D r i n f e l d  double D  v i a  an infinitesimal  group scheme

Let G  be a smooth algebraic group over k which admits a quasi-logarithm,
and let G  be a Frobenius kernel in G. We consider the Drinfeld double D  for
G. In this section we show that, for G  as described, there is a linear abelian
equivalence

L  : rep(D) !  rep()

between the representation category of the double and the representation
category of an associated innitesimal group scheme . We show, further-more,
that this equivalence restricts to a corresponding abelian equivalence L  :
rep(D ) !  rep( )  at all embedded 1-parameter subgroups in G.

Although these equivalences are not equivalences of tensor categories,
they can be used in highly nontrivial ways in an analysis of support for the
double, as we will see in Sections 6 and 7.

5.1. T h e  group schemes V (G; r ).  Consider a nite group scheme G  and
any nite-dimensional G-representation V . To  V we associate the algebra

Sr (V ) : =  Sym(V )=(vpr 
: v 2  V ):

This algebra has the natural structure of a cocommutative Hopf algebra in
the symmetric tensor category rep(G), where the coproduct on Sr (V ) is
dened by taking all of the generators v 2  V to be primitive (v) =  v
1 + 1
v (cf. [2, x1.3]). Indeed, we may view V as an abelian Lie algebra in rep(G),
and consider the universal enveloping algebra U (V ) =  Sym(V ).
We then obtain S  (V ) as the quotient of U (V ) by the Hopf ideal generated
by the primitive elements vpr , v 2  V .

Now, since the forgetful functor rep(G) !  V ect is a map of symmetric
tensor categories, any Hopf algebra in rep(G) can be viewed immediately as a
Hopf algebra in the classical sense, i.e. as a Hopf algebra in V ect. So we may
view Sr (V ) as a Hopf algebra in rep(G) or as a Hopf algebra in V ect as needed.
Furthermore, for any Hopf algebra S  in rep(G) the smash product S # k G
admits a unique Hopf algebra structure (in V ect) so that the two inclusions

S  !  S # k G  and kG !  S # k G

are maps of Hopf algebras (in V ect). Indeed, this is the standard bosoniza-
tion procedure [54, Theorem 1.6.9]. So, in the case discussed above, we
obtain the following.

Lemma 5.1. For any nite group scheme G  and any nite-dimensional G-
representation V , the smash product Sr (V ) # k G  admits a unique cocom-
mutative Hopf algebra structure (in V ect) such that the following conditions
hold:

(a) Each v 2  V is primitive.
(b) The inclusion kG !  Sr (V ) # k G  is a map of Hopf algebras.



r
ps

_

_

20 E R I C  M. F R I E D L A N D E R  A N D  C R I S  N E G R O N

Proof. The existence of such a Hopf structure follows by the discussion
above. Cocommutativity follows from the fact that the two Hopf subal-
gebras Sr (V ) and kG are cocommutative, and that the multiplication map

mult : Sr (V )
 kG !  Sr (V ) # k G

is a morphism, and hence an isomorphism, of coalgebras.

The fact that Sr (V ) # k G  is cocommutative tells us that it serves as the
group ring for an associated nite group scheme.

Denit ion 5.2. For any nite group scheme G, and any nite-dimensional G-
representation V , we dene the nite group scheme V (G; r ) to be the unique
such group scheme with associated group algebra

kV (G; r ) =  Sr (V )#k G:

Said another way, V (G; r ) is the spectrum of the dual Hopf algebra V
(G; r ) =  Spec ((Sr (V )#k G)) :

Note that the group scheme V (G; r ) admits a normal subgroup NV (r )   V
(G; r ) which coresponds to the normal Hopf subalgebra Sr (V )  kV (G; r), and
that we have an exact sequence of group schemes

1 !  NV (r )  !  V (G; r ) !  G  !  1: (8)

Lemma 5.3. Suppose that G  is innitesimal, and let V be an any nite-
dimensional G-representation. Then V (G; r ) is innitesimal. Further-
more, if G  is unipotent then V (G; r ) is unipotent as well.

Proof. Take  =  V (G; r). As a coalgebra k =  Sr (V )
kG. So the algebra of functions O () is the tensor product Sr (V )
 O (G). Since Sr (V ) is a connected coalgebra, with primitive space Prim(S (V
)) =  fv : 0  s <  rg, it
follows that the dual Sr (V )  is local. Since G  is innitesimal the algebra O (G)
is also local. Now, since a tensor product of nite-dimensional local k-
augmented algebras is also local, we see that O () is local. Hence  is
innitesimal.

For arbitrary G, the maximal ideal m =  (V )  Sr (V ) is stable under the
action of G, so that the ideal m
 kG  k is nilpotent. Hence the Jacobson radical of k is the preimage of the
Jacobson radical in kG along the surjection k !  kG. It follows that if kG is
local then k is local. So we see that  is unipotent when G  is unipotent.

We note, nally, that the group scheme V (G; r ) can be dened entirely within
the category of group schemes (rather than in the category of Hopf algebras).
Indeed, the action of G  on V induces an action on the r-th Frobenius
kernel in the corresponding additive group scheme Va =  (V ; +), and hence
on the Cartier dual (NV (r )  =)Va(r ) .  We then recover V (G; r ) as the
semidirect product Va(r) o  G. This construction is more in line with the
standard perspective of, say, Jantzen’s text [35]. However, what is of
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interest to us is the algebra structure on kV (G; r). So the above Hopf
algebraic presentation is suciently informative for our purposes.

5.2. Quasi-logarithms and a system of linear equivalences. We con-
sider the above construction V (G; r ) for the coadjoint representation of G.

Denit ion 5.4. For any nite group scheme G  we dene

(G; r ) : =  g(G; r);

where g is the coadjoint representation. Additionally, for any embedded 1-
parameter subgroup : Ga ( s ) ; K  !  G K  we restrict the coadjoint represen-
tation of G K  along      to dene

(G; r ) : =  g K  
(Ga(s) ;K ; r ):

When no confusion will arise we will be even more casual in our presen-
tation, and write simply

 =  (G; r);  =  (G; r ) :
(We usually consider a Frobenius kernel G  =  G ( r )  and the associated group
scheme (G; r), so that the parameter r  is already clear from the con-text.)
Note that for any embedded 1-parameter subgroup : Ga ( r ) ; K  !  G K
the product map idS
 K provides a natural inclusion of group schemes
(G; r ) !  (G; r ) K .

Lemma 5.5. Let G  be a smooth algebraic group which admits a quasi-
logarithm. Consider G  =  G( r ) ,  D  =  D (G) ,  and  =  (G; r ) at arbitrary r  >  0.

Any choice of quasi-logarithm l for G  species an isomorphism of aug-
mented k-algebras a(l) : k !  D .  Furthermore, for any 1-parameter sub-
group : Ga ( s ) ; K  !  G K ,  we have a corresponding isomorphism of aug-
mented K-algebra a(l) : K !  D  . These isomorphisms t into a dia-
gram of algebra maps

K K
a ( L ) K D K (9)

incl incl

K           
a ( L )                

D  :

The augmentations considered above are, of course, the augmentations
specied by the respective counits.

Proof. Take S  =  S  (g), with its G-action induced by the coadjoint action
on g. Any quasi-logarithm l species a G-equivariant map of algebras a : S
!  O (G) which is an isomorphism on cotangent spaces m0=m2 !  m1=m2.
Indeed, a quasi-logarithm for G  is a choice of equivariant section g !  m
of the reduction map m1 !  m1=m2 =  g, and a0 is the algebra map from
the (truncated) symmetric algebra induced by this section. Since O (G) is
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local, such a map is necessarily surjective. Since furthermore dim(S ) =
dim(O (G)) =  rdim(g), it follows that a0 is an isomorphism. Since both
algebras in question are local, a0 is an isomorphism of augmented algebras.
(This point is also obvious from the construction of a0.)

We obtain the desired isomorphism a(l) : k !  D  as the product a(l) =  a0
 idk G , and similarly a(l) : K  !  D  is the product (a0 )K
 idk G .
One sees directly that, since a0 is an isomorphism of augmented algebras,
a(l) and a(l)     are also isomorphisms of augmented algebras.

As a consequence of the above lemma, we see that any choice of quasi-
logarithm for the ambient group G  species a \system of linear equivalences" for
D,  and its local family of Hopf subalgebras D  .

Proposition 5.6. For G  as in Lemma 5.5, there is an equivalence of k-
linear, abelian categories L  : rep(D) !  rep() which preserves the trivial
representation L (k )  =  k. Furthermore, for any 1-parameter subgroup :
Ga ( s ) ; K  !  G K  we have a corresponding equivalence of K -linear categories
L  : rep(D ) !  rep( )  which preserves the trivial representation, and ts into a
diagram of exact linear functors

rep(DK )
L K

res

rep(D )
L

rep(K ) (10)

res

rep( ):

Proof. Dene L  and L      as restriction along the algebra isomorphisms a(l)
and a(l)     of Lemma 5.5, respectively.

For any 1-parameter subgroup : Ga ( s ) ; K  !  G K  we let

f 0 : j j !  jj

denote the corresponding map on projective spectra of cohomology. Specif-
ically, we consider the composite

f 0 : = j j  !  jK j  =  j jK  !  jj :

Proposition 5.6 tells us that, at any 1-parameter subgroup
the maps f 0 t into a diagram

: Ga ( s ) ; K  !  G,

jD  j
f

jDj (11)

=  L =  L  j

j                
f 0                                  

jj

of maps of k-schemes, where f      is as in (6).
Now, from [61, Corollary 5.4.1] we understand that any closed embedding 0

!  1 of group schemes induces a map on projective spectra of cohomol-ogy j0j
!  j1j which is universally injective. The universal modier here
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simply indicates that each base change j0 jK !  j jK  is also injective. So the
above diagram (11) implies the following basic result.

Proposition 5.7. Consider a smooth algebraic group G,  and take G  =  G( r ) .
Suppose that G  admits a quasi-logarithm. Let : Ga(s)  !  G  be an embedded
1-parameter subgroup which is dened over k. Then the induced map on
projective spectra of cohomology

f  : jD  j !  jDj

is universally injective.

The system of equivalences (10), which we view as a family of equivalences
parametrized by the space of 1-parameter subgroups in G, can be leveraged in
quite substantive ways in an analysis of support for the double D.  Indeed, the
following two sections essentially argue this point in both the nite-
dimensional and innite-dimensional context.

6. Support and tensor products f o r  finite-dimensional
representations

As in the previous section, we consider a Frobenius kernel G  in a smooth
algebraic group G  which admits a quasi-logarithm. We prove that coho-
mological support for the Drinfeld double D  =  D ( G )  satises the tensor
product property

jDj(V

W ) =  jDjV \  jDjW : (12)
Here V and W are specically nite-dimensional representations over D.  This
result appears in Theorem 6.11 below. Our proof of Theorem 6.11 relies on an
analysis of cohomological support, and the tensor product property, for
representations over the local family D  .

For any given D we argue that the behaviors of cohomological support
are, essentially, independent of the choice of coproduct. We elaborate on
this point in Subsections 6.2 and 6.3 below.

In Section 7, we provide an extension of cohomological support, and of
the identity (12), to the big representation category Rep(D). Such an exten-
sion allows us to apply methods of Rickard [57] to show that cohomological
support can also be used to classify thick tensor ideals in the stable repre-
sentation category for D.

6.1. Comparison with the -point support of A p p e n d i x  A .  Before we
begin, let us make a few points of comparison between the material of this
section and the material of Appendix A, for the -point orientated reader. In
the appendix we produce a -point support theory for the double D,
essentially by restricting to the local subalgebras D and considering such
a theory for D  .
We note that the proof of the tensor product property for cohomologi-cal

support is, arguably, more dicult than the proof for -point support
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(Theorem A.14 below). However, the proof that -support agrees with co-
homological support uses precisely the same technology which is used in the
proof of the tensor product property for cohomological support. So, depend-
ing on one’s inclinations, one may view Theorem 6.11 below essentially as
the claim that -point support and cohomological support agree for Drinfeld
doubles of the prescribed form.

6.2. Supp orts and th ick  ideals for local Hopf algebras. Let A  be
a nite-dimensional, local, Hopf algebra. Suppose additionally that A  has
nite type cohomology.

For A  as prescribed, the support (4) of a given nite-dimensional repre-
sentation V can be computed as the support of the sheaf associated to the
ExtA(k; k)-module ExtA (k; V ), where we act via the rst coordinate

jAjV =  SuppjAj Ext  (k; V ): (13)

See for example [16, Proposition 5.7.1] or [50, Proposition 2]. That is to say,
the support spaces jAjV do not depend on the choice of Hopf structure on A.

Let us write D b (A)  for the bounded derived category of nite-dimensional
A-representations. Recall that a thick subcategory in D b (A)  is a full trian-
gulated subcategory which is closed under taking summands, and a thick
ideal in D b (A)  is a thick subcategory which is additionally closed under the
(left and right) tensor actions of D b (A)  on itself. The following lemma is
strongly related to the above identication (13).

Lemma 6.1. Consider a nite-dimensional local Hopf algebra A  which has
nite type cohomology. Any thick subcategory in D b (A)  is stable under the
tensor action of D b (A)  on itself. That is to say, the collection of thick ideals in
D b (A)  is identied with the collection of thick subcategories in D b (A) .

Proof. Locality tells us that any complex V in D b (A)  is obtainable from the
trivial representation via a nite sequence of extensions. It follows that for
any object W in D b (A),  the product V
W is obtainable from W =  k
W via a nite sequence of extensions. Hence V
 W is contained in the thick subcategory generated by W , for arbitrary V
and W in D b (A).  Similarly, W
 V is contained in the thick ideal generated by W .

Now, let K   D b (A)  be any thick subcategory. By the above discussion we
have V
 K   K  and K
 V  K  for all V in D b (A).  This shows that K  is a thick ideal. Hence the
inclusion

fthick ideals in D b (A)g !  fthick subcategories in D b (A)g

is an equality.

We note that the denition of support (4) works perfectly well for arbi-
trary objects in the bounded derived category. Furthermore, when A  is local
the expression (13) remains valid for any V in D b (A).
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For an exact triangle V !  W !  V 0 in D b (A),  the long exact sequence in
cohomology provides an exact sequence of ExtA(k; k)-modules

ExtA (k; V ) !  ExtA (k; W ) !  ExtA (k; V 0):

So there is an inclusion of supports jAjW  (jAjV [  jAjV 0 ) whenever we have
such a triangle. Additionally, for any sum V =  V1  V2 in D  (A)  we have an
equality jAjV =  jAjV     [  jAjV . From these observations we deduce an
inclusion

jAjW  jAjV      whenever W is in the thick subcategory generated by V:

Lemma 6.2. Consider a nite-dimensional local Hopf algebra A .  For any V
and W in D b (A)  there is an inclusion

jAj(V

W )  (jAjV \  jAjW ) :

Proof. The object V
 W is in the thick ideal generated by V , and hence the thick subcategory

generated by V by Lemma (6.1). So jAj(V

W )  jAjV by the above reasoning. We similarly nd jAj(V

W )  jAjW , which gives the claimed inclusion jAj(V

W )  jAjV \  jAjW .

We note that the inclusion of Lemma 6.2 does not hold for an arbitrary
Hopf algebra A. One can see for example [15].

Remark 6.3. The familiar reader is free to replace the derived category
D b (A)  with the stable category stab(A) in the above discussion.

6.3. Classication of th ick  ideals for local algebras.

Denit ion 6.4. Let A  be a nite-dimensional Hopf algebra which has nite type
cohomology. We say that cohomological support for A  classies thick ideals in
D b (A)  if an inclusion of supports jAj  jAj , for nonzero W and V
in D b (A),  implies that W is in the thick ideal generated by V in D b (A).

The supposition that W and V are nonzero (non-acyclic) is necessary to
avoid issues with perfect complexes. Namely, any perfect complex has
vanishing support, and yet the ideal of perfect complexes in D b (A)  is not
contained in the ideal of acyclic complexes. However, for nonzero V , we
always have that perf (A) is contained in the thick ideal generated by V .

One can consider representation categories of nite group schemes, for
example. In this case we understand [30] that cohomological support does in
fact classify thick ideals in the associated derived category.

Theorem 6.5 ([30, Theorem 6.3]). For any nite group scheme G,  coho-
mological support classies thick ideals in D b (G).

When G  is furthermore unipotent, or rather when rep(G) is a local cate-
gory, Theorem 6.5 and Lemma 6.1 combine to give the following.

Corol lary 6.6. Suppose that G  is a nite unipotent group scheme. Then
thick subcategories in D b (G)  are classied by cohomological support.
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The following will prove quite useful in our analysis of support for the
local Hopf algebras D  .

Proposition 6.7. Let A  be a nite-dimensional local algebra. Suppose that A
admits a Hopf algebra structure for which cohomological support classies thick
ideals in the derived category D b (A).  Then under any choice of Hopf
structure on A ,  and any choice of objects V and W in D b (A) ,  we have an
equality

jAj(V

W ) =  jAjV \  jAjW :

Proof. Let hX i  denote the thick subcategory generated by a given object X  in
D b (A).  For any object L  in hV i  the product L
 W is in hV
 W i, and hence jAj ( L

W )  jAj(V

W ). Consider a product of Carlson modules L  for which jAjL  =  jAjV . Since
cohomological support classies thick ideals, such equality of supports implies
an equality hLi  =  hV i. Then by Proposition 2.12 we have

jAj(V

W )  jAj ( L

W ) =  jAjL  \  jAjW =  jAjV \  jAjW :

The opposite inclusion is covered by Lemma 6.2, so that we obtain the
desired equality.

6.4. Implications for D  . F ix  a smooth algebraic group G  which admits
a quasi-logarithm and an arbitrary positive integer r. Let G  be the r-th
Frobenius kernel in G. We consider the Drinfeld double D  =  D (G) .

For such G, we have the corresponding innitesimal group scheme  =
(G; r ) of Denition 5.4, and for any 1-parameter subgroup : Ga ( s ) ; K  !
G K  we have an associated unipotent subgroup  K .  By Proposition 5.6,
any choice of quasi-logarithm for G  determines a compatible collection of
linear equivalences

L  : rep(D) !  rep() and L  : rep(D ) !  rep( ); (14)

which preserve the unit objects in the respective categories
Since cohomological support for a local Hopf algebra depends only on the

abelian structure on the representation category, we see that the diagram of
(11) restricts to a diagram

jD jV
f

jDj (15)

=  L =  L

j j L  V
f 0 jj;

for any V in D b ( D  ). Hence the discussions of Subsections 6.2 and 6.3 imply
the following.

Proposition 6.8. Let G  be as above, and x an embedded 1-parameter
subgroup : Ga ( s ) ; K  !  G K .  Then the following hold:

(1) Thick ideals in D b ( D  ) are classied by cohomological support.
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(2) For any nite-dimensional D  -representations V and W we have

jD j(V

W ) =  jD  jV \  jD  jW :

Proof. From the linear equivalence L  , Theorem 6.5, and Lemma 6.1, we
understand that thick ideals in D b ( D  ) are classied by cohomological sup-
port, establishing (1). A  direct application of Proposition 6.7 now implies
(2).

6.5. Restrictions of support and the tensor pro duct prop erty.  As
above, let G  be the r-th Frobenius kernel in a smooth algebraic group G,
and suppose that G  admits a quasi-logarithm.

Lemma 6.9. Let L  : rep(D) !  rep() be the linear equivalence induced by a
choice of quasi-logarithm for G.  Then for any nite-dimensional D-
representation V the isomorphism L  : jj !  jDj restricts to an isomor-
phism of supports jjLV !  jDjV .

Proof. Via the diagram of equivalences of Proposition 5.6, and Theorem
3.7, we understand that a -representation is projective if and only if its
restriction to each of the  is projective. We can therefore repeat the proof of
Proposition 3.11 to obtain a reconstruction of support

jjW =
[

f 0 (j jW K  )
1-param subgroups

for any -representation W , where the f 0 are the maps on projective spectra
induced by restriction.

The above expression, and the analogous expression of Proposition 3.11
therefore imply the claimed equality. To  argue this point more clearly, take a
point x  2  jjLV . Then x  is in the image of some map f 0 : j j L  V !
jj. It follows by the diagram (15) that L ( x )  2  jDj is in the image of the
corresponding map f : jD  jV !  jDj. Hence L ( x )  2  jDjV . This
gives an inclusion L  (jjLV )   jDjV . Since this argument is completely
symmetric, we obtain the opposite inclusion as well and nd that we have an
identication L( j j L V  )  =  jDjV .

Recall from Proposition 5.7 that, for any embedded 1-parameter subgroup
which is dened over k, the map f  : jD  j !  jDj is universally injective.

Furthermore, in this case f      is simply the map induced by restriction (i.e.
it involves no base change).

Proposition 6.10. Consider any embedded 1-parameter subgroup : Ga(s)  !
G  which is dened over k, and identify jD  j with a closed subscheme in jDj via
the map induced by restriction (Proposition 5.7). Then for any nite-
dimensional D-representation V we have

jD jV =  jD  j \  jDjV :
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Proof. By the diagram (15), and Lemma 6.9, it suces to check that we
have an equality

j jW =  j j \  jjW
for any nite-dimensional -representation W . However, the above equality
follows from the analysis of support for innitesimal group schemes given in
[61]{in particular [61, Corollary 5.4.1, Proposition 7.4].

We can now prove that cohomological support for the Drinfeld double D
satises the tensor product property.

Theorem 6.11. Consider a Frobenius kernel G  =  G( r )  in a smooth algebraic
group G.  Suppose also that G  admits a quasi-logarithm. Then for any nite-
dimensional D-representations V and W we have

jDj(V

W ) =  jDjV \  jDjW

Proof. Consider any point in the intersection x  2  jDjV \  jDjW , and let
: Ga ( s ) ; K  !  G K  be any embedded 1-parameter subgroup for which x

is in the image of the map jD j !  jDj. Let x  2  jD K j  be any lift of x.
Since the support of V K  (resp. W K )  over D K  is simply the preimage of jDjV
(resp. jDjW ) along the projection jD K j  !  jDj, by Lemma 3.10, we have
x  2  jDK jV \  jDK jW      . So, by changing base, we may assume that x  is in
the image of jD  j, where now : Ga(s)  !  G  a 1-parameter subgroup which
is dened over k.

Since x  is in jDjV , jDjW , and jD j, Proposition 6.10 implies

x  2  jD  jV \  jD  jW :
By the tensor product property for D  , Proposition 6.8, we then have x  2  jD
j(V

W ). From the inclusion jD  j X   jDjX ,  for arbitrary X ,  we see that x  is in jDj(V

W ) as well. We therefore have an inclusion (jDjV \  jDjW )  jDj(V

W ).
For the opposite inclusion jDj(V

W )  (jDjV \  jDjW ), one can restrict to some choice of D
and argue similarly. However, since the representation

category rep(D) is braided, this opposite inclusion actually comes for free.
See for example [17, Proposition 3.3].

7. Support and tensor products f o r  infinite-dimensional
representations

We consider support for innite-dimensional representations over the Drin-
feld double D  =  D (G) .  The support theory which we employ is a kind of
\hybrid theory", which we produce via the restriction functors rep(D) !
rep(D ) and the Benson-Iyengar-Krause (local cohomology) support theory
for the D  . We prove that this hybrid support theory detects projectivity of
arbitrary D-representations, and admits a suciently strong tensor product
property.

The results of this section provide the necessary foundations for our anal-
ysis of thick ideals in the (small) stable category stab(D) in Section 8.
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7.1. Stable categories. Let A  be a nite-dimensional Hopf algebra. We
consider the stable categories stab(A) and Stab(A) for A. These are the
quotient categories of rep(A) and Rep(A), respectively, by the tensor ideal
consisting of all morphisms which factor through a projective.

In addition to the derived category D b (A)  of nite-dimensional represen-
tations over A, we consider

Dbig (A) =  fThe  bounded derived category of arbitrary A-representationsg:

We have canonical equivalences to the Verdier quotients

stab(A) !  Db (A)=hpro j(A)i; Stab(A) !  Dbig (A)=hPro j(A)i

[56], which provide the stable categories with triangulated structures. These
equivalences also provide actions of the extension algebra Ext  (k; k) on the
stable representation categories

 M : Ext  (k; k) !  HomStab(M; M ) 8 M 2  Stab(A):

The inclusion stab(A) !  Stab(A) is exact and fully faithful, and iden-
ties the small stable category with the subcategory of compact objects in
Stab(A).

7.2. Lo cal  cohomology support. Let A  be a nite-dimensional Hopf al-
gebra with nite type cohomology. We suppose additionally that cohomolog-
ical support for nite-dimensional A-representations satises the inclusion

jAjV

W  jAjV \  jAjW : (16)

For example, we might consider A  to be a local Hopf algebra with nite type
cohomology (see Lemma 6.2).

Take E A  : =  Ext  (k; k). As remarked above, we have natural actions of E A
on objects in the big stable category Stab(A), which collectively con-stitute
a map to the graded center E A  !  Z (Stab(A)) =  EndFun (idStab(A) ). Given
this situation, we can consider the local cohomology support of Ben-son,
Iyengar, and Krause [10]. This support theory is dened via certain
triangulated endofunctors  p : Stab(A) !  Stab(A) associated to (arbitrary)
points in the homogeneous spectrum jAj [  fmg =  Pro j (E A )  [  fmg. Here m
is the maximal ideal of all positive degree elements in E A ,  i.e. the irrelevant
ideal, and the homogeneous spectrum is topologized in such a way that m
becomes the unique closed point, and the complement jAj to m is given its
usual topology as the projective spectrum of cohomology. We have explicitly

supplc(M ) : =  fp  2  jAj [  fmg :  p(M ) =  0g (17)

[10, x5.1]. We note that the points p appearing in the above formula are not
necessarily closed, and that supports of objects in Stab(A) are not necessar-
ily closed in the space jAj [  fmg.

Since the support theory (17) is dened via the vanishing of certain trian-
gulated endofunctors, it behaves appropriately under sums, shifts, and exact
triangles. Specically, the support of a sum M M0 is the union of the sup-ports
of M and M0, support is invariant under the shift automorphism, and
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the support of an object N  which ts into a triangule M !  N  !  M0 !  M is
contained in the union supplc(M ) [  supplc(M 0).

The following lemma is implicit in the literature, though we did not nd a
direct proof (cf. [10, x10]). So we give a proof here.

Lemma 7.1. Let A  be as above. The irrelevant ideal m is not contained in the
local cohomology support supplc(M ) of any object in Stab(A). Further-more,
for any nite-dimensional representation V there is an identication supplc(V )
=  jAjV .

Proof. Let S  be the sum of all simple A-representations, and consider any
point p in the homogeneous spectrum jAj [  fmg. The Koszul objects S==p of
[10] is, up to a shift, the tensor product L p
 S  where L p  is a product of Carlson modules whose cohomological support
is equal to the (projec-tivized) vanishing locus of p, jAjL      =  Z (p). In
particular, L m  has vanishing cohomological support, and is thus projective
over A. It follows that L m
S  vanishes in the stable category, as does S==m.

We apply [10, Proposition 5.12] to see that vanishing of S==m implies van-
ishing of the stable morphisms HomStab(S;  m(M )), for any M in Stab(A).
Since Stab(A) is generated by the simple A-representations, vanishing of
HomStab(S;  m(M )) implies that  m(M ) =  0 in the stable category. Hence m
2= supp (M ) and we see that local cohomology support takes values in the
projective spectrum jAj, as claimed.

We now consider the equality supplc(V ) =  jAjV     for nite-dimensional V
. Let W be an arbitrary nite-dimensional representation. We have the
natural map f  : Ext  (W; V ) !  HomStab(W; V ) induced by the functor
D  (A)  !  Stab(A). This map has m-torsion kernel and cokernel (see e.g.
[13, Eq. (2.3)]). It follows that f  induces an isomorphism on all localizations
Ext  (W; V )p =  Hom (W; V )p at points p in the projective spectrum jAj.
Hence by [10, Lemma 2.2] the homogeneous supports of these two objects,
dened as in [10, x2], agree modulo a consideration of the maximal ideal m.
(That is to say, the homogeneous supports have the same intersection with
jAj.) We consider the case where W is the sum of the simples, and note
again that m 2= supplc(V ), to observe nally that supplc(V ) =  jAjV by [10,
Theorem 5.13].

By Lemma 7.1 we can now consider local cohomology support supplc as
a support theory which takes values in the projective, rather than homoge-
neous spectrum. Indeed, we can simply omit the extraneous point m from
the denition and write simply

supplc(M ) =  fp  2  jAj :  p(M ) =  0g  jAj:

We understand furthermore that the support supplc provides an extension of
cohomological support, which we only dene for the small stable category, to all
of Stab(A).



b

A

A
b

A A A

A

b

D

b

31

By pulling back along the quotient Dbig (A) !  Stab(A), we may con-
sider local cohomology support supplc as a support theory which takes A-
complexes as inputs as well.

Theorem 7.2 ([10]). For A  as above, the following hold:
(1) M vanishes in Stab(A) if and only if supplc(M ) =  ; .
(2) For arbitrary M and N  in Dbig (A), local cohomology support satises

supplc(M
 N )   supplc(M ) \  supplc(N ) :

Proof. Statement (1) is covered in [10, Theorem 5.13]. For the claimed
inclusion (2), we note that for any specialization closed subset   jAj the
containment (16) tells us that the subcategory

K  : =  fV in stab(A) : jAjV  g

is a thick ideal in stab(A). Thus one follows the proof of [10, Theorem 8.2]
to see that

 p(M
 N )  =  M
  p (N ) =   p(M )
 N :

From the above equation, and the denition of the support supplc, we deduce
the inclusion of (2).

7.3. -local support for D-representations. Consider an innitesimal
group scheme G, with associated Drinfeld double D  =  D (G) . Let M
be an object in the bounded derived category Db i g (D) of arbitrary D-
representations, and recall the maps f  : jD  j !  jDj induced by restriction
(6). We dene the support

supp -loc(M ) : =
[

f supplc (res M K )  ; (18)
1-param subgroups

where the union runs over all embedded 1-parameter subgroups : Ga ( s ) ; K  !
G K ,  and res : rep(GK ) !  rep(Ga(s);K ) denotes the restriction functor. As
in Proposition 3.11, (18) denes the support supp -loc(M ) as a union of
subsets in the projective spectrum of cohomology jDj.

We refer to the support (18) as the -local support of M. Note that
this support takes values in the projective spectrum of cohomology jDj. By
pulling back along the quotient map

Db ig (D) !  Stab(D)

we freely consider the -local support as a support theory for the bounded
derived category of arbitrary D-representations as well.

Remark 7.3. We have used a boldface       in our notation to indicate that
might be thought of as a coordinate which ranges over the space of 1-

parameter subgroups.

We list some basic properties of -local support.
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Lemma 7.4. For any innitesimal group scheme G, -local support satises
the following:

 supp -loc(M ) =  ;  if and only if M vanishes in the stable category
Stab(D).

 supp -loc(M  N )  =  supp -loc(M ) [  supp -loc (N ).
 For any triangle M !  N  !  M0,

supp -loc (N )  supp -loc(M ) [  supp -loc(M 0):
supp -loc(M
 N )   

 
supp -loc(M ) \  supp -loc (N ).

 supp -loc(M ) =  supp -loc(M ).
 For any V in D b (D) ,  supp -loc(V ) =  jDjV .

In the above formulas M, M0, and N  are arbitrary objects in Dbig (D).

Proof. The rst point follows by the projectivity test of Theorem 3.7, and the
detection propert for local cohomology support over D  . The four sub-
sequent points follow directly from the corresponding properties for the local
cohomology supports supplc , and the fact that restriction is an exact ten-
sor functor. The nal point follows from the identication supplc (V K )  =  jD

jV K  and the reconstruction formula of Proposition 3.11.

7.4. -local support and tensor products.

Theorem 7.5. Consider a Frobenius kernel G  in a smooth algebraic group
G.  Suppose that G  admits a quasi-logarithm. Then for any object V in
D b (D) ,  and any M in Dbig (D), we have

supp -loc(V
 M ) =  supp -loc(V ) \  supp -loc(M ): (19)

Note that, since Rep(D)  is a braided monoidal category, an identication
(19) implies the corresponding equality for the action of nite-dimensional
representations (or complexes) on the right

supp -loc(M
 V ) =  supp -loc(M ) \  supp -loc(V );

simply because V
M =  M
V . In the language of [45, Denition 4.7], we are claiming that cohomological
support for D  is a lavish support theory for the stable category stab(D).

Before proving Theorem 7.5, we prove its local analog.

Proposition 7.6. Let G  be as in the statment of Theorem 7.5, and consider
an embedded 1-parameter subgroup : Ga(s)  !  G  which is dened over k.
Then for W in D b ( D  ), and N  in D b      ( D  ), local cohomology support satises

supplc (W
 N )  =  supplc (W ) \  supplc (N ):
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Proof. It suces to prove the inclusion

supplc (W ) \  supplc (N )   supplc (W
 N );

since the opposite inclusion follows by Theorem 7.2. Since the local coho-
mology support is dened via the vanishing of the exact endomorphisms   , we
understand that if Q0 in Stab(D ) is in the thick subcategory generated by Q
then supplc (Q0)  supplc (Q). So it suces to prove that there is an
equality

supplc (W ) \  supplc (N )  =  supplc ( L
 N )

for some L  in the thick subcategory generated by W in stab(D ).
Let L  be a product of Carlson modules such that supplc ( L )  =  supplc (W ).

By Lemma 6.1 and Proposition 6.8, the object L  is in the thick subcategory
generated by W in stab(D ) and thus L
 N  is in the thick subcategory generated by W
 N  in Stab(D ).

Recall that, in the stable category, the Carlson module L  associated to an
extension  : k !  nk is isomorphic to a shift of the mapping cone cone(). So
by [12, Lemma 2.6] we have

supplc ( L
 N )  =  Z ( )  \  supplc (N )  =  supplc ( L )  \  supplc (N )

for any such L .  It follows that, for our product of Carlson modules L ,  we
have

supplc ( L
 N )  =  supplc ( L )  \  supplc (N )  =  supplc (W ) \  supplc (N );

as desired.

We now prove our theorem.

Proof of Theorem 7.5. We have already observed one inclusion in Lemma
7.4. So we need only establish the inclusion

supp -loc(V ) \  supp -loc(M )  supp -loc(V
 M ): (20)

Consider any point x  in the above intersection, and choose an embedded
subgroup : Ga ( s ) ; K  !  G K  for which x  is the image of a point x0 2
supplc (MK ).  The naturality property

supplc (V K )  =  jD  j \  j D K j V K

of Proposition 6.10 implies that x0 is in supplc (V K )  as well.     (See also
Lemma 3.10.) We apply the equality

supplc ( V K

 M K )  =  supplc (V K )  \  supplc (M K )

of Proposition 7.6 to see that x0 2  supplc ( V K

 MK ),  and hence x  2  supp -loc(V



 M ) by the denition of the -local support. We thus verify
the inclusion (20), and obtain the proposed tensor product property.
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8. T h i c k  ideals and the B a l m e r  spectrum

We provide a classication of thick ideals in the stable category stab(D), for
D  the Drinfeld double of an appropriate Frobenius kernel. We then apply
results of Balmer to calculate the spectrum of prime ideals in the stable
category stab(D). In particular, we show that thick ideals are classied by
specialization closed subsets in the projective spectrum of cohomology jDj,
and we show that the Balmer spectrum is isomorphic to the cohomological
spectrum jDj as a locally ringed space.

8.1. Classication of th ick  ideals and prime ideal spectra. Let D  be the
Drinfeld double of a nite group scheme. Recall that a specialization closed
subset  in jDj =  Pro j Ext (k; k) is a subset which contains the closures of
all of its points. Equivalently, a specialization closed subset is an arbitrary
union of closed subsets in jDj.

For any specialization closed subset  in jDj we have the associated thick
ideal

K  : =  fV 2  stab(D) : jDjV  g
in the stable category stab(D). To  see that K  is in fact closed under the
tensor actions stab(D) on the left and right, one simply consults the
inclusion jDjV

W  (jDjV \  jDjW ) provided by the braiding on rep(D) [17, Proposition 3.3].
Similarly, for any thick ideal K   stab(D) we have the associated support
space

j D j K  : =  [ V  2 K  jDjV ;

which is a specialization closed subset in jDj. We note that the formal prop-
erties of cohomological support imply an equality jDjV =  jDjhV i between
the support of a given object V , and the support of the thick ideal hV i
 which it generates in stab(D).

The two above operations dene maps of sets
jDj

fthick ideals in stab(D)g  fspecialization closed subsets in jDjg (21)
K ?

which preserve the respective orderings by inclusion. In rephrasing Deni-
tion 6.4, we say cohomological support for D  classies thick ideals in stab(D) if
the two maps in (21) are mutually inverse bijections.

At this point it is a formality to deduce a classication of thick ideals in the
stable category stab(D) from the support theoretic results of Lemma 7.4
and Theorem 7.5. One can see for example [57]. We follow the generic
presentation of [45].

Theorem 8.1. Consider a smooth algebraic group G  which admits a quasi-
logarithm, and let G  be a Frobenius kernel in G.  Then, for the Drinfeld
double D  =  D (G) ,  cohomological support classies thick ideals in the stable
category stab(D). That is to say, the two maps of (21) are mutually inverse
bijections.
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Proof. Theorem 7.5 tells us that cohomological support is a lavish support
theory for stab(D), in the language of [45, x4.3]. So the claimed classication
follows by [45, Proposition 5.2]. (Note that all of the centralizing hypotheses in
[45] are obviated by the existence of a braiding on rep(D).)

We note that, by pulling back along the projection  : D b (D)  !  stab(D), we
can similarly use cohomology to classify thick ideals in the bounded
derived category for D.  Namely, under the map  thick ideals in stab(D) are
identied with thick ideals in D b (D)  which contain the ideal perf (D) of
bounded complexes of projectives. This subcollection of ideals in D b (D)  is
precisely the collection of nonvanishing ideals in D b (D).  So we obtain a
classication

fthick ideals in D b (D)g =  fspecialization closed subsets in jDjg [  f0g:

8.2. Pr ime ideal spectra for Drinfeld doubles. Consider again the
Drinfeld double D  of a nite group scheme G.

We recall that the sublattice of thick prime ideals in stab(D) forms a
locally ringed space, which is referred to as the Balmer spectrum

the collection of thick prime ideals in stab(D)
with the topology and ringed structure described in [4]

(22)
As one might expect, by a thick prime ideal in stab(D) we mean a proper
thick ideal P  for which an inclusion V
 W 2  P  implies either V 2  P  or W 2  P .  We do not recall the
topology or the ringed structure on the spectrum here, and refer the
reader instead to the highly readable text [4, x1, x6].

As explained in [4, 5], a classication of thick ideals in stab(D) via co-
homological support implies a corresponding calculation of the prime ideal
spectrum.

Theorem 8.2. For G  as in Theorem 8.1, there is a homeomorphism

fcoh : jDj =  Pro j ExtD (k; k)  !  Spec(stab(D))

dened by taking fcoh (x) =  fV 2  stab(D) : x  2= jDjV g. Furthermore, fcoh
can be upgraded to an isomorphism of locally ringed spaces.

Proof. Given Theorem 8.1, the fact that fcoh is a homeomorphism follows
from [4, Theorem 5.2]. By [5, Proposition 6.11], the homeomorphism fcoh
furthermore enhances to an isomorphism of locally ringed spaces. To  elabo-
rate, in [5, Denition 5.1, 6.10] a map of ringed spaces  : Spec(stab(D)) !  jDj
is constructed. One sees directly that the composite fcoh : jDj !  jDj is the
identity, as a map of topological spaces. Since fcoh is a homeomorphism, we
see that  is a homeomorphism as well. It follows by [5, Proposition 6.11]
that  is an isomorphism of (locally) ringed spaces, and so provides the
homeomorphism fcoh =   1 with ringed structure under which it is also an
isomorphism of locally ringed spaces.



=

K res

G

36 E R I C  M. F R I E D L A N D E R  A N D  C R I S  N E G R O N

Remark 8.3. In [4, 5] Balmer only considers symmetric tensor triangulated
categories. However, all of the denitions, results, and proofs from [4, 5]
apply verbatim in the braided context. So, implicitly, we use the fact that
rep(D) =  Z (rep(G)) admits a canonical (highly non-symmetric!) braided
structure in the denition (22), and also in the proof of Theorem 8.2. One can
alternatively refer to [45, x6] and in particular [45, Theorem 6.10].

Appendix A. A  -point r a n k  va r i e t y  f o r  the D r i n f e l d  double

We introduce a -point rank variety ( D )  for the Drinfeld double D,
whose points consist of certain classes of at algebra maps K [t]=(tp ) !  D K .
For any D-representation V we construct an associated support space (D)V  in
(D).  We show that the support theory V !  (D)V  behaves in the
expected manner when we consider the Drinfeld double of a Frobenius kernel
G  =  G ( r )  in a suciently nice algebraic group G. In particular, the support
space (D)V  vanishes if and only if the given representation V is projective,
and the support spaces satisfy the tensor product property

(D)V

W =  (D)V  \  (D)W  :

Furthermore, we establish an identication with cohomological support (G)? !
jDj?. We also show that our -support can be identied with a certain \uni-versal"
-point support, which we dene in Section A.5.

Since these results of this section are isolated from those of the body of
the text, in a technical sense, we collect them here in an appendix.

A.1. -points and support for nite group schemes. Throughout this
subsection G  is a nite group scheme over our base eld k. We recall some
denitions and results from [30].

Denit ion A.1.  A  -point for a nite group scheme G, over k, is a pair of a eld
extension k !  K  and a at algebra map  : K [t]=(tp ) !  K G  which factors
through the group ring of an abelian, unipotent subgroup U  G K .

We generally abuse notation and simply write  for the pair (K=k; ). Any -
point denes a corresponding point p in the projective spectrum of
cohomology jGj, which is explicitly the homogeneous prime ideal

 p
: =  ker ExtG (k; k) !  E x t G K  

( K ; K )   !  ExtK [t ]=t p (K; K )red =  K [T ] :
(23)

In the above formula T is a variable of cohomological degree 2 (or 1 in
characteristic 2). Flatness of the extension  ensures that the ideal p is
not all of Ext>0 (k; k), so that p does in fact dene a point in the projective
spectrum [29, Lemma 3.4] (cf. [1, Theorem 3.2.1]).
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Denit ion A.2.  For a given nite group scheme G, we say two -points  :
K [t]=(tp ) !  K G  and  : L[t]=(tp) !  L G  are equivalent if any nite-
dimensional G-representation V which restricts to a projective K [t]=(tp)-
representation res(VK ) along  also restricts to a projective L[t]=(tp)-representation
res(VL ) along , and vice versa.

We let (G)  denote the collection of equivalence classes of -points

(G)  =  f[] :  : K [t]=(tp ) !  K G  is a -point for Gg:

For any nite-dimensional G-representation V we dene the -support space
(G)V as

(G)V =  f[] : res(VK ) is non-projective over K [t]=(tp)g:

The collection of subsets f (G) V  : V 2  rep(G)g in (G)  is closed under nite
unions, since (G)V [ ( G ) W  =  (G)V W . Hence there is a uniquely dened
topology on (G)  for which the supports of objects (G)V provide a basis of
closed subsets.

Theorem A.3  ([30, Theorem 3.6]). If two -points  and  for G  are equiv-alent,
then the corresponding points p; p 2  jGj are equal. Furthermore, the resulting
map

(G)  !  jGj; [] !  p
is a homeomorphism, and for any nite-dimensional representation V this
homeomorphism restricts to a homeomorphism (G)V !  jGjV .

Note that Theorem A.3 tells us that the topological space (G)  is Noe-
therian. Hence the basic closed sets f (G) V  gV 2rep(G) in (G)  provide the
collection of all closed sets in (G)  [30, Proposition 3.4].

Remark A.4.  One of the main advancements of [30] is the observation that
one can reasonably dene support spaces (G)M for innite-dimensional G-
representation M. So, the above presentation omits some of the more
signicant aspects of [30]. One can see Remark A.12 below for additional
context.

Remark A.5.  For innitesimal G, a direct comparison between -point
support and the rank variety support theory of [61] can be found at [27,
Theorem 1.2].

A.2. -point support for D  . We consider an innitesimal group scheme G,
with corresponding Drinfeld double D  =  D (G) .

Denit ion A.6.  Consider any innitesimal group scheme G, and x an
embedded 1-parameter subgroup : Ga(s)  !  G  which is dened over k. A  -
point for D      is a pair of a eld extension k !  K ,  and a at algebra map  :
K [t]=(tp ) !  ( D  ) K  such that

(a) there exists an algebra identication D  =  k H between D  and the
group algebra of a nite group scheme H  over k.
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(b) under some identication as in (a),  corresponds to a -point for the
given group scheme H .

Statements (a) and (b) above can alternately be stated as follows: a -
point for D  is a at algebra map  : K [t]=(tp ) !  ( D  ) which is a -point
for D  relative to some alternate choice of cocommutative Hopf structure 0 on
D  . We note that any group scheme H  as in (a) is necessarily unipotent, since
D      is local.

We say two -points  : K [t]=(tp ) !  ( D  ) K  and  : L[t]=(tp) !  ( D  ) L  for D
are equivalent if any nite-dimensional D  -representation V with

projective restriction res(VK ) also has projective restriction res(VL), and vice
versa. We dene the -point space in the expected manner

( D  )  =  f[] :  : K [t]=(tp ) !  ( D  ) K  is a -pointg;

and for any nite-dimensional D  -representation V we dene the -support
space

( D  )V =  f[] : res(VK ) is non-projective over K [t]=(tp)g:

We note that if D  admits no such identication with a group algebra kH ,
as required in Denition A.6 (a), then the space ( D  ) is necessarily empty. We

topologize the space ( D  ) via the basis of closed sets f ( D  )V :
V in rep(D )g. As in (23), one sees that each -point  denes a corre-
sponding point p in the cohomological support space jD  j.
Lemma A.7.  If two -points  and  for D are equivalent, then their
corresponding points p and p in jD  j are equal. Furthermore, whenever the -
point space ( D  ) is non-empty, the map

( D  )  !  jD  j; [] !  p
is a homeomorphism and for any nite-dimensional D  -representation V
this homeomorphism restricts to a homeomorphism ( D  )V !  jD  jV .

Proof. If D  admits no cocommutative Hopf structure then the space ( D  ) is
empty, and there is nothing to prove. So let us suppose that D admits
the necessary alternate Hopf structure.

Consider any cocommutative Hopf structure 0 on the underlying algebra D
, and corresponding identication D =  kH . Since H  is necessarily
unipotent, as D is local, the cohomological support spaces agree jH jV =
jD jV for all V in rep(D )  =  rep(H ). (See Section 6.2.)

Now, Theorem A.3 tells us that a H-representation V is non-projective at
a -point 0 for H  if and only if p0 2  jH jV . So by the above information we see
that a D  -representation V is non-projective at a -point  if and only if p 2
jD  jV . Hence two -points  and  for D are equivalent
if and only if p =  p. This shows that the map ( D  ) !  jD  j is well-dened
and injective. The map is furthermore surjective since, if we consider our
identication D =  kH , the map ( H )  !  jH j (=  jD  j) is surjective,
meaning every point in the cohomological support space is represented by a -
point  : K [t]=(tp ) !  K H  =  ( D  ) K .
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Based on the presentation of Section 5.2, we understand that D  admits a
cocommutative Hopf structure whenever G  is a Frobenius kernel in a smooth
algebraic group which admits a quasi-logarithm. So Lemma A.7 tells us that
we have an identication of support theories ( D  )? =  jD  j? in this case. In
particular, the above lemma is not vacuous.

A.3. -point support for D .  F ix  an innitesimal group scheme G  and D
=  D (G) .

Denit ion A.8.  A  -point  for D  is a pair of an embedded 1-parameter
subgroup : Ga ( s ) ; K  !  G K  and a -point  : K [t]=(tp ) !  D  , dened as in
Denition A.6.

For any given -point (  ; ), we are particularly concerned with the com-
position K [t]=(tp ) !  D K  of the map  : K [t]=(tp ) !  D      with the inclusion D

!  D.  So we generally identify a -point with its associated at map
K [t]=(tp ) !  D K ,  and simply write  : K [t]=(tp ) !  D K  by an abuse of
notation.

Denit ion A.9.  Two -points  : K [t]=(tp ) !  D K  and  : L[t]=(tp) !  D L  are said
to be equivalent if any nite-dimensional representation V which restricts to
a projective K[t]=(tp)-representation res (V ) along  also re-stricts to a
projective L[t]=(tp)-representation res(VL ) along , and vice versa.

We dene the space of equivalence classes of -points ( D )  =

f[] :  : K [t]=(tp ) !  D K  is a -pointg;

and for any nite-dimensional D-representation V we dene the -support

(D)V  =  f[] : res(VK ) is non-projectiveg:

The space ( D )  is topologized via the basis of closed sets provided by the
supports ( D ) of all nite-dimensional D-representations.

As in (23), any -point  : K [t]=(tp ) !  D K  denes an associated point p 2  jDj
in the cohomological support space. One employs Carlson modules exactly as
in [30, Proposition 2.9] to see that the two points p and p agree whenever  and
are equivalent. So we nd

Proposition A.10. There is a well-dened continuous map

w : ( D )  !  jDj;  !  p:

For any nite-dimensional D-representation V , the above map restricts to a
map between support spaces (D)V  !  jDjV .

Proof. As stated above, well-denedness can be argued as in [30]. The fact
that (D)V  is mapped to jDjV can be reduced to the corresponding claim for -
support over the D  , which is covered in Lemma A.7.

All  that is left is to establish continuity of w. For continuity, we note that
any closed set in jDj is the support jDj L  of a product of Carlson modules.
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The naturality properties of Lemma 2.14 then gives w 1 (jDjL )  =  ( D ) L .  This
shows that the preimage of any closed set in jDj along w is closed in (D).

One can see from Theorem 3.7, and the arguments used in the proof of
Proposition A.10, that the map ( D )  !  jDj is in fact surjective when G  is
a Frobenius kernel in a suciently nice algebraic group G. We leave the
details to the interested reader, as we will observe a stronger result in
Theorem A.15 below. As a related nding, we have the following.

Theorem A.11. Suppose that G  is a Frobenius kernel in an algebraic group
G,  and that G  admits a quasi-logarithm. Then a given nite-dimensional D-
representation V is projective if and only if (D)V  =  ; .

Proof. By Theorem 3.7, V is projective if and only if its restrictions to all
D  are projective. The hypothesis on G, and Lemma 5.5, ensure that at all 1-
parameter subgroups the algebra D  admits an (alternative) cocommu-
tative Hopf structures. Hence, by Lemma A.7, V K  is projective over D if
and only it V K  is projective at all -points for D  . Taking this information
together, we see that V is projective over D  if and only if V is projective at all
-points  : K [t]=(tp ) !  D K  for D.

Remark A.12. There are ways to dene the -support (D)M  of an arbi-trary
(possibly innite-dimensional) D-module M so that Theorem A.11 re-mains
valid at arbitrary M. However, it is unclear whether or not the equiv-alence
relation on -points K [t]=(tp ) !  D K  dened via nite-dimensional
representations agrees with the analogous one dened via arbitrary modules
(cf. [30, Theorem 4.6]). Rather, in the language of [30], it is unclear whether
equivalent -points are in fact strongly equivalent. So we do not know if the
support space (D)M  can be dened in such a way that depends only on the
classes [] of -points, and not the -points themselves. We there-fore leave a
discussion of -point support for innite-dimensional modules to some later
investigation.

A.4. Tensor pro duct properties and comparison with cohomolog-
ical support. As discussed in subsection 6.1, one can read the material of
Section 6 through the alternate lens of -point support. In particular, the
arguments of Section 6 imply that -point support behaves well with respect
to tensor products, and also agrees with cohomological support (cf. [29, 30]).

We have the following.

Proposition A.13. For any innitesimal group scheme G,  and embedded 1-
parameter subgroup : Ga(s)  !  G,  -point support for D satises the
tensor product property

( D  )V

W =  ( D  )V \  ( D  )W :

Proof. If ( D  ) is empty there is nothing to prove. If ( D  )  is non-empty,
then -point support for D      is identied with cohomological support, via
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Lemma A.7. So the result follows by the tensor product property for coho-
mological support provided in the (proof of ) Proposition 6.8.

An important reading of Proposition A.13 is the following: given a -
point  : K [t]=(tp ) !  D  , and D  -representations V and W , the restriction
res(V
W ) is non-projective if and only both res(V ) and res(W ) are non-projective.
Since -point support for the global algebra D  is itself dened via -points for
the varying D  , the following result is immediate.

Theorem A.14. For any innitesimal group scheme G,  -point support for D
satises the tensor product property

(D)V

W =  (D)V  \  (D)W  :

Finally, when G  is a Frobenius kernel in a suciently nice algebraic group
G, we nd that -point support is identied with cohomological support.

Theorem A.15. Suppose that G  is a Frobenius kernel in an algebraic group
G,  and that G  admits a quasi-logarithm. Then the map w : ( D )  !  jDj of
Proposition A.10 is a homeomorphism, and restricts to a homeomorphism
(D)V  !  jDjV for all nite-dimensional D-representations V .

Proof. Let w : ( D )  !  jDj denote the map [] !  p of Proposition A.10. Under
the above hypotheses Lemma 5.5 tells us that all D have non-
vanishing -support spaces ( D  ). So Lemma A.7 tells us that -supports and
cohomological supports are identied for all D  .

Suppose we have two -points ;  2  ( D )  for which p =  p. Let V be any
representation which is non-projective at . Write explicitly  : K [t]=(tp )
!  D !  D K  and  : K 0[t]=(tp) !  D  0     !  D K 0 .  Since, at any
embedded 1-parameter subgroups , the composites

( D )  !  ( D )  !  jDj and ( D )  !  jDj !  jDj

are both given by [] !  p, i.e. since the two composites agree, Proposi-tion
6.10 ensures that [] 2  ( D  )V and [] 2  ( D  0 )V 0 . Rather, both
res(VK ) and res(VK 0 ) are non-projective. Since V was chosen arbitrarily, this
shows  is equivalent to . So we see that w is injective. Surjectivity follows
from Proposition 3.11, applied to V =  k.

We understand now that w : ( D )  !  jDj is a bijection of sets. One argues
similarly to see that each restriction (D)V  !  jDjV is a bijection. Finally,
since all basic closed subsets in ( D )  and jDj are realized as supports of
nite-dimensional representation, we see that w is in fact a homeomorphism.

A.5. Comparing with a universal -point space. Consider the Drinfeld
double D  of an arbitrary nite group scheme{or really any Hopf algebra. We
have a universal denition of \-points", from the perspective of classifying
thick tensor ideals in the stable category. Namely, we consider all at algebra
maps  : K [t]=(tp ) !  D K  which satisfy the tensor product property:
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(TPP)  res(VK
 W K )  is non-projective if and only if both res(VK )
and res(WK ) are non-projective.

As with our other classes of -points, we consider the space
( D )  of equivalence classes of all such universal -points, and topologize this
space in the expected way. To  be clear, our equivalence relation for
universal -points is dened exactly as in Denition A.9, where we simply
replace \-point" with \universal -point" in the denition. We have the
supports

(D)V  =  f[] : res(VK ) is non-projectiveg
and corresponding support theory V !
(D)V  .

One notes that the class of universal -points is chosen in the coarsest
possible way to ensure that the tensor product property

(D)V

W =
(D)V  \
(D)W

holds, and to ensure that the support
(D)V  depends only on the class of V in the stable category.

Now, if we specically consider the Drinfeld double of an innitesimal
group scheme, Theorem A.14 tells us that any -point  : K [t]=(tp ) !  D K  as in
Denition A.8 is a universal -point. Furthermore, the equivalence relations
on -points and universal -points are exactly the same. So we obtain a
topological embedding  : ( D )  !
( D )  for which we have

(D)V  =  ( D )  \

(D)V  ; (24)

simply by the denitions of these supports.

Theorem A.16. Suppose that G  is a Frobenius kernel in an smooth al-
gebraic group G,  and that G  admits a quasi-logarithm. Then the inclu-
sion  : ( D )  !
( D )  is a homeomorphism, and all of the restrictions V : (D)V  !
(D)V  are also homeomorphisms.

Proof. Take Z  =  stab(D), and recall the isomorphism w : ( D )  !  jDj of
Theorem A.15. By the universal property of the Balmer spectrum [4, Theo-
rem 3.2], and Theorem A.14, we have continuous maps to the Balmer spec-
trum f  : ( D )  !  Sp ec(Z )  and f
 :
( D )  !  Sp ec(Z )  which are compat-ible, in the sense that f
   =  f .  Similarly, the map fcoh : jDj !  Sp ec(Z )  of Theorem 8.2 is such that
fcoh  w =  f .  Since w and fcoh are homeo-morphisms, by Theorems 8.2 and
A.15, we see that f  is a homeomorphism. Since f  factors through f
, we see that f
 :
( D )  !  Sp ec(Z )  is surjec-tive. We claim that this surjection is in fact a
bijection.



We have explicitly,
f
()      =  fV 2  Z  : [] 2=
(D)V  g

=  fV 2  Z  : res(VK ) is projectiveg

[4, Theorem 3.2]. Hence f
()  =  f
()  implies that any D-representation with projective restriction along  also
has projective restriction along , and vice versa.

So, by denition, the two classes agree [] =  []. So
we see that f
 is injective, and therefore a bijection. It follows that  :



K
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( D )  !
( D )  is a bijection. Since  is a topological embedding, this bijec-tion is
furthermore a homeomorphism. The fact that all of the restrictions (D)V  !
(D)V  are homeomorphisms as well follows by the intersection formula (24).

We collect our results about the support theory
(D)?  from above to nd the following, somewhat remarkable, corollary.

Corol lary A.17. Fix G  as in Theorem A.16, and D  the corresponding
Drinfeld double. Then

(1) D  admits enough universal -points, in the sense that a D-representation V
is projective if and only if its restriction res (V ) along each uni-versal
-point  : K [t]=(tp ) !  D K  is projective.

(2) The natural map w :
( D )  !  jDj, [] !  p, is a homeomorphism. In particular, the universal -
point space
( D )  has the structure of a projective scheme.

(3) Any at map  : K [t]=(tp ) !  D  which satises the tensor product
property ( T P P )  is equivalent to one of the form required in Dention
A.8.

Of course, the issue with the universal -support
(D)? , in general, is that it is dicult to understand the space
( D )  explicitly, or even to understand when this space is non-empty. So,
one needs a practical con-struction of -points, as above, in order to
populate
( D )  with enough points, and in order to see that this theory carries
signicant amounts of information.

Remark A.18. For a general Hopf algebra A, we can dene the universal -
point support theory V !
(A)V exactly as above. We make no claim that this theory is well-behaved,
or even non-vacuous in general. However, it is interesting that there are even
any examples in characteristic 0 where one has enough universal -points. For
example, the results of [51] imply that the support theory
(A)? satises the conclusions of Corollary A.17 (1) & (2), for A  a \quantum
elementary abelian group" over C.  Similarly, for nite group schemes, one can
argue as in the proof of Theorem A.16 to see that the standard -point
support theory (G)? and universal theory
(G)? agree.

A.6. Remaining questions. At this point we have recorded a number
of non-trivial results concerning -points and support for Drinfeld doubles of
(some) innitesimal group schemes. We record a number of remaining
questions which the reader may consider.

Question A.19. (1) Can one provide an intrinsic proof of the tensor prod-
uct property of Theorem A.14, i.e. one which follows from a direct analysis of
-points, and does not reference an auxiliary support theory? (Compare with
[29, 50, 26].)
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(2) Does the Drinfeld double of a general innitesimal group scheme G
admit enough (universal) -points, in the sense of Corollary A.17 (1)?

(3) Is there a reasonable extension of -point support (D)M  to innite-
dimensional M? In particular, does there exist such a denition which re-
produces the tensor product property

(D)M

N  =  (D)M  \  ( D ) N  at arbitrary M and N ?

Of course, question (3) has to do with one’s (in)ability to use -point
support in certain tensor triangular investigations, as in Section 8 and [11, 9,
8, 7] for example.
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