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ABSTRACT

We perform simulations of star cluster formation to investigate the morphological evolution of embedded star clusters in the

earliest stages of their evolution. We conduct our simulations with Torch, which uses the Amuse framework to couple state-of-

the-art stellar dynamics to star formation, radiation, stellar winds, and hydrodynamics in Flash. We simulate a suite of 104 M�

clouds at 0.0683 pc resolution for ∼ 2 Myr after the onset of star formation, with virial parameters 𝛼 = 0.8, 2.0, 4.0 and different

random samplings of the stellar initial mass function and prescriptions for primordial binaries. Our simulations result in a

population of embedded clusters with realistic morphologies (sizes, densities, and ellipticities) that reproduce the known trend

of clouds with higher initial 𝛼 having lower star formation efficiencies. Our key results are as follows: (1) Cluster mass growth is

not monotonic, and clusters can lose up to half of their mass while they are embedded. (2) Cluster morphology is not correlated

with cluster mass and changes over ∼ 0.01 Myr timescales. (3) The morphology of an embedded cluster is not indicative of its

long-term evolution but only of its recent history: radius and ellipticity increase sharply when a cluster accretes stars. (4) The

dynamical evolution of very young embedded clusters with masses . 1000 M� is dominated by the overall gravitational potential

of the star-forming region rather than by internal dynamical processes such as two- or few-body relaxation.
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1 INTRODUCTION

Most stars form within embedded clusters (Lada & Lada 2003; Porte-

gies Zwart et al. 2010). They remain shrouded in their natal gas for

a few megayears after the onset of star formation (see e.g. Kim et al.

2022, for recent observations), while the cloud is still actively star-

forming. Although most stars do not remain in bound star clusters

for their whole lives, their formation and early evolution is shaped

by the dense stellar environment in which they are born, which is in

turn shaped by the interplay between gravity, turbulence, and stel-

lar feedback. On smaller scales, stars also do not form in isolation:

most stars form in multiple stellar systems (Offner et al. 2022, and

references therein), most often in binaries. Binaries are known to

be dynamically important for cluster long-term evolution (Heggie

1975; Hills 1975). Recent simulations by Torniamenti et al. (2021)

further suggest that the presence of binaries impacts a cluster’s struc-

ture over timescales of a few megayears after it has become free of

gas. Despite their ubiquity, binaries in embedded clusters are seldom

modelled numerically due the range of physical processes involved

and the high numerical cost of modelling concurrently stellar dy-
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namics on the scale of binaries and feedback processes impacting

the gas in the embedded cluster.

Simulations of star cluster formation show that star clusters as-

semble through the merging of smaller embedded clusters over a

few megayears (e.g. Fujii et al. 2012; Vázquez-Semadeni et al. 2017;

Grudić et al. 2018; Howard et al. 2018; Chen et al. 2021). Karam &

Sills (2022) have further shown that those mergers have an important

impact on the boundedness of the stars and gas in the resultant clus-

ter: some head-on collisions between clusters do not result in a single

bound cluster, while there is mass loss and an increase in radius even

in the successful mergers. The simulations conducted by Karam &

Sills (2022) however do not account for the formation of new stars

during cluster assembly. Recent work by Dobbs et al. (2022), which

relies on star particles representing low-mass stellar populations or

massive stars to model clusters, also reveals a more complex picture:

clusters can not only merge, but also split. They also trace the mass

and size of their clusters throughout their simulations, and find no

clear correlation between mass and size. They however assume a

spherical shape when measuring the size of their clusters, which is

not the case for observed embedded clusters (e.g. Kuhn et al. 2014).

Furthermore, neither of these recent suites of simulations include
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2 Cournoyer-Cloutier et al.

binaries, which are expected to influence stellar dynamics on the

cluster scale, at least once the cluster becomes free of gas.

The virial parameter 𝛼 of the star-forming cloud of gas, which

describes the balance between the effects of self-gravity and turbu-

lent support of the gas, is also important for cluster formation and

evolution. For a spherical cloud, the virial parameter is defined as

𝛼 =

2𝑇

|𝑈 |
=

5𝜎2𝑅

𝐺𝑀
(1)

where 𝑇 is the kinetic energy of the cloud, 𝑈 is its gravitational

potential energy, 𝜎 is its velocity dispersion, 𝑅 is its radius, 𝑀

is its mass, and 𝐺 is the gravitational constant (Bertoldi & Mc-

Kee 1992). Thus clouds with smaller 𝛼 are more strongly bound,

and 𝛼 = 1 corresponds to virial equilibrium. Observed clouds in

galaxies cover a large range of virial parameters, from 𝛼 . 0.1 to

𝛼 & 100 (Kauffmann et al. 2013). A cloud’s virial parameter sys-

tematically affects its star formation efficiency (SFE) and cluster

formation efficiency (CFE, Kruĳssen 2012; Howard et al. 2016),

with regions with higher 𝛼 generally having lower SFE and CFE.

In this work, we use numerical simulations to investigate the effects

of stellar dynamics and cloud-scale hydrodynamics on the structure

and evolution of embedded star clusters. To test the relative impor-

tance of stellar dynamics, we explore the impact of forming (or not

forming) primordial binaries with different underlying populations,

as binaries are known to play an important role in setting cluster

structure in systems dominated by stellar dynamics (e.g. Heggie

1975; Fujii & Portegies Zwart 2011; Torniamenti et al. 2021). To test

the relative importance of cloud-scale hydrodynamics, we vary the

cloud’s initial virial parameter 𝛼, which is known to have a strong

effect on the CFE (e.g. Howard et al. 2016). We want to determine

(1) whether cloud-scale hydrodynamics or stellar dynamics have the

strongest impact on cluster structure (mass, size, and shape) and clus-

ter formation efficiency and (2) how cluster structure evolves during

the earliest stages of formation.

In Section 2, we describe our numerical framework and our simu-

lations. In Section 3, we follow the evolution of the bulk properties of

the stars in the simulation domain, we investigate the instantaneous

properties of the clusters as a population, and we examine the assem-

bly history of individual clusters; Section 3.3 contains the key results

of the paper. In Section 4, we discuss the broader implications of our

findings. We summarize our results in Section 5.

2 METHODS

2.1 Numerical Framework

We use Torch (Wall et al. 2019, 2020; Cournoyer-Cloutier et al.

2021), which relies on the Amuse framework (Portegies Zwart et al.

2009; Pelupessy et al. 2013; Portegies Zwart et al. 2013; Porte-

gies Zwart & McMillan 2019) to couple hydrodynamics to stel-

lar dynamics, star and binary formation via sink particles, stellar

evolution, and stellar feedback in the form of winds and radiation.

Torch is optimized to investigate the effects of stellar and binary

dynamics in young, gas-rich clusters, in particular stable multiple

systems and dynamical short-range encounters between stars. We

model the self-gravitating gas with the adaptive mesh refinement

code Flash (Fryxell et al. 2000). We use simultaneously two types

of refinement criteria for our adaptive grid. We first require that the

Jeans length be resolved by at least four resolution elements in order

to avoid numerical fragmentation (Truelove et al. 1997; Federrath

et al. 2010). To improve stability, we also refine where the magni-

tude of the second derivative of the presssure, the temperature, the

total energy or the internal energy is of the order of the sum of its

gradients (Lohner 1987; MacNeice et al. 2000). Although Flash

can evolve magnetic fields, we do not include them in our simula-

tions due to their high computational cost. We treat gas dynamics

with a Harten-Lax-van Leer Riemann solver (Miyoshi & Kusano

2005) and an unsplit (magneto)-hydrodynamics solver (Lee 2013)

with third-order piecewise parabolic method reconstruction (Colella

& Woodward 1984). We handle the gas self-gravity with a multigrid

solver (Ricker 2008) while we handle the gravitational attraction of

the gas on the stars and vice-versa with a leapfrog scheme (Wall et al.

2019, based on Fujii et al. 2007).

On the stellar dynamics side, we handle long-range stellar dynam-

ics with the direct N-body code Ph4 (McMillan et al. 2012), which

uses a fourth-order Hermite predictor-corrector scheme (Makino &

Aarseth 1992). For stable binary (and higher order) systems, reso-

nant encounters and scattering, we use the Amuse module Multi-

ples (Portegies Zwart & McMillan 2019), which itself uses the codes

smallN (Hut et al. 1995; McMillan & Hut 1996) and kepler (orig-

inally developed as part of Starlab, Portegies Zwart et al. 1999;

Hut et al. 2010).

Star formation takes place within sink particles that are treated as

star factories. The details of the sink implementation are presented

in Wall et al. (2019) for single star formation and Cournoyer-Cloutier

et al. (2021) for binary formation. Briefly, a sink particle is formed

when the local gas density and convergence criteria outlined in Feder-

rath et al. (2010) are satisfied. Once formed, it samples an initial mass

function (Kroupa 2001) between 0.08 M� and 150 M� to generate

a list of stars to be formed, using a Poisson sampling method first

tested by Sormani et al. (2017) and implemented in Torch by Wall

et al. (2019). Each star in the list is formed when the sink has accreted

sufficient mass, in order to ensure quasi-local mass conservation. The

sink must also sit in cold (< 100 K) gas to form stars. Stars are formed

with a gas-to-star conversion efficiency of 100%. The additive prop-

erties of the Poisson distribution ensure that the sampling for the full

simulation domain reproduces the IMF, despite possible stochastic

variations within individual clusters. The decoupling allows the stars

to be handled by the N-body solver Ph4, which is fourth-order ac-

curate, instead of the second-order leapfrog scheme used for sink

particles. Although the formation of individual stars is unresolved in

our simulations, stellar dynamics are followed self-consistently after

star formation.

Stars with masses above 7 M� inject radiative and momentum

feedback on the grid. The details of the feedback implementation are

presented in Wall et al. (2020). The far ultraviolet (between 5.6 eV

and 13.6 eV) and ionizing (above 13.6 eV) radiative feedback is

implemented within Flash as a modified version of the adaptive

ray-tracing module Fervent (Baczynski et al. 2015). The total and

average photon energy are calculated for each star from the surface

temperature and mass obtained from stellar evolution, which is per-

formed with SeBa (Portegies Zwart & Verbunt 1996). All radiative

feedback heats the gas. Massive stars further provide feedback in the

form of momentum-driven winds with mass loss rates based on Vink

et al. (2000). Radiative cooling of the gas from atomic and molecular

lines and dust is included (Wall et al. 2019).

2.2 Simulations and Star Formation Prescriptions

We conduct a total of 12 simulations, summarized in Table 1. All

simulations are initialized from a spherical, turbulent cloud of neutral

dense gas with a mass of 104 M� and a radius of 7 pc in a cubic box

of side 17.5 pc, following the model used in Cournoyer-Cloutier et al.

(2021). The mean gas surface density is 50 M� pc−2. Those values

MNRAS 000, 1–15 (2023)
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Name 𝛼 Primordial binaries Random seed

B-P0 0.8 Field distribution Default

B-P1 0.8 10% random pairing Seed 1

B-P2 0.8 100% random pairing Seed 2

B-P3 0.8 Field distribution for 𝑀 < 0.6𝑀� Seed 3

and no close massive binaries

S-R0 0.8 None Default

S-R1 0.8 None Seed 4

S-R2 0.8 None Seed 5

S-R3 0.8 None Seed 6

B-V2 2.0 Field distribution Default

S-V2 2.0 None Default

B-V4 4.0 Field distribution Default

S-V4 4.0 None Default

Table 1. Overview of simulations’ initial conditions and star formation pre-

scriptions. 𝛼 = 2𝑇 / |𝑈 | denotes the virial parameter; bound clouds have

𝛼 < 2 and unbound clouds have 𝛼 > 2. The prescriptions for primordial

binaries are outlined in Appendix A.

are consistent with a typical cloud in the Solar neighbourhood (Chen

et al. 2020). The cloud follows a Gaussian density profile with a

central density 8.75 x 10−22 g cm−3 and temperature 20.64 K, and

sits in a warm neutral medium with density 2.18 x 10−24 g cm−3

and temperature 6.11 x 103 K. These values were chosen to ensure

pressure and thermal equilibrium between the cloud and surrounding

medium. The free-fall time for the cloud is 1.45 Myr. The gas fol-

lows an adiabatic equation of state with 𝛾 = 5/3, although radiative

cooling maintains the dense neutral gas almost isothermal. We adopt

the same gas spatial resolution of 0.0683 pc at the maximum refine-

ment level and density threshold for the formation of sink particles

of 3.82 x 10−21 g cm−3 as used in Cournoyer-Cloutier et al. (2021).

We consider four different prescriptions for binaries (described

in Appendix A), in addition to models without primordial binaries.

Our models with primordial binaries span a range of mass-dependant

binary fractions, mass ratios, and orbital periods. We stress that the

details of those prescriptions are not the focus of this paper – rather,

we test diverse models for primordial binaries to fully explore the

impact that a change in stellar dynamics has on embedded cluster

structure and evolution. Binaries can also form dynamically, and

the properties of primordial and dynamically-formed binaries will

be modified by dynamics over the course of our simulations. We

refer the interested reader to Cournoyer-Cloutier et al. (2021) for a

detailed discussion of the effects of dynamical interactions on the

initial population of binaries.

Eight of our 12 simulations (with names starting with B-P and

S-R) are initialized with a virial parameter 𝛼 = 2𝑇/|𝑈 | = 0.8. The

gas is initially gravitationally bound and its collapse is expected to

result in abundant star formation. The gas initial conditions, including

the random turbulent field, are identical for those 8 simulations. We

also perform simulations with larger virial parameters, of 𝛼 = 2.0

and 𝛼 = 4.0. We perform pairs of simulations with our fiducial

prescription for binaries and our single-stars only prescription (both

with the default random seed) for both these models, and label them

B-V2, S-V2, B-V4 and S-V4. Those initial conditions are set up by

scaling up the gas velocities in each cell of the initial conditions for

the 𝛼 = 0.8 runs. We therefore increase 𝛼 but conserve the direction

of motion of the gas in each cell.

Beyond the binary prescriptions and virial parameters, we also

vary the random seed used to sample the initial mass function and

to form binaries, which sets the masses of the stars and the order

in which they form. Our simulations labelled with the random seed

default all use the same random seed; the other simulations all use

different random seeds. We use different random seeds to ensure

our general conclusions are not affected by the stochastic forma-

tion of massive stars. We have shown in Lewis et al. (2023) that

early-forming massive stars can promote the formation of smaller,

isolated clusters, and prevent the formation of massive clusters. By

using different random samplings of the IMF, we can verify that our

conclusions are not drawn from a single, extreme case, in which the

formation times and masses of the massive stars providing radiative

and mechanical feedback would be atypical.

2.3 Cluster Identification

Most of our simulations have reached 2 Myr after the onset of star

formation, and snapshots are written every 0.01 Myr. We inspect all

snapshots in our simulations for clusters, which we identify from

a combination of spatial clustering and boundedness. We initially

select clusters with DBSCAN (Ester et al. 1996; Pedregosa et al.

2011) based on the positions of the stars. We require each cluster

star to have five neighbours (following Sander et al. 1998, for three-

dimensional data), which are other stars within a user-determined

distance. For our analysis, we fix this distance to the sink accretion

radius, 0.17 pc. Following our initial identification of the clusters,

we perform a boundedness check on the stars with respect to their

associated cluster. For each star, we calculate the gravitational poten-

tial energy from the local gas gravitational potential (including the

sink particles) and the potential from the cluster’s stars. We also cal-

culate the stars’ kinetic energy in the cluster’s centre of mass frame.

We remove stars with positive total energy (i.e. unbound stars) from

the cluster. After this boundedness check, clusters that have at least

100 members are saved for subsequent analysis. An example of the

clusters satisfying our clustering, boundedness and minimum mem-

bership criteria in a given snapshot is shown in the left panel of

Figure 1.

2.4 Cluster Structure

Once clusters are identified, it is useful to describe their size, which

in turn requires us to measure their shape. Observational studies have

used respectively ellipses (e.g. Kuhn et al. 2014; Zhai et al. 2017)

and ellipsoids (e.g. Pang et al. 2021) to describe the 2D and 3D

shapes of embedded or open clusters. We similarly use 3D ellipsoids

to describe the shape of some inner fraction of the stellar distribution

in an individual cluster – here, we use 50% and 90% mass ellipsoids,

as proxies for the 50% and 90% Lagrangian radii. We use the fact that

any distribution of points can be described by an inertial ellipsoid

that shares its rotational properties about its principal axes (see e.g.

Goldstein et al. 2001). This technique has been used previously in

astrophysics to describe the 3D shape (or projected 2D shape) of

dark matter halos in cosmological simulations (see e.g. Velliscig

et al. 2015; Thob et al. 2019; Hill et al. 2021; Reina-Campos et al.

2022). We show the 90% mass ellipsoids for the last snapshot of S-

R0 (the same example as for the clustering plot) in the right panel of

Figure 1. We present the details of our fitting routine in Appendix B.

An example of the 50% and 90% mass ellipsoids for an individual

cluster identified in our simulations is also provided in Figure B1,

and the spherical half-mass and 90% Lagragian radii are provided

for comparison.

We use our fitted ellipsoids to define a proxy for the radius, to

compare our clusters to established mass-radius relations. We do so

MNRAS 000, 1–15 (2023)



















12 Cournoyer-Cloutier et al.

Second, we find that clusters tend to have large ellipticities and

large characteristic radii when they are accreting new stars. Examples

are shown in Figure 10. A large ellipticity for an embedded cluster

with a large radius, that persists despite projection effects, could be

clear observational evidence that the embedded cluster is currently

accreting – or has recently accreted – new stars without requiring any

stellar velocity data. Torniamenti et al. (2021), in their simulations

of the early evolution of gas-free young clusters, similarly find that

clusters in the process of merging appear more elongated. We thus

argue that the size and shape of observed embedded clusters can

inform our understanding of their recent history but not of their

future evolution.

4.3 Implications for Larger-Scale Simulations

Simulations of YMC formation with hydrodynamics and stellar feed-

back require very high gas masses for the initial GMC (three orders

of magnitude above what we consider here, around 107 M�) and

thus often model sub-grid clusters with sink particles that can grow

in mass by merging with other sinks and accreting gas (e.g. Howard

et al. 2016, 2018). Karam & Sills (2022) have highlighted some of the

limitations of this model, by showing that collisions between clusters

do not always result in a single, merged cluster and that even when

they do, the bound mass of the resulting cluster is less than the sum

of the bound masses of the progenitors. They also find that cluster

radii grow following a merger. We reinforce here those conclusions,

and further note that groups of recently formed stars identified as

cluster members – that would form within a sub-grid cluster sink –

can escape a cluster and can even be identified as a new cluster later

in the simulation if they escape together. In particular, clusters can

lose up to ∼ 50% of their stellar mass if they split, and up to ∼ 30%

without splitting. A significant fraction of the stellar mass formed or

accreted by a cluster can be lost on pre-supernova timescales, which

is not accounted for in cluster sink models.

Our embedded clusters tend to build up their mass mostly by

forming new stars within the cluster, although they can accrete up

to ∼ 50% of their mass in already formed stars. Both processes

contribute to the clusters’ growth in mass on timescales much shorter

that the clusters’ relaxation times. The dynamical evolution of the

clusters remains driven by gravitational processes on the scale of the

full simulation domain, such as the collapse of the gas, rather than by

internal processes. This is a plausible cause of the diversity of cluster

histories within the same simulation, as each individual cluster forms

in a different local environment. Howard et al. (2016) found a similar

spread for their cluster sinks: for their clusters in the 102-103 M�

mass range, similar to our simulated embedded clusters, they find

that between 0% and ∼ 60% of the clusters’ stellar mass is accreted.

Approximating embedded clusters as relaxed, spherical collections

of gas and stars does not give an accurate representation of the

clusters’ dynamical state. Furthermore, using spheres as a proxy for

the shape of embedded clusters – or as a tool to measure cluster

size, e.g. from Lagragian radii – may not be appropriate, as our

clusters generally have ellipticities around 0.5, which indicates a

factor of 2 difference between the major and minor axes of the stellar

distribution.

4.4 Directions for Future Work

The simulation time for which we can evolve our models is currently

limited by the high computational cost associated with following the

dynamics of a large number of close binaries concurrently with ra-

diative transfer and hydrodynamics. Including a self-consistent treat-

ment of binary dynamics in simulations of embedded clusters as they

reach gas expulsion is however essential to advancing our understand-

ing of how star clusters form in galaxies. Although our results here

indicate that gas dynamics dominate in the deeply embedded phase

of cluster formation, the effects of binaries on the dynamics of clus-

ters during gas expulsion remain unknown, and binaries are known

to have an important impact on the evolution of gas-free clusters (e.g.

Heggie 1975; Hills 1975; Torniamenti et al. 2021). Pursuing similar

simulations with a large number of close binaries over timescales

sufficient to reach gas expulsion is therefore our next goal. This will

require the use of a different N-body and few-body solver, to replace

Ph4 and Multiples.

Directions for future work also include improvements to the treat-

ment of gas and the stellar feedback in our simulations. Magnetic

fields are not used in the current work due to their high computa-

tional cost. Future work will include comparisons of simulations with

and without magnetic fields, as they are known to participate in the

regulation of star formation (Price & Bate 2008). We also note that

the amount of mass injected by wind feedback in our simulations

is an upper limit, since the Vink et al. (2000) prescription for mass

loss rates is likely too high by a factor of ∼3 (Smith 2014) and our

winds are mass-loaded to avoid extremely short timesteps (Wall et al.

2020). The shock fronts in compact colliding wind binaries are not

resolved due to our gas spatial resolution, such that we underesti-

mate the heating from the winds. Any modulation of the feedback

coming from interacting binaries is neglected. Including feedback

from binaries is non-trivial, but is something we hope to address in

future work. Our simulations also currently do not include protostel-

lar jets and outflows. We expect the caveats outlined above to affect

the spatial distribution of the feedback in our simulations, but not to

significantly under- or overestimate the overall feedback budget.

5 SUMMARY

We have conducted a suite of hydrodynamics simulations of star

cluster formation with a state-of-the-art treatment of stellar dynam-

ics down to the scale of individual binaries, as well as active star

formation via sink particles, and stellar feedback. We have explored

a range of realistic initial virial parameters 𝛼 = 0.8, 2.0, 4.0, at a fixed

initial cloud mass of 104 M� , five different models for the formation

(or not) of primordial binaries, and seven different random seeds for

stochastic star formation. Most of our simulations have progressed

to 2.0 Myr after the onset of star formation, which is the same as

the timescales we considered in Cournoyer-Cloutier et al. (2021).

This allows us to investigate the relative impacts of the cloud-scale

gas environment and internal two- or few-body dynamics while gas

dynamics are still dominated by the gravitational collapse of the gas

and not yet by the effects of stellar feedback. We have used a com-

bination of tools to identify and characterize clusters, and arranged

our analysis around three main axes: the properties of the full simu-

lation domain (Section 3.1), the properties of the identified clusters

as a population (Section 3.2), and the time evolution of individual

clusters (Section 3.3). We have verified that the SFE of our simula-

tion domains, as well as the sizes, densities, and ellipticities of our

embedded clusters are consistent with observations.

We explored the relative impact of the cloud’s initial virial parame-

ter 𝛼 and stellar dynamics (using the presence of primordial binaries

as a proxy) on cluster structure and evolution. We have found the

following:

(i) The choice of initial virial parameter 𝛼 has the largest system-

MNRAS 000, 1–15 (2023)
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atic effect on the global properties of the simulation domain, such as

the SFR and SFE.

(ii) The presence of primordial binaries or individual massive

stars causes scatter in the SFR and SFE, but no systematic effect.

The scatter is smaller than the systematic effects caused by changes

𝛼. Stochastic effects from individual stars are important due to the

low cluster masses (. 1000 M�) considered in our simulations.

Our simulated embedded clusters are not relaxed, as their mass

changes due to accretion or star formation on timescales significantly

shorter than their relaxation times. We thus find that their dynamical

evolution is driven by the local gravitational potential (from the gas

and stars) rather than by two- or few-body encounters (and therefore

the presence of binaries). We have also tracked how cluster struc-

ture evolves during the earliest stages of cluster formation. We find

considerable variation in cluster histories; examples are shown in

Figure 6. We summarize our results on cluster evolution as follows:

(iii) Cluster mass generally grows through star formation rather

than accretion, although some individual clusters acquire up to half

of their final mass by accretion.

(iv) The mass of individual clusters generally grows exponen-

tially, although this growth is not monotonic. Clusters can lose up to

half of their mass while they assemble.

(v) The size, density, and ellipticity of clusters does not follow

any particular trend as the cluster acquires more mass. Changes in

size, density, and ellipticity can take place over timescales as short

as 0.01 Myr.

(vi) Recent accretion coincides with simultaneous sharp increases

in characteristic radius and ellipticity. We propose that observed em-

bedded clusters with high ellipticities are in the process of accreting

stars.

The earliest stages of star cluster formation, when stars are still em-

bedded in their natal gas and stars are still actively forming, are driven

by a variety of competing physical processes; the structure of em-

bedded star clusters changes quickly. We caution observers that the

state in which an embedded cluster is observed is instantaneous. Over

the timescales considered in this work, cluster dynamical evolution

is driven by the overall gravitational potential of the star-forming

region, as individual clusters acquire new stars on timescales much

shorter than their relaxation times.
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APPENDIX A: BINARY PRESCRIPTIONS

(i) Field distribution This is our fiducial distribution, based on

statistics for all companions to main sequence stars in the Galactic

field. It is presented in detail in Cournoyer-Cloutier et al. (2021)

and is based on observations compiled by Moe & Di Stefano (2017)

and Winters et al. (2019).

(ii) 10% random pairing This prescription is based on that used

in Sills & Bailyn (1999); similar prescriptions continue to be used

in current state-of-the-art N-body or Monte-Carlo simulations of

massive star clusters (see e.g. Kamlah et al. 2022; Wang et al. 2022).

It imposes a mass-independent binary fraction of 10%, with a period

drawn from a flat distribution in log 𝑃 (between 0.5 and 7.5, in days),

and an eccentricity drawn from a thermal distribution. This model

tends to under-produce binaries compared to the Galactic field, but

nonetheless contains low-mass binaries that do not form naturally in

models without primordial binaries.

(iii) 100% random pairing This prescription is the same as the

one described above, with a binary fraction of 100% at all masses.

(iv) Field distribution for 𝑀 < 0.6𝑀� and no close massive bi-

naries This prescription is also based on the algorithm presented

in Cournoyer-Cloutier et al. (2021), but shifts all the periods to higher

values 𝑃̃ for stars with masses above 0.6 M� following 𝑃̃ = 10𝑃 ,

where 𝑃 is the period drawn from the algorithm. The specific choice

of period shift is motivated by a typo we found in the binary gener-

ation algorithm we used in Cournoyer-Cloutier et al. (2021), which

caused us to draw log 𝑃 instead of 𝑃 from our observations-based

distribution. This typo does not affect the conclusions of the previous

paper, as those were drawn from comparisons to the distribution of

formed binaries (and not from comparisons to observations).

APPENDIX B: ELLIPSOIDS FROM INERTIA TENSORS

We present in Figure B1 an example of 3D ellipsoidal surfaces en-

closing 50% and 90% of the cluster mass, compared to the 50% and

90% Lagragian radii for the same stellar distribution. We use the

reduced inertia tensor (Thob et al. 2019),

I =
©­«
I𝑥𝑥 I𝑥𝑦 I𝑥𝑧
I𝑥𝑦 I𝑦𝑦 I𝑦𝑧
I𝑥𝑧 I𝑦𝑧 I𝑧𝑧

ª®¬
(B1)

where the individual elements 𝐼𝑖 𝑗 are calculated from

I𝑖 𝑗 =

∑
𝑎

(
𝑚𝑎

(
I𝑟2

𝑎

)
𝑖 𝑗

−

(
®𝑥𝑎

)
𝑖

(
®𝑥𝑎

)
𝑗

𝑟2
𝑎

)

∑
𝑎

(
𝑚𝑎

𝑟2
𝑎

) (B2)

and

𝑟2
𝑎 = ®𝑥𝑎 · ®𝑥𝑎 (B3)

where ®𝑥𝑎 is the vector distance from star 𝑎 to the cluster’s centre of

mass. The reduced inertia tensor minimizes the impact of stars in

the outskirts of the cluster on the calculated shape. We obtain the

principal axes 𝑎, 𝑏 and 𝑐 from the eigenvalues 𝜆𝑖 of the reduced

inertia tensor, such that

𝜆𝑎 ∝ 𝑏2 + 𝑐2

𝜆𝑏 ∝ 𝑎2 + 𝑐2

𝜆𝑐 ∝ 𝑎2 + 𝑏2.

(B4)

Solving this system of equations, we recover initial guesses for the

principal axes

𝑎 ∝
√︁
−𝜆𝑎 + 𝜆𝑏 + 𝜆𝑐

𝑏 ∝
√︁
𝜆𝑎 − 𝜆𝑏 + 𝜆𝑐

𝑐 ∝
√︁
𝜆𝑎 + 𝜆𝑏 − 𝜆𝑐 .

(B5)

The initial guesses from Equations B4 and B5 are then rescaled

iteratively to enclose 50% or 90% of the stellar mass. We adopt the
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