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Abstract
A variety of systems in physics, chemistry, biology, and psychology are mod-
eled in terms of diffusing ‘searchers’ looking for ‘targets’. Examples range from
gene regulation, to cell sensing, to human decision-making. A commonly stud-
ied statistic in these models is the so-called hitting probability for each target,
which is the probability that a given single searcher finds that particular target.
However, the decisive event in many systems is not the arrival of a given sin-
gle searcher to a target, but rather the arrival of the fastest searcher to a target
out of many searchers. In this paper, we study the probability that the fastest
diffusive searcher hits a given target in the many searcher limit, which we call
the extreme hitting probability. We first prove an upper bound for the decay
of the probability that the searcher finds a target other than the closest target.
This upper bound applies in very general settings and depends only on the rel-
ative distances to the targets. Furthermore, we find the exact asymptotics of the
extreme hitting probabilities in terms of the short-time distribution of when a
single searcher hits a target. These results show that the fastest searcher always
hits the closest target in the many searcher limit. While this fact is intuitive in
light of recent results on the time it takes the fastest searcher to find a target, our
results give rigorous, quantitative estimates for the extreme hitting probabilities.
We illustrate our results in several examples and numerical solutions.
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1. Introduction

Many systems in physics, chemistry, biology, and psychology have been modeled in terms of
diffusing ‘searchers’ finding ‘targets’ [1]. Examples include diffusion-limited chemical reac-
tions [2], immune response initiation from a T cell finding an antigen-presenting cell in alymph
node [3], gene activation from a transcription factor finding the corresponding gene [4], and
making a decision when the amount of evidence in favor of a certain response surpasses a given
threshold [5].

To understand the timescales in these systems, one often studies the time it takes a searcher
to find a target, which is called the first passage time (FPT). If there are multiple targets, then
another important quantity is the probability that a searcher finds a particular target, which is
called the hitting probability or splitting probability [6]. For example, cells sense their envi-
ronment through diffusive signals (searchers) arriving at membrane receptors (targets), and
the receptor hitting probabilities have been used to study how cells could infer the location of
the source of the signal [7] (intuitively, if most of the diffusive signal hits receptor k, then the
source is likely near that receptor). As another example, decision-making has long been mod-
eled in the psychology literature in terms of a diffusive searcher moving between targets which
represent choices for the decision [8]. In these models, the hitting probabilities thus describe
the likelihood that a particular decision will be made [9].

To describe these scenarios more precisely, let {X(r)},>o denote the path of a diffusive
searcher among m > 2 targets denoted by Vo, Vi, ..., V,_;. The FPT of the searcher to one
of the targets is then

7= inf{r > 0: X() € U, Vi }. (D)

If k€ {0,1,...,m— 1} denotes the index of the target hit by the searcher (i.e. xk = k if
X(7) € V), then the hitting probabilities for the m targets are the values of

P(k =k) forke{0,1,...,m—1}. 2)

Mathematically, finding the hitting probabilities in (2) for a single diffusive searcher requires
solving an elliptic partial differential equation (PDE) with mixed boundary conditions. To illus-
trate, consider a purely diffusive searcher in a bounded domain M C R¢ with a reflecting
boundary containing m > 2 targets Vp, Vi,...,V,,—1 C M (see figure 1 for an illustra-
tion). Conditioned that the searcher starts at xo € M, the probability that the searcher hits
target k first,

m(x0) =Pk = k|X(0) = xo),
satisfies the PDE boundary value problem [10],
Ar =0, xp¢€ M\UT:_O1 Vi,
r=1, x9 €V, 3)
7=0, xo€UjsV)

with reflecting boundary conditions on the boundary of M (if the searcher experiences drift
or a space-dependent diffusion coefficient, then the Laplacian A in (3) is replaced by a more
complicated differential operator [10]). Hence, finding the hitting probabilities in (2) generally
amounts to solving a PDE akin to (3). Finding moments of the FPT 7 in (1) involves solving
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Figure 1. Schematic diagram of diffusive search. The searchers start at the green ball
labeled x( and diffuse until they hit one of the m = 3 targets (red regions) labeled Vj,
Vi, and V,. The dashed lines with lengths Ly < L; < L, show the shortest paths to each
of the targets which avoid the reflecting obstacles (gray regions). The brown trajectory
depicts the path of a typical searcher which wanders around the domain before finding a
target. The blue trajectory depicts the path of the fastest searcher out of N > 1 searchers
which tends to follow the shortest path to the closest target.

similar PDEs to (3) [11]. Analyzing such FPT and hitting probability problems has generated
a great deal of PDE analysis [12—19].

The majority of prior studies of diffusive search have considered a single searcher. However,
it has recently been emphasized that the important timescale in many systems is not the FPT of
a single searcher, but rather the fastest FPT out of many searchers [20, 21]. That is, if there are
N > 1 searchers with respective FPTs 7, ..., 7y, then the decisive timescale is the so-called
fastest FPT or extreme FPT,

TNZZ mil’l{Tl,...,TN}. (4)

As two examples, human fertilization is triggered when the fastest sperm cell out of N ~ 108
sperm cells finds the egg [22], and a gene regulatory response is determined by only the fastest
few transcription factors out of N € [10%, 10*] transcription factors relaying the signal [23].
For more examples, see the review [20] and the subsequent commentaries [24—30].

In this case of N >> 1 searchers, a statistic related to the extreme FPT in (4) is what
we call the extreme hitting probability. More precisely, let x, € {0,...,m — 1} indicate the
target hit by the nth searcher. If n* € {1,...,N} denotes the index of the fastest searcher
(meaning 7, = Ty), then let

Ky = Kk« € {O,...,m— 1}
indicate the target hit by this fastest searcher. The extreme hitting probabilities are then
P(Ky =k) forke{0,1,...,m—1}.

In the cell sensing model described above [7], the extreme hitting probabilities describe the
distribution of where the first signaling molecules are likely to hit the cell. In decision-making
models, the extreme hitting probabilities describe choices made by early adopters, which can
affect the subsequent decisions made by a larger population [31-33].

In this paper, we study the extreme hitting probabilities for N > 1 independent and iden-
tically distributed (i.i.d.) diffusive searchers. If 0 denotes the index of the target closest to the
searcher starting location, then we prove that the probability that the fastest searcher finds target
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k # 0 vanishes according to
P(Ky = k) = o(N'"" &/ +)  ag N — 00 for any & > 0, 5)

where f = o(g) denotes f/g — 0. In (5), L; > 0 denotes a certain geodesic distance between
the searcher starting location and target j € {0, ...,m — 1}, and we assume Ly < L. Roughly
speaking, L; is the shortest distance the searcher must travel to hit target j, as illustrated in
figure 1 (the geodesic distance is given precisely in section 4). We prove that (5) holds in quite
general settings, including for d-dimensional diffusion processes (i) with space-dependent dif-
fusion coefficients and drifts, (ii) on Riemannian manifolds, (iii) with reflecting obstacles, (iv)
with partially absorbing targets, and (v) with a random starting location.

Moreover, the result in (5) can be sharpened under additional assumptions on the short-time
behavior of the joint probability distribution of (7, k) for a single searcher. In particular, we
prove that

P(Ky = k) ~ n(In NY’N'"G/L0% a5 N 00 for k # 0, (6)

where the constant 17 > 0 and the logarithmic power p € R are given explicitly in terms
of parameters in the short-time distribution of (7, x). Throughout this paper, f ~ g denotes
flg—1.

The results in (5) and (6) show that the fastest searcher always hits the closest target in the
limit of many searchers. While this fact is intuitive in light of recent results on extreme FPTs
[21], the bound in (5) and the exact asymptotics in (6) give rigorous, quantitative estimates for
the extreme hitting probabilities. We now highlight two features of these estimates.

First, (5) is a general result that requires knowing merely the distance to the closest target,
Ly, and the distance to the kth target, L; (see figure 1). In particular, one can use (5) to estimate
the extreme hitting probabilities without detailed knowledge of the geometry, diffusivity, drift,
etc. This is in stark contrast to obtaining the hitting probabilities for a single searcher, which
requires solving an elliptic PDE with mixed boundary conditions as in (3).

Second, (5) and (6) show how relatively small differences in target distances yield vastly
different extreme hitting probabilities. For example, consider N i.i.d. searchers which move by
pure diffusion in one dimension between a target at x = 0 and a target at x = [ > 0 (see the
left panel of figure 2). If the searchers start in the left half of the interval, xo € (0,1/2), then
the respective distances to each target are simply

Ly=xo <Ly =1— xp.
In the case of a single searcher (N = 1), it is well-known that the probability that the searcher
hits x = [ before x = 0 is a linear function of the starting location [10],

1

X
(Ki=D=Ple=1= =37

This means that if a searcher starts only slightly closer to x = 0 than x = /, then that single
searcher is only slightly more likely to hit x = 0 before x = [. However, if there are N > 1
such searchers, then we apply (6) to this example and find that

P(Ky = 1) ~ n(In NYN'? as N — oo, (7

where

L\’ B—1 —
BZ(L_()) > 1, pP=—5" n =/ 7=1BT(B) > 0.
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Figure 2. Diffusive search in the interval (0, /). (Left) The thin curves depict paths of
typical searchers which wander around the interval and the thick blue curve depicts
the path of the fastest searcher which quickly hits the closer target. (Right) The curves
plot the asymptotic estimate in (7) for the probability that the fastest searcher out of N
searchers hits the target at x = [ for different values of the relative searcher starting loca-
tion xo//. The square markers plot the value of this extreme hitting probability obtained
from numerical solutions. See section 3.1 for details.

In the right panel of figure 2, we plot the estimate in (7) against numerical solutions, which
illustrates the rapid decay of P(Ky = 1) even if L is only slightly less than L;. See section 3.1
for details on this example.

The rest of the paper is organized as follows. In section 2, we first represent the extreme
hitting probabilities as an integral involving the probability distribution of 7 and the joint prob-
ability distribution of (7, k). We then find the large N asymptotics of this integral under some
assumptions on the short-time behavior of these probability distributions. In section 3, we
illustrate the exact asymptotic estimate in (6) in several examples and compare to numerical
solutions. In section 4, we prove that the bound in (5) holds in several very general settings.
We conclude by discussing related work. We present the mathematical proofs along with some
technical points in the appendix.

2. Hitting probability asymptotics

In this section, we prove results on the asymptotics of hitting probabilities under general
assumptions on the short-time behavior of hitting time distributions. The theorems in this
section make no reference to diffusion. Rather, the theorems merely assume certain short-time
behavior for hitting time distributions. We then show in sections 3 and 4 that this behavior is
characteristic of diffusive search.

2.1. Probabilistic setup and integral representation

Let 7 > 0 be a nonnegative random variable and let x be a random variable taking values in
the finite set {0, 1,...,m — 1, 00}. In the applications of interest, T is the FPT of a searcher
to a target and « indicates which of the m > 2 targets that the searcher finds. We set x = oo
if 7 = oo, which describes the event that the searcher never finds a target (the event 7 = oo
occurs with positive probability in, for example, diffusive search in an unbounded domain in
dimension d > 3).

For each target index k € {0,...,m — 1}, define

Fit)=P(r<tNk=k), ke{0,....m—1}, reR.
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Furthermore, let F(f) denote the cumulative distribution function of 7,
m—1
Fi)y=P(r<n=)» F(), teR
k=0

We assume F(¢) is a continuous function with F(0) = 0, which ensures that P(7 = r) = O for
every t € R.
Let { (7, kn) }a>1 be an i.i.d. sequence of realizations of

(1,k) € (0,00] x {0,1,...,m—1,00}.
Define the fastest FPT for any N > 1,

Ty := min{r,...,7v}.
Furthermore, let

Ky €{0,...,m— 1,00}

denote the index of the target hit by the fastest searcher. That is, if Ty = 7+ for some
n* € {1,...,N}, then

KN = Kp*. (8)

We note that event 7, = 7,, < oo for n* # n’ has probability zero since F(¢) is continuous.
Further, if Ty = oo, then k,, = oo forall n € {1,..., N} and thus Ky = oo. Hence, there is no
ambiguity in (8) and Ky is well-defined. We emphasize that K}y is the index of the target hit by
the fastest searcher, whereas xy is the index of the target hit by the Nth searcher.

We are interested in the distribution of K for large N. The following proposition represents
the distribution of Ky in a form which is convenient for analyzing the large N limit.

Proposition 1. Under the assumptions of section 2.1, the distribution of Ky can be written
as the following Riemann—Stieltjes integral,

P(Ky = k) = N/Oo(l —FO)V ' dF(0), ke {0,1,...,m—1}.
0

Further, P(Ky = 00) = (P(T = 00))V, where P(T = 00) = | — lim,_, F(2).

The proof of proposition 1, as well as the proofs of all the results in this section, are given
in the appendix.

2.2. Extreme hitting probabilities

Since F(f) is a nondecreasing function, it is clear from the form of the integral in proposition 1

that the large N asymptotics of P(Ky = k) depend chiefly on the behavior of F(¢) and F(7)

near ¢ = (. The following proposition computes the exact asymptotics of an integral whose

integrand is typical of the integrand in proposition 1 near ¢ = 0 for the case of diffusive search.
We remind the reader that f ~ g denotes f/g — 1.

Proposition 2. Assume C. > C > 0,A > 0, and p,q € R. Then there exists a 6y > 0 so
that for all § € (0, o], we have

g N—1
/ 1972 e_c+/’(l — A e_C/’) dt ~ n(In NP 7IN7P  as N — oo,
0

6
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where
B=CL/C>1, n=CIT AC) TP >0,

and I'(B) = fooczﬁ ~le=2dz denotes the gamma function.

The following theorem uses proposition 2 to compute the exact asymptotics of the distri-
bution of Ky assuming fairly detailed knowledge of the short-time behavior of F and Fy. In
particular, the theorem assumes the short-time asymptotics of F' and F}, are known on a linear
scale. We show in section 3 that this short-time behavior of F and F} is typical of diffusive
search.

Theorem 3. Under the assumptions of section 2.1, assume further that for some
ke{l,...,m—1},

F(f) ~ AP e/t a5t — 0+, 9)
Fi(t) ~ B e " as 1 — 0+, (10)
where C, > Cyp > 0,A > 0,B > 0,and p,q € R. Then
P(Ky = k) ~ n(In NYP"~IN'=? a5 N — oo,
where
B:=Cy/Co>1, n:=B(Cy)? "’APBT(B) > 0, (11)

and I'(B) := Ooczg" e “dz denotes the gamma function.

We show in sections 3 and 4 that the constants Cy and C; in theorem 3 are related to the
shortest distances to the closest target (taken to be target 0) and the kth target. In particular, we
show that it is generally the case that

_ @y

Cj= D >0 je{0,....,m—1},

where L; > 0 is the shortest distance from the searcher starting location (in an appropriately
chosen notion of distance) and D > 0 is a characteristic diffusion coefficient. Hence, theorem 3
gives the large N behavior of the probability that the fastest searcher finds a target other than
the closest target. Of course, it follows that the probability that the fastest searcher finds the
closest target converges to unity at a rate determined by the next closest target(s). We further
note that proposition 1 ensures that the probability that the fastest searcher does not hit any
target vanishes exponentially fast,

P(Ky = o0) = (P(r = 00)’ — 0 as N — oo, (12)

apart from the trivial case that P(7 = co) = 1. In particular, under the assumptions of
theorem 3, the decay in (12) holds and thus

P(Ky = 00) = o(P(Ky = k)) as N—oo forany k€ {0,1,...,m— 1},

since (9) implies P(7 = co) < 1. We remind the reader that f = o(g) denotes f/g — 0.
In general scenarios, the short-time asymptotics of F' and F}, required by theorem 3 may not
be known. The following theorem gives an upper bound on the decay of the distribution of Ky

7
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assuming one merely has bounds on the short-time behavior of F and F} on a logarithmic scale.
We show in section 4 that these bounds hold in very general settings for diffusive search.

Theorem 4. Under the assumptions of section 2.1, assume further that for some
ke{l,...,m—1},

limzln F(£) > —Cy <0, limtIn Fi(r) < —Cr <O, (13)
t—0+ t—0+

where Cy > Cy > 0. Then for every ¢ > 0,

P(Ky = k) = o(N'" "*%) as N — o0, (14)
where

B:=Ci/Co > 1.
If we assume further that

limtln F(f) = —Cyp <0, lim¢In Fi(r) = —C, <0, (15)
=0+ =0+

then in addition to (14), we also have that for every ¢ > 0,

NP7 = o(P(Ky = k)) as N — oo. (16)

We note that (13) implies that P(7 = oo) < 1 and thus the decay in (12) holds under the
assumptions of theorem 4.

3. Examples and numerical solutions

Theorem 3 yields the exact asymptotics of the extreme hitting probabilities as N — oo in terms
of the short-time behavior of F(¢) and Fi(¢). In this section, we illustrate these results and
compare them to numerical solutions in several examples.

3.1. Pure diffusion in one dimension

Consider pure diffusion with diffusivity D > 0 in one dimensional space R. Suppose each
searcher starts at xo € (0, /) and the targets are at the left and right of the interval (0, /) and are
denoted by

V() = (—OO, 0], V1 = [l, OO)

If there is only one searcher, then it is well-known that the probability that this single searcher
reaches V; before Vj is

P(K, :1):?:1-[@(1{1 —0).

We now approximate the probability that the fastest searcher out of N > 1 searchers finds
V) before V). In the simple case that the searchers start exactly in the center of the interval,
symmetry implies

PKy=1)=PEy=0)=1/2 forall N>1 ifxo=1/2.

8
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To understand the behavior of Ky apart from this case, we need information about the short-
time behavior of F;. Without loss of generality, assume the searchers start in the left half of the
interval,

xo € (0,1/2),
and define the lengths from x to the respective targets,

O<Ly=x0<l—x9=:1L. (17)
In this case, one can show that (see the appendix)

F(t):=P(r < 1) ~ A" e /" as 1 — 0+, (18)

| 4D 1 (Lo)*
m(Lo)?’ P 2’ Co 4D (19)

One can also show that (see the appendix)

where

Fi(f) ~Btle /" ast— 0+, (20

| 4D 1 (L1)>
B: — = = -, C = . 21
rLy 1TTPT oy YT up @h

Therefore, theorem 3 implies that

where

P(Ky = 1) ~ n(In N)PD2N=8 a5 N — o0, (22)

(L (=%
o= (1) = (50) =
n =/ B 1T(B) > 0.

In figure 3, we compare (22) to numerical solutions. In the left panel, the solid curves are the
asymptotic formula in (22) and the square markers are computed using numerical integration
of the representation for P(Ky = 1) given in proposition 1 (see the appendix for details of the
numerical method). The right panel plots the relative error between the asymptotic formula in
(22) and the value of P(Ky = 1) obtained from numerical integration,

where

P(Ky = 1) — n(In N)@-D2N1=6

P(Ky = 1) @3)

Before moving to the next example, we briefly point out that (22) yields the large N asymp-
totics of the solution to Laplace’s equation in the N-dimensional hypercube with certain mixed
boundary conditions. In particular, let x = (x1,...,xy) € R denote an N-dimensional vector
and suppose the function u(x) is harmonic in (0, /)",

Au=0, xe(,D).
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Figure 3. Extreme hitting probabilities for pure diffusion in the interval (0,/). See
section 3.1 for details.

Suppose further that u satisfies the boundary conditions
ux)=0 ifx, =0 forsomen € {1,...,N}and x; € (0,) fori+# n,
ux)=1 ifx, =1 forsomene {1,...,N} and x; € (0,]) fori+#n.

Since N independent diffusive searchers in the interval (0, /) is equivalent to a single diffusive
searcher in (0, )N € RY, it follows that [10]

u((xg, X0, . .., x0)) = P(Ky = 1).

Hence, (22) yields the large N behavior of u((xo, xo, - .., x0)). The analogous result for the
asymptotics of solutions to similar high-dimensional elliptic PDEs holds for the examples given
below.

3.2. Diffusion with drift in one dimension

Consider the example in section 3.1, but now suppose that each searcher experiences a constant
drift 1 € R. Precisely, suppose the position {X(7)},>¢ of a searcher evolves according to the
stochastic differential equation,

dX(r) = pdt + V2D dW(r),

where {W(#)}>0 denotes a standard Brownian motion. As in section 3.1, assume that the
searchers start in the left half of the interval, xo € (0,1/2).
Define 0 < Ly :=x¢ < I — xo =: L;. In the appendix, we show that F(¢) satisfies (18) with

_ (—uLy\ | 4D 1 _ Wy
A—exp< 2D> TR P=3 Co = D (24)

and that F'(7) satisfies (20) with

uLy 4D 1 (Ly)?
B=exp( L) -, g=p=-, C =" 25
exP( 2D ) ry 1TPT 2 YT 4p 25)

In particular, the short-time asymptotics of F' and F; are unchanged from the problem in
section 3.1 with zero drift except for the factor of exp(—uL,/(2D)) in F and the factor of
exp(ul, /(2D)) in F.

10
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Figure 4. Extreme hitting probabilities for one-dimensional diffusion with drift. See
section 3.2 for details.

Therefore, theorem 3 implies that

P(Ky = 1) ~ n(In N)PD2N=8 a5 N — o0, (26)

L1 2 l—)C() 2
= e = 1’
’ <L0> ( X0 ) g
e

where 1y :=+/B771T(8) is the constant computed for the example with zero drift in
section 3.1. Notice that the drift ; € R plays a minor role in the asymptotics of P(Ky = 1)
since it only affects the constant prefactor 7 rather than the decay rate.

In figure 4, we compare (26) to numerical solutions for the starting position xo = 0.45] €
(0,1/2). In the left panel, the solid curves are the asymptotic formula in (26) and the square
markers are computed using numerical integration of the representation for P(Ky = 1) given
in proposition 1 (see the appendix for details of the numerical method). The right panel plots
the relative error.

For this example, it is straightforward to compute the probability that a given single searcher
starting at xo € (0, /) hits x = [ before x = 0 [10],

where

e/l,l/D _ e,u(l—)c)/D

P(Ky = 1) = ——p—

27)
For the positive values of the drift plotted in figure 4 (namely, u//D = 1 and pl/D = 2) and
the starting position xo = 0.45, equation (27) implies that a given single searcher is actually
more likely to hit x = [ before x = 0 (i.e. P(K; = 1) > 1/2), despite the fact that the fastest
searcher only rarely hits x = / before x = 0 if N is large.

3.3. Partially absorbing target(s)

In the examples above, a target was ‘found’ by the searcher as soon as the searcher touched
the target. In particular, we defined the FPT to be 7 := inf{t > 0: X(r) € Uj"_) Vi }. In this sce-
nario, the targets are said to be ‘perfectly absorbing’. An alternative model is that of ‘partially
absorbing’ targets [34, 35], in which the searcher ‘finds’ (or ‘reacts with’) a target only after

1
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spending some time near the target. Mathematically, the FPT of interest for partially absorbing
targets is

Tpartial = I0f{t > 0: \e() > &/ for some k € {0,...,m— 1}}, (28)

where {&}7, are m independent unit rate exponential random variables, {v;}/'_, are m given
nonnegative parameters called ‘trapping rates’ [36, 37], and A\i(?) is the local time of X(¢) on
Vi [34, 38] (74 > 0 has dimension length/time and A.(#) has dimension time/length).

Consider the example in section 3.1, but now suppose that the targets V, and V; have respec-
tive trapping rates 7y, > 0 and ; > 0. If we define the survival probability conditioned on the
initial location of the searcher,

S(x, 1) :=P(Tparial > 11X (0) = x), (29)
then S satisfies the backward Kolmogorov equation,

0 o?

—S=D—S, € (0,0, 30

bR 5 *€O.D (30)

with unit initial condition, S = 1 at r = 0, and Robin boundary conditions,

DagS =S, x=0,
N 31)

0
—D—S8 =S, =1
ox m *

Setting 7, = oo corresponds to making Vj perfectly absorbing, which can be seen from (31)
or (28).

Define 0 < Ly :=xo < [ — x9 =: L;, where we have again assumed that the searchers start
in the left half of the interval, xo € (0,1/2). One can derive that F(r) satisfies (18) with

270 4D ;
Lom if 7o € (0, 00), {3/2 if 79 € (0c0)

A: p:
4D 1/2 if’yOZOO,

(L)

(32)

if Yo = OO,

and Cy = %. Similarly, one can derive that F () satisfies (20) with the analogous values of
B3 q, and Cla

— = fy1 € (0,00), )
Lo\ =2 if 11 € (0,00) {3/2 it 1 € (000)

B: q:
4D 1/2 if 4 = oo,

m(L1)?

(33)

if Y1 = OO,

and C; = %. While we do not prove (32) and (33), they can be derived by assuming that
the presence of target k does not affect the short-time asymptotics of F;_;. See the appendix
for this derivation and the example in section 3.4 below for a more detailed justification of an
analogous statement in three dimensions.

Assuming (18) and (20) hold with (32) and (33), theorem 3 implies that

P(Ky = 1) ~ n(In NY’N'™# as N — o0, (34)

12
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Figure 5. Extreme hitting probabilities for partially absorbing targets. See section 3.3
for details.

where 3 = (é—(‘))2 = (l;%)2 > 1 and the values of the constant prefactor > 0 and the loga-
rithmic power p € R depend on which target(s) is partially or perfectly absorbing. Specifically,

—f 2 1-5

21 (270 (Lo) 3 3.

—Sn(se) (B L p=28-2 ify0.m € (0,00),
7 L1<L0> <4D> 7o p B > if 70,71 € (0,00)

— -8
290\ 7 [ Lo)*\ 31

- - 5 = = — A f O’ 5 - )

n <L0> ) 0 p zﬂ 5 if 79 € (0,00), 71 = o0
21 (Lo)? 1 3.

- 5 ) = = — A f - ) 0, )

=T ap p 2ﬂ 5 it 00,71 € (0,00)
1 1 .

7 = 1o, p=*ﬂ—§ if yo =y = oo,

2

where 19 := /377 ~1T(/3) is the constant computed for the example with perfectly absorbing
targets in section 3.1.

In figure 5, we compare (34) to numerical solutions for the starting position xo = 0.45/ €
(0,1/2). In the left panel, the solid curves are the asymptotic formula in (34) and the square
markers are computed using numerical integration of the representation for P(Ky = 1) given
in proposition 1 (see the appendix for details of the numerical method). The right panel plots
the relative error.

3.4. Concentric targets in three dimensions

Consider pure diffusion with diffusivity D > 0 in three-dimensional space R3. Suppose there
is an ‘inner’ target at the origin with radius Ry > 0,

Voi={x e R*: ||x|| < Ro},
and an ‘outer’ target defined by
Vi={xeR: x| >R},

where Ry > Ry > 0 and || - || denotes the standard Euclidean norm. Suppose the searchers start
at radius ||X(0)|| € (Ro, R1) between these two concentric targets (see the left panel of figure 6

13
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Figure 6. (Left) Schematic diagram of concentric targets in three dimensions stud-
ied in section 3.4. (Right) Schematic diagram of the narrow capture problem in three
dimensions studied in section 3.5.

for an illustration). Suppose the searchers start closer to the inner target so that the distances
to the targets satisfy

Ly:=[IX(0)[| = Ry < Ry — [ X(O)]| = Li.

One can derive that

F(1) ~ AP e /" as t — 0+, (35)
Fi(t) ~ Btle C/" ast— 0+, (36)
where
Ry 4D (Lo)?
_ L op=1/2, Cy= , (37)
x|\ rzo? P / = 4p
R, 4D (L))?

g=p=1/2, C =

D (38)

X'\ m(L1)*
While we do not prove (35)—(37), their informal justification is the following. The asymptotic
relations in (35) and (36) concern the behavior of searchers which hit a target at an early time,
and such searchers tend to follow the shortest path, which in this case is a straight line [39].
Since the straight line path from X(0) to V,, does not intersect V;, we expect that (35) and (37)
would be unchanged if V, was the only target. This idea is often called the ‘principle of not
feeling the boundary’ [40, 41]. In the case that V| is indeed the only target, we can solve for the
distribution of 7 exactly and show that it satisfies (35) and (37) (see the appendix). Similarly,
if V) is the only target, then we can show that the distribution of 7 satisfies (36) and (38) (see
the appendix). An alternative approach to obtain (35)—(38) is to apply Tauberian theorems to
the Laplace transform of the associated survival probability, which is known analytically (for
example, see equation (4.78) in [42]).

Assuming (35)—(38), then theorem 3 implies that

P(Ky = 1) ~ nin NY®D2N1F a5 N = oo, (39)

14
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Figure 7. Extreme hitting probabilities for concentric targets in three dimensions. See
section 3.4 for details.

where

L\’ <R1—||X<0>|>2
= — _= _— 1’
d (Lo> X0 &) ~
_& p—1
1= IXO] ' >0,

where 19 := /377~ 1T(/3) is the constant prefactor computed for the example in section 3.1.
Note that  — 7, if we take Ry, R;, and ||X(0)| to infinity while keeping Ly and L, fixed,
which is to be expected since target curvature becomes irrelevant in this limit and the problem
becomes one-dimensional.

In figure 7, we compare (39) to numerical solutions for the starting position ||X(0)|| =
R;/2 > Ry. In the left panel, the solid curves are the asymptotic formula in (39) and the square
markers are computed using numerical integration of the representation for P(Ky = 1) given
in proposition 1 (see the appendix for details of the numerical method). The right panel plots
the relative error.

For this example, it is straightforward to compute the probability that a given single searcher
starting at || X(0)|| € (Ro, R)) hits V; before Vy [10],

Ry [[X(0)[| — Ro

P =D= "k X

(40)

For the values of Ry plotted in figure 4 and the starting radius | X(0)|| = R;/2,
equation (40) implies that a given single searcher is actually more likely to hit V| before
Vo (i.e. P(Ky = 1) > 1/2), despite the fact that the fastest searcher only rarely hits V; before
Vo if N is large.

3.5. Narrow capture in three dimensions

Consider pure diffusion with diffusivity D > 0 in a bounded three-dimensional domain
M C R? with areflecting boundary. Suppose there are m > 2 small spherical targets centered at
the m distinct points vy, . .., v,,—1 € int(M) with respective radii ery, . . ., er,—; > 0 for some
€ > 0 (int(M) denotes the interior of M). That is, the targets are

Vi={xeR: |x — vl <ent, ke€{0,....,m—1}.

15
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This problem is often called the narrow capture problem [43], and one studies the statistics of a
single searcher in the small target limit, ¢ — 0. See the right panel of figure 6 for an illustration.

Assume the searchers start at xo ¢ Uk’”;(} Vi and that the three points xg, vy, and v; are
not collinear for any k # j. Assume that ¢ is sufficiently small so that (i) V, C M for each
ke {0,...,m— 1} and (ii)

pxo+ (1 —p ¢ V; forall pe[0,1], k # . 41

The assumption in (41) ensures that the straight line path from x, to V) does not intersect any
other target. Assume further that the shortest path from x, to each target V; lies entirely in the
interior of M,

pxo + (1 = pyyg € int(M) forall pe[0,1], k€ {0,...,m—1}. (42)

Assume there is a unique closest target to xo and without loss of generality assume it is Vj.
That is, assume

0 < Lo:=|lxo — vol|| —ero < ||xo — vi|]| —ery =: Ly forall k € {I,...,m—1}.

Under these assumptions, one can derive that fork € {1,...,m — 1},
F(1) ~ AP e /" as 1 — 0+, (43)
Fi(t) ~ Bt9e” /" as t — 0+, 44)
where
€1 4D 1 (Lo)?
A= , =, Cy= 45
o —woll || 7> 7720 %7 4p (45)
Erg 4D 1 (Lk)2
B = 5 - = C - . 46
o —wll\ 7@ 1P 7 2 YT ap (46)

We do not prove (43)—(46), but their derivation is analogous to the derivation of (35) and (37)
(i.e. one finds the short-time asymptotics of Fj assuming V; is the only target).
Assuming (43)—(46), theorem 3 implies that fork € {1,...,m — 1},

P(Ky = k) ~ n(In N)"D2N'"Fas N — oo, (47)

L 2 X0 — V|| — €r, 2
5:<_k>:<|o Al k>>1’
Loy [l x0 — vol| — €ro

s
Ery Erp
n= ( )770>0,
[[x0 — wel| \ [l X0 — wol|

where 19 := /377 ~1T'(3) is the constant prefactor computed for the one-dimensional example
in section 3.1.

It is interesting to contrast (47) with the behavior of P(Ky = k) in the small target limit,
€ — 0. In the case of a single searcher searching for small spherical targets, the probability it
hits a particular target is merely the ratio of the target radii [12],

where

Tk

ijorj

as ¢ — 0. (48)

16



J. Phys. A: Math. Theor. 55 (2022) 345002 S Linn and S D Lawley

The intuitive reason for (48) is that in the small target limit (i.e. ¢ — 0), the searcher wanders
around the entire domain before finding a target and thus the probability it hits any particular
target depends merely on the target sizes. In particular, notice that the limit in (48) is indepen-
dent of the starting location x( (assuming x is outside an order € neighborhood of each target,
which is true if x is fixed and € — 0). We conjecture that the limit in (48) actually holds for
any fixed N > 2,

P(Ky = k) — 7,:51 as € — 0. (49)
j=07j

The intuitive reasoning behind (49) is the same as (48). Namely, in the small target limit, even
the fastest searcher wanders around the entire domain before finding the target.

Therefore, the many searcher limit N — oo and the small target limit € — 0 constitute com-
peting limits. It would be interesting to understand the crossover regime between small € and
large N. An analysis of similar competing limits between many searchers and small targets was
carried out for extreme FPTs in [44].

4. General diffusion processes

In the examples above, we used theorem 3 to calculate the exact asymptotics of the distribution
of Ky as N — oco. We were able to find these exact asymptotics because the specifics of the
examples allowed us to obtain the detailed short-time behavior of F(¢) and Fy (7).

In the case of more complicated geometries or more complicated diffusion processes, this
detailed short-time behavior of F(f) and Fy(¢) is not available. However, we are able to obtain
bounds on the short-time behavior of F(f) and F(f) on a logarithmic scale in significant
generality. In particular, under very general assumptions, it is known that

lim ¢ In F() = — (Lo)* <0 (50)
=0+ 4D ’
) (Ly)?
< — L. —
Jim 1 In Fu(n) < === <0, ke {l..m—1}, (51)

where L; > Ly > 0 are certain geodesic distances from the set of starting locations to the
targets. Hence, we can apply theorem 4 to obtain an upper bound on the asymptotics of the
distribution of K. In particular, theorem 4 implies that for any € > 0,

P(Ky = k) = oN"" /0 ) a5 N = 00, (52)

The point of this section is to show some of the general scenarios in which we can conclude
that (52) holds because (50) and (51) hold and to show the values of the geodesic lengths L
and L. Our approach in this section adapts the analysis in [21, 45] which established (50) in
order to study extreme FPTs.

4.1. Setup

Let {X(#)} />0 be a d-dimensional diffusion process (i.e. the ‘searcher’) on a manifold M that
contains m > 2 pairwise disjoint ‘targets’ denoted by Vy,...,V,, . For each k € {0,...,
m — 1}, assume V; C M is the closure of its interior which precludes trivial cases such as a
target being a single point. Assume the initial distribution of X has compact support Uy C M

17
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that does not intersect any target,
UyNV, =@, foreachk € {0,...,m—1}. (53)

For example, the initial distribution of X (i.e. the random distribution of the searcher starting
location) could be a Dirac delta mass at a single point xy ¢ Uk”’;ol Vi, which means P(X(0) =
xo) = 1. As another example, the initial distribution of X could be uniform on a closed set U,
satisfying (53).

Suppose we are given a distance function between points in M,

L:M x M —[0,00). (54)
Let L; denote the shortest distance from the starting locations Uy to the kth target V;, C M,

L= inf L(xp,x) >0, ke{0,....,m—1}. (55)

xo €Up,xeVy

Assume that there is a unique closest target, which we take to be V,, without loss of generality.
That is, assume

0<Ly<Ly forall ke {l,...,m—1}.
Let 7® denote the FPT to the kth target,
7® = inf{r > 0:X(1) € Vi}, (56)
and let 7 denote the FPT to any of the targets,

ri= min 7% =inf{t>0:X() € U Vi}. (57)

Hence, 7 < 7®, and therefore
F)=P(r <) =>Pr® < foranyk € {0,...,m—1}. (58)

Furthermore, 7 = 7® if k = k (recall from section 2 that x € {0, ..., m — 1} denotes the index
of the target hit by the searcher), and therefore

Fi(t)=P(r <tNr=k =Pr® <rnk =k <PEP <. (59)

In the examples below, we show that

L 2
lim ¢ In P(+® < #) = _

=0+ 4D <0, (60)

for an appropriately chosen distance function L in (54). Therefore, once (60) is established,
theorem 4 and the bounds in (58) and (59) yield (52).

4.2. Pure diffusion in RY

Consider first the case of pure diffusion in M = R? with diffusivity D > 0. It was shown in
[21] that (60) holds with the distance function in (54) given by the standard Euclidean length,
L= Leuc,

Leuc(x0, %) := || x0 — x|, x0,x € RY. 61)

We therefore conclude by theorem 4 and (58) and (59) that (52) holds with the Euclidean
length (61).

18
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4.3. Space-dependent diffusivity and drift in RY

Rather than pure diffusion, assume the searcher moves according to the following Itd stochastic
differential equation on M = R,

dX = pu(X) dr + V2Do(X) dW, (62)

where 11 : R — R is a space-dependent drift that describes any deterministic forces on the
searcher, D > 0 is a characteristic diffusion coefficient, o : R — R4*" is a dimensionless,
matrix-valued function that describes any anisotropy or space-dependence in the diffusivity,
and W(¢) € R" is a standard Brownian motion in r-dimensional space. Following [21], we
assume that R?\U}"_ V is bounded and we make the following technical assumptions on the
coefficients in (62): p is uniformly bounded and uniformly Holder continuous and oo ' is
uniformly Holder continuous and its eigenvalues are in a finite interval (v, v;) with v; > 0.
For any smooth path w: [0, 1] — M, define its length, /(w), in the following Riemannian

metric which depends on the inverse of the diffusion matrix in (62), a: =00 ',

1
I(w) ::/ VT (s)a N (w(s))(s)ds. (63)
0

For any two points xo, x € R?, define the geodesic length between the points to be the following
infimum of /(w) over all smooth paths w : [0, 1] — M which connect w(0) = x( to w(l) = x:

Liie(x0, x) := inf{l(w) : w(0) = xo, w(1) = x}, xp,x € R, (64)

Under these assumption, Varadhan’s formula [39] was used in [21] to show that (60) holds
with distance function in (54) given by L = L. We therefore conclude by theorem 4 that (52)
holds with the length (64).

We emphasize two points about this result. First, the bound in (52) on the decay of the
extreme hitting probabilities is independent of the drift. To see this, note that the distance
function Ly, in (64) does not depend on the drift 1(X) in (62). Hence, the target distances L
and L; appearing in the bound in (52) are computed without any consideration of the drift.
This accords with the one-dimensional example with constant drift considered in section 3.2,
where we found that the drift affects only the constant prefactor in the asymptotic behavior of
the extreme hitting probability.

Second, the bound in (52) on the decay of the extreme hitting probabilities does depend on
o(X), which describes the space-dependence or anisotropy in the diffusion. In particular, notice
that the length function /(w) in (63) penalizes paths which traverse regions of slow diffusivity.
Hence, the distances Ly and L appearing in the bound in (52) are the lengths of the shortest
paths to the targets which avoid regions of slow diffusivity.

4.4. Diffusion on a manifold with reflecting obstacles

Assume M is a d-dimensional smooth Riemannian manifold. As one example, M could be a
set in R with smooth boundaries which model reflecting obstacles, as illustrated in figure 1.
Assume {X(9)},>0 is a diffusion on M which is described by its generator £, which in each
coordinate chart is a second order differential operator of the following form

o~ 0 of
ﬁf—DZ a_)C[<aij(X)87j>,

ij=1
19
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where a = {a;;};_, satisfies some mild technical conditions (namely, in each coordinate chart,
assume a is continuous, symmetric, and that its eigenvalues are in a finite interval (v, v,) with
vy > 0). Assume M is connected and compact and assume that X reflects from the boundary
of M if M has a boundary.

Relying on the results of [46], it was shown in [21] that (60) holds with distance function
in (54) given by L = L. in (64). We therefore again conclude by theorem 4 that (52) holds
with the length (64) for this example. For the example of diffusion in the presence of reflecting
obstacles as illustrated in figure 1, we point out that the lengths Ly and Ly in the bound in (52)
are the lengths of the shortest paths to the targets which go around the obstacles (recall that the
infimum in (64) is taken over paths w lying in M, and therefore paths w that intersect obstacles
are prohibited).

4.5. Partially absorbing targets

In section 3.3, we considered partially absorbing targets in a one-dimensional example. We
now consider partially absorbing targets in a more general setting. Specifically, consider pure
diffusion with diffusivity D > 0 in a smooth bounded domain in R? where the target is any
finite disjoint union of hyperspheres. Let ngﬂal be the FPT for the searcher to be absorbed at
Vi in the case that V; is partially absorbing,

O = inf{r > 0: \(0) > & /%), ke {0,...,m—1},

partial *

where A\ (?) is the local time of X(#) on Vi, &, is an independent unit rate exponential ran-
dom variable, and -y, > 0 is a given parameter (the so-called ‘trapping rate’ of the kth target
[36, 37]). In this case, it is known that [21]

- (Ly)?
4D

: (k)
zgonl 1 1In P(T 0 <0,

<= limsrInP(r% <) =
=0+
where the distance function (54) is the standard Euclidean distance in (61).

We therefore conclude by theorem 4 that (52) holds with the length (64). In particular, the
fact that the targets are partially absorbing rather than perfectly absorbing has no effect on the
bound in (52). This result accords with the one-dimensional example in section 3.3, where we
found that making the targets partially absorbing affects only the constant prefactor and the
logarithmic power in the asymptotic behavior of the extreme hitting probability.

5. Discussion

In this paper, we studied extreme hitting probabilities for diffusive search in the many searcher
limit. Our results yield the exact asymptotics of these extreme hitting probabilities in terms of
the short-time asymptotics of the hitting time of a single searcher. We illustrated these results
in several examples and numerical solutions. We also proved a general bound on the extreme
hitting probabilities in terms of the distances that the searcher must travel to hit the targets.
To our knowledge, the only other work that considers what we call extreme hitting probabil-
ities is the very interesting 2010 work of Krapivsky et al [47]. These authors consider N purely
diffusive searchers on the positive real line and study the tail of the probability distribution of
the position of the searcher farthest from the origin at the time when the first searcher hits the
origin. Their approach involves computing the extreme hitting probabilities for the example
we considered in section 3.1, with the additional complication that the N searchers can start
at N specified locations. Using that the distribution of the position of a single searcher can be
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written as an infinite series, the authors provide an exact representation for the extreme hitting
probabilities in terms of N nested infinite summations. It is not clear to us how to derive the
large N behavior of the extreme hitting probabilities from their novel representation.

The present work is related to several recent studies of extreme FPTs, which is the time it
takes the fastest searcher to find a target out of many searchers. Extreme FPTs for diffusive
search were first studied in 1983 by Weiss ef al [48]. Driven primarily by applications to cell
biology, extreme FPTs for diffusion have been recently studied by several groups of authors
[21, 44, 49-57]. Extreme FPTs for diffusion have also recently been generalized to a frame-
work involving depletion of a stock of resources [58]. Extreme FPTs for other types of search
processes (i.e. non-diffusive) were considered in [59-64].

In closing, the present work highlights how the behavior of a given single searcher is vastly
different than the behavior of the fastest searcher out of many searchers. Furthermore, we have
shown that analyzing the fastest searcher can in fact be much simpler than analyzing a single
searcher. Indeed, details of the problem which are critical for a single searcher (domain size,
domain geometry, spatial dimension, drift, etc) are irrelevant for the fastest searcher, as the
extreme hitting probabilities are primarily determined simply by the target distances. More-
over, while the behavior of a single searcher may be essentially unpredictable (the searcher
could be equally likely to hiteach of the m > 2 targets), the fastest searcher becomes effectively
deterministic for many searchers, as it hits the closest target with high probability.

Data availability statement
All data that support the findings of this study are included within the article (and any

supplementary files).

Appendix A

In this appendix, we first give the proofs of the propositions and theorems and then give details
on the numerical methods.
A.1. Proofs

Proof of Proposition 1. The result P(Ky = o0) = (P(T = 00))" is immediate. Let k €
{0,...,m — 1}. Since {(7;, kn) }n>1 are identically distributed, we have that

N
P(Ky =k) =Y P, = Ty Nk, = k) = NP(ry = Ty N iy = k)
n=1
= NPty < Tn_1 Nky = k), (65)
where Ty :=min{7,...,7y_1 }. If we define
T(k) B TN if RN = k,
W =
+00 if ky #k,

then P(ty < Ty_1 Nky = k) = IP’(TI(J‘ ) < Tn_1) and so (65) can be written as

P(Ky = k) = NP(7) < Ty_1). (66)

21



J. Phys. A: Math. Theor. 55 (2022) 345002 S Linn and S D Lawley

Since {(7y, £n) }u>1 are i.i.d., the survival probability of Ty_; is
P(Ty_1 >0 =0—-F@)"!, reR. (67)

Further, the cumulative distribution function of Tl(f) is

P(riY < 1) =Fur), teR. (68)

Now, if X and Y are independent random variables with Fx(x) :=P(X < x) and Sy(y) =P
(Y > y), then

PX <Y)=E[Sy(X)] = / Sy(x)dFx(x). (69)
Combining (69) with (66)—(68) completes the proof. O

Proof of Proposition 2. Let §, > 0 be such that A" e~ /" < 1 and A#” e~ /" is monotoni-
cally increasing for all t € (0, dg]. Let § € (0, dp], and observe that

0o N-1 N-1 [0
/ #72 e—C+/’(1 —Atl’e—c/’) dr < (1 —A(S”e‘c/5) / #2 e CH/1 s,
) )

Hence,
4 N—1
Ios ::/ 472 e’C+/’(l — AP e*C/f) df ~ Iog, as N — o,
0

as long as Iy ; vanishes slower than exponentially fast as N — oo, which we prove below. The
upshot is that the large N behavior of Iy s is independent of §.
Changing variables /' = ¢/C yields

g N—1
Ios =/ 1972 e_c+/’<1 —At”e_c/’) dr
0

N—1

5/C
—C / CI2({yi 2 e (CH/O)Y (1 _ACP{Y efl/”) dr.
0

Hence, if we let
f=C,/C>1, A=AC'>0, §:=§/C,

then it suffices to study

!

I'= C{Zfl =/ t”_ze_‘g/’(l —A’t”e_l/’)Nildt.
0

It is straightforward to verify that
—x(I+x) <In(l — x) < —x, forall x € [0, 1/2]. (70)
Since we may write I’ in the form,

6/
I = / 1172 exp(—ﬂ/t—i— (N — DIn(1 — A" e*l/’))dt,
0

22



J. Phys. A: Math. Theor. 55 (2022) 345002 S Linn and S D Lawley

taking ¢ sufficiently small so that A’ e~'/" < 1/2 for all ¢ € (0, §'] and using (70) yields the
bounds

6/
I ::/ 1972 exp(—ﬂ/z— N — 1)A’ﬂ’e—‘/’(1 +A’ﬂ’e—‘/’))dt <r
0

s
g/ 2 exp(—ﬁ/t—(N—I)A’t”e_l/’)dt — (A 71)
0

Furthermore, since A7’ e~'/* is monotonically increasing for 7 € (0,8'], we have the lower
bound

6/
I = / 192 exp(—ﬁ/z_ (N — 1)A/tpe—1/;<1 "‘A/((S/)pe_l/y))dt
0
=L (A +A@Ye), )

where 7, (-) is defined in (71).
To study 74 (Ap) for an arbitrary Ay > 0, we change the integration variable to

u=rel.

We can invert this equation to write 7 in terms of u as

(pWo(p~'u=/Py))~! if p> 0,

f= —— = Wty if p<0
g(u) ’
(In(u"))~! if p=0,

where Wy(z) denotes the principal branch of the Lambert W function and W_,(z) denotes the
lower branch [65]. Therefore,

du = u(pt™" +172)dt = u(pg(u) + (g))*)dr,

and

U

I+ (Ag) = / 21/ exp(—(N ~ 1At e’l/’) dr
0

6//
= / h(u) exp(—(N — D)Aou)du,
0
where we have set

_ 5-g_ 8W s g 18
h(u) = (g(u))” qp+g(u)u , 0 =()re Y.

Using standard results on the asymptotics of the Lambert W function [65], it is straightfor-
ward to check that 4(u) has the following logarithmic singularity at the origin,

h) ~ u® "n@ )PP asu—0+. (73)
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We can thus apply theorem 5 in [66], which generalizes Watson’s lemma to functions with
logarithmic singularities of the form (73), to conclude that

I+ (Ag) ~ (A0) "T(BN~(In N)?P~4 as N — co. (74)

Therefore, combining (74) with the bounds in (71) and (72) yields

N r
1¢SIND a—1/8 < limi
(1A @y e t™) < timinf s

1/
<i
o @) PT(BN P (n Ny -4

<. (75)

Since the lower bound in (75) can be made arbitrarily close to unity be taking §’ small, and
since the large N behavior of I’ is independent of &' € (0, §y], we conclude that

I~ (A "T(BNP(In N?’4 as N — oco.
Recalling the relation Io; = C?~'I' and A’ = AC” completes the proof. O

Proof of Theorem 3. Define
b
Loy = / (1 — FoyY" dF1 (0.

Lete € (0, 1). By the assumptions in (9) and (10), there exists a § > 0 so that
AP e O <F() < AptP e @/ forall 1 € (0,6), (76)
B_.t7e " < Fi(f) < Byctle /" forall 1 € (0,0), (77)

where Ay :=A(l £ ¢) and B.. .= B(l & ¢). Using (76) and integrating by parts yields
4 N—1
Ios < / (1 —A P e—Co/’) dF, (1)
0
N—1 g
_ F1(5)(1 AP e—Co/é) F (V- 1)/ (pt "+ Cot D)
0

N-2
XA 1P e‘CO/’Fl(t)<1 —A e—Co/’) dr. (78)

The first term in the right-hand side of (78) vanishes exponentially fast as N — oo. To bound
the second term, we note that (77) implies that

J N-2
/ (pr "+ Cor ) A_.t? e V(1) (1 At e*CO/’) dr
0

4 N-2
< / (pr' + Cot ) A_ By 1P e~ CotColr (1 —AP e*Co/f) dr. (79)
0

Using proposition 2 to find the large N behavior of (79) and using (78) and the fact that I o,
vanishes exponentially fast as N — oo yields

lim su fo.oc d+e)
Nowe! 7 NYP=INF S (1 — )P
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The analogous argument yields the lower bound

. Iy (I-¢)
lim inf — - 2= .
N=oo m(In NYPA=aN—F = (1 +¢)?

Since € € (0, 1) is arbitrary, and since proposition 1 implies that P(Ky = 1) = NI ., the proof
is complete. U

Proof of Theorem 4. Define
b
L= / (1 = FO)N 1 dF, ).

Lete > 0. By (13), there exists a § > 0 so that
F(f) > e ©0t9/t forall 1 € (0, ), (80)
Fi(1) < e & 9/" forall 1 € (0,6). (81)

Using (80) and integrating by parts yields

4 L \N-1
Ios < / (1-e o) ar)
0
= F@(1 e @)

4 N-2
FN=1) / (Co + )2 e‘<c0+5)/’F1(t)<1 . e—<00+€>/’) dr.  (82)
0

The first term in the right-hand side of (82) vanishes exponentially fast as N — oco. To handle
the second term, we note that (81) implies that

6 5 L \N—2
/ . e—<co+s)/zF1(,)(1 _e—<co+c>/t) dr
0

F) N-2
< / 2 e—(Co+Ck)/t<1 — e—(COJFf)/’) dr. (83)
0

Applying proposition 2 to (83) and using (82) and the fact that /; ., vanishes exponentially fast
as N — oo completes the proof of (14).
To prove (16), we use that (15) ensures the existence of a &’ > 0 so that

F(r) < e @9/t forall 1 € (0,4, (84)
Fi(f) = e Gt9/t forall t € (0,4). (85)

Using (84) and integrating by parts yields

& N-1
loy > / (1—e*<C0*€>/’) dFi (1)
0

= @) (1 - e o)

o N-2
FWIN=1] (Co—e)y e Cop, (t)(l - e—<co—f)/’) dr.  (86)
0
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The first term in the right-hand side of (86) vanishes exponentially fast as N — oo. To handle
the second term, we note that (85) implies that

4 —
/ e @ (1 - e*“O*E)/’)N "
0

4 N-2
> / 2 ef(CoJer)/t(l _ e*(CO*@/I) dr. (87)
0

Applying proposition 2 to (87) and using (86) and the fact that /; ., vanishes exponentially fast
as N — oo completes the proof of (16). O

A.2. Numerical solutions

We now describe the numerical methods used to compute the extreme hitting probabilities in
section 3.

A.2.1. Pure diffusion in one dimension. For the example of pure diffusion in (0, /) considered
in section 3.1, the probability density for hitting the right boundary is

=Pyl X
fmor—mFKO——p¢<pnl l>, (88)
where [67]
> exp(—k*as) 2k sin(kmw),
pls,w):=¢ = ) (89)
1 —(w + 2k)

The two representations for ¢ in (89) are equivalent; the first is called the large-time expan-
sion because it converges rapidly for large s and the second is called the short-time expansion
because it converges rapidly for small s. Integrating (88) yields

' / / D X
Fl(t)z/ofl(t)dt :(I)<12t’1_10>’

where the large-time and short-time expansions of ¢ are

> 2
Sa- e—kQWZK)k— sin(krw),
s iy
@@w:/aﬁww= =
0

|2k + w)
Zk f b
Z sgn(2k + w)er c( s

k=—00
and erfe(z) =1 — % f; e~ du denotes the complementary error function.

By symmetry, the probability density for hitting the left boundary is

27
26

d D (D «x
h®:5%®:ﬁ¢<ti>
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and

e D
Fo(f)Z/Ofo(t)dt :q><12t l)

F(t)zFo(t)-l-Fl(t):(I)(let l>+q)<12’ _x_lo>

Using these expressions, it is straightforward to derive the short-time behavior of F and F; in
(18)—(21).

We use these formulas to numerically approximate the extreme hitting probabilities using
the integral representation in proposition 1 and the trapezoidal rule. We use the short-time
(large-time) expansions of ¢ and ® for s < 1 (s > 1) and using 10° terms in these series
representations. We take D =/ = 1.

Hence,

A.2.2. Diffusion with drift in one dimension. For the example of diffusion with drift 4 € R in
(0, ) considered in section 3.2, the probability density for hitting the left boundary is [67]

= Fo(t) = exp (—’;DO - )fo(l)

and the density for hitting the right boundary is

] — 2
= Fl(t) = exp(% - Z_Dt)fl(t)~

Integrating these expressions yields

Fo(1) = / fg”(t)dz—exP( ’; )q)w)(?t, x;))

,, (1 - x0)
Fi(n) = /Ofﬁ”(odrzexp(“z])“)w(p Li- l),

o0

(s, w) =Y (1= exp(~(b+K7)5)) 775

k=1

where

km
e sin(kmw),

2

and b = %;. Hence,

F(t) = Fo(t) + F1(1) = exp( 5 )@W (,sz, x;’)

;U’(l X) (1) D
+exp( D ><I>“ 12,1—7

Using these expressions, it is straightforward to derive the short-time behavior of F and F; in
(18) and (20) with the values in (24) and (25).

We use these formulas to numerically approximate the extreme hitting probabilities using
the integral representation in proposition 1 and the trapezoidal rule. We use the large-time
expansions of ¢ and & for s > 1 and the short-time expansion of ¢ for s < 1. Fors < 1, we
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numerically integrate (trapezoidal rule) ®(1)(s, w) using the short-time expansion of ¢. We use
10° terms in all these series representations. We take D = [ = 1.

A.2.3. Partially absorbing targets. For the example in section 3.3 of partially absorbing tar-
gets, we numerically approximate the extreme hitting probabilities using the integral repre-
sentation in proposition 1 and the trapezoidal rule. To obtain the values of F(¢) and F(¢)
needed to compute these integrals, we numerically approximate the solution to the PDEs these
distributions satisfy.

In particular, if we incorporate the starting position of the searcher into the definition of F,

F(x,t)=P(t < 1] X(0) = x),

then the initial-boundary value problem satisfied by F is immediate from (30) and (31) upon
noting that F' =1 — S where § is defined in (29). Similarly, if we incorporate the starting
position of the searcher into the definition of F,

Fi(x,n):=P(r <Nk =1|X0)=x),

then F satisfies that same PDE initial-boundary value problem as F except that the initial-
boundary conditions are

0
D—Flz’)/()Fl, XZO,
Ox

—DgFl =y —-F), x=L
Ox
We approximate F and F; by solving these PDE initial-boundary value problems using the
MATLAB PDE solver pdepe [68].
The short-time behavior in (18) and (20) with parameters in (32) and (33) is derived by
taking / — oo and solving to find

x , 20t + x
F(x,t) = erfc| —— | — 000+0/D gpfe (217 )
x.1) <\/4Dt> V4Dt

from which we can obtain (32). The analogous argument yields (33).

A.2.4. Concentric targets in three dimensions. For the example in section 3.4 of diffusion
between concentric spherical targets in three dimensions, we numerically approximate the
extreme hitting probabilities using the integral representation in proposition 1 and the trape-
zoidal rule. To obtain the values of F(f) and F(f) needed to compute these integrals, we
numerically approximate the solution to the PDEs these distributions satisfy.

In particular, if we incorporate the starting radial position of the searcher into the definition
of F,

F(r,t) =P(r < 1[|X(0)| = r),

then it is well-known that F(r, f) satisfies the diffusion equation,

—F=D(Z=F

0 20 +8_2
ot ror or?

F), r € (Ro, Ry), (90)
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with zero initial condition, F = 0 at # = 0, and inhomogeneous boundary conditions, F' = 1
atr € {Ry, R, }. If we similarly incorporate the starting radial position of the searcher into the
definition of F,

Fi(r,0:=P <tN k= 1][|XO) = r),

then F; also satisfies (90) with zero initial condition. The difference is that F satisfies the
boundary conditions F; = 0 at r = Ry and F; = | are r = R;. We approximate F and F; by
solving these PDE initial-boundary value problems using the MATLAB PDE solver pdepe
[68].

The short-time behavior in (35)—(38) is derived in the following way. If we take R; — oo,
then it is straightforward to check that

R —R
F(r,t):—oerfc<r\/4_D;)>,
r

from which we can obtain the short-time behaviorin (35) and (37). Similarly, if we take Ry — 0,
then the short-time behavior of F; given in (36) and (38) is well-known and can be found in,
for example [69].
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