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Abstract We prove that Schur classes of nef vector bundles are limits of classes that
have a property analogous to the Hodge-Riemann bilinear relations. We give a num-
ber of applications, including (1) new log-concavity statements about characteristic
classes of nef vector bundles (2) log-concavity statements about Schur and related
polynomials (3) another proof that normalized Schur polynomials are Lorentzian.
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1 Introduction

Since the dawn of time, human beings have asked some fundamental questions: who
are we? why are we here? is there life after death? Unable to answer any of these, in
this paper we will consider cohomology classes on a complex projective manifold
that have a property analogous to the Hard-Lefschetz Theorem and Hodge-Riemann
bilinear relations.

To state our results let X be a projective manifold of dimension d ≥ 2. We say
that a cohomology class � ∈ H d−2,d−2(X; R) has the Hodge-Riemann property if
the intersection form

Q�(α, α′) :=
∫

X
α�α′ for α, α′ ∈ H 1,1(X; R)
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has signature (+,−,−, . . . ,−). We write

HR(X) = {� with the Hodge Riemann property}

and HR(X) for its closure.

This definition is made in light of the fact that the classical Hodge-Riemann
bilinear relations say precisely that if L is an ample line bundle on X , then c1(L)d−2

is in HR(X). A natural question, initiated by Gromov [12], is if there are other
cohomology classes that have this property, and our first result answers this in terms
of certain characteristic classes of vector bundles.

Theorem (⊆ Theorem 7.2) Let E be a nef vector bundle on X and λ be a partition
of d − 2. Then the Schur class sλ(E) lies in HR(X).

In fact we can do better; for each i define the derived Schur polynomials s(i)
λ by

requiring that

sλ(x1 + t, . . . , xe + t) =
|λ|∑

i=0

s(i)
λ (x1, . . . , xe)t

i .

Theorem (⊆ Theorem 7.2) Let E be a nef vector bundle on X and λ be a partition
of d − 2 + i . Then the derived Schur class s(i)

λ (E) lies in HR(X).

We prove moreover:

• Analogous statements hold for monomials of derived Schur classes of possibly
different nef vector bundles (Theorem 7.4).

• If E is perturbed by adding a sufficiently small ample class, then sλ(E) lies in
HR(X) (rather than in just the closure) (Remark 7.3).

• The above holds even in the setting of compact Kähler manifolds, where nef-
ness of E is taken in the metric sense following Demailly-Peternell-Schneider
(Theorem 8.3).

*

Our above result is interesting even in the case that E = ⊕e
i=1Li is a direct

sum of ample line bundles, from which we deduce that the Schur polynomial
sλ(c1(L1), . . . , c1(Le)) lies in HR(X). As a concrete example, s(1,1)(x1, x2) = x2

1 +
x1x2 + x2

2 , so if L1 and L2 are ample line bundles on a fourfold the class

c1(L1)
2 + c1(L1)c1(L2) + c1(L2)

2 ∈ HR(X). (1.1)

As already noted, the classical Hodge-Riemann bilinear relations tell us that the
classes c1(L1)

2 and c1(L2)
2 both lie in HR(X), and it was proved by Gromov [12]

that the mixed term c1(L1)c1(L2) also lies in HR(X). However in general having the
Hodge-Riemann property is not preserved under taking convex combinations, and
thus (1.1) is new.
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From these considerations it is natural to ask which universal combinations of
characteristic classes of ample (resp. nef) vector bundles lie inHR(X) (resp. HR(X)).
Although we do not know the full answer to this, the following is a contribution in
this direction.

Theorem (⊆ Theorem 9.3) Let E be a nef vector bundle on a projective manifold
of dimension d, and λ be a partition of d − 2. Suppose μ0, . . . , μd−2 is a Pólya
frequency sequence of non-negative real numbers. Then the combination

d−2∑
i=0

μi s
(i)
λ (E)c1(E)i

lies in HR(X).

*

As an application of these results we are able to give various new inequalities
between characteristic classes of nef vector bundles. Continuing to assume X is
projective of dimension d, let λ and μ be partitions of length |λ| and |μ| respectively
and assume |λ| + |μ| ≥ d.

Theorem (= Theorem 10.5) Assume E, F are nef vector bundles on X. Then the
sequence

i �→
∫

X
s(|λ|+|μ|−d−i)
λ (E)s(i)

μ (F) (1.2)

is log-concave

As a particular case, we get that if E is a nef vector bundle and λ a partition of d,
then

j �→
∫

X
s( j)
λ (E)c1(E) j

is log-concave, which as a special case says the map

i �→
∫

X
ci (E)c1(E)d−i

is also log-concave. One should think of these statements as higher-rank analogs of
the Khovanskii-Tessier inequalities. We even get combinatorial applications of this,
such as the following:

Corollary (= Corollary 10.10) Let λ and μ be partitions, and let d be an integer
with d ≤ |λ| + |μ|. Assume x1, . . . , xe, y1, . . . , y f ∈ R≥0. Then the sequence

i �→ s(|λ|+|μ|−d+i)
λ (x1, . . . , xe)s

(i)
μ (y1, . . . , y f )

is log concave.
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Corollary (= Corollary 10.12) Let λ be a partition and x1, . . . , xe ∈ R≥0. Then the
sequence

i �→ s(i)
λ (x1, . . . , xe)

is log-concave.

This last statement has been known for a long time for the partition λ = (e), for
then the derived Schur polynomials become the elementary symmetric polynomials
ci (see Example 3.2). Then more is true namely, i �→ ci (x1, . . . , xe) is ultra-log
concave—a result which is due to Newton [18] (see, for example, [5, Chap. 11] for
a modern treatment).

As a final application we show how knowing that Schur classes of nef bundles
lie in HR(X) gives another proof of a result of Huh-Matherne-Mészáros-Dizier [13]
that the normalized Schur polynomials are Lorentzian.

1.1 Comparison with Previous Work

There is some overlap between Theorem 7.2 and our original work on the subject in
[21]. A principal difference is that in [21]we show that derived Schur classes of ample
bundles have theHodge-Riemann property, whereas herewe settle inmerely showing
these classes are limits of classes with this property. So even though logically many
of our results follow from [21], the proofs we give here are simpler and substantially
shorter. In fact, our account here does not depend on any of the details of [21] and
is self-contained relying only on a few standard techniques in the field (as contained
say in [16]). The main tools we use are the Bloch-Gieseker theorem, and the cone
classes of Fulton-Lazarsfeld that express Schur classes as pushforwards of certain
Chern classes (which builds on the determinantal formula of Kempf-Laksov [14]) .
The material on the non-projective case in §8, on convex combinations in §9 and on
inequalities in §10 is all new.

We refer the reader to [21] for a survey of otherworks concerningHodge-Riemann
classes. Although there are many places in which log-convexity and Schur polyno-
mials meet (e.g. [4, 10, 13, 15, 19, 20]) we are not aware of any previous inequalities
that cover precisely those studied here.

1.2 Organization of the Paper

Sections2, 3 and 4 contain preliminarymaterial on Schur polynomials, derived Schur
polynomials and cone classes. We also include in Sect. 5 a self-contained proof of a
theorem of Fulton-Lazarsfeld concerning positivity of (derived) Schur polynomials.
The main theorems about derived Schur classes having the Hodge-Riemann property
are proved in Sect. 7, and in Sect. 8 we explain how this extends to the non-projective
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case. In Sect. 9 we consider convex combinations of Hodge-Riemann classes, and in
Sect. 10 we give our application to inequalities and our proof that normalized Schur
polynomials are Lorentzian.

2 Notation and Convention

We work throughout over the complex numbers. For the majority of the paper we
will take X to be a projective manifold (which we always assume is connected), and
E a vector bundle (which we always assume to be algebraic). Given such a vector
bundle E we denote by π : P(E) → X the space of one-dimensional quotients of E ,
and by π : Psub(E) → X the space of one-dimensional subspaces of E . We say that
a vector bundle E is ample (resp. nef) if the hyperplane bundle OP(E)(1) on P(E) is
ample (resp. nef).

Wewillmake use of the formalismofQ-twisted bundles (see [16, Sect. 6.2, 8.1.A],
[17, p. 457]). Given a vector bundle E on X of rank e and an element δ ∈ N 1(X)Q the
Q-twisted bundle denoted E〈δ〉 is a formal object understood to have Chern classes
defined by the rule

cp(E〈δ〉) :=
p∑

k=0

(
e − k

p − k

)
ck(E)δ p−k for 0 ≤ p ≤ e. (2.1)

Here and henceforth we abuse notation and write δ also for its image under
N 1(X)Q → H 2(X; Q), so the above intersection is taking place in the cohomol-
ogy ring H∗(X).

By the rank of E〈δ〉 we mean the rank of E . The above definition is made so if
δ = c1(L) for a line bundle L on X then

cp(E〈c1(L)〉) = cp(E ⊗ L).

The splitting principle provides for any vector bundle E a morphism p : X ′ → X
such that p∗ H∗(X) injects into H∗(X ′) and so that p∗E = ⊕

Li is a direct sum of
line bundles. In this situation we call xi := c1(Li ) the Chern roots of E . So, if E has
Chern roots given by x1, . . . , xe then E〈δ〉 is understood to have Chern roots x1 +
δ, . . . , xe + δ. The twist of anQ-twisted bundle is givenby the rule E〈δ〉〈δ′〉 = E〈δ +
δ′〉. That (2.1) continues to hold when E is an Q-twisted bundle is an elementary
calculation - for convenience of the reader we omit the proof.

We say that E〈δ〉 is ample (resp. nef) if the class c1(OP(E)(1)) + π∗δ is ample
(resp. nef) on P(E).

Suppose p(x1, . . . , xe) is a homogeneous symmetric polynomial of degree d ′ and
E is a Q-twisted vector bundle of rank E on X with Chern roots τ1, . . . , τe. Then we
have the well-defined characteristic class
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p(E) := p(τ1, . . . , τe) ∈ H d ′,d ′
(X; R).

By abuse of notation we let ci denote the i th elementary symmetric polynomial,
so ci (E) ∈ Hi,i (X; R) is unambiguously defined as the i th-Chern class of E .

3 Derived Schur Classes

By a partition λ of an integer b ≥ 1 we mean a sequence 0 ≤ λN ≤ · · · ≤ λ1 such
that |λ| := ∑

i λi = b. For such a partition, the Schur polynomial sλ is the symmetric
polynomial of degree |λ| in e ≥ 1 variables given by

sλ = det

⎛
⎜⎜⎜⎝

cλ1 cλ1+1 · · · cλ1+N−1

cλ2−1 cλ2 · · · cλ2+N−2
...

...
...

...

cλN −N+1 cλN −N+2 · · · cλN

⎞
⎟⎟⎟⎠

where ci denotes the i-th elementary symmetric polynomial. The coefficients of sλ

count the number of certain semi-standard Young tableau (the reader is referred
to [7] for more background concerning Schur polynomials). In particular, Schur
polynomials are monomial positive by which we mean when written as a sum of
monomials each (non-trivial) coefficient is strictly positive.

We will have use for the following symmetric polynomials associated to Schur
polynomials.

Definition 3.1 (Derived Schur polynomials) Let λ be a partition. For any e ≥ 1 we
define s(i)

λ (x1, . . . , xe) for i = 0, . . . , |λ| by requiring that

sλ(x1 + t, . . . , xe + t) =
|λ|∑

i=0

s(i)
λ (x1, . . . , xe)t

i for all t ∈ R.

In fact s(i)
λ depends also on e but we drop that from the notation. By convention

we set s(i)
λ = 0 for i /∈ {0, . . . , |λ|}. For 0 ≤ i ≤ |λ|, clearly s(i)

λ is a homogeneous
symmetric polynomial of degree |λ| − i and s(0)

λ = sλ.
Thus for any Q-twisted vector bundle E of rank e we have classes

s(i)
λ (E) ∈ H |λ|−i,|λ|−i (X; R),

and by construction if δ ∈ N 1(X)Q then

sλ(E〈δ〉) =
|λ|∑

i=0

s(i)
λ (E)δi .



On Hodge-Riemann Cohomology Classes 769

Example 3.2 (Chern classes) Consider the partition of λ = (p) consisting of just
one integer. Then sλ = cp, and from standard properties of Chern classes of a tensor
product if rk E = e ≥ p then

s(i)
λ (E) =

(
e − p + i

i

)
cp−i (E) for all 0 ≤ i ≤ p.

Example 3.3 (Derived Schur polynomials of Low degree) We list some of the
derived Schur classes of low degree for a bundle E of rank e. First

s(1) = c1, s(1)
(1) = e

and for e ≥ 2,

s(2,0) = c2 s(1)
(2,0) = (e − 1)c1 s(2)

(2,0) =
(

e

2

)

s(1,1) = c21 − c2, s(1)
(1,1) = (e + 1)c1 s(2)

(1,1) =
(

e + 1

2

)

and for e ≥ 3,

s(3,0,0) = c3 s(1)
(3,0,0) = (e − 2)c2 s(2)

(3,0,0) =
(

e − 1

2

)
c1

s(3)
(3,0,0) =

(
e

3

)

s(2,1,0) = c1c2 − c3 s(1)
(2,1,0) = 2c2 + (e − 1)c21 s(2)

(2,1,0) = (e2 − 1)c1

s(3)
(2,1,0) = 2

(
e + 1

3

)

s(1,1,1) = c31 − 2c1c2 + c3 s(1)
(1,1,1) = (e + 2)(c21 − c2) s(2)

(1,1,1) =
(

e + 2

2

)
c1

s(3)
(1,1,1) =

(
e + 2

3

)

Example 3.4 (Lowest Degree Derived Schur Classes) Suppose e ≥ λ1. Then we
can write the Schur polynomial as a sum of monomials

sλ(x1, . . . , xe) =
∑

|α|=|λ|
cαxα1

1 · · · xαe
e

where cα ≥ 0 for all α (in fact the cα count the number of semistandard Young
tableaux ofweightαwhose shape is conjugate toλ). Since e ≥ λ1, sλ is not identically
zero, so at least one of the cα is strictly positive. Thus in the expansion
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sλ(x1 + t, . . . , xe + t) =
|λ|∑

i=0

s(i)
λ (x1, . . . , xe)t

i

the coefficient in front of t |λ| is strictly positive, i.e. s(|λ|)
λ > 0.

So, in terms of characteristic classes, if E has rank at least λ1 then

s(|λ|)
λ (E) ∈ H 0(X; R) = R

is strictly positive.

4 Cone Classes

We will rely on a construction exploited by Fulton-Lazarsfeld that express Schur
classes as the pushforward of Chern classes, and we include a brief description
here. Let E be a vector bundle of rank e on X of dimension d and suppose 0 ≤ λN ≤
λN−1 ≤ · · · ≤ λ1 is a partition of length |λ| = b ≥ 1 andλ1 ≤ e. Set ai := e + i − λi

and fix a vector space V of dimension e + N . Then it is possible to find a nested
sequence of subspaces 0 � A1 � A2 � · · · � AN ⊂ V with dim(Ai ) = ai .

By abuse of notation we also let V denote the trivial bundle over X . We set
F := V ∗ ⊗ E = Hom(V, E) and let f + 1 = rk(F) = e(e + N ). Then inside F
define

Ĉ := {σ ∈ Hom(V, E) : dim ker(σ (x)) ∩ Ai ≥ i for all i = 1, . . . , N and x ∈ X}

which is a cone in F . Finally set

C = [Ĉ] ⊂ Psub(F).

Proposition 4.1 C has codimension b and dimension d + f − b, has irreducible
fibers over X and is flat over X (in fact it is locally a product). Moreover if

0 → OPsub(F)(−1) → π∗F → U → 0 (4.1)

is the tautological sequence then

sλ(E) = π∗c f (U |C). (4.2)

Proof This is described by Fulton-Lazarsfeld in [9]. An account (that is written for
the the case |λ| = d) can be found in [16, (8.12)] and an account for general |λ| is
given in [21, Proposition 5.1] that is based on [8]. We remark that in [21, Proposition
5.1]wemade the additional assumption that N ≥ b and e ≥ 2, but have since realized
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these are not necessary (we used this to ensure that f ≥ b, but this actually follows
immediately from e ≥ λ1). �

This extends to Q-twisted bundles E ′ = E〈δ〉. Here we identify

P ′ := Psub(F〈δ〉) π→ X

with Psub(F)
π→ X but the quotient bundle U on P ′ is replaced by U ′ := U 〈π∗δ〉.

We consider the same cone [C] ⊂ P ′. Then (4.2) still holds in the sense that

sλ(E ′) = π∗c f (U
′|C). (4.3)

To see this, observe that as δ ∈ N 1(X)Q we have δ = 1
m c1(L) for some m ∈ Z and

line bundle L . Then for t divisible by m

π∗(c f (U 〈tπ∗δ〉|C) = π∗c f (U ⊗ π∗Lt/m |C) = sλ(E ⊗ Lt/m) = sλ(E〈tδ〉) (4.4)

where the second equality uses (4.2). But both sides of (4.4) are polynomials in t , so
since this equality holds for infinitely many t it must hold for all t ∈ Q, in particular
when t = 1 which gives (4.3).

A key feature we will rely on is that if E ′ is assumed to be nef then so is U ′. For
if E ′ is nef then so is F ′ := F〈δ〉 and the formal surjection F ′ → U ′ coming from
(4.1) implies that U ′ is also nef (see [16, Lemma 6.2.8] for these properties of nef
Q-twisted bundles).

Another extension is to the product of Schur classes of possibly different vector
bundles E1, . . . , E p on X . Let λ1, . . . , λp be partitions and assume rk(E j ) ≥ λ

j
1

for j = 1, . . . , p. We consider again the corresponding cones Ci that sit inside
Fi := Hom(Vi , Ei ) for some vector space Vi . We may consider the fiber product
C := C1 ×X C2 ×X · · · ×X C p inside⊕ j Hom(Vi , Ei ) =: F and its projectivization
[C] ⊂ Psub(F). Then, using that each Ci is flat over X , if U is the tautological vector
bundle on Psub(F) of rank f we have

π∗c f (U |C) =
∏

j

sλ j (E j ) (4.5)

(see [16, 8.1.19], [9, Sect. 3c]).

5 Fulton-Lazarsfeld Positivity

Using the cone construction we quickly get the following positivity statement, which
is essentially a weak version of a result of Fulton-Lazarsfeld [9]. For the reader’s
convenience we include the short proof here.
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Proposition 5.1 Let X be smooth and projective of dimension d, λ be a partition
of length d + i for some i ≥ 0 and E be an Q-twisted nef vector bundle. Then∫

X s(i)
λ (E) ≥ 0.

Proof We first claim that if E is a nef Q-twisted bundle of rank d on an irreducible
projective variety X of dimension d then

∫
X cd(E) ≥ 0. By taking a resolution of

singularities we may assume X is smooth. Let h be an ample class on X . By the
Bloch-Gieseker Theorem [2] we have

∫
X cd(E〈th〉) �= 0 for all t > 0 since E〈th〉 is

ample (here we allow t to be irrational extending the notation in the obvious way,
and observe that although the original Bloch Gieseker result is not stated for twisted
bundles the same proof works in this setting, see [16, p. 113] or Sect. 8). Expanding
this as a polynomial in t gives

0 �=
∫

X
cd(E) + tcd−1(E)h + · · · + td hd for all t ∈ R>0.

Clearly this polynomial is strictly positive for t � 0, and hence since it is nowhere-
vanishing, is strictly positive for all t > 0. In particular

∫
X cd(E) ≥ 0 as claimed.

To prove the Proposition, wemay assume e := rk(E) ≥ λ1 else sλ(E) = 0 and the
statement is trivial. When |λ| = d, (4.3) gives a map π : C → X from an irreducible
variety C of dimension n and a nef Q-twisted bundle U of rank n so that π∗cn(U ) =
sλ(E). So by the previous paragraph

∫
X sλ(E) = ∫

C cn(U ) ≥ 0.

Finally suppose i ≥ 0 and |λ| = d + i . Set X̂ = X × P
i and τ = c1(OP1(1)).

Since |λ| = dim(X̂) we have

0 ≤
∫

X̂
sλ(E〈τ 〉) =

∫
X̂

|λ|+i∑
j=0

s( j)
λ (E)τ j =

∫
X

s(i)
λ (E)

∫
Pi

τ i =
∫

X
s(i)
λ (E).

�
Corollary 5.2 Let X be smooth and projective of dimension d, λ be a partition of
length d + i − 2, let E be a nef Q-twisted bundle of rank e ≥ λ1 and h be an ample
class on X. Then

∫
X s(i)

λ (E)h2 ≥ 0.

Proof Rescale so h is very ample, and apply the previous theorem to the restriction
of E to the intersection of two general elements in the linear series defined by h. �
Remark 5.3 Bypassing to a resolution of singularities, one sees that the statement of
Propositon 5 and Corollary 5.2 extend to the case that X is irreducible and projective
but not necessarily smooth.

Remark 5.4 (Derived Schur Polynomials are Numerically Positive) If |λ| = d + i
then

∫
X s(i)

λ (E) ≥ 0 for all nef vector bundles E on any irreducible projective variety

X of dimension d. That is, s(i)
λ is a numerically positive polynomial in the sense

of Fulton-Lazarsfeld, and hence by their main result [9, Theorem I] we deduce
s(i)
λ can be written as a non-negative linear combination of the Schur polynomials

{sμ : |μ| = d}. This answers a question of Xiao [22, p. 10].
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Remark 5.5 (Monomials of Derived Schur Classes) It is easy to extend this to
monomials of derived Schur polynomials. That is, if E1, . . . , E p are nef bundles on
X and λ1, . . . , λp are partitions such that

∑
j |λ j | = d then

∫
X

∏
j

sλ j (E j ) ≥ 0. (5.1)

We simply repeat the proof of Proposition 5.1 using (4.5) in place of (4.3)). For the
derived case suppose we also have integers i1, . . . , i p and that our partitions are such
that

∑
j |λ( j)| − i j = d. Then

∫
X

∏
j

s
(i j )

λ j (E j ) ≥ 0. (5.2)

To see this consider the product X̂ := X × ∏
j P

i j and let τ j be the pullback of

the hyperplane class in P
i j to X̂ . Then (5.1) applies to the class

∏
j sλ j (E j (τ j )).

Expanding this as a symmetric polynomial in the τ j the coefficient of
∏

j τ
i j

j is

precisely
∏

j s
(i j )

λ j (E j ) so (5.2) follows. The analog of Corollary 5.2 also holds for
monomials of derived Schur polynomials.

6 Hodge-Riemann Classes

Let X be a projective smooth variety dimension d and let� ∈ H d−2,d−2(X; R). This
defines an intersection form

Q�(α, α′) =
∫

X
α�α′ for α, α′ ∈ H 1,1(X; R).

Definition 6.1 (Hodge-Riemann Property) We say that a bilinear form Q on a finite
dimensional vector space has the Hodge-Riemann property if Q is non-degenerate
and has precisely one positive eigenvalue. We say that � ∈ H d−2,d−2(X; R) has the
Hodge-Riemann property if Q� does, and denote by HR(X) denote the set of all �
with this property.

Definition 6.2 (Weak Hodge-Riemann Property) A bilinear form Q on a finite
dimensional vector space is said to have the weak Hodge-Riemann property if it
is a limit of bilinear forms that have the Hodge-Riemann property. We say that �

has the weak Hodge-Riemann property if Q� does, and denotes by HRw(X) the set
of � with this property.

So Q has the weak Hodge-Riemann property if and only if it has one eigenvalue
that is non-negative, and all the others are non-positive. Clearly
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HR(X) ⊂ HRw(X)

but we do not claim these are equal (the issue being that in principle Q� could
be the limit of bilinear forms with the Hodge-Riemann property that do not come
from classes in H d−2,d−2(X; R)). If h is ample then by the classical Hodge-Riemann
bilinear relations hd−2 ∈ HR(X), and so HRw(X) is a non-empty closed cone inside
H d−2,d−2(X; R).

It is convenient to work with HRw(X) as it behaves well with respect to pullbacks
and pushforwards. This is captured by the following simple piece of linear algebra.

Lemma 6.3 Let f : V → W be a linear map of vector spaces and QV and QW be
bilinear forms on V and W respectively such that

QW ( f (v), f (v′)) = QV (v, v′) for all v, v′ ∈ V .

Suppose that QW has the weak Hodge-Riemann property and there is a v0 ∈ V \ {0}
with QV (v0, v0) ≥ 0. Then QV has the weak Hodge-Riemann property.

Proof Let N = ker( f ). Then N is orthogonal to all of V with respect to QV . The
signature on a complementary subspace to N is induced by QW . Thus QV can
only be negative semi-definite, or have the weak Hodge-Riemann property, and the
assumption that QV (v0, v0) ≥ 0 means it is the latter case that occurs. �

Lemma 6.4 (Pullbacks) Let π : X ′ → X be a surjective map between smooth
varieties of dimension d. Let � ∈ H d−2,d−2(X, R) and suppose there is an h ∈
H 1,1(X; R) \ {0} with

∫
X �h2 ≥ 0 and that π∗� ∈ HRw(X ′). Then � ∈ HRw(X).

Proof This follows from Lemma 6.3 applied to π∗ : H 1,1(X; R) →
H 1,1(X ′; R) since Qπ∗�(π∗α, π∗α′) = ∫

X ′ π
∗(�αα′) = deg(π)

∫
X �αα′ = deg(π)

Q�(α, α′). �

Lemma 6.5 (Pushforwards) Let π : X ′ → X be a surjective map between smooth
varieties. Let �′ ∈ HRw(X ′) and suppose there is an h ∈ H 1,1(X; R) \ {0} with∫

X (π∗�′)h2 ≥ 0. Then π∗�′ ∈ HRw(X).

Proof This follows from Lemma 6.3 applied to π∗ : H 1,1(X; R) → H 1,1(X ′; R)

since from the projection formula,

Q�′(π∗α, π∗α′) =
∫

X ′
�′(π∗α)(π∗α′) =

∫
X

π∗�′αα′ = Qπ∗�(α, α′).

�

Wewill need the following variant that allows for an intermediate space that might
not be smooth.
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Lemma 6.6 Let X, Y, Z be irreducible projective varieties with morphisms Z
σ→

Y
π→ X and assume that Z and X are smooth. Let d = dim X and assume Z and Y

are of the same dimension n and that σ is surjective. Let � ∈ H 2n−4(Y ; R) be such
that �′ := π∗� ∈ H d−2,d−2(X; R). Assume

(i) σ ∗� ∈ HRw(Z).
(ii) There exists an h ∈ H 1,1(X; R) \ {0} such that

∫
X (π∗�)h2 ≥ 0.

Then π∗� ∈ HRw(X).

Proof Let p = π ◦ σ : Z → X . By the projection formula

Qσ ∗�(p∗α, p∗α′) =
∫

Z
σ ∗�p∗αp∗α′ =

∫
Z

σ ∗�σ ∗π∗ασ ∗π∗α′

= deg(σ )

∫
Y

�π∗απ∗α′ = deg(σ )

∫
X
(π∗�)αα′ = deg(σ )Qπ∗�(α, α′).

Thus the result follows from Lemma6.3 applied to p∗:H 1,1(X;R) → H 1,1(Z;R).
�

7 Schur Classes Are in HR

Lemma 7.1 Let X be a smooth projective manifold of dimension d ≥ 4, and E be
a nef Q-twisted bundle of rank d − 2. Then cd−2(E) ∈ HRw(X).

Proof This is exactly as in [21, Proposition 3.1]. First assume that E is ample and
X is smooth. By a consequence of the Bloch-Gieseker Theorem for all t ∈ R≥0 the
intersection form

Qt (α) :=
∫

X
αcd−2(E〈th〉)α for α ∈ H 1,1(X; R)

is non-degenerate (we remark that we are allowing possibly irrational t here, and
then cd−2(E〈th〉) is to be understood as being defined as in (2.1)). Now for small t
we have

cd−2(E〈th〉) = td−2hd−2 + O(td−3).

Observe that for an intersection form Q, having signature (+,− . . . ,−) is invariant
under multiplying Q by a positive multiple, and is an open condition as Q varies
continuously. Thus since we know that hd−2 has the Hodge-Riemann property, the
intersection form (α, β) �→ ∫

X αhd−2β has signature (+,− . . . ,−), and hence so
does Qt for t sufficiently large. But Qt is non-degenerate for all t ≥ 0, and hence
Qt must have this same signature for all t ≥ 0. Thus cd−2(E) ∈ HR(X).

Since any Q-twisted nef bundle E can be approximated by an Q-twisted ample
vector bundle we deduce that cd−2(E) ∈ HR(X) ⊂ HRw(X). �
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Theorem 7.2 (Derived Schur Classes are in HR) Let X be smooth and projective of
dimension d ≥ 2, let λ be a partition of length d + i − 2 and let E be a Q-twisted
nef vector bundle on X. Then

s(i)
λ (E) ∈ HR(X).

Proof The statement is trivial unless e := rk(E) ≥ λ1 and d ≥ 2 which we assume
is the case. When d = 3, s(i)

λ is a positive multiple of c1 and then the result we want
follows from the classical Hodge-Riemann bilinear relations. Sowe can assume from
now on that d ≥ 4.

Fix an ample class h on X . We first prove that sλ(E) ∈ HRw(X). Consider the
case i = 0 so |λ| = d − 2. By Corollary 5.2

∫
X sλ(E)h2 ≥ 0. Also, the cone con-

struction described in §4 (particularly (4.3)) gives an irreducible variety π : C → X
of dimension n and a nef Q-twisted vector bundle U of rank n − 2 such that

π∗cn−2(U ) = sλ(E).

Since C is irreducible we can take a resolution of singularities σ : C ′ → C . Then
σ ∗U is also nef, and Lemma 7.1 gives cn−2(σ

∗U ) ∈ HRw(C ′). Thus Lemma 6.6
implies sλ(E) ∈ HRw(X).

Consider next the case i ≥ 1, so |λ| = d + i − 2. Again by Corollary 5.2,∫
X s(i)

λ (E)h2 ≥ 0. Consider the product X̂ = X × P
i and set τ = c1(OPi (1)). Sup-

pressing pullback notation, theQ-twisted bundle E〈τ 〉 on X̂ is nef, so by the previous
paragraph sλ(E〈τ 〉) ∈ HRw(X̂). Now

sλ(E〈τ 〉) =
|λ|∑
j=0

s( j)
λ (E)τ j

so if π : X̂ → X is the projection

π∗sλ(E〈τ 〉) = s(i)
λ (E).

Thus by Lemma 6.5 we get also s(i)
λ (E) ∈ HRw(X).

To complete the proof define

�t = s(i)
λ (E〈th〉) for t ∈ Q≥0

and
f (t) = det(Q�t ).

Note that the leading term of �t is a positive multiple of hd−2 (this is Example 3.4
and it is here we use that e ≥ λ1). In particular, for t sufficiently large Q�t is non-
degenerate (in fact it has the Hodge-Riemann property). Thus f is not identically
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zero, and since it is a polynomial in t this implies f (t) �= 0 for all but finitely many
t . Thus there is an ε > 0 so that f (t) �= 0 for rational 0 < t < ε and we henceforth
consider only t in this range. Then Q�t is non-degenerate, and as Q�t (h, h) ≥ 0
it cannot be negative definite. The previous paragraph gives �t ∈ HRw(X), so we
must actually have �t ∈ HR(X) for small t ∈ Q>0. Thus �0 = s(i)

λ (E) ∈ HR(X) as
claimed. �

Remark 7.3 Note the above proof gives more, namely that if h is an ample class
and E is nef and λ1 ≤ rk(E) we have

s(i)
λ (E〈th〉) ∈ HR(X) for all but possibly finitely many t ∈ Q>0.

As mentioned in the introduction, the main result of [21] says more namely that if
E is ample of rank at least λ1 then s(i)

λ (E) ∈ HR(X), but the proof of that statement
is significantly harder.

Theorem 7.4 (Monomials of Schur Classes are in HR) Let X be smooth and pro-
jective of dimension d and E1, . . . , E p be nef vector bundles on X. Let λ1, . . . , λp

be partitions such that ∑
i

|λi | = d − 2.

Then the monomial of Schur polynomials

∏
i

sλi (Ei )

lies in HR(X).

Proof The proof is similar to what has already been said, so we merely sketch the
details. Set � = ∏

i sλi (Ei ). Then (4.5) gives a map π : C → X from an irreducible
variety of dimension n and nef bundle bundle U on C so π∗cn−2(U ) = �. A small
modification of the proof of Proposition 5.1 and Corollary 5.2 means that if h is
ample

∫
X �h2 ≥ 0.

Consider
�t := π∗cn−2(U 〈tπ∗h〉)

and take a resolution σ : C ′ → C . Then σ ∗U 〈π∗h〉 remains nef, so Lemma 6.6
implies �t ∈ HRw(X).

Now we can equally apply this construction replacing each Ei with Ei ⊗ O(th)

for t ∈ N (which one can check does not change π : C → X ) giving

π∗cn−2(U 〈th〉) =
∏

i

sλi (Ei 〈th〉) for t ∈ N.
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In particular applying Example 3.4 to each factor on the right hand side, the highest
power of t is a positive multiple of hd−2. Thus for almost all t ∈ Q>0 we have Q�t

is non-degenerate, and so in fact Q�t ∈ HR(X). Taking the limit as t → 0 gives the
result we want. �

8 The Kähler Case

The main place in which projectivity has been used so far is in the application of the
Bloch-Gieseker Theorem, and here we explain how this projectivity assumption can
be relaxed. Following Demailly-Peternell-Schneider [6] we say a line bundle L on
a compact Kähler manifold X is nef if for all ε > 0 and all Kähler forms ω on X
there exists a hermitian metric h on L with curvature ddc log h ≥ −εω. We say that
a vector bundle E on X is nef if the hyperplane bundle OP(E)(1) is nef.

For the rest of this section let (X, ω) be a compact Kähler manifold of dimension
d. Given a vector bundle E and δ ∈ H 1,1(X; R)we can consider theR-twisted bundle
E〈δ〉 whose Chern classes are defined just as in the case of Q-twists in the projective
case. We identify P(E〈δ〉) with P(E), and say that E〈δ〉 is nef if for any Kähler
metric ω′ on P(E), any ε > 0, and any closed (1, 1) form δ′ on X such that [δ′] = δ,
there exists a hermitian metric h on OP(E)(1) such that

ddc log h + π∗δ′ ≥ −εω′.

We refer the reader to [6] for the fundamental properties of nef bundles on compact
Kählermanifolds, in particular to the statement that a quotient of a nef bundle is again
nef, and the direct sum of two nef bundles is again nef (and each of these statements
extend to the case of R-twisted nef bundles with minor modifications of the proofs
involved).

Theorem 8.1 (Bloch-Gieseker for Kähler Manifolds) Let E be a nef R-twisted vec-
tor bundle of rank e ≤ d and t > 0. Let e + j ≤ d and consider

� := ce(E〈tω〉) ∧ ω j .

Then then map

H d−e− j (X)
∧�−→ H d+e+ j (X)

is an isomorphism.

Proof Write E = E ′〈δ〉 where E ′ is a genuine vector bundle. Fix t > 0 and set
Et := E〈tω〉 = E ′〈δ + tω〉. Set π : P(E ′) → X and define ζ ′ = c1(OP(E ′)(1)) and
ζ := ζ ′ + π∗(δ + t[ω]). Then ζ e − c1(Et )ζ

e−1 + · · · + (−1)ece(Et ) = 0 where we
supress pullback notation for convenience.
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Suppose a ∈ H d−e− j (X) has ace(Et )ω
j = 0, and we will show that a = 0. To

this end define

b = a.(ζ e−1 − c1(Et )ζ
e−2 + · · · + (−1)e−1ce−1(Et ))

so by construction
ζbω j = ±ace(Et )ω

j = 0.

We claim that ζ is a Kähler class. Given this for now, the Hard-Lefschetz property
for ζ then gives bω j = 0 and hence aω j = π∗(bω j ) = 0 and hence a = 0 by the
Hard-Lefschetz property of ω j

It remains to show that ζ is Kähler, and the following is essentially what is
described in [6, Proof of Theorem 1.12]. Fix ω′ a Kähler metric on P(E ′), and
fix a hermitian metric on E ′ which induces a hermitian metric ĥ on OP(E ′)(1). Then
ddc log ĥ is strictly positive in the fiber directions, so there is a constant C > 0 with

ddc log ĥ + Cπ∗ω ≥ C−1ω′.

Let δ′ be a closed (1, 1)-form on X with [δ′] = δ, and choose ε > 0 sufficiently small
that (t − C2ε)ω + Cεδ′ > 0. Then as E is assumed to be nef there is a hermitian
metric h on OP(E ′)(1) such that ddc log h + π∗δ′ ≥ −εω′.

Then the class ζ = c1(OP(E ′)(1)) + π∗[δ + tω] is represented by the form

(1 − Cε)ddc log h + Cεddc log ĥ + π∗(δ′ + tω)

which is bounded from below by

(1 − Cε)(−εω′ − π∗δ′) + Cε(C−1ω′ − Cπ∗ω) + π∗(tω + δ′)

= Cε2ω′ + (t − C2ε)π∗ω + Cεπ∗δ′

≥ Cε2ω′ > 0.

Thus ζ is a Kähler class as claimed. �

Corollary 8.2 Let E be a nef R-twisted vector bundle of rank e ≤ d and j = d − e.
Then ∫

X
ce(E)ω j ≥ 0.

Proof Let f (t) = ∫
X ce(E〈tω〉)ω j . The Bloch-Gieseker theorem implies f (t) �= 0

for all t > 0, and since it is clearly positive for t � 0 f is not identically zero. Since
f is polynomial in t we get f (t) > 0 for t > 0 sufficiently small, which proves the
statement. �
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From here almost all the results in this paper extend to the Kähler case, and the
proofs have only trivial modifications. We state only one and leave the rest to the
reader.

Theorem 8.3 (Derived Schur classes of nef vector bundles on Kähler manifolds are
in HR) Let X be a compact Kähler manifold of dimension d ≥ 2, let λ be a partition
of length d + i − 2 and let E be an R-twisted nef vector bundle on X. Then

s(i)
λ (E) ∈ HR(X).

9 Combinations of Derived Schur Classes

An interesting feature of the Hodge-Riemann property for bilinear forms is that it
generally is not preserved by taking convex combinations, and so there is no reason
to expect that a convex combination of classes with the Hodge-Riemann property
again has the Hodge-Riemann property. In fact this phenomena occurs even for
combinations of Schur classes of an ample vector bundle as the following example
shows

Example 9.1 ([21, Sect. 9.2]) Let X = P
2 × P

3 Then N 1(X) is two-dimensional,
with generators a, b that satisfy a3 = 0, a2b3 = 1. SetOX (a, b) = OP2(a) � OP3(b)

and consider the nef vector bundle

E = O(1, 0) ⊕ O(1, 0) ⊕ O(0, 1).

One computes that the form

(1 − t)c3(E) + ts(1,1,1)(E)

gives an intersection form on N 1(X) with matrix

Qt :=
(

t 2t
2t 1 + 2t

)
.

For t ∈ (0, 1/2) the matrix Qt has two strictly positive eigenvalues. Thus fixing
t ∈ (0, 1/2), any small pertubation of E by an ample class gives an ample Q-twisted
bundle E ′ so that (1 − t)c3(E ′) + ts(1,1,1)(E ′) does not have the Hodge-Riemann
property.

Given this it is interesting to ask if there are particular convex combinations of
(derived) Schur classes that do retain the Hodge-Riemann property. To state one such
result we need the following definition, for which we recall a matrix is said to be
totally positive if all its minors have non-negative determinant,.



On Hodge-Riemann Cohomology Classes 781

Definition 9.2 (Pólya Frequency Sequence) Let μ0, . . . , μN be non-negative num-
bers, and set μi = 0 for i < 0. We say μ0, . . . , μN is a Pólya frequency sequence if
the matrix

μ := (μi− j )
N
i, j=0

is totally positive.

Theorem 9.3 Suppose that X has dimension d ≥ 4 that h is an nef class on X and
E is a nef vector bundle. Let |λ| = d − 2 and μ0, . . . , μd−2 be a Pólya frequency
sequence. Then the class

d−2∑
i=0

μi s
(i)
λ (E)hi (9.1)

lies in HR(X).

Theorem 9.3 follows quickly from the following statement, for which we recall
ci denotes the i-th elementary symmetric polynomial.

Proposition 9.4 Suppose that X has dimension d ≥ 4 and E is a nef vector bundle.
Let λ be a partition of d − 2. Let D1, . . . , Dq be ample Q-divisors on X for some
q ≥ 1. Then for any t1, . . . , tq ∈ Q>0 the class

d−2∑
i=0

s(i)
λ (E)ci (t1D1, . . . , tq Dq)

lies in HR(X).

Proof of Theorem 9.3 If all the μi vanish the statement is trivial, so we assume this
is not the case. From the Aissen-Schoenberg-Whitney Theorem [1], the assumption
that μi is a Pólya frequency sequence implies that the generating function

d−2∑
i=0

μi z
i

has only real roots, and since eachμi is non-negative these roots are then necessarily
non-positive. Writing these roots as {−t j } for t j ∈ R≥0 means

d−2∑
i=0

μi z
i = κ

N∏
j=0

(z + t j ) where κ > 0

which implies
μi = κci (t1, . . . , tN ) for all i.
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Now for each j let t (n)
j ∈ Q>0 tend to t j as n → ∞. Fix an ample divisor h′′ and

consider the class h′ := h + 1
n h′′. Proposition 9.4 (applied with q = N and D1 =

· · · = Dq = h′) implies

d−2∑
i=0

s(i)
λ (E)ci (t

(n)
1 , . . . , t (n)

N )(h′)i

lies in HR(X). Taking the limit as n → ∞ gives the statement we want. �
Proof of Proposition 9.4 Set

� := �(D1, . . . , Dp) :=
d−2∑
i=0

s(i)
λ (E)ci (D1, . . . , Dp).

Without loss of generality we may assume all the Di are integral and very ample.
Write t j = r j/s for some positive integers r j and s. By an iterated application of the
Bloch-Gieseker covering construction, we find a finite u : Y → X and line bundles
η j on X ′ such that that η⊗s

j = u∗O(D j ). Thus

r j c1(η j ) = t j u
∗ D j .

Set E ′ = u∗E . Consider the cone construction for E ′ as described in §4. That is,
there is a surjective π : C → Y from an irreducible variety C of dimension n, and a
nef vector bundle U on C ′ of rank n − 2 such that π∗cn−2(U ) = sλ(E ′). In fact more
is true namely;

Lemma 9.5
π∗cn−2−i (U |C) = s(i)

λ (E ′) for 0 ≤ i ≤ |λ|. (9.2)

Sketch Proof. Formally this is clear: for if δ′ ∈ H 1,1(X; R) then cn−2(U 〈π∗δ′〉) =∑
cn−2−i (U )(π∗δ′)i and pushing this forward to X gives a polynomial in δ′ of classes

on X whose coefficients are the derived Schur classes s(i)
λ (E ′). For a full proof we

refer the reader to [21, Proposition 5.2]. �
Continuing with the proof of the Proposition, set

F =
p⊕

i=1

η
⊗ri
i

so
c j (F) = c j (r1c1(η1), · · · , rpc1(ηp)) = u∗c j (t1D1, . . . , tp Dp).

Then on C ′ the bundle
Ũ := U ⊕ π∗F
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is nef. Take a resolution σ : C → C ′, the vector bundle σ ∗U remains nef and so
using Theorem 7.2 and Lemma 6.6

π∗cn−2(Ũ ) ∈ HRw(Y ).

But

π∗cn−2(Ũ ) = π∗(cn−2(U ) + cn−3(U )π∗c1(F) + · · · + cn−2−d(U )π∗cd(F))

= sλ(E ′) + s(1)
λ (E ′)c1(F) + · · · + s(d−2)

λ (E ′)cd−2(F)

= u∗�.

So by Lemma 6.4 applied to u : Y → X we conclude that � ∈ HRw(X).
To show that in fact � ∈ HR(X) we consider the effect of replacing each Di with

Di + th. Let �t := �(D1 + th, . . . , Dp + th) which is a polynomial in t whose
td−2 term is some positive multiple of hd−2. Setting f (t) = det(Q�t ) we conclude
exactly as in the end of the proof of Theorem 7.2 that �t ∈ HR(X) for t ∈ Q+
sufficiently small, and thus � ∈ HR(X) as required. �

Question 9.6 Suppose that μ1, . . . , μd−2 is a Pólya frequency sequence with each
μi strictly positive, and that h and E are ample. Is it then the case that the class in
(9.1) is actually in HR(X)? The difficulty here is that to follow the proof we have
given above one needs to address the possibility that some of the t j are irrational.

10 Inequalities

10.1 Hodge-Index Type Inequalities

The simplest and most fundamental inequality obtained from the Hodge-Riemann
property is the Hodge-index inequality.

Theorem 10.1 (Hodge-Index Theorem) Let X be a manifold of dimension d and
� ∈ HRw(X). If β ∈ H 1,1(X) is such that

∫
X β2� ≥ 0 then for any α ∈ H 1,1(X) it

holds that ∫
X

α2�

∫
X

β2� ≤
(∫

X
αβ�

)2

. (10.1)

Moreover if � ∈ HR(X) and
∫

X β2� > 0 then equality holds in (10.1) if and only if
α and β are proportional.

Proof The statement is about symmetric bilinear forms with the given signature
and its proof is standard. Indeed, the case when

∫
X β2� = 0 is trivial and the case

when the intersection form is nondegenerate and
∫

X β2� > 0 is classical. Finally,
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the case when the intersection form is degenerate and
∫

X β2� > 0 reduces itself to
the previous one by modding out the kernel of the intersection form. �

In particular (namely Theorem 7.2) the inequality (10.1) applies when� = sλ(E)

whenever λ is a partition of d − 2, E is a nef Q-twisted bundle on X and β is nef.
We now prove a variant of this that gives additional information.

Theorem 10.2 Let X be a projective manifold of dimension d ≥ 4 and let E be a
Q-twisted nef vector bundle and h ∈ H 1,1(X; R) be nef. Also let λ be a partition of
length |λ| = d − 1. Then for all α ∈ H 1,1(X; R),

∫
X

α2s(1)
λ (E)

∫
X

hsλ(E) ≤ 2
∫

X
αhs(1)

λ (E)

∫
X

αsλ(E). (10.2)

Remark 10.3 (i) In the case that λ = (d − 1) and rk(E) = d − 1 the inequality
(10.2) becomes

∫
X

α2cd−2(E)

∫
X

hcd−1(E) ≤ 2
∫

X
αhcd−2(E)

∫
X

αcd−1(E). (10.3)

This was previously proved in [21, Theorem 8.2]. In fact (10.3) was shown to
hold for all nef vector bundles of rank at least d − 1 and if E, h are assumed
ample then equality holds in (10.3) if and only if α = 0. We imagine a similar
statement holds in the context of Theorem 10.2.

(ii) Assume in the setting of Theorem 10.2 that
∫

X sλ(E)h > 0 and let W be the
kernel of the map H 1,1(X) → R given by α �→ ∫

X αsλ(E). Then W has codi-
mension 1, and (10.2) says that the intersection form Qsλ(E) is negative semidef-
inite on W . This is different information to the Hodge-Index inequality which
is essentially a reformulation of the fact that this intersection form is negative
semidefinite on the orthogonal complement of h.

(iii) The inequality (10.2) generalizes to anyhomogeneous symmetric polynomial p
in e variables with the property that p(E) ∈ HR(X) for allQ-twisted nef vector
bundles E of rank e (with the obvious definition for the derived polynomials
p(i)).

Proof of Theorem 10.2 If e := rk(E) < λ1 the statement is trivial, so we assume
e ≥ λ1. We start with some reductions. By continuity, it is sufficient to prove this
under the additional assumption that h is ample. Also replacing E with E〈th〉 for
t ∈ Q>0 sufficiently small we may assume that

∫
X sλ(E)h > 0.

Now set X̂ = X × P
1 and Ê = E � OP1(1). Observe Ê is nef on X̂ and |λ| =

dim(X̂) − 2. So Theorem 7.2 implies

sλ(Ê) ∈ HR(X̂).
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Let α ∈ H 1,1(X; R) and denote by τ the hyperplane class on P
1. Also to ease

notation define

� := sλ(E) ∈ H d−1,d−1(X; R) and �′ := s(1)
λ (E) ∈ H d−2,d−2(X; R)

so sλ(Ê) = � + �′τ .
Now define

α̂ := α − κτ where κ :=
∫

X α�′h∫
X �h

so
α̂sλ(Ê)h = α̂(� + τ�′)h = 0.

Also observe ∫
X̂

sλ(Ê)h2 =
∫

X
�′h2 > 0

so the Hodge-Index inequality applied to sλ(Ê) yields

0 ≥
∫

X̂
α̂2sλ(Ê) =

∫
X̂
(α2 − 2κατ)(� + τ�′) =

∫
X

α2�′ − 2κ
∫

X
α�.

Rearranging this gives (10.2). �

10.2 Khovanskii-Tessier-Type Inequalities

Let X be smooth and projective of dimension d. Suppose that E, F are vector bundles
on X , and let λ and μ be partitions of length |λ| and |μ| respectively, and to avoid
trivialities we assume |λ| + |μ| ≥ d.

Definition 10.4 We say a sequence (ai )i∈Z of non-negative real numbers is log
concave if

ai−1ai+1 ≤ a2
i for all i (10.4)

We note that for a finite sequence, say ai = 0 for i < 0 and for i > n, log-concavity
is equivalent to (10.4) holding in the range i = 1, . . . , n − 1.

Theorem 10.5 Assume E, F are nef. Then the sequence

i �→
∫

X
s(|λ|+|μ|−d−i)
λ (E)s(i)

μ (F) (10.5)

is log-concave

Before giving the proof, some special cases are worth emphasising.
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Corollary 10.6 Suppose that |λ| = |μ| = d. Then the sequence

i �→
∫

X
s(d−i)
μ (E)s(i)

λ (F)

is log-concave

Corollary 10.7 Suppose that |λ| = d and let h be a nef class on X. Then the sequence

i �→
∫

X
s(d−i)
λ (E)hd−i (10.6)

is log-concave. In particular the map

i �→
∫

X
ci (E)hd−i (10.7)

is log-concave.

Proof of Corollary 10.7 By continuity wemay assume that h is ample. Let L be a line
bundle with c1(L) = h. By rescaling h we may, without loss of generality, assume
L is globally generated giving a surjection

O⊕ f +1 → L → 0

for some integer f . Let F∗ be the kernel of this surjection. Then F is a vector
bundle of rank f that is globally generated and hence nef. Now set μ = ( f ), so
s( j)
μ (F) = c f − j (F) = h f − j . We now replace i with f − d + i in (10.5) (which is an
affine linear transformation so does not affect log-concavity). Note that

|λ| + |μ| − d − ( f − d + i) = |λ| − i,

so Theorem 10.5 gives (10.6)
Finally (10.7) follows upon letting e := rk(E) and putting λ = (e) so s( j)

λ (E) =
ce− j (E) so s(|λ|−i)

λ (E) = ci (E). �
Proof of Theorem 10.5 The first thing to note is that all the quantities in (10.5)

are non-negative (see Remark 5.5). Also, we may as well assume rk(E) ≥ λ1 and
rk(F) ≥ μ1 else the statement is trivial.

Set
j = |λ| + |μ| − d − i

and define

ai :=
∫

X
s( j)
λ (E)s(i)

μ (F)
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so the task is to show that (ai ) is log-concave. We observe that ai = 0 if either i or
j are negative, or i > |μ| or j > |λ|. Thus the range of interest is

i := max{0, |μ| − d} ≤ i ≤ min{|μ|, |λ| + |μ| − d} =: i .

Fix such an i in this range and consider

X̂ = X × P
j+1 × P

i+1.

Let τ1 be the pullback of the hyperplane class on P
j+1 and τ2 the pullback of the

hyperplane class on P
i+1 and consider

� = sλ(E(τ1)) · sμ(F(τ2)).

Observe that by construction |λ| + |μ| = d + i + j = dim X̂ − 2 =: d̂ − 2.Expand-
ing� as a polynomial in τ1, τ2 one sees that the coefficient of τ

j
1 τ i

2 is precisely s( j)
λ s(i)

μ .
Thus ∫

X̂
�τ1τ2 =

∫
X

s( j)
λ s(i)

μ

∫
P j+1

τ
j+1
1

∫
Pi+1

τ i+1
2 =

∫
X

s( j)
λ s(i)

μ = ai .

Similarly
∫

X̂ �τ 2
1 = ai−1 and

∫
X̂ �τ 2

2 = ai+1.

Now, since E(τ1) and F(τ2) are nef on X̂ we know from Theorem 7.4 that � ∈
HR(X̂). Thus the Hodge-Index inequality (10.1) applies with respect to the classes
τ1, τ2 which is ∫

X̂
�τ 2

1

∫
X̂

�τ 2
2 ≤

(∫
X̂

�τ1τ2

)2

(10.8)

giving the log-concavity we wanted. �

Remark 10.8 In [21] we gave a slightly different proof of (10.6) which gave more,
namely that if X is smooth and E and h are ample then the map in question is strictly
log-concave. We expect that an analogous improvement can be made to Theorem
10.5, but it is not clear how this can be proved using the methods we have given here,
since the bundle F constructed in the above proof is only nef.

Question 10.9 Is there a natural statement along the lines of Theorem 10.5 that
applies to three or more nef vector bundles? For instance perhaps it is possible to
package characteristic numbers into a homogeneous polynomial that can be shown
to be Lorentzian in the sense of Brändén-Huh [3].

Corollary 10.10 Let λ and μ be partitions, and let d be an integer with d ≤ |λ| +
|μ|. Assume x1, . . . , xe, y1, . . . , y f ∈ R≥0. Then the sequence

i �→ s(|λ|+|μ|−d+i)
λ (x1, . . . , xe)s

(i)
μ (y1, . . . , y f )

is log concave.
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Proof By continuity we may assume the xi and yi are rational. Furthermore, by
clearing denominators, we may suppose they all lie in N. Then take X = P

d and
E = ⊕e

i=1 OPd (xi ) and F = ⊕ f
i=1 OPd (yi ). Then for any symmetric polynomial p

of degree δ we have p(E) = p(x1, . . . , xe)τ
δ and similarly for F . Thus what we

want follows from Theorem 10.5. �

Putting e = f we can consider

ui := s(|λ|+|μ|−d+i)
λ s(i)

μ

as a polynomial in x1, . . . , xe. Still assuming d ≤ |λ| + |μ|, Corollary 10.10 says
that

(u2
i − ui+1ui−1)(x1, . . . , xe) ≥ 0 for any x1, . . . , xe ∈ R≥0.

Question 10.11 Is u2
i − ui+1ui−1 monomial-positive (i.e. a sum of monomials with

all non-negative coefficients)?

Corollary 10.12 Let λ be a partition and x1, . . . , xe ∈ R≥0. Then the sequence

i �→ s(i)
λ (x1, . . . , xe)

is log-concave.

Proof By continuity we may assume xi ∈ Q>0, and then by clearing denominators
that they are all inN. Set d = |λ| and X = P

d and E = ⊕e
j=1 OPd (xi ) and h = c1(E)

which are both ample. Then for any symmetric polynomial p of degreed in e variables
we have

∫
X p(E) = p(x1, . . . , xe). Thus Corollary 10.7 tells us that the map

i �→ s(d−i)
λ (x1, . . . , xe)(x1 + · · · xe)

d−i =: ai

is log-concave That is ai−1ai+1 ≤ a2
i , and dividing both sides of this inequality by

(x1 + . . . + xe)
2d−2i gives that i �→ s(d−i)

λ (x1, . . . , xe) is log-concave. Replacing d −
i with i does not change the log-concavity, so we are done. �

Question 10.13 Do Corollary 10.10 or Corollary 10.12 have a purely combinatorial
proof?

10.3 Lorentzian Property of Schur Polynomials

We end with a discussion on how our results relate to those of Huh-Matherne-
Mészáros-Dizier [13]. To do so we need some definitions that come from [3].
A symmetric homogeneous polynomial p(x1, . . . , xe) of degree d is said to be
strictly Lorentzian if all the coefficients of p are positive and for any α ∈ N

e with∑
j α j = d − 2 we have
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∂α p

∂xα
has signature (+,−, . . . ,−).

We say p is Lorentzian if it is the limit of strictly Lorentzian polynomials.
Any homogeneous polynomial p of degree d can be written as p = ∑

μ aμxμ

where the sum is over μ ∈ Z
e
≥0 with

∑
μ j = d. We write [p]μ := aμ for the coef-

ficient of xμ. The normalization of p is defined by

N (p) :=
∑

μ

aμ

μ! xμ.

Theorem 10.14 (Huh-Matherne-Mészáros-Dizier [13, Theorem 3])The normalized
Schur polynomials N (sλ) are Lorentzian.

Our proof needs a preparatory statement. For this we set

t j (x1, . . . , xe) = x j for each j = 1, . . . , e.

Lemma 10.15 Let p(x1, . . . , xe) be a homogeneous polynomial of degree d, let e′
be any integer satisfying e′ ≥ max1≤ j≤e degx j

(p), where degx j
(p) is the degree of p

with respect to the indeterminate x j , and set

q(x1, . . . , xe) := xe′
1 · · · xe′

e p(x−1
1 , . . . , x−1

e ).

Let α ∈ Z
e
≥0 with

∑
j α j = d − 2 and set β j := e′ − α j . Then

∂α

∂xα
N (p) = 1

2

∑
1≤i, j≤e

[qti t j ]β xi x j .

Proof For 1 ≤ i ≤ e set δi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Z
e with 1 at the i-th position.

Then if p is written as p = ∑
μ aμxμ, we get

∂α

∂xα
N (p) = 1

2

∑
1≤i, j≤e

aα+δi +δ j xi x j = 1

2

∑
1≤i, j≤e

[qti t j ]β xi x j ,

as one can check by expanding p in monomials. �

Proof of Theorem 10.14 Take a partition λ = (λ1, . . . , λN ) of d := |λ| with 0 ≤
λN ≤ · · · ≤ λ1 and assume λ1 ≤ e else the statement is trivial. Then d is the degree of
sλ(x1, . . . , xe). Note that by adding zero members to the partition λ we may increase
N without changing the value of sλ. We may therefore suppose that in our case
N ≥ e. The dual partition to λ is defined by
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λi := e − λN−i for i = 1, . . . , N

so |λ| = Ne − |λ| = Ne − d.
Applying the definition

sλ = det

⎛
⎜⎜⎜⎝

cλ1 cλ1+1 · · · cλ1+N−1

cλ2−1 cλ2 · · · cλ2+N−2
...

...
...

...

cλN −N+1 cλN −N+2 · · · cλN

⎞
⎟⎟⎟⎠

to
x N
1 · · · x N

e sλ(x−1
1 , . . . , x−1

e )

and multiplying each row of the matrix defining

sλ(x−1
1 , . . . , x−1

e )

with x1 · · · xe, we get
x N
1 · · · x N

e sλ(x−1
1 , . . . , x−1

e ) =

det

⎛
⎜⎜⎜⎝

ce−λ1 ce−λ1−1 · · · ce−λ1−N+1

ce−λ2+1 ce−λ2 · · · ce−λ2−N+2
...

...
...

...

ce−λN +N−1 ce−λN +N−2 · · · ce−λN

⎞
⎟⎟⎟⎠ = sλ̄(x1, . . . , xe).

Thus
sλ(x1, . . . , xe) = x N

1 · · · x N
e sλ(x−1

1 , . . . , x−1
e )

and, equivalently,

sλ(x1, . . . , xe) = x N
1 · · · x N

e sλ(x−1
1 , . . . , x−1

e ).

It is tempting to now apply Lemma 10.15, but before doing that we introduce a
small perturbation. For ε > 0 set x̃ j := x j + ε

∑
p x p and let

qε(x1, . . . , xe) := sλ(x̃1, . . . , x̃e)

and
pε(x1, . . . , xe) := x N

1 · · · x N
e qε(x−1

1 , . . . , x−1
e ),

so
qε(x1, . . . , xe) = x N

1 · · · x N
e pε(x−1

1 , . . . , x−1
e ). (10.9)
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We will show that N (pε) is strictly Lorentzian for small ε > 0, which completes the
proof since pε tends to sλ as ε tends to zero.

To this end, let α ∈ Z
e
≥0 with

∑
j α j = d − 2 and set β j := N − α j and

X :=
e∏

j=1

P
β j .

Let τ j denote the pulback of the hyperplane class on P
β j to X , and set h := ∑

j τ j

which is ample. Next set

E :=
e⊕

j=1

π∗
j OP

β j (1) and E ′ := E〈εh〉.

Then E is a nef vector bundle on X and by construction dim X = Ne − d + 2 =
|λ| + 2. So from Theorem 7.2 we know sλ(E) ∈ HR(X). In fact by Remark 7.3 we
actually have sλ(E ′) ∈ HR(X) for sufficiently small ε > 0 andwe assume henceforth
this is the case.

Now by (10.9) and Lemma 10.15,

∂α

∂xα
N (pε) = 1

2

∑
1≤i, j≤e

[qε ti t j ]β xi x j (10.10)

and our goal is to show that this has the desired signature. But this is precisely what
we already know, since thinking of sλ̄(E ′)τiτ j as a homogeneous polynomial in
τ1, . . . , τe, integrating over X picks out precisely the coefficient of τβ , and as E ′ has
Chern roots τ1 + εh, · · · , τe + εh this becomes

∫
X

sλ̄(E ′)τiτ j = [qε ti t j ]β.

Hence the quadratic form in (10.10) is precisely the intersection form 1
2 Qsλ̄(E ′) on

H 1,1(X), which has signature (+,−, . . . ,−) and we are done. �

Remark 10.16 There is a lot of overlap between what we have here and the original
proof in [13]. For instancewe rely here on our Theorem that Schur classes of (certain)
ample vector bundles have the Hodge-Riemann property, which in turn relies on the
Bloch-Gieseker theorem and thus on the classical Hard-Lefschetz Theorem. On the
other hand, [13] relies on the fact that the volume function on a projective variety is
Lorentzian, which is a facet of the Hodge-index inequalities (that are a consequence
of the Hodge-Riemann bilinear relations).

Also, instead of our cone classes discussed in Sect. 4, the authors in [13] use a
different aspect of Schur classes that is also a degeneracy locus. Finally we remark
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the use of the dual partition λ also appears crucially in [13]. Nevertheless there is a
slightly different feel to the two proofs, and we leave it to the readers to decide if
they consider them “essentially the same” [11].
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