SUPPORT THEORY FOR DRINFELD DOUBLES OF SOME INFINITESIMAL GROUP SCHEMES

ERIC M. FRIEDLANDER AND CRIS NEGRON

Abstract. Consider a Frobenius kernel G in a split semisimple algebraic group, in very good characteristic. We provide an analysis of support for the Drinfeld center Z(rep(G)) of the representation category for G, or equivalently for the representation category of the Drinfeld double of kG. We show that thick ideals in the corresponding stable category are classied by cohomological support, and calculate the Balmer spectrum of the stable category of Z(rep(G)). We also construct a -point style rank variety for the Drinfeld double, identify -point support with cohomological support, and show that both support theories satisfy the tensor product property. Our results hold, more generally, for Drinfeld doubles of Frobenius kernels in any smooth algebraic group which admits a quasi-logarithm, such as a Borel subgroup in a split semisimple group in very good characteristic.

Contents

2.	Preliminaries	6
3.	The Hopf subalgebras D and a projectivity test	11 4
	Quasi-logarithms for group schemes	17 5
	The Drinfeld double D via an innitesimal group scheme	19 6
	Support and tensor products for nite-dimensional representations	23 7
	Support and tensor products for innite-dimensional	
	representations	28
8.	Thick ideals and the Balmer spectrum	34
Арр	Appendix A. A -point rank variety for the Drinfeld double	
References		44

1.

In this paper we provide an in depth analysis of support theory for the Drinfeld double of a Frobenius kernel $G = G_{(r)}$ in a suciently nice algebraic group G. Equivalently, we study support for the Drinfeld center of

²⁰²⁰ Mathematics Subject Classication. 20G42, 17B37.

Key words and phrases. Drinfeld doubles, support spaces, innitesimal group schemes.

E. M. Friedlander was partially supported by the Simons Foundation. C. Negron was supported by NSF grant DMS-2001608.

the representation category rep(G). As indicated in the abstract, we calculate the Balmer spectrum of thick prime ideals in the stable category of representations for the double, classify thick ideals in the stable category, and construct -point style rank varieties for representations. Our rank variety construction is in line with that of Suslin-Friedlander-Bendel and Friedlander-Pevtsova [61, 29, 30].

The present study occupies a somewhat unique position in the literature in that it is among the rst semi-complete analyses of support for a class of \properly quantum" nite tensor categories (cf. [62, x3.1]). By properly quantum here we mean braided, but non-symmetric. In our earlier papers [28, 44], we veried the nite generation of cohomology for Drinfeld doubles of nite group schemes, a necessary foundational step for a theory of cohomological support varieties. We also made explicit computations of cohomology and briey considered support varieties of irreducible representations. In contrast, our focus in this paper is the establishment of basic properties of support for Drinfeld doubles.

Support varieties have been employed to study various structural aspects of representations of groups and Hopf algebras. The stratication they provide for various stable module categories was presaged by Quillen's stratication [52, 53] of the spectrum of the cohomology of nite groups. Indeed, cohomology (including Ext-groups) plays a central role in the formulation of support theories, revealing a surprising wealth of information about representations. Although the cohomology of a Hopf algebra A does not depend upon the coproduct of A, the tensor product certainly does and the behavior of tensor products is a fundamental underpinning of many applications of representation theory. Consequently, \the tensor product property" for a support theory $V : \sup_{x \in X} V(x) = \sup_{x \in X} V(x)$ supp($V(x) = \sup_{x \in X}$

As mentioned above, this text is dedicated to an analysis of support for the Drinfeld center Z(rep(G)) of the representation category of an innitesimal group scheme G. The center Z(rep(G)) can be understood as the universal braided tensor category which admits a central tensor functor to rep(G), in the sense of [18, Denition 2.1]. There are, however, a number of more explicit presentations of the center. For example, one can identify Z(rep(G)) with the category $Coh(G)^G$ of ad-equivariant sheaves on G. Or, even more concretely, Z(rep(G)) is identied with the representation category of the smash product

$$D(G) := O(G) \#_{ad} kG$$

of the algebra of functions on G with the group ring of G. The algebra D(G) is called the Drinfeld double, or quantum double, of the group ring kG. For more details one can see Section 2.3 below.

The Drinfeld center construction plays an essential role in studies of tensor categories and in related studies in mathematical physics. The important point here is that, unlike classical (symmetric) tensor categories, such as

rep(G) itself, Z(rep(G)) = rep(D(G)) is highly non-symmetric, and so behaves more like a quantum group than a classical group. In particular, the Drinfeld center is what is called a nonsemisimple modular tensor category. For applications of modular tensor categories to studies of conformal and topological eld theories one can see for example [55, 25, 19, 33, 39], and for some indications of the relevance of cohomology in such studies one can consult the texts [41, 58, 21, 22].

Let us now turn to the species of this paper. For the remainder of the introduction we x a eld k of prime characteristic p, and consider the following:

- Fix G to be the r-th Frobenius kernel in a split semisimple algebraic group G, in very good characteristic.
- Fix D = D(G) to be the corresponding Drinfeld double for kG.

Here r is arbitrary, so that we are considering the family of normal subgroups $G_{(r)}$ in G.

For an explicit example, one could consider G to be $SL_n(k)$ in odd characteristic p which does not divide n, or the symplectic group $Sp_{2n}(k)$ in arbitrary odd characteristic. We note that all of the results listed below hold more generally when G is replaced by an arbitrary smooth algebraic group over k which admits a quasi-logarithm (see Section 4 for a denition).

We recall the notion of cohomological support: For a nite-dimensional Hopf algebra A, and any A-representation V, we let jAj denote the projective spectrum of cohomology, and jAj $_{\rm V}$ denote the associated cohomological support space

$$jAj = Proj Ext_A(k; k); jAj_V = Supp_{iAi} Ext_A(V; V):$$

Here $\operatorname{Ext}_{A}(V;V)$ inherits a graded module structure over $\operatorname{Ext}_{A}(k;k)$ via the tensor structure on rep(A), and $\operatorname{Ext}_{A}(V;V)$ denotes the associated sheaf on the projective spectrum.

As a rst point, we prove the following.

Theorem (6.11). Consider G as above, with corresponding Drinfeld double D. Cohomological support for D satises the tensor product property. That is to say, for nite-dimensional D-representations V and W we have

$$\int Dj_{(V)}
W) = jDj_{V} \setminus jDj_{W} :$$
(1)

From the perspective of tensor triangular geometry (e.g. [6, 12]), Theorem 6.11 indicates that cohomological support may be used to \structure" both the derived and stable categories of representations for the double D. We elaborate on this point, and also on our ndings in this direction.

Recall that the stable category stab(D) for D is the quotient of rep(D) by the ideal of all morphisms which factor through a projective. This category inherits a triangulated structure from the abelian structure on rep(D), and

 $^{^{1}}$ In order for the center Z(rep(G)) to actually be a ribbon category some natural restrictions must be placed on G. See for example [37, 34].

a monoidal structure from the monoidal structure on rep(D). Also, by a thick ideal in stab(D) we mean a thick subcategory{and in particular a full triangulated subcategory{which is stable under the tensor action of stab(D) on itself. Finally, by a specialization closed subset in jDj, we mean a subset jDj which contains the closure x of any point x 2 . We prove the following.

Theorem (8.1). Cohomological support provides an order preserving bijection

fSpecialization closed subsets in jDjg ? fthick ideals in stab(D)g; ! K;

where K $\,$ is the thick ideal of all objects V in stab(D) which are supported in the given set jDj_V $\,$.

One can compare with analogous classication results for nite groups [57], and nite group schemes [30]. By a thick prime ideal in stab(D) we mean a thick ideal P in stab(D) which satises the following: a product V W is in P if and only if V or W is in P. Balmer has shown that the collection of prime ideals in stab(D) admits the structure of a locally ringed space, which he calls the spectrum of stab(D).

Theorem 8.1 implies the following calculation of the Balmer spectrum Spec(stab(D)) for the Drinfeld double.

Theorem (8.2). There is an isomorphism of locally ringed spaces

We note that the proofs of Theorems 8.1 and 8.2 rely on the construction of a certain \hybrid", Benson-lyengar-Krause-type support theory [10] for innite-dimensional D-representations. We discuss this support theory in Section 7 below.

Let us provide, in closing, an elaboration on the methods employed in our analysis of the center Z(rep(G)) = rep(D), and on a related -point construction which appears in the appendix.

1.1. Elaborations on methods. Our proofs of the above results intertwine various approaches to support varieties in the literature. There are, however, some fundamental mechanism which we leverage throughout the text.

Our basic approach to support for the double is as follows: We show in Section 5 that, for G a Frobenius kernel in a suciently nice algebraic group G, the representation category of the Drinfeld double D = D(G) admit an \eective comparison" with the representation category of an associated innitesimal group scheme . In particular, there is a linear abelian, nontensor, equivalence

$$L : rep(D) ! rep()$$
 (2)

which nonetheless transports support theoretic information back and forth. For example, we have an identication of cohomological supports $jDj_V = jj_{L(V)}$ for all V in rep(D) (see Lemma 6.9).

The fact that the equivalence L identies support for D with that of is not a casual one, and requires one to \descend" the equivalence L to a family of local Hopf subalgebras D D which \covers" D. This family of sub-algebras f D g $_{\rm 2V~(G)}$ is parametrized by the scheme $V_r(G)$ of 1-parameter subgroups in G, and plays a fundamental role in our study. As a basic point, one can use the subalgebras D to detect projectivity of D-representations. In particular, a given D-representation is projective if and only if its re-striction to each D is projective (Theorem 3.7). The ability of the D to detection projectivity of D-representations is the covering property referred to above.

The eective comparison (2) is integral to our proofs of the tensor product property $jDj_V\\ W=jDj_V\setminus jDj_W \ , \ \mbox{and also to the classication results listed above.}$ Additionally, the particular nature of our comparison indicates the existence of a -point support theory for representations of the double, which we discuss in more detail below.

One might compare our approach with Avrunin and Scott's proof of Carlson's conjecture, where a certain change of coproduct result is used to relate supports for abelian restricted Lie algebras to those of elementary abelian groups [3]. Similar change of coproduct methods are employed in recent work of the rst author as well [26].

1.2. Conceptualizations via -points. The introduction of -points by Pevtsova and the rst author [29, 30] provide an alternate way to conceptualize our results. Our discussion of an analogous theory of -points for the Drinfeld double D is relegated to the appendix because they do not gure directly into the proofs of the results we have summarized. Instead, these results justify the intuition of -points.

For us, a -point for D is a choice of eld extension K=k, and a at algebra map: $K[t]=(t^p)$! D_K which admits an appropriate factorization through one of the local Hopf subalgebras D D_K (Denitions A.6 and A.8). We then construct the space (D) of equivalence classes of -points, and a corresponding -point support theory V! (D)_V for the double. The support spaces (D)_V are explicitly the locus of all -points at which the restriction $res(V_K)$ of V to K[t]=(t) is pon-projective.

Two of our main results are that -point support for the double D satises the tensor product property

$$(D)_{V}$$

$$W = (D)_{V} \setminus (D)_{W}$$
(3)

(Theorem A.14), and also agrees with cohomological support. In the statement of the following theorem we suppose that G is, as usual, a Frobenius kernel in a suciently nice algebraic group G, i.e. one which admits a quasi-logarithm.

Theorem (A.15). Consider G as above, and D = D(G). There is a homeomorphism of topological spaces

which restricts to a homeomorphism of support spaces $(D)_V$! $\bar{j}Dj_V$ for each V in rep(D).

We furthermore construct a \universal" -point theory (D)?, and show that our specic -point support theory (D)? agrees with this universal theory. One can see Theorem A.16 below.

In considering the -point perspective for support, we open up the possibility of a deeper analysis of support for the double via explicit nilpotent operators. One can compare with the introduction of local Jordan types for group representations in [20, 32], and constructions of vector bundles on support spaces provided in [31, 14]. Although we won't discuss the issue here, our methods also allow us to identify cohomological and hypersurface supports for Drinfeld doubles of rst Frobenius kernels $G_{(1)}$ in suciently nice algebraic groups (cf. [46, Corollary 7.2, x13.3]).

1.3. Acknowledgments. Thanks to Jon Carlson, Srikanth Iyengar, Julia Pevtsova, and Chelsea Walton for helpful conversation. Thanks also to the referee for many helpful comments and suggestions.

2. Preliminaries

We recall basic information about Hopf algebras, nite group schemes, and the Drinfeld double construction. We also recall the notion of cohomo-logical support, and some basic results about Carlson modules. Throughout this text we work over a base eld k which is of (nite) characteristic p.

2.1. Hopf algebras and some generic notation. We set some global notations, and recall a strong form of the Larson-Radford theorem [40]. We assume the reader has some familiarity with Hopf algebras, and our canonical reference for the topic is Montgomery's text [43].

For us, a representation of a nite-dimensional algebra A is the same thing as an A-module, and all representations/modules are left representations/modules. For a nite-dimensional Hopf algebra A we let

rep(A) := fthe tensor category of nite-dimensional A-representationsg and

Rep(A) := fthe monoidal category of all A-representationg:

To be clear, when we say rep(A) is a tensor category we recognize that all objects in rep(A) admit both left and right duals [23, x2.10], whereas objects in Rep(A) are not dualizable in general. We let Irrep(A) denote the collection of all (isoclasses of) simple A-representations.

Throughout the text we denote nite-dimensional representations by the letters V and W, and reserve the letters M and N for possibly innite-dimensional representations. This notation is employed throughout the text, without exception.

We recall the following basic result, which will be of use later.

Theorem 2.1 ([40]). Any nite-dimensional Hopf algebra A is Frobenius. In particular, an A-representation M is projective if and only if M is injec-tive.

Proof. The algebra A is Frobenius by Larson and Radford [40]. We note that if A is Frobenius then injectivity is the same as projectivity, even for innite-dimensional modules, by [24, Theorem 5.3].

2.2. Finite group scheme. All group schemes in this text are ane. A group scheme G, over a base eld k, is called nite if it is nite as a scheme over Spec(k). Rather, G is nite if it is ane and has nite-dimensional (Hopf) algebra of global functions O(G). For such nite G we let kG denote the associated group algebra kG = O(G). A nite group scheme is called innitesimal if G is connected, i.e. if O(G) is local, and unipotent if the group algebra kG is local.

Following the framework of the previous section, we let rep(G) denote the category of nite-dimensional kG-modules, and Rep(G) denote the category of arbitrary kG-modules. Note that kG-modules are identied with O(G)-comodules as in [43, Lemma 1.6.4], so that nite-dimensional kG-modules are in fact identied with k-linear representations of the group scheme G.

2.3. The Drinfeld double and the Drinfeld center. Let G be a nite group scheme. The adjoint action of G on itself induces an action of kG on O(G), and we can form the corresponding smash product, which is known as the Drinfeld double, or quantum double of kG, D(G) = O(G)#kG. We usually employ the generic notation D for the Drinfeld double

$$D := D(G)$$
:

The algebra D admits a unique Hopf algebra structure for which the two algebra inclusions O(G)! D and kG! D are inclusions of Hopf algebras. See for example [43, Corollary 10.3.10].

Remark 2.2. There is an analogous construction A D(A) of the Drinfeld double for an arbitrary nite-dimensional Hopf algebra A. So, we are only discussing a particular instance of a general construction.

Remark 2.3. If one compares directly with the presentation of [43], then one nds an alternate description of the double as a smash product between the coopposite Hopf algebra $O(G)^{cop}$ and kG. However, by applying the antipode to the O(G) factor in D, one sees that the cooposite comultiplication on O(G) can be replaced with the usual one, up to Hopf isomorphism.

From a categorical perspective, we can consider the Drinfeld center of the representation category rep(G). This is the category of pairs

```
Z(rep(G)) = \begin{cases} pairs (V; V) & \text{of an object } V \text{ in } rep(G), \text{ and a} \\ choice & \text{of half braiding } V : V \\ \vdots \\ V \end{cases}
```

Such a half-braiding $_{\rm V}$ is required to be a natural isomorphism of endofunctors of rep(G), and we require that this natural isomorphism satises the expected compatibilities with the tensor structure on rep(G) [36, Denition XIII.4.1].

The center Z(rep(G)) inherits a tensor structure from that of rep(G), admits and canonical braiding c_{V:W} W W V induced by the given half-braidings on objects V W V. This braiding on Z(rep(G)) is highly non-symmetric, in any sense which one might consider [59]. For example, any object V in Z(rep(G)) for which the square braiding is trivial $c^2 = id_V$ must itself be trivial, $V = 1^{\dim(V)}$. We have the following categorical interpretation of the double.

Theorem 2.4 ([36, Theorem XIII.5.1]). For any nite group scheme G, there is an equivalence of tensor categories rep(D) = Z(rep(G)).

As a corollary to this result, we see that the category rep(D) of representations for the Drinfeld double is canonically braided. This point is relevant for many applications in mathematical physics, and is also relevant in studies of support and cohomology. Specically, many support theoretic results which are stated in the context of symmetric tensor categories can be immediately extended to the braided setting.

Remark 2.5. As with the construction of the Drinfeld double, one can construct the Drinfeld center of an arbitrary nite tensor category. Furthermore, the obvious analog of Theorem 2.4 is valid when we replace rep(G) with the representation category of an arbitrary nite-dimensional Hopf algebra.

In addition to considering the double D we also consider a certain class of Hopf subalgebras D^0 D which one associates to subgroups in G. The following lemma will prove useful for our analysis of the subalgebras D^0 .

Lemma 2.6. Suppose that G is an innitesimal group scheme, and let H G be a closed subgroup in G. Let H act on O(G) via the (restriction of the) adjoint action, and consider the smash product algebra O(G)#kH.

Restriction along the surjective algebra map $O(G)\#kH!\ kH$, f x ! (f)x, provides a bijection

```
Irrep(H) <sup>-</sup>! Irrep(O(G)#kH):
```

Proof. Same as the proof of [28, Proposition 5.5].

2.4. Cohomological support.

Denition 2.7. We say a nite-dimensional Hopf algebra A (over k) has nite type cohomology (over k) if the following two contions hold:

- (a) The extensions Ext (k; k) form a nitely generated k-algebra.
- (b) For any pair of nite-dimensional A-representations V and W, the extensions Ext (V; W) form a nitely generated module over Ext (k; k), via the tensor action

Let A be a nite-dimensional Hopf algebra, and suppose that A has nite type cohomology. We take

$$jAj := Proj Ext_A(k; k)$$
:

Formally, Proj Ext (k; k) is the topological space of homogeneous prime ideals in Ext (k; k), which we equip with the Zariski topology. Since Ext (k; k) is graded commutative and nitely generated, restriction along the inclusion Ext (k; k)! Ext (k; k) provides a homeomorphism Proj Ext (k; k) = Proj Ext (k; k). The structure sheaf on Proj Ext (k; k) is the expected one, whose sections over a basic open Df, f 2 Ext (k; k), are the degree 0 elements in the localization Ext (k; k)f.

For any nite-dimensional A-representation V, we can consider the self-extensions Ext(V;V) and the tensor action of Ext(k;k) on these extensions. Note that the extensions of V form a graded module over Ext(k;k), and we may consider the associated sheaf Ext(V;V) on jAj = Proj Ext(k;k). We dene the cohomological support of V as the support of its associated sheaf

$$jAj_V := Supp_{iAj} Ext_A(V; V):$$
 (4)

We have the following basic claim.

Lemma 2.8 ([50, Proposition 2]). Suppose that A has nite type cohomol-ogy. A nite-dimensional A-representation V is projective if and only if its support vanishes, $jAj_V = j$.

In considering the aforementioned collection of Hopf subalgebras D⁰ D we also take account of the following.

Lemma 2.9. Suppose that A has nite type cohomology, and that B! A is an inclusion of Hopf algebras. Then

- (1) B has nite type cohomology.
- (2) The restriction map Ext (k; k)! Ext (k; k) is a nite algebra map, and the induced map on spectra

res : Spec Ext
$$(k; k)$$
 ! Spec Ext $(k; k)$ is such that (res) $^{1}(0) = f0g$.

Proof. The algebra B has nite-type cohomology, and the algebra map of (2) is nite, by [47, Proposition 3.3]. Since this map is nite, the ber

$$E_{\text{Ext}_{A}(k;k)}$$
 $Ext_{B}(k;k)$

is a nite-dimensional non-negatively graded algebra, and hence the irrelevant ideal is the unique prime ideal in this algebra. This implies that the preimage (res) ¹(0) is the singleton f0g.

Lemma 2.9 (2) tells us that restriction res : rep(A) ! rep(B) induces a well-dened map on projective spectra jBj ! jAj. This map is furthermore closed and has nite bers.

2.5. Cohomological support for group schemes. In considering a nite group scheme G (over k) we adopt the particular notation

We may consider cohomological support for G-representations as described in Section 2.4.

In addition to cohomological support, there are a number of additional support theories for rep(G) which one might employ in tandem. In particular, when G is an innitesimal group scheme, one can consider the k-scheme $V_r(G)$ of 1-parameter subgroups in G and its associated support theory of [61]. Although we do not use this theory explicitly in the text, it does \run in the background" of our analysis. So we sketch a presentation of this support theory here.

At xed r 0, $V_r(G)$ is the moduli space of group scheme maps $G_{a(r)}$! G [60], and for any nite-dimensional G-representation W one has an associated support space $V_r(G)_W$. The support space $V_r(G)_W$ is specically a non-projectivity locus of the representation W in $V_r(G)$. To elaborate, the group ring $kG_{a(r)}$ is a truncated polynomial ring $k[t;t^{(1)};\ldots;t^{(r-1)}]=(t^p;\ldots;t^{(r-1)p})$ generated by divided powers $t^{(i)}$, and $kG_{a(r)}$ is a at extension of the subalgebra A_{top} $G_{a(r)}$ generated by the highest divided power $t^{(r-1)}$. A $t^{(r-1)}$ is a conical special when the restriction res(W) is non-projective when restricted further to this highest power subalgebra $t^{(r-1)}$. The moduli space $t^{(r-1)}$ is a conical scheme, and the supports $t^{(r-1)}$ are closed conical subschemes in $t^{(r-1)}$.

By results of [61], we have a natural scheme map $: P(V_r(G)) ! jGj$ from the projectivization of $V_r(G)$, and this map is a homeomorphisms whenever G is of height r. The map r restricts to homeomorphisms W $: P(V_r(G)_W) ! jGj_W$ between support spaces at arbitrary W 2 r rep(G), again when G is of height r. So the support theory $V_r(G)_?$ provides a kind of group theoretic \realization" of cohomological support for innitesimal group schemes.

Remark 2.10. Our notation jGj conicts slightly with the notation of [60, 61, 30]. Namely, jGj is used to denote the ane spectrum of $Ext_G(k; k)$

in the aforementioned papers, while we use it to denote the projective spectrum.

Remark 2.11. By results of [30], the support theory W ! $V_r(G)_W$ for rep(G) has a reasonable extension to the category Rep(G) of arbitrary kG-representation.

2.6. Carlson modules and support. Consider a nite-dimensional Hopf algebra A with nite type cohomology. Dene the n-th syzygy nk of the trivial representation via any choice of projective resolution of k, 0! $^nk!$ P $^{(n-1)}!$! $P^0!$ k. Given an extension 2 Ext_A^n (k; k), we can represent \sim as a map : $^nk!$ k and dene

The object L is called a Carlson module associated to .

The object L is clearly not uniquely dened by , since the denition relies on a choice of representative for the map : nk ! k in the derived category ${\sf D}^{\sf b}({\sf A})$. However, L is unique up to isomorphism in the stable category for A, and so is succently unique for most support theoretic ap-plications. Carlson modules have a number of exceedingly useful properties. We recall a few of these properties here.

Proposition 2.12 ([50, Proposition 3]). Consider an arbitrary homogeneous extension 2 $\operatorname{Ext}^{ev}_A(k;k)$. For any nite-dimensional A-representation V there is an equality of supports

$$jAj_{(L}$$

$$V) = Z() \setminus jAj_{V}:$$
(5)

As a corollary to Proposition 2.12 we nd

Corollary 2.13 ([50, Corollary 1]). Any closed subset in jAj is realizable as the support of a product $L = L_1$

$$L_m$$
 of Carlson modules, = jAj_L .

Carlson modules also enjoy certain naturality properties with respect to exact tensor functors. We list a particular occurence of such naturality here.

Lemma 2.14. If : B ! A is an inclusion of Hopf algebras, and L is a Carlson module associated to an extension 2 Ext (k;k) over A, then the restriction res(L) is a Carlson module for the image of res() 2 Ext (k;k) of this extension in Ext_B(k;k).

Proof. By the Nichols-Zoeller theorem [40], A is projective as a B-module. So the result just follows from the fact that a projective resolution P! k of the unit over A restricts to a projective resolution over B.

3. The Hopf subalgebras D and a projectivity test

Let G be an innitesimal group scheme. We show that the Drinfeld double D = D(G) admits a family of Hopf embeddings f D ! Dg $_{21\text{-param}}$ which

is parametrized by the space of 1-parameter subgroups in G. Each of the Hopf algebras D $\,$ is local, and so behaves like a `unipotent subgroup" in D. We show that the family f D $\,$! Dg $_{21\text{-param}}$ can be used to check projectivity of arbitrary (possibly innite-dimensional) D-representations. One can see Theorem 3.7 below for a specic statement. We furthermore show that the cohomological support jDj_V of a nite-dimensional D-representation V can be reconstructed from the support spaces jD $\,$ j_{res} $\,$ (V) of the restrictions of V to the various D $\,$.

The family of embeddings f D ! Dg _{21-param} plays an integral role throughout our study, and is therefore a fundamental object of interest. As implied above, an analysis of support for the double D will be shown to be reducible to an analysis of support for the local subalgebras D . One can compare with the group theoretic setting, where the support theory of a nite group scheme is similarly reducible to that of its unipotent subgroups (cf. [29, 30]).

3.1. 1-parameter subgroups. Let k be a eld of characteristic p>0, and G be an innitesimal group scheme over k. We let $G_{\,K}$ denote the base change along any given eld extension k ! $\,K$.

Denition 3.1. An embedded 1-parameter subgroup for G is a pair (K;) of a eld extension k! K and a closed map of group schemes $: G_{a(s);K} !$ G_K . We call K the eld of denition for such a 1-parameter subgroup .

Of course, by $G_{a(r);K}$ we mean the base change of the r-th Frobenius kerel in G_a . Let us take a moment to compare with [60, 61].

In the texts [60, 61], by a 1-parameter subgroup the authors mean an arbitrary group map $^0: G_{a(r);K} ! G_K$. Having xed a preferred quotient $G_{a(r)} ! G_{a(s)}$ for each s r, such a group map species an integer s r and a unique factorization of as a composition of the quotient $G_{a(r);K} ! G_{a(s);K}$ followed by an embedding $: G_{a(s);K} ! G_K$. In this way, the moduli space of 1-parameter subgroups $V_r(G)$ employed in [61] is identied with the moduli space of embedded 1-parameter subgroups for G, provided G is of height r. (One can dene the moduli space of embedded 1-parameter subgroups in precise analogy with [60, Denition 1.1].) One thus translate freely between the language of [60, 61] and the language we employ in this text.

Having claried with this point, we recall the following essential results of Suslin-Friedlander-Bendel [61, Proposition 7.6] and Pevtsova [48] [49, Theorem 2.2].

Theorem 3.2 ([61, 48]). Consider an innitesimal group scheme G. An arbitrary G-representation M is projective over G if and only if for every eld extension k! K, and embedded 1-parameter subgroup : $G_{a(s);K}$! G_K , the base change M_K is projective over $G_{a(s);K}$.

To be clear, when we say that M_K is projective over $G_{a(s);K}$ we mean that M_K restricts to a projective $G_{a(s);K}$ -representation along the given map $:G_{a(s);K}$! G_K .

When we consider a nite-dimensional representation V, and k is algebraically closed, it suces to check projectivity of V after restricting to all 1-parameter subgroups which are dened over k.

Theorem 3.3. [61] Consider an innitesimal group scheme G, and a nite-dimensional G-representation V. Suppose also that the base eld k is algebraically closed. Then V is projective over G if and only if, for every embedded 1-parameter subgroup $: G_{a(s)} ! G$ which is dened over k, V is projective over $G_{a(s)}$.

Proof. Suppose that V is projective when restricted to all such . Then [61, Corollary 6.8] tells us that V has no closed points in its support. Since the support jGj_V is closed, we conclude that jGj_V = ;, and hence that V is projective.

Remark 3.4. Since the category Rep(G) is Frobenius, we can replace projectivity with injectivity, or even atness, in the statements of Theorem 3.2 and 3.3.

3.2. A family of local subalgebras, and projectivity. As we have just observed, 1-parameter subgroups play an essential role in studies of support for innitesimal group schemes. We provide a corresponding family of Hopf subalgebras for the Drinfeld double.

Denition 3.5. Let G be an innitesimal group scheme, and $: G_{a(s);K} !$ G_K be an embedded 1-parameter subgroup. Let D = D(G) denote the Drinfeld double for G. We dene D to be the Hopf algebra

D :=
$$O(G_K) \# K G_{a(s):K};$$

where $G_{a(s);K}$ acts on $O\left(G_K\right)$ by restricting the adjoint action of G_K along the given embedding $% G_K$.

Note that each Hopf algebra D $\,$ embeds in the double D $_{K}\,$ via the map $id_{O}\,$

: D $\,!\,$ D $_K\,.$ So we might speak of the D $\,$ as Hopf subalgebras in D $_K\,,$ via a slight abuse of language.

Lemma 3.6. Consider an innitesimal group scheme G, with Drinfeld dou-ble D. For any embedded 1-parameter subgroup $: G_{a(s)} ! G$ the Hopf algebra D $: G_{a(s)} ! G$ the Hopf

Proof. By changing base if necessary we may assume K=k. By Lemma 2.6 the restriction map provides an bijection $Irrep(G_{a(s)})$! Irrep(D). Now, since $G_{a(s)}$ is unipotent, the trivial representation is the only simple object in $rep(G_{a(s)})$. So we observe that rep(D) has a unique simple object, and therefore that D is local.

We recall that, according to Theorem 3.2, 1-parameter subgroups in a given innitesimal group scheme can be used to detect projectivity of Grepresentations. We observe an analogous detection property for the D .

Theorem 3.7. Consider an arbitrary representation M over the Drinfeld double D of an innitesimal group scheme G. Then M is projective over D if and only if for every eld extension k ! K , and every embedded 1-parameter subgroup $: G_{a(s);K} \; ! \; G_K \; , \; \text{the base change M}_K \; \text{is projective over D} \; .$

When M is nite-dimensional, and k is algebraically closed, M is projective over D if and only if, for all embedded 1-parameter subgroups : $G_{a(s)}$! G which are dened over k, M is projective over D .

Proof. Recall that D is Frobenius, so that projectivity of M is equivalent to injectivity. It suces to check projectivity/injectivity after changing base to the algebraic closure k, so that we may assume k=k. Furthermore, as with any nite dimensional algebra, injectivity of M is equivalent to vanishing of the extensions

$$\operatorname{Ext}_{D}^{>0}(S; M) = 0$$
 from the sum S of all simple D-reps.

So we seek to establish the above vanishing of cohomology. In what follows we take O = O(G).

If M is projective over D, then M is projective over the Hopf subalgebra O D [43, Theorem 3.1.5]. Thus M is injective over O in this case. Similarly, if M_K is projective over D , then M_K is projective over O_K , and thus injective over O_K as well. It follows that M is injective over O itself. So it suces to assume that M is injective over O, and prove that in this case M is injective over D if and only if M_K is injective over D for all extensions k! K and embeddings $:G_{a\{s\};K}$! G_K .

Let us assume that M is injective over O. By Lemma 2.6, all simple D-representations are restrictions of simple G-representations along the projection D! kG. It follows that we have a spectral sequence

$$Ext_{\lambda}(S; Ext(k; M)))$$
 $Ext(S; M)$

which reduces to an identication

$$Ext_{s}(S; Hom_{O}(k; M)) = Ext_{s}(S; M);$$

since M is injective over O. Similarly, we have an identication

$$\operatorname{Ext}_{G_{a(s);K}}(K; \operatorname{Hom}_{O_K}(K; M_K)) = \operatorname{Ext}_{D}(K; M_K)$$

at any embedded 1-parameter subgroup $: G_{a(s);K} ! G_K$. Hence M is injective over D (resp. M_K is injective over D) if and only if the invariant subspace $Hom_O(k;M)$ is injective over G (resp. $Hom_{O_K}(K;M_K)$ is injective over $G_{a(s);K}$).

Given the above information, we seek to establish the claim that

Hom_O(k; M) is injective over G

, for each $: G_{a(s);K} ! G_K ; Hom_O(k; M)_K = Hom_{O_K}(K; M_K)$ is injective over $G_{a(s);K}$:

But this nal claim follows by Theorem 3.2. Similarly, one refers to Theorem 3.3 in the case of nite-dimensional M to obtain the desired result.

3.3. (Re)constructing cohomological support. We consider cohomological support for nite-dimensional representations over the Drinfeld double. Fix an innitesimal group scheme G and let D denote its Drinfeld double D = D(G). Recall our notation jDj for the projective spectrum of cohomology, jDj = Proj Ext (k; k). We have the following basic result of [28, 44].

Theorem 3.8 ([28, 44]). The Drinfeld double D has nite type cohomology.

We now apply Lemma 2.9 and Theorem 3.8 to nd

Corollary 3.9. For any embedded 1-parameter subgroup $: G_{a(s);K} ! G_K$, the Hopf algebra D has nite type cohomology, and the induced map on projective spectra res $: jD \ j ! \ jD_K j$ is a nite map of schemes.

Let us consider an arbitrary eld extension k ! K . We note that the natural map K

 $Ext_D(k;k)$! Ext (K;K) is an isomorphism, and thus identies the spectrum $j\,D_K\,j$ with the base change $j\,D\,j_K$. For any embedded 1-parameter subgroup $\,:\,G_{a(s);K}$! G_K , we therefore obtain a map of schemes

$$f: jD j! jDj$$
 (6)

given by composing the map res : jD j! $jD_K j$ induced by restriction with the projection $jD_K j = jD_K j$! $jD_K j$.

We note that these f are not closed morphisms in general. This is simply because the projection $j\,Dj_K\,!\,\,jDj$ does not preserve closed points when the extension $k\,!\,\,K$ is innite. On the other hand, we see that any point x in jDj is represented by{or rather lifts to{a closed point in the base change $jDj_{k(x)}$. So, by employing base change one is able to treat arbitrary points in the spectrum jDj as closed points, at least to a certain degree. We record a little lemma.

Lemma 3.10. Consider any nite-dimensional D-representation V.

- (1) For an arbitrary eld extension k ! K, the support jD_Kj_V of V_K over D_K is precisely the preimage of jD_{jV} along the projection jD_Kj ! jD_j . In particular, the composition jD_Kj_V jD_Kj ! jD_j is a surjection onto jD_{jV} .
- (2) For any embedded 1-parameter subgroup $: G_{a(s);K} ! G$ the map f restricts to a morphism between support spaces $jD \ j_{V_K} ! \ jDj_V .$ In particular, the image of $jD \ j_{V_K}$ under f is contained in $jDj_V .$

Proof. Statement (1) follows from the fact that (a) For any scheme X, the projection X_K ! X along a eld extension k! K is surjective and (b) for any map of schemes f:Y!X, and coherent sheaf F on X, we have $Supp(fF) = f^{-1}Supp(F)$. For (2) it suces to prove the result in the case K = k, by (1). We simply consider the diagram

induced by the restriction functors, and note that the supports jD_{JV} and jD_{JV} are the subvarieties associated to the respective kernels of the algebra maps

٧.

We now observe that the support of V over D can be reconstructed from the supports of V over the D , where we allow to vary along all 1-parameter subgroups for G.

Proposition 3.11. Let G be an innitesimal group scheme and D = D(G) be the associated Drinfeld double. For any nite-dimensional D-representation V there is an equality

$$jDj_{V} = \begin{bmatrix} f & (jD & j_{V_{K}}): \\ 1-param subgroups \end{bmatrix}$$
 (7)

To be clear, the equality (7) is an equality of sets. Indeed, the support of a representation is itself simply a closed subset in the space jDj. Also, the union (7) is explicitly taken over the collection of all embedded 1-parameter subgroups in G, each of which consists of a pair of a eld extension K=k and an embedding $: G_{a(s):K} ! G_K$.

Proof. If the support jDj_V vanishes, i.e. if V is projective over D, then Theorem 3.7 tells us that all of the supports jD_{V_K} vanish as well. So the claimed equality holds when the support jDj_V is empty.

Let us assume now that V is not projective over D, and hence that the support jDj_V is non-vanishing. By considering base change, and Lemma 3.10, we see that the equality (7) can be obtained from the following claim:

Claim: When k is algebraically closed, and x is a closed point in jDj_V , there is a 1-parameter subgroup $: G_{a(s)} ! G$ such that x is in the image f $(jD \ j_V)$.

Let us verify this claim.

We suppose that k = k and consider a closed point x in jDj_V . Let L be a product of Carlson modules with $jDj_L = fxg$. Then $jDj_L = fxg$ and for

any 1-parameter subgroup $: G_{a(s)} ! G$ we have

$$f (jD j_L)$$

$$f \times g \quad \text{if se: 2 } f (jD j_V)$$

Indeed, the above formula follows from the fact that jD $j_L = f^{-1}(x)$, by Lemma 2.14, and the subsequent fact that

$$jD j_L$$

 $V = f^{-1}(x) \setminus jD j_V;$

by Proposition 2.12.

Recall that, by the projectivity test of Theorem 3.7, projectivity of the restriction of L

V along each such would imply that L

V is projective over D. Equivalently, vanishing of the supports jD j_L v along all such would imply vanishing of the support jDj_L

we have chosen I so that the latter space explicitly does not

vanish, we conclude that some support space jD j

v does not vanish. Rather, x 2 f (jD jL

 $_{\rm V}$) for some , and thus x 2 f (jD $_{\rm JV}$) for some $\,$. So we have proved the above Claim, and thus establish the identication (7).

We remark, in closing, that one can prove analogs of the results of this section for arbitrary nite (rather than innitesimal) group schemes. One simply replaces the \testing groups" $G_{a(s)}$ with a larger class of unipotent group schemes (cf. [29]).

4. Quasi-logarithms for group schemes

In this short aside we recall the notion of a quasi-logarithm for an ane group scheme. As we recall below, \most" familiar algebraic groups admit quasi-logarithms. One can see Proposition 4.4 in particular. As our study of support for Drinfeld doubles becomes more focused, we employ quasi-logarithms to gain some leverage on the algebra structure of the double D = D(G).

4.1. Quasi-logarithms.

Denition 4.1 ([38]). Let G be an ane group scheme with Lie algebra g. We consider g as an ane scheme g = Spec(Sym(g)). A quasi-logarithm for G is a map of schemes I : G ! g which

- (a) is equivariant for the adjoint actions,
- (b) sends 1 2 G to f0g 2 g,
- (c) induces the identity on tangent spaces $T_1I = id_g$.

Concretely, if we let m O(G) denote the maximal ideal associated to the point 1 2 G, then a quasi-logarithm for G is a choice of ad-equivariant splitting g! m of the projection m! $m=m^2=g$. We note that, when G is smooth over the base eld k, such a quasi-logarithm induces an isomorphism on the respective formal neighborhoods b: a ! a . Also, when G is innitesimal any quasi-logarithm is a closed embedding.

The following lemma is straightforward.

Lemma 4.2. Suppose a group scheme G admits a quasi-logarithm I:G! g. Then for any positive integer r, the restriction $Ij_{G_{\{r\}}}:G_{\{r\}}!$ g provides a quasi-logarithm for the Frobenius kernel $G_{\{r\}}$.

Through the remainder of the text we often adopt the following hypotheses: We assume G is a smooth algebraic group which admits a quasi-logarithm, then consider the Frobenius kernels $G = G_{(r)}$ at arbitrary r > 0. The previous lemma tells us that all such G naturally inherit quasi-logarithms from any choice of quasi-logarithm for the ambient group G. So in this way we obtain various families of innitesimal group schemes which admit quasi-logarithms.

4.2. Appearances of quasi-logs in nature. We discuss the \generic" presence of quasi-logarithms among reductive algebraic groups. Let G be an ane algebraic group which is dened over a localization R = Z[1=n] of the integers, and suppose that G is generically reductive. That is to say, suppose that the rational form G_Q is reductive. Take O = O(G).

Let m O be the ideal associated to the identity 1 2 G(R), and consider the coadjoint representation $g=m=m^2$. The surjection m! g admits an adequivariant splitting g! $_Q m_Q$ OQ over the rationals, since G_Q has semisimple representation theory [42, Theorem 22.42]. This splitting is dened over a further localization $R^0=Z[1=N]$, so that we obtain a quasi-logarithm G_{R^0} ! g_{R^0} dened over R^0 . It follows that for any eld k of characteristic p which does not divide N, the group $G=G_k$ admits a quasi-logarithm. We record this observation.

Proposition 4.3. Let G be a algebraic group which is dened over a localization R = Z[1=n] of the integers, and suppose that G is generically reductive. Then for any eld k, in all but nitely many characteristics, the k-form G = G_k admits a quasi-logarithm.

If we consider split semisimple algebraic groups, for example, we can be much more precise about the characteristics at which our group $G = G_k$ admits a quasi-logarithm. We can also deduce quasi-logarithms for various classes of algebraic groups which are related to such semisimple G.

Proposition 4.4 ([28, x6.1]). The following algebraic groups admit a quasi-logarithm:

The general linear group GL_n , over any eld in any characteristic.

Any split simple algebraic group in very good characteristic (relative to the corresponding Dynkin type).

Any Borel subgroup inside a split simple algebraic group, in very good characteristic.

The unipotent radical in such a Borel, in suciently large characteristic.

5. The Drinfeld double D via an infinitesimal group scheme

Let G be a smooth algebraic group over k which admits a quasi-logarithm, and let G be a Frobenius kernel in G. We consider the Drinfeld double D for G. In this section we show that, for G as described, there is a linear abelian equivalence

between the representation category of the double and the representation category of an associated innitesimal group scheme . We show, further-more, that this equivalence restricts to a corresponding abelian equivalence L: rep(D)! rep() at all embedded 1-parameter subgroups in G.

Although these equivalences are not equivalences of tensor categories, they can be used in highly nontrivial ways in an analysis of support for the double, as we will see in Sections 6 and 7.

5.1. The group schemes $_{V}(G;r)$. Consider a nite group scheme G and any nite-dimensional G-representation V. To V we associate the algebra

$$S_r(V) := Sym(V) = (v^{p^r} : v 2 V):$$

This algebra has the natural structure of a cocommutative Hopf algebra in the symmetric tensor category rep(G), where the coproduct on $S_r(V)$ is dened by taking all of the generators $v \in V$ to be primitive $v \in V$ to $v \in V$.

v (cf. [2, x1.3]). Indeed, we may view V as an abelian Lie algebra in rep(G), and consider the universal enveloping algebra U(V) = Sym(V).

We then obtain $S_r(V)$ as the quotient of U(V) by the Hopf ideal generated by the primitive elements v^{p^r} , $v \ge V$.

Now, since the forgetful functor rep(G)! V ect is a map of symmetric tensor categories, any Hopf algebra in rep(G) can be viewed immediately as a Hopf algebra in the classical sense, i.e. as a Hopf algebra in V ect. So we may view $S_r(V)$ as a Hopf algebra in rep(G) or as a Hopf algebra in V ect as needed. Furthermore, for any Hopf algebra S in rep(G) the smash product S # k G admits a unique Hopf algebra structure (in V ect) so that the two inclusions

are maps of Hopf algebras (in V ect). Indeed, this is the standard bosonization procedure [54, Theorem 1.6.9]. So, in the case discussed above, we obtain the following.

Lemma 5.1. For any nite group scheme G and any nite-dimensional G-representation V , the smash product $S_r(V)\#kG$ admits a unique cocommutative Hopf algebra structure (in V ect) such that the following conditions hold:

- (a) Each v 2 V is primitive.
- (b) The inclusion kG! $S_r(V)\#kG$ is a map of Hopf algebras.

Proof. The existence of such a Hopf structure follows by the discussion above. Cocommutativity follows from the fact that the two Hopf subalgebras $S_r(V)$ and kG are cocommutative, and that the multiplication map

mult:
$$S_r(V)$$

kG! $S_r(V)$ #kG

is a morphism, and hence an isomorphism, of coalgebras.

The fact that $S_r(V) \# kG$ is cocommutative tells us that it serves as the group ring for an associated nite group scheme.

Denition 5.2. For any nite group scheme G, and any nite-dimensional G-representation V, we dene the nite group scheme $_{V}(G;r)$ to be the unique such group scheme with associated group algebra

$$k_V(G;r) = S_r(V) \# kG$$
:

Said another way, v (G; r) is the spectrum of the dual Hopf algebra v

$$(G; r) = \operatorname{Spec}((S_r(V) \# kG)):$$

Note that the group scheme $_V(G;r)$ admits a normal subgroup $N_V(r)_V(G;r)$ which coresponds to the normal Hopf subalgebra $S_r(V)_V(G;r)$, and that we have an exact sequence of group schemes

1!
$$N_V(r)$$
! $V(G;r)$! G! 1: (8)

Lemma 5.3. Suppose that G is innitesimal, and let V be an any nite-dimensional G-representation. Then $_{V}(G;r)$ is innitesimal. Furthermore, if G is unipotent then $_{V}(G;r)$ is unipotent as well.

Proof. Take = $_V$ (G;r). As a coalgebra $k = S_r(V)$ kG. So the algebra of functions O() is the tensor product $S_r(V)$ O(G). Since $S_r(V)$ is a connected coalgebra, with primitive space Prim(S (V)) = f_V : 0 s < rg, it follows that the dual $S_r(V)$ is local. Since G is innitesimal the algebra O(G) is also local. Now, since a tensor product of nite-dimensional local kaugmented algebras is also local, we see that O() is local. Hence is innitesimal.

For arbitrary G, the maximal ideal m=(V) $S_r(V)$ is stable under the action of G, so that the ideal m kG k is nilpotent. Hence the Jacobson radical of k is the preimage of the Jacobson radical in kG along the surjection k! kG. It follows that if kG is local then k is local. So we see that is unipotent when G is unipotent.

We note, nally, that the group scheme $_V(G;r)$ can be dened entirely within the category of group schemes (rather than in the category of Hopf algebras). Indeed, the action of G on V induces an action on the r-th Frobenius kernel in the corresponding additive group scheme $V_a = (V; +)$, and hence on the Cartier dual $(N_V(r)) = V_{a(r)}$. We then recover $_V(G;r)$ as the semidirect product $V_{a(r)} = V_{a(r)}$. This construction is more in line with the standard perspective of, say, Jantzen's text [35]. However, what is of

interest to us is the algebra structure on $k_V(G;r)$. So the above Hopf algebraic presentation is suciently informative for our purposes.

5.2. Quasi-logarithms and a system of linear equivalences. We consider the above construction v(G;r) for the coadjoint representation of G.

Denition 5.4. For any nite group scheme G we dene

$$(G; r) := g(G; r);$$

where g is the coadjoint representation. Additionally, for any embedded 1-parameter subgroup $: G_{a(s);K} ! G_K$ we restrict the coadjoint representation of G_K along to dene

$$(G; r) := g_{\kappa}(G_{a(s);K}; r):$$

When no confusion will arise we will be even more casual in our presentation, and write simply

$$= (G; r); = (G; r) :$$

(We usually consider a Frobenius kernel $G=G_{(r)}$ and the associated group scheme (G; r), so that the parameter r is already clear from the con-text.) Note that for any embedded 1-parameter subgroup $: G_{a(r);K} ! G_K$ the product map ids K provides a natural inclusion of group schemes $(G;r) ! (G;r)_K$.

Lemma 5.5. Let G be a smooth algebraic group which admits a quasi-logarithm. Consider $G = G_{(r)}$, D = D(G), and = (G; r) at arbitrary r > 0.

Any choice of quasi-logarithm I for G species an isomorphism of augmented k-algebras a(I): k! D. Furthermore, for any 1-parameter subgroup: $G_{a(s);K}$! G_K , we have a corresponding isomorphism of augmented K-algebra a(I): K! D. These isomorphisms t into a diagram of algebra maps

$$\begin{array}{c|c}
K_{K} & \xrightarrow{a(L)_{K}} D_{K} \\
K & \xrightarrow{a(L)} D :
\end{array}$$
(9)

The augmentations considered above are, of course, the augmentations specied by the respective counits.

Proof. Take $S = S_r(g)$, with its G-action induced by the coadjoint action on g. Any quasi-logarithm I species a G-equivariant map of algebras a : S = O(G) which is an isomorphism on cotangent spaces $m_0 = m^2 + m_1 = m^2$. Indeed, a quasi-logarithm for G is a choice of equivariant section $g + m^2$ of the reduction map $m_1 + m_1 = m^2 = g$, and a_0 is the algebra map from the (truncated) symmetric algebra induced by this section. Since O(G) is

local, such a map is necessarily surjective. Since furthermore $dim(S) = dim(O(G)) = r^{dim(g)}$, it follows that a_0 is an isomorphism. Since both algebras in question are local, a_0 is an isomorphism of augmented algebras. (This point is also obvious from the construction of a_0 .)

We obtain the desired isomorphism a(I):k! D as the product $a(I)=a_0$ id_{kG} , and similarly a(I):K! D is the product $(a_0)_{K}$ id_{kG}

One sees directly that, since a_0 is an isomorphism of augmented algebras, a(I) and a(I) are also isomorphisms of augmented algebras.

As a consequence of the above lemma, we see that any choice of quasi-logarithm for the ambient group G species a \system of linear equivalences" for D, and its local family of Hopf subalgebras D .

Proposition 5.6. For G as in Lemma 5.5, there is an equivalence of k-linear, abelian categories L : rep(D) ! rep() which preserves the trivial representation L(k) = k. Furthermore, for any 1-parameter subgroup : $G_{a(s);K}$! G_K we have a corresponding equivalence of K-linear categories L : rep(D)! rep() which preserves the trivial representation, and ts into a diagram of exact linear functors

$$\begin{array}{c|c}
\operatorname{rep}(D_{K}) & & & \operatorname{rep}(K) \\
\operatorname{res} & & & & | & \operatorname{res} \\
\operatorname{rep}(D) & & & & \operatorname{rep}(C) \\
\end{array}$$

Proof. Dene L and L as restriction along the algebra isomorphisms a(I) and a(I) of Lemma 5.5, respectively.

For any 1-parameter subgroup
$$: G_{a(s);K} ! G_K$$
 we let
$$f^0 : j \ j ! \ jj$$

denote the corresponding map on projective spectra of cohomology. Specifically, we consider the composite

$$f^0 := j j \stackrel{[es}{j}_K j = j j_K ! j j :$$

Proposition 5.6 tells us that, at any 1-parameter subgroup $: G_{a(s);K} ! G$, the maps f^0 t into a diagram

of maps of k-schemes, where f is as in (6).

Now, from [61, Corollary 5.4.1] we understand that any closed embedding $_0$! $_1$ of group schemes induces a map on projective spectra of cohomol-ogy j_0j ! j_1j which is universally injective. The universal modier here

simply indicates that each base change j_0j_K ! jj_K is also injective. So the above diagram (11) implies the following basic result.

Proposition 5.7. Consider a smooth algebraic group G, and take $G = G_{(r)}$. Suppose that G admits a quasi-logarithm. Let $: G_{a(s)} !$ G be an embedded 1-parameter subgroup which is dened over k. Then the induced map on projective spectra of cohomology

is universally injective.

The system of equivalences (10), which we view as a family of equivalences parametrized by the space of 1-parameter subgroups in G, can be leveraged in quite substantive ways in an analysis of support for the double D. Indeed, the following two sections essentially argue this point in both the nite-dimensional and innite-dimensional context.

6. Support and tensor products for finite-dimensional representations

As in the previous section, we consider a Frobenius kernel G in a smooth algebraic group G which admits a quasi-logarithm. We prove that cohomological support for the Drinfeld double D = D(G) satises the tensor product property

Here V and W are specically nite-dimensional representations over D. This result appears in Theorem 6.11 below. Our proof of Theorem 6.11 relies on an analysis of cohomological support, and the tensor product property, for representations over the local family D $\,$.

For any given D we argue that the behaviors of cohomological support are, essentially, independent of the choice of coproduct. We elaborate on this point in Subsections 6.2 and 6.3 below.

In Section 7, we provide an extension of cohomological support, and of the identity (12), to the big representation category Rep(D). Such an extension allows us to apply methods of Rickard [57] to show that cohomological support can also be used to classify thick tensor ideals in the stable representation category for D.

6.1. Comparison with the -point support of Appendix A. Before we begin, let us make a few points of comparison between the material of this section and the material of Appendix A, for the -point orientated reader. In the appendix we produce a -point support theory for the double D, essentially by restricting to the local subalgebras D and considering such a theory for D .

We note that the proof of the tensor product property for cohomologi-cal support is, arguably, more dicult than the proof for -point support

(Theorem A.14 below). However, the proof that -support agrees with cohomological support uses precisely the same technology which is used in the proof of the tensor product property for cohomological support. So, depending on one's inclinations, one may view Theorem 6.11 below essentially as the claim that -point support and cohomological support agree for Drinfeld doubles of the prescribed form.

6.2. Supports and thick ideals for local Hopf algebras. Let A be a nite-dimensional, local, Hopf algebra. Suppose additionally that A has nite type cohomology.

For A as prescribed, the support (4) of a given nite-dimensional representation V can be computed as the support of the sheaf associated to the $\operatorname{Ext}_{\Delta}(k;k)$ -module $\operatorname{Ext}_{\Delta}(k;V)$, where we act via the rst coordinate

$$jAj_V = Supp_{jAj} Ext_{jk}(k; V)$$
: (13)

See for example [16, Proposition 5.7.1] or [50, Proposition 2]. That is to say, the support spaces jAj_V do not depend on the choice of Hopf structure on A.

Let us write $D^b(A)$ for the bounded derived category of nite-dimensional A-representations. Recall that a thick subcategory in $D^b(A)$ is a full triangulated subcategory which is closed under taking summands, and a thick ideal in $D^b(A)$ is a thick subcategory which is additionally closed under the (left and right) tensor actions of $D^b(A)$ on itself. The following lemma is strongly related to the above identication (13).

Lemma 6.1. Consider a nite-dimensional local Hopf algebra A which has nite type cohomology. Any thick subcategory in $D^b(A)$ is stable under the tensor action of $D^b(A)$ on itself. That is to say, the collection of thick ideals in $D^b(A)$ is identied with the collection of thick subcategories in $D^b(A)$.

Proof. Locality tells us that any complex V in $D^b(A)$ is obtainable from the trivial representation via a nite sequence of extensions. It follows that for any object W in $D^b(A)$, the product V

W is obtainable from W = k

W via a nite sequence of extensions. Hence V

W is contained in the thick subcategory generated by W, for arbitrary V and W in $D^b(A)$. Similarly, W

V is contained in the thick ideal generated by W.

Now, let K $\,\,$ D b (A) be any thick subcategory. By the above discussion we have

K K and K

V K for all V in $D^b(A)$. This shows that K is a thick ideal. Hence the inclusion

 $fthick\ ideals\ in\ D^{\,b}(A)g\ !\quad fthick\ subcategories\ in\ D^{\,b}(A)g$

is an equality.

We note that the denition of support (4) works perfectly well for arbitrary objects in the bounded derived category. Furthermore, when A is local the expression (13) remains valid for any V in $D^b(A)$.

For an exact triangle V ! W ! V^0 in $D^b(A)$, the long exact sequence in cohomology provides an exact sequence of $Ext_A(k;k)$ -modules

$$\operatorname{Ext}_{A}(k; V) ! \operatorname{Ext}_{A}(k; W) ! \operatorname{Ext}_{A}(k; V^{0})$$
:

So there is an inclusion of supports jAj_W (jAj_V [jAj_V 0) whenever we have such a triangle. Additionally, for any sum $V = V_1 \ V_2$ in D (\rlap/R) we have an equality $jAj_V = jAj_V \ _1$ [$jAj_V \ _2$. From these observations we deduce an inclusion

jAjw jAjv whenever W is in the thick subcategory generated by V:

Lemma 6.2. Consider a nite-dimensional local Hopf algebra A. For any V and W in $D^b(A)$ there is an inclusion

$$jAj_{(V)}$$

 $w_{)}$ $(jAj_{V} \setminus jAj_{W})$:

Proof. The object V

W is in the thick ideal generated by V , and hence the thick subcategory generated by V by Lemma (6.1). So $jAj_{(V)} = (6.1) \cdot (6.1)$

 $_{W})$ $jAj_{V} \setminus jAj_{W}$.

We note that the inclusion of Lemma 6.2 does not hold for an arbitrary Hopf algebra A. One can see for example [15].

Remark 6.3. The familiar reader is free to replace the derived category D^b(A) with the stable category stab(A) in the above discussion.

6.3. Classication of thick ideals for local algebras.

Denition 6.4. Let A be a nite-dimensional Hopf algebra which has nite type cohomology. We say that cohomological support for A classies thick ideals in $D^b(A)$ if an inclusion of supports jAj W jAj W for nonzero W and V in $D^b(A)$, implies that W is in the thick ideal generated by V in $D^b(A)$.

The supposition that W and V are nonzero (non-acyclic) is necessary to avoid issues with perfect complexes. Namely, any perfect complex has vanishing support, and yet the ideal of perfect complexes in $D^{\,b}(A)$ is not contained in the ideal of acyclic complexes. However, for nonzero V , we always have that perf(A) is contained in the thick ideal generated by V .

One can consider representation categories of nite group schemes, for example. In this case we understand [30] that cohomological support does in fact classify thick ideals in the associated derived category.

Theorem 6.5 ([30, Theorem 6.3]). For any nite group scheme G, cohomological support classies thick ideals in $D^b(G)$.

When G is furthermore unipotent, or rather when rep(G) is a local category, Theorem 6.5 and Lemma 6.1 combine to give the following.

Corollary 6.6. Suppose that G is a nite unipotent group scheme. Then thick subcategories in $D^b(G)$ are classied by cohomological support.

The following will prove quite useful in our analysis of support for the local Hopf algebras D .

Proposition 6.7. Let A be a nite-dimensional local algebra. Suppose that A admits a Hopf algebra structure for which cohomological support classies thick ideals in the derived category $D^b(A)$. Then under any choice of Hopf structure on A, and any choice of objects V and W in $D^b(A)$, we have an equality

$$jAj_{(V)}$$

 $w_{)} = jAj_{V} \setminus jAj_{W}$:

Proof. Let hXi denote the thick subcategory generated by a given object X in D b (A). For any object L in hV i the product L W is in hV Wi, and hence jAj $_{(L)}$ w)

 $_{\rm W}$). Consider a product of Carlson modules L for which $j{\rm A}j_{\rm L}=j{\rm A}j_{\rm V}$. Since cohomological support classies thick ideals, such equality of supports implies an equality hLi = hVi. Then by Proposition 2.12 we have

$$jAj_{(V)}$$
 $w_{)} jAj_{(L)}$
 $w_{)} = jAj_{L} \setminus jAj_{W} = jAj_{V} \setminus jAj_{W}$:

The opposite inclusion is covered by Lemma 6.2, so that we obtain the desired equality.

6.4. Implications for D . Fix a smooth algebraic group G which admits a quasi-logarithm and an arbitrary positive integer r. Let G be the r-th Frobenius kernel in G. We consider the Drinfeld double D = D(G).

For such G, we have the corresponding innitesimal group scheme = (G;r) of Denition 5.4, and for any 1-parameter subgroup : $G_{a(s);K}$! G_K we have an associated unipotent subgroup G_K . By Proposition 5.6, any choice of quasi-logarithm for G determines a compatible collection of linear equivalences

$$L : rep(D) ! rep() and L : rep(D) ! rep(); (14)$$

which preserve the unit objects in the respective categories

Since cohomological support for a local Hopf algebra depends only on the abelian structure on the representation category, we see that the diagram of (11) restricts to a diagram

$$jD \quad j_{V} \quad f \qquad jDj$$

$$= \left| \begin{matrix} L & & = \end{matrix} \right| L$$

$$j \quad j_{L} \quad v \quad f^{0} \qquad jJ;$$
(15)

for any V in $D^b(D$). Hence the discussions of Subsections 6.2 and 6.3 imply the following.

Proposition 6.8. Let G be as above, and x an embedded 1-parameter subgroup $: G_{a(s):K} ! G_K$. Then the following hold:

(1) Thick ideals in D^b(D) are classied by cohomological support.

(2) For any nite-dimensional D -representations V and W we have

$$jD j_{(V)}$$

 $w_1 = jD j_V \setminus jD j_W$:

Proof. From the linear equivalence L , Theorem 6.5, and Lemma 6.1, we understand that thick ideals in $D^b(D)$ are classied by cohomological support, establishing (1). A direct application of Proposition 6.7 now implies (2).

6.5. Restrictions of support and the tensor product property. As above, let G be the r-th Frobenius kernel in a smooth algebraic group G, and suppose that G admits a quasi-logarithm.

Lemma 6.9. Let L: rep(D)! rep() be the linear equivalence induced by a choice of quasi-logarithm for G. Then for any nite-dimensional D-representation V the isomorphism L: jj! JDj restricts to an isomorphism of supports jj_{LV} ! JDj_{V} .

Proof. Via the diagram of equivalences of Proposition 5.6, and Theorem 3.7, we understand that a -representation is projective if and only if its restriction to each of the is projective. We can therefore repeat the proof of Proposition 3.11 to obtain a reconstruction of support

$$jj_W = \int_{1-param subgroups}^{0} (j j_{W_K})$$

for any -representation W , where the $\mathsf{f}^0\,$ are the maps on projective spectra induced by restriction.

The above expression, and the analogous expression of Proposition 3.11 therefore imply the claimed equality. To argue this point more clearly, take a point x 2 jj_{LV} . Then x is in the image of some map $f^0:j_{LV}$! jj. It follows by the diagram (15) that L(x) 2 jDj is in the image of the corresponding map $f:jD_{JV}$! jDj. Hence L(x) 2 jDj_V . This gives an inclusion $L(jj_{LV})$ jDj_V^{κ} . Since this argument is completely symmetric, we obtain the opposite inclusion as well and nd that we have an identication $L(jj_{LV})$ = jDj_V .

Recall from Proposition 5.7 that, for any embedded 1-parameter subgroup which is dened over k, the map f : jD j! jDj is universally injective. Furthermore, in this case f is simply the map induced by restriction (i.e. it involves no base change).

Proposition 6.10. Consider any embedded 1-parameter subgroup $: G_{a(s)} !$ G which is dened over k, and identify jD j with a closed subscheme in jDj via the map induced by restriction (Proposition 5.7). Then for any nite-dimensional D-representation V we have

$$jD j_V = jD j \setminus jDj_V$$
:

Proof. By the diagram (15), and Lemma 6.9, it suces to check that we have an equality

$$j j_W = j j \setminus jj_W$$

for any nite-dimensional -representation W. However, the above equality follows from the analysis of support for innitesimal group schemes given in [61]{in particular [61, Corollary 5.4.1, Proposition 7.4].

We can now prove that cohomological support for the Drinfeld double D satises the tensor product property.

Theorem 6.11. Consider a Frobenius kernel $G = G_{(r)}$ in a smooth algebraic group G. Suppose also that G admits a quasi-logarithm. Then for any nite-dimensional D-representations V and W we have

$$jDj_{(V)}$$
 $W_{(V)} = jDj_{(V)} \setminus jDj_{(W)}$

Proof. Consider any point in the intersection x 2 $jDj_V \setminus jDj_W$, and let $: G_{a(s);K} ! G_K$ be any embedded 1-parameter subgroup for which x is in the image of the map jD j ! jDj. Let x^c 2 $jD_K j$ be any lift of x. Since the support of V_K (resp. W_K) over D_K is simply the preimage of jDj_V (resp. jDj_W) along the projection $jD_K j$! jDj, by Lemma 3.10, we have x^c 2 $jD_K j_V \setminus jD_K j_W$. So, by changing base, we may assume that x is in the image of jD j, where now $: G_{a(s)}$! G a 1-parameter subgroup which is dened over k.

Since x is in jDj_V , jDj_W , and jD j, Proposition 6.10 implies

$$x 2 jD j_V \setminus jD j_W$$
:

By the tensor product property for D $\,$, Proposition 6.8, we then have x 2 jD $j_{(V}$

 $_{W}$). From the inclusion jD j_{X} jD j_{X} , for arbitrary X, we see that x is in jD $j_{(V)}$ w). We therefore have an inclusion (jD j_{V} \ jD j_{W}) jD $j_{(V)}$ w).

For the opposite inclusion $jDj_{(V)}$ W) ($jDj_V \setminus jDj_W$), one can restrict to some choice of D and argue similarly. However, since the representation category rep(D) is braided, this opposite inclusion actually comes for free. See for example [17, Proposition 3.3].

7. Support and tensor products for infinite-dimensional representations

We consider support for innite-dimensional representations over the Drinfeld double D = D(G). The support theory which we employ is a kind of \hybrid theory", which we produce via the restriction functors rep(D)! rep(D) and the Benson-Iyengar-Krause (local cohomology) support theory for the D. We prove that this hybrid support theory detects projectivity of arbitrary D-representations, and admits a suciently strong tensor product property.

The results of this section provide the necessary foundations for our analysis of thick ideals in the (small) stable category stab(D) in Section 8.

7.1. Stable categories. Let A be a nite-dimensional Hopf algebra. We consider the stable categories stab(A) and Stab(A) for A. These are the quotient categories of rep(A) and Rep(A), respectively, by the tensor ideal consisting of all morphisms which factor through a projective.

In addition to the derived category $D^{\,b}(A)$ of nite-dimensional representations over A, we consider

 $D_{big}^{b}(A) = fThe$ bounded derived category of arbitrary A-representationsg:

We have canonical equivalences to the Verdier quotients

$$stab(A) ! D^b(A) = hproj(A)i; Stab(A) ! D^b_{big}(A) = hProj(A)i$$

[56], which provide the stable categories with triangulated structures. These equivalences also provide actions of the extension algebra $\text{Ext}_{\lambda}(k;k)$ on the stable representation categories

$$M : Ext(k; \overset{A}{k}) ! Hom_{Stab}(M; M) 8 M 2 Stab(A):$$

The inclusion stab(A)! Stab(A) is exact and fully faithful, and identies the small stable category with the subcategory of compact objects in Stab(A).

7.2. Local cohomology support. Let A be a nite-dimensional Hopf algebra with nite type cohomology. We suppose additionally that cohomological support for nite-dimensional A-representations satises the inclusion

$$jAj_V$$
_W $jAj_V \setminus jAj_W$: (16)

For example, we might consider A to be a local Hopf algebra with nite type cohomology (see Lemma 6.2).

Take E_A := Ext (k; k). As remarked above, we have natural actions of E_A on objects in the big stable category Stab(A), which collectively con-stitute a map to the graded center E_A ! $Z(Stab(A)) = End_{Fun}(id_{Stab(A)})$. Given this situation, we can consider the local cohomology support of Ben-son, lyengar, and Krause [10]. This support theory is dened via certain triangulated endofunctors $_p: Stab(A)$! Stab(A) associated to (arbitrary) points in the homogeneous spectrum jAj[fmg = $Proj(E_A)$ [fmg. Here m is the maximal ideal of all positive degree elements in E_A , i.e. the irrelevant ideal, and the homogeneous spectrum is topologized in such a way that m becomes the unique closed point, and the complement jAj to m is given its usual topology as the projective spectrum of cohomology. We have explicitly

$$supp_{\Delta}^{lc}(M) := fp 2 jAj [fmg : _{p}(M) = 0g$$
 (17)

[10, x5.1]. We note that the points p appearing in the above formula are not necessarily closed, and that supports of objects in Stab(A) are not necessarily closed in the space jAj [fmg.

Since the support theory (17) is dened via the vanishing of certain triangulated endofunctors, it behaves appropriately under sums, shifts, and exact triangles. Specically, the support of a sum M M^0 is the union of the sup-ports of M and M^0 , support is invariant under the shift automorphism, and

the support of an object N which ts into a triangule M ! N ! M^0 ! M is contained in the union $supp^{lc}(M)$ [$supp^{lc}(M^0)$.

The following lemma is implicit in the literature, though we did not nd a direct proof (cf. [10, x10]). So we give a proof here.

Lemma 7.1. Let A be as above. The irrelevant ideal m is not contained in the local cohomology support $\sup^{lc}(M_A)$ of any object in Stab(A). Further-more, for any nite-dimensional representation V there is an identication $\sup^{lc}(V) = jAj_V$.

Proof. Let S be the sum of all simple A-representations, and consider any point p in the homogeneous spectrum jAj [fmg. The Koszul objects S=p of [10] up а shift, the tensor S where L_p is a product of Carlson modules whose cohomological support is equal to the (projec-tivized) vanishing locus of p, $jAj_L = Z(p)$. In particular, L_m has vanishing cohomological support, and is thus projective Α. L_{m} over that S vanishes in the stable category, as does S=m.

We apply [10, Proposition 5.12] to see that vanishing of S=m implies vanishing of the stable morphisms $Hom_{Stab}(S; _m(M))$, for any M in Stab(A). Since Stab(A) is generated by the simple A-representations, vanishing of $Hom_{Stab}(S; _m(M))$ implies that $_m(M) = 0$ in the stable category. Hence m $2 = \sup_{A} (M)$ and we see that local cohomology support takes values in the projective spectrum jAj, as claimed.

We now consider the equality $\sup_A^{lc}(V) = jAj_V$ for nite-dimensional V. Let W be an arbitrary nite-dimensional representation. We have the natural map $f: Ext_A(W; V)$! $Hom_{Stab}(W; V)$ induced by the functor $D^b(A)$! Stab(A). This map has m-torsion kernel and cokernel (see e.g. [13, Eq. (2.3)]). It follows that f induces an isomorphism on all localizations $Ext_A(W; V)_p = Hom_{Stab}(W; V)_p$ at points p in the projective spectrum jAj. Hence by [10, Lemma 2.2] the homogeneous supports of these two objects, dened as in [10, x2], agree modulo a consideration of the maximal ideal m. (That is to say, the homogeneous supports have the same intersection with jAj.) We consider the case where W is the sum of the simples, and note again that $m \ge \sup_A^{lc}(V)$, to observe nally that $\sup_A^{lc}(V) = jAj_V$ by [10, Theorem 5.13].

By Lemma 7.1 we can now consider local cohomology support supp $_{\rm A}^{\rm lc}$ as a support theory which takes values in the projective, rather than homogeneous spectrum. Indeed, we can simply omit the extraneous point m from the denition and write simply

$$supp_A^{lc}(M) = fp 2 jAj : p(M) = 0g jAj$$
:

We understand furthermore that the support supp^{lc}_Aprovides an extension of cohomological support, which we only dene for the small stable category, to all of Stab(A).

By pulling back along the quotient $D_{big}^b(A)$! Stab(A), we may consider local cohomology support supple as a support theory which takes A-complexes as inputs as well.

Theorem 7.2 ([10]). For A as above, the following hold:

- (1) M vanishes in Stab(A) if and only if supp $_{\Delta}^{lc}(M) = ;$.
- (2) For arbitrary M and N in $D_{big}^{b}(A)$, local cohomology support satises

$$supp_A^{lc}(M A A A$$

N) $supp^{lc}(M) \setminus supp^{lc}(N)$:

Proof. Statement (1) is covered in [10, Theorem 5.13]. For the claimed inclusion (2), we note that for any specialization closed subset jAj the containment (16) tells us that the subcategory

$$K := fV \text{ in } stab(A) : jAj_V g$$

is a thick ideal in stab(A). Thus one follows the proof of [10, Theorem 8.2] to see that

$$_{p}(M$$
 $N) = M$
 $_{p}(N) = _{p}(M)$

From the above equation, and the denition of the support $supp_A^{lc}$, we deduce the inclusion of (2).

7.3. -local support for D-representations. Consider an innitesimal group scheme G, with associated Drinfeld double D = D(G). Let M be an object in the bounded derived category $D_{big}^b(D)$ of arbitrary D-representations, and recall the maps $f:jD\ j!\ jDj$ induced by restriction (6). We dene the support

$$supp^{-loc}(M) := \begin{cases} f & supp_D^{lc} \text{ (res } M_K) ; \end{cases} (18)$$
1-param subgroups

where the union runs over all embedded 1-parameter subgroups $: G_{a(s);K} !$ G_K , and res $: rep(G_K) !$ $rep(G_{a(s);K})$ denotes the restriction functor. As in Proposition 3.11, (18) denes the support supp $^{-loc}(M)$ as a union of subsets in the projective spectrum of cohomology jDj.

We refer to the support (18) as the -local support of M. Note that this support takes values in the projective spectrum of cohomology jDj. By pulling back along the quotient map

we freely consider the -local support as a support theory for the bounded derived category of arbitrary D-representations as well.

Remark 7.3. We have used a boldface in our notation to indicate that might be thought of as a coordinate which ranges over the space of 1-parameter subgroups.

We list some basic properties of -local support.

Lemma 7.4. For any innitesimal group scheme G, -local support satises the following:

 $\begin{aligned} & \text{supp}^{-loc}(\mathsf{M}) = \;; \; \text{if and only if M vanishes in the stable category} \\ & \text{Stab}(\mathsf{D}). \\ & \text{supp}^{-loc}(\mathsf{M} \; \mathsf{N}) = \; \text{supp}^{-loc}(\mathsf{M}) \left[\; \text{supp}^{-loc}(\mathsf{N}). \right. \\ & \text{For any triangle M} \; ! \; \mathsf{N} \; ! \; \mathsf{M}^0, \\ & \text{supp}^{-loc}(\mathsf{N}) \; \text{supp}^{-loc}(\mathsf{M}) \left[\; \text{supp}^{-loc}(\mathsf{M}^0) : \right. \\ & \text{supp}^{-loc}(\mathsf{M}) \setminus \; \text{supp}^{-loc}(\mathsf{N}). \\ & \text{supp}^{-loc}(\mathsf{M}) = \; \text{supp}^{-loc}(\mathsf{M}). \end{aligned}$

In the above formulas M , M 0 , and N are arbitrary objects in D $^b_{big}(D)$.

Proof. The rst point follows by the projectivity test of Theorem 3.7, and the detection propert for local cohomology support over D . The four subsequent points follow directly from the corresponding properties for the local cohomology supports supploped , and the fact that restriction is an exact tensor functor. The nal point follows from the identication supploped (${}_D\!V_K$) = jD j_{V_K} and the reconstruction formula of Proposition 3.11.

7.4. -local support and tensor products.

For any V in $D^b(D)$, supp $^{-loc}(V) = jDj_V$.

Theorem 7.5. Consider a Frobenius kernel G in a smooth algebraic group G. Suppose that G admits a quasi-logarithm. Then for any object V in $D^b(D)$, and any M in $D^b_{big}(D)$, we have

supp
$$^{-loc}(V M) = \text{supp }^{-loc}(V) \setminus \text{supp }^{-loc}(M)$$
: (19)

Note that, since Rep(D) is a braided monoidal category, an identication (19) implies the corresponding equality for the action of nite-dimensional representations (or complexes) on the right

supp
$$^{-loc}(M V) = supp ^{-loc}(M) \setminus supp ^{-loc}(V);$$

simply because V M = M

V. In the language of [45, Denition 4.7], we are claiming that cohomological support for D is a lavish support theory for the stable category stab(D).

Before proving Theorem 7.5, we prove its local analog.

Proposition 7.6. Let G be as in the statment of Theorem 7.5, and consider an embedded 1-parameter subgroup $: G_{a(s)} ! G$ which is dened over k. Then for W in $D^b(D)$, and N in $D^b(D)$ (D) by local cohomology support satisfies

Proof. It suces to prove the inclusion

$$supp_D^{lc}$$
 (W)\ $supp_D^{lc}$ (N) $supp_D^{lc}$ (W),

since the opposite inclusion follows by Theorem 7.2. Since the local cohomology support is dened via the vanishing of the exact endomorphisms , we understand that if Q^0 in Stab(D) is in the thick subcategory generated by Q then $supp^{lc}$ (Q^0_D) $supp^{lc}$ (Q). So it suces to prove that there is an equality

$$supp_D^{lc}$$
 (W) \ $supp_D^{lc}$ (N) = $supp_D^{lc}$ (LN)

for some L in the thick subcategory generated by W in stab(D).

Let L be a product of Carlson modules such that $supp_D^{lc}$ (L) = $supp_D^{lc}$ (W). By Lemma 6.1 and Proposition 6.8, the object L is in the thick subcategory generated by W in stab(D) and thus L

N is in the thick subcategory generated by W N in Stab(D).

Recall that, in the stable category, the Carlson module L associated to an extension : $k \,! \, ^n k$ is isomorphic to a shift of the mapping cone cone(). So by [12, Lemma 2.6] we have

for any such L. It follows that, for our product of Carlson modules L, we have

as desired.

We now prove our theorem.

Proof of Theorem 7.5. We have already observed one inclusion in Lemma 7.4. So we need only establish the inclusion

supp
$$^{-loc}(V) \setminus \text{supp }^{-loc}(M) \text{ supp }^{-loc}(V M)$$
: (20)

Consider any point x in the above intersection, and choose an embedded subgroup : $G_{a(s);K}$! G_K for which x is the image of a point x^0 2 \sup_{D}^{lc} (M_K). The naturality property

$$supp_{D}^{lc}(V_K) = jD j \setminus jD_K j_{V_K}$$

of Proposition 6.10 implies that x^0 is in $supp_D^{lc}$ (V_K) as well. (See also Lemma 3.10.) We apply the equality

of Proposition 7.6 to see that x^0 2 supple (V_k M_K), and hence x 2 supp

M) by the denition of the -local support. We thus verify the inclusion (20), and obtain the proposed tensor product property.

8. Thick ideals and the Balmer spectrum

We provide a classication of thick ideals in the stable category stab(D), for D the Drinfeld double of an appropriate Frobenius kernel. We then apply results of Balmer to calculate the spectrum of prime ideals in the stable category stab(D). In particular, we show that thick ideals are classied by specialization closed subsets in the projective spectrum of cohomology jDj, and we show that the Balmer spectrum is isomorphic to the cohomological spectrum jDj as a locally ringed space.

8.1. Classication of thick ideals and prime ideal spectra. Let D be the Drinfeld double of a nite group scheme. Recall that a specialization closed subset in jDj = Proj Ext (k; k) is a subset which contains the closures of all of its points. Equivalently, a specialization closed subset is an arbitrary union of closed subsets in jDj.

For any specialization closed subset in jDj we have the associated thick ideal

$$K := fV \ 2 \ stab(D) : jDj_V \ g$$

in the stable category stab(D). To see that K is in fact closed under the tensor actions stab(D) on the left and right, one simply consults the inclusion $jDj_{V} \label{eq:constraint}$

 $_{\rm W}$ (jDj $_{\rm V}$ \ jDj $_{\rm W}$) provided by the braiding on rep(D) [17, Proposition 3.3]. Similarly, for any thick ideal K stab(D) we have the associated support space

$$\mathsf{j}\mathsf{D}\mathsf{j}_\mathsf{K} := [\mathsf{v}_\mathsf{2}\mathsf{K}\;\mathsf{j}\mathsf{D}\mathsf{j}_\mathsf{V};$$

which is a specialization closed subset in jDj. We note that the formal properties of cohomological support imply an equality $jDj_V = jDj_{hVi}$ between the support of a given object V, and the support of the thick ideal hVi which it generates in stab(D).

The two above operations dene maps of sets

which preserve the respective orderings by inclusion. In rephrasing Denition 6.4, we say cohomological support for D classies thick ideals in stab(D) if the two maps in (21) are mutually inverse bijections.

At this point it is a formality to deduce a classication of thick ideals in the stable category stab(D) from the support theoretic results of Lemma 7.4 and Theorem 7.5. One can see for example [57]. We follow the generic presentation of [45].

Theorem 8.1. Consider a smooth algebraic group G which admits a quasi-logarithm, and let G be a Frobenius kernel in G. Then, for the Drinfeld double D = D(G), cohomological support classies thick ideals in the stable category $\operatorname{stab}(D)$. That is to say, the two maps of (21) are mutually inverse bijections.

Proof. Theorem 7.5 tells us that cohomological support is a lavish support theory for stab(D), in the language of [45, x4.3]. So the claimed classication follows by [45, Proposition 5.2]. (Note that all of the centralizing hypotheses in [45] are obviated by the existence of a braiding on rep(D).)

We note that, by pulling back along the projection : $D^b(D)$! stab(D), we can similarly use cohomology to classify thick ideals in the bounded derived category for D. Namely, under the map thick ideals in stab(D) are identied with thick ideals in $D^b(D)$ which contain the ideal perf(D) of bounded complexes of projectives. This subcollection of ideals in $D^b(D)$ is precisely the collection of nonvanishing ideals in $D^b(D)$. So we obtain a classication

fthick ideals in D^b(D)g = fspecialization closed subsets in jDjg [f0g:

8.2. Prime ideal spectra for Drinfeld doubles. Consider again the Drinfeld double D of a nite group scheme G.

We recall that the sublattice of thick prime ideals in stab(D) forms a locally ringed space, which is referred to as the Balmer spectrum

```
Spec(stab(D)) := the collection of thick prime ideals in stab(D) with the topology and ringed structure described in [4]
```

As one might expect, by a thick prime ideal in stab(D) we mean a proper thick ideal P for which an inclusion V

W 2 P implies either V 2 P or W 2 P. We do not recall the topology or the ringed structure on the spectrum here, and refer the reader instead to the highly readable text [4, x1, x6].

As explained in [4, 5], a classication of thick ideals in stab(D) via co-homological support implies a corresponding calculation of the prime ideal spectrum.

Theorem 8.2. For G as in Theorem 8.1, there is a homeomorphism

```
f_{coh}: jDj = Proj Ext_D(k; k) -! Spec(stab(D))
```

dened by taking $f_{coh}(x) = fV \ 2 \ stab(D) : x \ge jDj_V g$. Furthermore, f_{coh} can be upgraded to an isomorphism of locally ringed spaces.

Proof. Given Theorem 8.1, the fact that f_{coh} is a homeomorphism follows from [4, Theorem 5.2]. By [5, Proposition 6.11], the homeomorphism f_{coh} furthermore enhances to an isomorphism of locally ringed spaces. To elaborate, in [5, Denition 5.1, 6.10] a map of ringed spaces : Spec(stab(D)) ! jDj is constructed. One sees directly that the composite f_{coh} : jDj ! jDj is the identity, as a map of topological spaces. Since f_{coh} is a homeomorphism, we see that is a homeomorphism as well. It follows by [5, Proposition 6.11] that is an isomorphism of (locally) ringed spaces, and so provides the homeomorphism $f_{coh} = {}^1$ with ringed structure under which it is also an isomorphism of locally ringed spaces.

Remark 8.3. In [4, 5] Balmer only considers symmetric tensor triangulated categories. However, all of the denitions, results, and proofs from [4, 5] apply verbatim in the braided context. So, implicitly, we use the fact that rep(D) = Z(rep(G)) admits a canonical (highly non-symmetric!) braided structure in the denition (22), and also in the proof of Theorem 8.2. One can alternatively refer to [45, x6] and in particular [45, Theorem 6.10].

Appendix A. A -point rank variety for the Drinfeld double

We introduce a -point rank variety (D) for the Drinfeld double D, whose points consist of certain classes of at algebra maps $K[t]=(t^p) \mid D_K$. For any D-representation V we construct an associated support space (D)_V in (D). We show that the support theory V $\mid (D)_V$ behaves in the expected manner when we consider the Drinfeld double of a Frobenius kernel $G = G_{(r)}$ in a suciently nice algebraic group G. In particular, the support space (D)_V vanishes if and only if the given representation V is projective, and the support spaces satisfy the tensor product property

$$(D)_V$$

 $W = (D)_V \setminus (D)_W$:

Furthermore, we establish an identication with cohomological support (G)? ! = jDj?. We also show that our -support can be identied with a certain \uni-versal" -point support, which we dene in Section A.5.

Since these results of this section are isolated from those of the body of the text, in a technical sense, we collect them here in an appendix.

A.1. -points and support for nite group schemes. Throughout this subsection G is a nite group scheme over our base eld k. We recall some denitions and results from [30].

Denition A.1. A -point for a nite group scheme G, over k, is a pair of a eld extension $k \mid K$ and a at algebra map : $K[t]=(t^p) \mid KG$ which factors through the group ring of an abelian, unipotent subgroup U G_K .

We generally abuse notation and simply write for the pair (K=k;). Any point denes a corresponding point p in the projective spectrum of cohomology jGj, which is explicitly the homogeneous prime ideal

$$:= \ker \operatorname{Ext}_{G}(k;k) ! \operatorname{Ext}_{G_{K}}(K;K) ! \operatorname{Ext}_{G_{K}}(K;K) : \operatorname{Ext}_{K[t]=t^{p}}(K;K)_{red} = K[T] :$$
(23)

In the above formula T is a variable of cohomological degree 2 (or 1 in characteristic 2). Flatness of the extension ensures that the ideal p is not all of $\operatorname{Ext}_G^{>0}(k;k)$, so that p does in fact dene a point in the projective spectrum [29, Lemma 3.4] (cf. [1, Theorem 3.2.1]).

Denition A.2. For a given nite group scheme G, we say two -points : $K[t]=(t^p)$! $K[T]=(t^p)$! $L[T]=(t^p)$! $L[T]=(t^p)$! $L[T]=(t^p)$ dimensional G-representation V which restricts to a projective $K[T]=(t^p)$ -representation res (V_K) along also restricts to a projective $L[T]=(t^p)$ -representation res (V_L) along , and vice versa.

We let (G) denote the collection of equivalence classes of -points

$$(G) = f[] : K[t] = (t^p) ! KG is a -point for Gg:$$

For any nite-dimensional G-representation V we dene the -support space $(G)_V$ as

$$(G)_{V} = f[] : res(V_{K})$$
 is non-projective over $K[t] = (t^{p})g$:

The collection of subsets $f(G)_V: V \ 2 \ rep(G)g$ in (G) is closed under nite unions, since $(G)_V \ [(G)_W = (G)_V \ W$. Hence there is a uniquely dened topology on (G) for which the supports of objects $(G)_V$ provide a basis of closed subsets.

Theorem A.3 ([30, Theorem 3.6]). If two -points and for G are equiv-alent, then the corresponding points p; p 2 jGj are equal. Furthermore, the resulting map

is a homeomorphism, and for any nite-dimensional representation V this homeomorphism restricts to a homeomorphism $(G)_V \mid [G]_V$.

Note that Theorem A.3 tells us that the topological space (G) is Noetherian. Hence the basic closed sets $f(G)_V g_{V 2rep(G)}$ in (G) provide the collection of all closed sets in (G) [30, Proposition 3.4].

Remark A.4. One of the main advancements of [30] is the observation that one can reasonably dene support spaces $(G)_M$ for innite-dimensional Grepresentation M. So, the above presentation omits some of the more signicant aspects of [30]. One can see Remark A.12 below for additional context.

Remark A.5. For innitesimal G, a direct comparison between -point support and the rank variety support theory of [61] can be found at [27, Theorem 1.2].

A.2. -point support for D . We consider an innitesimal group scheme G, with corresponding Drinfeld double D = D(G).

Denition A.6. Consider any innitesimal group scheme G, and x an embedded 1-parameter subgroup $: G_{a(s)} !$ G which is dened over k. A point for D is a pair of a eld extension k! K, and a at algebra map $: K[t]=(t^p) !$ (D)_K such that

(a) there exists an algebra identication D = kH between D and the group algebra of a nite group scheme H over k.

(b) under some identication as in (a), corresponds to a -point for the given group scheme H.

Statements (a) and (b) above can alternately be stated as follows: a point for D is a at algebra map : $K[t]=(t^p)!$ (D) $_K$ which is a -point for D relative to some alternate choice of cocommutative Hopf structure 0 on D . We note that any group scheme H as in (a) is necessarily unipotent, since D is local.

We say two -points : $K[t]=(t^p)$! (D)_K and : $L[t]=(t^p)$! (D)_L for D are equivalent if any nite-dimensional D -representation V with projective restriction res(V_K) also has projective restriction res(V_L), and vice versa. We dene the -point space in the expected manner

(D) =
$$f[]: K[t]=(t^p)!$$
 (D) k is a -pointg;

and for any nite-dimensional D $\,$ -representation V $\,$ we dene the -support space

(D)_V = f[] : res(V_K) is non-projective over K[t]=(
$$t^p$$
)g:

We note that if D admits no such identication with a group algebra kH, as required in Denition A.6 (a), then the space (D) is necessarily empty. We topologize the space (D) via the basis of closed sets $f(D)_V$:

V in rep(D)g. As in (23), one sees that each -point denes a corresponding point p in the cohomological support space jD j.

Lemma A.7. If two -points and for D are equivalent, then their corresponding points p and p in jD j are equal. Furthermore, whenever the -point space (D) is non-empty, the map

is a homeomorphism and for any nite-dimensional D $\,$ -representation V this homeomorphism restricts to a homeomorphism (D $)_V$! $\,$ jD $\,$ j_V $\,$.

Proof. If D admits no cocommutative Hopf structure then the space (D) is empty, and there is nothing to prove. So let us suppose that D admits the necessary alternate Hopf structure.

Consider any cocommutative Hopf structure 0 on the underlying algebra D , and corresponding identication D = kH. Since H is necessarily unipotent, as D is local, the cohomological support spaces agree jHj_V = jD j_V for all V in rep(D) = rep(H). (See Section 6.2.)

Now, Theorem A.3 tells us that a H-representation V is non-projective at a -point 0 for H if and only if p_0 2 jHj_V . So by the above information we see that a D -representation V is non-projective at a -point if and only if p 2 jD j_V . Hence two -points and for D are equivalent if and only if p = p. This shows that the map (D) ! jD j is well-dened and injective. The map is furthermore surjective since, if we consider our identication D = kH, the map (H) ! jHj(=jD) is surjective, meaning every point in the cohomological support space is represented by a point : $K[t]=(t^p)$! $KH=(D)_K$.

Based on the presentation of Section 5.2, we understand that D admits a cocommutative Hopf structure whenever G is a Frobenius kernel in a smooth algebraic group which admits a quasi-logarithm. So Lemma A.7 tells us that we have an identication of support theories $(D)_? = jD j_?$ in this case. In particular, the above lemma is not vacuous.

A.3. -point support for D. Fix an innitesimal group scheme G and D = D(G).

Denition A.8. A -point for D is a pair of an embedded 1-parameter subgroup $: G_{a(s);K} ! G_K$ and a -point $: K[t] = (t^p) ! D$, dened as in Denition A.6.

For any given -point (;), we are particularly concerned with the composition $K[t]=(t^p)$! D_K of the map $:K[t]=(t^p)$! D with the inclusion D! D. So we generally identify a -point with its associated at map $K[t]=(t^p)$! D_K , and simply write $:K[t]=(t^p)$! D_K by an abuse of notation.

Denition A.9. Two -points : $K[t]=(t^p)$! D_K and : $L[t]=(t^p)$! D_L are said to be equivalent if any nite-dimensional representation V which restricts to a projective $K[t]=(t^p)$ -representation res (V) along also re-stricts to a projective $L[t]=(t^p)$ -representation res (V_L) along , and vice versa.

We dene the space of equivalence classes of -points (D) =

$$f[]: K[t]=(t^p)! D_K is a -pointg;$$

and for any nite-dimensional D-representation V we dene the -support

$$(D)_V = f[] : res(V_K)$$
 is non-projectiveg:

The space (D) is topologized via the basis of closed sets provided by the supports (D) $_{\rm V}$ of all nite-dimensional D-representations.

As in (23), any -point: $K[t]=(t^p)$! D_K denes an associated point p 2 jDj in the cohomological support space. One employs Carlson modules exactly as in [30, Proposition 2.9] to see that the two points p and p agree whenever and are equivalent. So we nd

Proposition A.10. There is a well-dened continuous map

For any nite-dimensional D-representation V, the above map restricts to a map between support spaces (D) $_{V}$! jDj $_{V}$.

Proof. As stated above, well-denedness can be argued as in [30]. The fact that $(D)_V$ is mapped to jDj_V can be reduced to the corresponding claim for support over the D , which is covered in Lemma A.7.

All that is left is to establish continuity of w. For continuity, we note that any closed set in jDj is the support jDj_L of a product of Carlson modules.

The naturality properties of Lemma 2.14 then gives w $^{1}(jDj_{L}) = (D)_{L}$. This shows that the preimage of any closed set in jDj along w is closed in (D).

One can see from Theorem 3.7, and the arguments used in the proof of Proposition A.10, that the map (D) ! jDj is in fact surjective when G is a Frobenius kernel in a suciently nice algebraic group G. We leave the details to the interested reader, as we will observe a stronger result in Theorem A.15 below. As a related nding, we have the following.

Theorem A.11. Suppose that G is a Frobenius kernel in an algebraic group G, and that G admits a quasi-logarithm. Then a given nite-dimensional D-representation V is projective if and only if $(D)_V = :$

Proof. By Theorem 3.7, V is projective if and only if its restrictions to all D are projective. The hypothesis on G, and Lemma 5.5, ensure that at all 1-parameter subgroups the algebra D admits an (alternative) cocommutative Hopf structures. Hence, by Lemma A.7, V_K is projective over D if and only it V_K is projective at all -points for D . Taking this information together, we see that V is projective over D if and only if V is projective at all -points : $K[t]=(t^p)$! D_K for D.

Remark A.12. There are ways to dene the -support (D)_M of an arbi-trary (possibly innite-dimensional) D-module M so that Theorem A.11 re-mains valid at arbitrary M. However, it is unclear whether or not the equiv-alence relation on -points $K[t]=(t^p)$! D_K dened via nite-dimensional representations agrees with the analogous one dened via arbitrary modules (cf. [30, Theorem 4.6]). Rather, in the language of [30], it is unclear whether equivalent -points are in fact strongly equivalent. So we do not know if the support space (D)_M can be dened in such a way that depends only on the classes [] of -points, and not the -points themselves. We there-fore leave a discussion of -point support for innite-dimensional modules to some later investigation.

A.4. Tensor product properties and comparison with cohomological support. As discussed in subsection 6.1, one can read the material of Section 6 through the alternate lens of -point support. In particular, the arguments of Section 6 imply that -point support behaves well with respect to tensor products, and also agrees with cohomological support (cf. [29, 30]). We have the following.

Proposition A.13. For any innitesimal group scheme G, and embedded 1-parameter subgroup $: G_{a(s)} ! G$, -point support for D satises the tensor product property

$$(D)_V$$

 $W = (D)_V \setminus (D)_W$:

Proof. If (D) is empty there is nothing to prove. If (D) is non-empty, then -point support for D is identied with cohomological support, via

Lemma A.7. So the result follows by the tensor product property for cohomological support provided in the (proof of) Proposition 6.8.

An important reading of Proposition A.13 is the following: given a point : $K[t]=(t^p)$! D , and D -representations V and W, the restriction res(V

W) is non-projective if and only both res(V) and res(W) are non-projective. Since -point support for the global algebra D is itself dened via -points for the varying D , the following result is immediate.

Theorem A.14. For any innitesimal group scheme G, -point support for D satises the tensor product property

$$(D)_V$$

 $W = (D)_V \setminus (D)_W$:

Finally, when G is a Frobenius kernel in a suciently nice algebraic group G, we nd that -point support is identied with cohomological support.

Theorem A.15. Suppose that G is a Frobenius kernel in an algebraic group G, and that G admits a quasi-logarithm. Then the map w:(D)! jDj of Proposition A.10 is a homeomorphism, and restricts to a homeomorphism $(D)_V$! jDj_V for all nite-dimensional D-representations V.

Proof. Let w:(D)! jDj denote the map []! p of Proposition A.10. Under the above hypotheses Lemma 5.5 tells us that all D have non-vanishing -support spaces (D). So Lemma A.7 tells us that -supports and cohomological supports are identied for all D .

Suppose we have two -points; 2 (D) for which p = p. Let V be any representation which is non-projective at . Write explicitly : $K[t]=(t^p)$! D ! D_K and : $K^0[t]=(t^p)$! D 0 ! D_K0. Since, at any embedded 1-parameter subgroups , the composites

are both given by [] ! p, i.e. since the two composites agree, Proposi-tion 6.10 ensures that [] 2 (D) $_V$ and [] 2 (D $_0$) $_V$ $_0$. Rather, both res(V $_K$) and res(V $_K$ 0) are non-projective. Since V was chosen arbitrarily, this shows is equivalent to . So we see that w is injective. Surjectivity follows from Proposition 3.11, applied to V = k.

We understand now that w:(D)! jDj is a bijection of sets. One argues similarly to see that each restriction $(D)_V$! jDj_V is a bijection. Finally, since all basic closed subsets in (D) and jDj are realized as supports of nite-dimensional representation, we see that w is in fact a homeomorphism.

A.5. Comparing with a universal -point space. Consider the Drinfeld double D of an arbitrary nite group scheme{or really any Hopf algebra. We have a universal denition of \-points", from the perspective of classifying thick tensor ideals in the stable category. Namely, we consider all at algebra maps: $K[t]=(t^p)$! D_K which satisfy the tensor product property:

 $(TPP) res(V_K)$

 W_K) is non-projective if and only if both $res(V_K)$ and $res(W_K)$ are non-projective.

As with our other classes of -points, we consider the space (D) of equivalence classes of all such universal -points, and topologize this space in the expected way. To be clear, our equivalence relation for universal -points is dened exactly as in Denition A.9, where we simply replace \-point" with \universal -point" in the denition. We have the supports

$$(D)_V = f[] : res(V_K)$$
 is non-projectiveg

and corresponding support theory $V ! (D)_V$.

One notes that the class of universal -points is chosen in the coarsest possible way to ensure that the tensor product property

holds, and to ensure that the support

 $(D)_V$ depends only on the class of V in the stable category.

Now, if we specically consider the Drinfeld double of an innitesimal group scheme, Theorem A.14 tells us that any -point : $K[t]=(t^p)$! D_K as in Denition A.8 is a universal -point. Furthermore, the equivalence relations on -points and universal -points are exactly the same. So we obtain a topological embedding : (D) ! (D) for which we have

 $(D)_{V} = (D) \setminus$

$$(D)_V$$
; (24)

simply by the denitions of these supports.

Theorem A.16. Suppose that G is a Frobenius kernel in an smooth algebraic group G, and that G admits a quasi-logarithm. Then the inclusion : (D) !

- (D) is a homeomorphism, and all of the restrictions $_{V}$: (D) $_{V}$! (D) $_{V}$ are also homeomorphisms.
- Proof. Take Z = stab(D), and recall the isomorphism w:(D)! jDj of Theorem A.15. By the universal property of the Balmer spectrum [4, Theorem 3.2], and Theorem A.14, we have continuous maps to the Balmer spectrum f: (D) ! Spec(Z) and f
- (D) ! Spec(Z) which are compat-ible, in the sense that f = f. Similarly, the map f_{coh} : jDj ! Spec(Z) of Theorem 8.2 is such that f_{coh} w = f. Since w and f_{coh} are homeo-morphisms, by Theorems 8.2 and A.15, we see that f is a homeomorphism. Since f factors through f , we see that f
- (D) ! Spec(Z) is surjec-tive. We claim that this surjection is in fact a bijection.

```
We have explicitly,
               () = fV 2 Z :[] ≥
               (D)<sub>V</sub> g
                       = fV 2 Z : res(V_K) is projectiveg
                                    3.2].
                                                                        f
[4,
               Theorem
                                                     Hence
()
() implies that any D-representation with projective restriction along also
       projective
                                   along
                                           , and
has
                     restriction
                                                        vice
                                                                   versa.
                 So, by denition, the two classes agree [] = [].
                                                                      So
                                               that
                                                                        f
we
 is injective, and therefore a bijection. It follows that :
```

(D) !

(D) is a bijection. Since is a topological embedding, this bijection is furthermore a homeomorphism. The fact that all of the restrictions (D) $_{\rm V}$! (D) $_{\rm V}$ are homeomorphisms as well follows by the intersection formula (24).

We collect our results about the support theory (D)? from above to nd the following, somewhat remarkable, corollary.

Corollary A.17. Fix G as in Theorem A.16, and D the corresponding Drinfeld double. Then

- (1) D admits enough universal -points, in the sense that a D-representation V is projective if and only if its restriction res $(V)_{K}$ along each uni-versal -point : $K[t]=(t^{p})!$ D K is projective.
- (2) The natural map w :

 (D)! jDj, []! p, is a homeomorphism. In particular, the universal point space

 (D) has the structure of a projective scheme.
- (3) Any at map : $K[t]=(t^p)$! D which satisfs the tensor product property (TPP) is equivalent to one of the form required in Dention A.8.

Of course, the issue with the universal -support

- (D)?, in general, is that it is dicult to understand the space
- (D) explicitly, or even to understand when this space is non-empty. So, one needs a practical con-struction of -points, as above, in order to populate
- (D) with enough points, and in order to see that this theory carries signicant amounts of information.

Remark A.18. For a general Hopf algebra A, we can dene the universal point support theory (A)_V exactly as above. We make no claim that this theory is well-behaved, or even non-vacuous in general. However, it is interesting that there are even any examples in characteristic 0 where one has enough universal -points. For example, the results of [51] imply that the support theory (A)_? satises the conclusions of Corollary A.17 (1) & (2), for A a \quantum elementary abelian group" over C. Similarly, for nite group schemes, one can argue as in the proof of Theorem A.16 to see that the standard -point support theory (G)? and universal theory (G)? agree.

A.6. Remaining questions. At this point we have recorded a number of non-trivial results concerning -points and support for Drinfeld doubles of (some) innitesimal group schemes. We record a number of remaining questions which the reader may consider.

Question A.19. (1) Can one provide an intrinsic proof of the tensor product property of Theorem A.14, i.e. one which follows from a direct analysis of -points, and does not reference an auxiliary support theory? (Compare with [29, 50, 26].)

- (2) Does the Drinfeld double of a general innitesimal group scheme G admit enough (universal) -points, in the sense of Corollary A.17 (1)?
- (3) Is there a reasonable extension of -point support $(D)_M$ to innite-dimensional M? In particular, does there exist such a denition which reproduces the tensor product property

 $(D)_{M}$

 $_{N} = (D)_{M} \setminus (D)_{N}$ at arbitrary M and N?

Of course, question (3) has to do with one's (in)ability to use -point support in certain tensor triangular investigations, as in Section 8 and [11, 9, 8, 7] for example.

References

- [1] N. Andruskiewitsch, I. Angiono, J. Pevtsova, and S. Witherspoon. Cohomology rings of nite-dimensional pointed Hopf algebras over abelian groups, I & II. preprint arXiv:2004.07149.
- [2] N. Andruskiewitsch and H.-J. Schneider. Pointed Hopf algebras. available at arXiv:0110136.
- [3] G. S. Avrunin and L. L. Scott. Quillen stratication for modules. Invent. Math., 66(2):277{286, 1982.
- [4] P. Balmer. The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math., (588):149{168, 2005.
- [5] P. Balmer. Spectra, spectra, spectra{Tensor triangular spectra versus Zariski spectra of endomorphism rings. Algebr. Geom. Topol., 10:1521{1563, 2010.
- [6] P. Balmer. Tensor triangular geometry. In Proceedings of the International Congress of Mathematicians, volume 2, pages 85{112. Hindustan Book Agency New Delhi, 2010.
- [7] P. Balmer. Nilpotence theorems via homological residue elds. Tunis. J. Math., 2(2):359{378, 2020.
- [8] P. Balmer, H. Krause, and G. Stevenson. Tensor-triangular elds: ruminations. Selecta Math., 25(1):1{36, 2019.
- [9] D. Benson, S. Iyengar, H. Krause, and J. Pevtsova. Stratication for module categories of nite group schemes. J. Amer. Math. Soc., 31(1):265{302, 2018.
- [10] D. Benson, S. B. Iyengar, and H. Krause. Local cohomology and support for triangulated categories. Ann. Sci. Ec. Norm. Super., 41(4):575[621, 2008.
- [11] D. Benson, S. B. Iyengar, and H. Krause. Stratifying modular representations of nite groups. Ann. of Math., 174(3):1643{1684, 2011.
- [12] D. Benson, S. B. Iyengar, and H. Krause. Stratifying triangulated categories. J. Topol., 4(3):641{666, 2011.
- [13] D. Benson and H. Krause. Pure injectives and the spectrum of the cohomology ring of a nite group. J. reine angew. Math., 542:23{51, 2002.
- [14] D. Benson and J. Pevtsova. A realization theorem for modules of constant Jordan type and vector bundles. Trans. Amer. Math. Soc., 364(12):6459{6478, 2012.
- [15] D. Benson and S. Witherspoon. Examples of support varieties for Hopf algebras with noncommutative tensor products. Arch. Math., 102(6):513{520, 2014.
- [16] D. J. Benson. Representations and Cohomology: Volume 2, Cohomology of groups and modules, volume 2. Cambridge university press, 1998.
- [17] P. A. Bergh, J. Y. Plavnik, and S. Witherspoon. Support varieties for nite tensor categories: Complexity, realization, and connectedness. J. Pure Appl. Algebra, page 106705, 2021.

- [18] R. Bezrukavnikov. On tensor categories attached to cells in ane Weyl groups. In Representation theory of algebraic groups and quantum groups, pages 69{90. Mathematical Society of Japan, 2004.
- [19] A. Brochier, D. Jordan, P. Safronov, and N. Snyder. Invertible braided tensor categories. Algebr. Geom. Topol., 21(4):2107(2140, 2021.
- [20] J. F. Carlson, E. M. Friedlander, and J. Pevtsova. Modules of constant Jordan type. J. Reine Angew. Math., 2008(614):191{234, 2008.
- [21] K. Costello, T. Creutzig, and D. Gaiotto. Higgs and Coulomb branches from vertex operator algebras. J. High Energy Phys., 2019(3):1{50, 2019.
- [22] T. Creutzig, T. Dimofte, N. garner, and N. Geer. A QFT for non-semisimple TQFT. preprint arXiv:112.01559.
- [23] P. I. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor categories, volume 205. American Mathematical Society, 2015.
- [24] C. Faith and E. A. Walker. Direct sum representations of injective modules. J. Algebra, 5(2):203(221, 1967.
- [25] P. Fendley. Integrability and braided tensor categories. J. Stat. Phys., 182(2):1{25, 2021
- [26] E. M. Friedlander. Support theory for extended Drinfeld doubles. preprint arXiv:2102.02453.
- [27] Support Varieties and stable cat3egories for algebraic groups preprint arXiv:2112.10382.
- [28] E. M. Friedlander and C. Negron. Cohomology for Drinfeld doubles of some innitesimal group schemes. Algebra Number Theory, 12(5):1281{1309, 2018.
- [29] E. M. Friedlander and J. Pevtsova. Representation-theoretic support spaces for nite group schemes. Amer. J. Math., 127(2):379{420, 2005.
- [30] E. M. Friedlander and J. Pevtsova. -supports for modules for nite group schemes. Duke Math. J, 139(2):317{368, 2007.
- [31] E. M. Friedlander and J. Pevtsova. Constructions for innitesimal group schemes. Trans. Amer. Math. Soc., 363(11):6007(6061, 2011.
- [32] E. M. Friedlander, J. Pevtsova, and A. Suslin. Generic and maximal Jordan types. Invent. Math., 168(3):485{522, 2007.
- [33] T. Gannon and C. Negron. Quantum SL(2) and logarithmic vertex operator algebras at (p; 1)-central charge. preprint arXiv:2104.12821.
- [34] J. Humphreys. Symmetry for nite-dimensional Hopf algebras. Proc. Amer. Math. Soc., 68(2):143{146.
- [35] J. C. Jantzen. Representations of algebraic groups. 2003.
- [36] C. Kassel. Quantum groups, volume 155. Springer Science & Business Media, 2012.
- [37] L. Kauman and D. Radford. A necessary and sucient condition for a nitedimensional Drinfel'd double to be a ribbon Hopf algebra. J. Algebra, 159(1):98{114, 1993.
- [38] D. Kazhdan and Y. Varshavsky. Endoscopic decomposition of certain depth zero representations. In Studies in Lie theory, pages 223{301. Springer, 2006.
- [39] S. Koshida and K. Kytela. The quantum group dual of the rst-row subcategory for the generic Virasoro VOA. preprint arXiv:2105.13839.
- [40] R. G. Larson and M. E. Sweedler. An associative orthogonal bilinear form for Hopf algebras. Amer. J. Math., 91(1):75{94, 1969.
- [41] S. Lentner, S. N. Mierach, C. Schweigert, and Y. Sommerhaeuser. Hochschild cohomology, modular tensor categories, and mapping class groups. preprint arXiv: 2003.06527.
- [42] J. S. Milne. Algebraic groups: The theory of group schemes of nite type over a eld, volume 170. Cambridge University Press, 2017.
- [43] S. Montgomery. Hopf algebras and their actions on rings. Number 82. American Mathematical Soc., 1993.

- [44] C. Negron. Finite generation of cohomology for Drinfeld doubles of nite group schemes. Selecta Math., 27(2):article no. 26, 2021.
- [45] C. Negron and J. Pevtsova. Hypersurface support and prime ideal spectra for stable categories. preprint arXiv:2101.00141.
- [46] C. Negron and J. Pevtsova. Support for integrable Hopf algebras via noncommutative hypersurfaces. Int. Math. Res. Not., to appear.
- [47] C. Negron and J. Plavnik. Cohomology of nite tensor categories: duality and Drinfeld centers. Proc. Amer. Math. Soc., to appear.
- [48] J. Pevtsova. Innite dimensional modules for Frobenius kernels. J. Pure Appl. Algebra, 173(1):59{86, 2002.
- [49] J. Pevtsova. Support cones for innitesimal group schemes. Lect. Notes Pure Appl. Math., pages 203(214, 2004.
- [50] J. Pevtsova and S. Witherspoon. Varieties for modules of quantum elementary abelian groups. Algebr. Represent. Theory, 12(6):567, 2009.
- [51] J. Pevtsova and S. Witherspoon. Tensor ideals and varieties for modules of quantum elementary abelian groups. Proc. Amer. Math. Soc., 143(9):3727{3741, 2015.
- [52] D. Quillen. The spectrum of an equivariant cohomology ring: I. Ann. of Math., pages 549{572, 1971.
- [53] D. Quillen. The spectrum of an equivariant cohomology ring: II. Ann. of Math., pages 573(602, 1971.
- [54] D. E. Radford. Hopf algebras, volume 49. World Scientic, 2011.
- [55] N. Reshetikhin and V. G. Turaev. Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math., 103(1):547{597, 1991.
- [56] J. Rickard. Derived categories and stable equivalence. J. Pure Appl. Algebra, 61(3):303{317, 1989.
- [57] J. Rickard. Idempotent modules in the stable category. J. Lond. Math. Soc., 56(1):149{170, 1997.
- [58] C. Schweigert and L. Woike. Homotopy coherent mapping class group actions and excision for Hochschild complexes of modular categories. Adv. Math, 386(107814), 2021.
- [59] K. Shimizu. Non-degeneracy conditions for braided nite tensor categories. Adv. Math, 355:106778, 2019.
- [60] A. Suslin, E. M. Friedlander, and C. P. Bendel. Innitesimal 1-parameter subgroups and cohomology. J. Amer. Math. Soc., pages 693{728, 1997.
- [61] A. Suslin, E. M. Friedlander, and C. P. Bendel. Support varieties for innitesimal group schemes. J. Amer. Math. Soc., 10(3):729{759, 1997.
- [62] K. B. Vashaw. Balmer spectra and Drinfeld centers. preprint arXiv:2010.11287.

Email address: ericmf@usc.edu Email address: cnegron@usc.edu