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ABSTRACT. We are concerned with the vortex sheet solutions for the three-dimensional
compressible isentropic elastic flows. This is a nonlinear hyperbolic problem with a char-
acteristic free boundary. Compared with the analysis in two dimensions, this added
dimension leads to more complicated frequency interactions between the effects of elas-
ticity and the fluid velocity, making the stability analysis more challenging. Through
a very delicate examination of the Lopatinskii determinant of the linearized boundary
value problem, necessary and sufficient conditions are established for the linear stabil-
ity of the planar vortex sheet solutions. These conditions are closely related to the
geometric properties of the elastic deformation gradient and provide the first stability
criterion justifying the stabilization effect of elasticity on the compressible vortex sheets
in the three-dimensional elastodynamics. In contrast to the two-dimensional isentropic
elastic fluids, we find that the stability can only hold in the subsonic region for the
three-dimensional vortex sheets.

1. INTRODUCTION

In this paper, we consider the vortex sheet solutions to the three-dimensional compress-
ible inviscid flow in elastodynamics [12,17,27]:

pt + div(pu) =0,
(pu); + div(pu ® u) + Vp = div(pFF7T), (1.1)
(PF;): + div(pF; @ u —u® pF;) = 0,

where p denotes the density, u = (u,v,w) € R? is the velocity, F; is the jth column of
the deformation gradient F = (F;;) € M3*3 and p = p(p) is a smooth strictly increasing
function on (0, co) denoting the pressure. The vortex sheet structures are piecewise smooth
weak solutions to (1.1) with a discontinuity interface, across which there is no mass transfer
but the tangential velocity experiences a jump.

Vortex sheets in compressible Euler flows are classical subjects in the study of gas
dynamics which date back to 1950’s in the works of Miles [36,37] and Fejer-Miles [13]. A
linear analysis performed in [37] indicates that the vortex sheets exhibit violent instability
for Mach number M < v/2 in two or three dimensions. It was until more than four decades
later that Coulombel and Secchi proved, in the pioneer works [10] and [11], via a micro-
local analysis and Nash-Moser technique, that the vortex sheets in two dimensions are
linearly and (local-in-time) nonlinearly stable when Mach number M > /2. The initial
data chosen in their works are small perturbation of a rectilinear vortex sheet and their
definition of linear stability is in a sense similar to that of shock waves by Coulombel [8,10]
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and Majda [33,34]. Similar stability results of the two-dimensional vortex sheets were also
obtained recently in [3,24,40] for the two-phase flows and relativistic flows.

As for three-dimensional Euler flows, the situation becomes much more complex and the
results are quite limited. As observed in Miles [37], disturbances traveling at sufficiently
large angles with respect to the undisturbed flow are unstable. Moreover, according to the
normal mode analysis in [41], three-dimensional ideal compressible vortex sheets are always
violently unstable, regardless of how large the Mach number is. For three-dimensional
steady flows, on the other hand, Wang—Yu [44,47] proved the structural nonlinear stability
under a supersonic stability condition, that is, the contact discontinuity is supersonic in
one of the spatial directions, which could be regarded as time-like. Separating this time-
like direction makes the problem two-dimensional-like, and hence the stability is consistent
with [10,11,45]. For unsteady Euler flows in three dimensions, however, a growing mode
can always be generated due to the increased degree of freedom. Therefore to stabilize
the fluids, additional fields or viscosity are needed to neutralize and counterbalance the
violent instability.

For the three-dimensional compressible magnetohydrodynamic flows, Chen-Wang [2]
and Trakhinin [42] proved independently the nonlinear stability of compressible current-
vortex sheets, which indicates that non-paralleled magnetic fields stabilize the motion of
three-dimensional current-vortex sheets. Both of these two results developed a nonlinear
energy method and proposed a sufficient condition for the weak stability of planar current-
vortex sheets.

For viscoelastic fluids, there have been extensive works on various aspects from the
mathematical modeling, theoretical analysis and applications [12,16,19,28,32]. It is com-
monly believed that viscoelasticity plays a notable stabilization role. Confirmation of such
a stabilization effect can be found in examples of shear flows and vortex flows [1,26,29,39].
Moreover, examples of vortex sheet formation from unsteady shearing motions in certain
viscoelastic fluids are constructed by Huigol [25,26] through considering the Rayleigh
problem. On the other hand, when the viscosity is turned off, Hu-Wang [20] managed to
construct a class of initial data that lead to the formation of singularity and the breakdown
of classical solutions to system (1.1). In the case of partial dissipation, the global stability
around a constant equilibrium for system (1.1) was established by Hu-Zhao [22,23]. The
sensitivity of the stability of the vortex sheets with respect to the viscosity naturally leads
to the question of the stabilization from solely the elastic component. Such a question was
addressed in a series of recent works by Chen-Hu-Wang [5,6] and Chen-Hu-Wang-Wang-
Yuan [7] in the two-dimensional setting. The linear stability was achieved in [5,6] through
a sophisticated spectral analysis together with an upper triangularization scheme for the
energy estimates. In [7] the nonlinear stability and local existence of elastic vortex sheets
was established in the usual Sobolev spaces. The upper triangularization method has also
been adapted in [3] in establishing nonlinear stability for two-dimensional vortex sheets
in a relativistic compressible fluid.

It is worthwhile mentioning a few works on some variants of system (1.1). The local
well-posedness theory for the incompressible counterpart was established in Li—-Wang—
Zhang [31] for the vortex sheet problem with a varying density and Hu-Huang [21] for a
single phase free boundary problem with a constant density. The work of [31] verifies the
elasticity stabilization on the Rayleigh—Taylor instability, while the result of [21] further
assumes a Rayleigh—Taylor sign condition on the initial data.
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Stability analysis in two-dimensional compressible elastodynamics (1.1) for disconti-
nuity structures other than vortex sheets has been performed in Trakhinin—-Morando—
Trebeschi [38] and Chen—Secchi-Wang [4]. The former one provides a sufficient condition
for the uniform stability of rectilinear shock waves by exploiting the symmetrization of
the wave equation and using an energy method with no regularity loss for the solutions
of the linearized problem with constant coefficients. The latter paper considers nonisen-
tropic thermoelastic contact discontinuities for which the velocity is continuous across the
discontinuity interface. Sufficient conditions for stability for such structures were derived,
confirming the stabilization role of thermoelasticity.

The goal of this paper is to understand the stability problem of the vortex sheet structure
for (1.1) in three spatial dimensions, attempting to push the stability analysis of two-
dimensional vortex sheet flows in [5-7] forward to the more challenging three-dimensional
case. As a first step, we consider the linear stability of the elastic vortex sheets. We will
provide a necessary and sufficient condition for the neutral linear stability and instability
of planar vortex sheets in the three-dimensional inviscid compressible isentropic elastic
flows in the sense of [10] through discussing the Lopatinskii determinant of the linearized
boundary value problem. The new stability condition (3.9) we propose can be easily
adapted to the two-dimensional elastic flows as in [5] and the three-dimensional Euler
flows [41]. To the best of the authors’ knowledge, this is the first (linear) stability result
towards proving the local-in-time existence of stable nonplanar compressible vortex sheets
in the three-dimensional elastic fluids.

To review some of the challenging features of the problem (see, for example, [5]), we
know that the system has a characteristic free boundary, which fails to provide sufficient
control on the trace of the characteristic parts of the solutions; see [10,30,35]. The uniform
Kreiss-Lopatinskii condition also fails to hold, which causes certain loss of tangential
derivatives in the estimates of the solutions in terms of the source term on the right
hand side of the linearized problem. Moreover, the elasticity exerts a more complicate
distribution of roots for Lopatinskﬁ determinant, which leads to another difficulty in our
analysis. As in [5], the standard Kreiss symmetrization technique cannot be adopted
directly.

In addition to the above difficulties, recall that we are considering a genuine three-
dimensional problem, which is very different from the two-dimensional flows [5-7] or the
steady three-dimensional flows [44,46]. The tangential velocities of the sheets of contact
discontinuities now inherit two components, which could potentially host more directions
for instability (and this is exactly the reason for the instability of three-dimensional Euler
vortex sheets). On the Fourier side, the increase of physical dimension leads to an extra
degree of freedom in frequency space, and hence the frequency interactions and resonances
become much more complicated to track. On the other hand, we still hope to utilize the
(subtle) enhancement of the elastic stabilization to compensate and deter the tendency of
instability and thus restrict the growing mode from unstable perturbation.

In the vortex sheet configuration, under a Galilean boost and an appropriate scaling,
one may consider the constant background state to be such that the velocity u = (u,0,0),
and the third row of F to be zero. In the spectral analysis, we find through a detailed
examination of the Lopatinskii determinant (cf. Lemma 3.3) that the validity of the
Lopatinskii condition relies on the competition between the projected fluid velocity and
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the projected “elastic” sound speed (see (3.27))

3
lu-s|? vs. Z‘Fj'S’2>
j=1

where F1, Fo, F3 are column vectors of F and s is a unit vector indicating the direction of
projection. The analysis in the two-dimensional situation [5] seems to suggest two stability
regions

3 3
lu-s|? < Z |F; - s|? (subsonic) and |u-s|* > Z |F; - s|*> + 2¢% (supersonic) (1.2)
j=1 j=1

where ¢ = /p/(p) is the standard sound speed, and the region in between indicating insta-
bility. However, in three spatial dimensions, one needs to verify (1.2) along all directions
s in order to obtain the stability. It is possible that the subsonic region might degener-
ate along a certain direction s, and the supersonic threshold may blow up to infinity. It
turns out that the latter case always happens, and hence the elasticity stabilization can
only take place in the subsonic zone, depending crucially on the geometric property of the
deformation gradient F. In fact, a necessary and sufficient condition for the generation of
the stable subsonic region is

34,5 €{1,2,3}, i#j suchthat F; xF; #0. (1.3)
Or, in terms of the row vectors F1,Fy of F (recall that the third row of F is zero),
Fiy x F9 #£0, or, equivalently, rankF = 2, (1.4)

cf. Theorem 3.1 (i), (ii). This is in sharp contrast to the case of two-dimensional elastic
vortex sheets, where a stable supersonic region exists [5], and is consistent with the case
of three-dimensional Euler vortex sheets [41]; see Remark 3.5.

To finally close the estimates for stability in the subsonic regime, we follow the upper
triangularization method of [5] to separate only the outgoing modes from the system at all
points in the Fourier space. This allows us to conveniently conclude the triviality of the
outgoing modes in the homogeneous system, and the estimate for the incoming modes can
be derived directly from the Lopatinskﬁ determinant. Similar to the two-dimensional case,
there exist a special class of states within the stable subsonic region where the Lopatinskif
determinant exhibits higher order of degeneracy at such states. This results in a weaker
stability at those states in the sense that there is an additional loss of tangential derivatives.

The rest of the paper is organized as follows. In Section 2, we present the mathematical
formulation for the three-dimensional vortex sheets and introduce some weighted Sobolev
spaces. In Section 3, we first introduce the boundary-fixing transformation, and linearize
the system around a given constant solution. Motivated by [43], the formulation of bound-
ary conditions we derive is different from the one in [5]. In Section 3.1, we state our main
result on the stability and instability criteria, and the energy estimates of solutions to the
linearized problem are obtained. In Section 3.2, we perform some preliminary reductions
to transform the problem into a system of ordinary differential equations. By decomposing
the system we find that the linearized problem has different boundary conditions from the
two-dimensional unsteady elastic flows. We further derive an estimate for the front with
an order-one degeneracy. In Section 3.3, we consider the normal mode analysis. In Section
3.4, we perform the upper triangularization technique of the system in the spirit of [5] to
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separate only the outgoing modes from the system at all points in the frequency space.
In Section 3.5, we present a delicate analysis of the Lopatinskii determinant and derive
the estimates on the neighborhood of the zeros of the Lopatinskii determinant. In Section
3.6, we separate different modes and the estimates from the Lopatinskif determinant to
achieve the energy estimates and then complete the proof of the main theorem.

2. FORMULATION AND NOTATION

In this section, we will first present the derivation of the vortex sheet problem from the
elastodynamic equations (1.1), and then introduce some weighted Sobolev spaces which
will be used in our stability estimates.

2.1. Statement for the vortex sheet problem. Let us recall the definition of vortex
sheet solutions to (1.1). Let
U(tv Z1,x2, :Ug) = (pv u, F)(tv x1, X2, x3)

be a solution to system (1.1) which is piecewise smooth on the both sides of a smooth
hypersurface

I'={x3 =19(t,x1,22)}.
Denote 0; = 0y,,7 = 1,2, 3, for the partial derivatives, normal vector v = (=019, —021, 1)
on I' and
U+(t,l'1,l'2,l'3), when T3 > 1/1(75,1’1,%’2),

2.1
U~ (t,x1,x9,x3), when z3 < (t,x1,x2), (2.1)

U(t)xlvaa .’E3) — {

where U = (p*,u®, F*)(t, 21, 22, 23). The solution U satisfies the Rankine-Hugoniot
jump relations at each point on I':
Oplp] — [pu-v] =0,
orblpu] — [(pu - v)u] — [plv + [pFFTv] =0, (2.2
O[pF;] — [(a-v)pF ;] + [(pF; - v)u] = 0,

where we write [f] as the jump of the quantity f crossing the hypersurface I'. For a vortex
sheet (contact discontinuity), we require

[u-v] =0, [u];éOand%:ui'l/F. (2.3)
The first condition in (2.2) is automatically satisfied. Combining the remaining two con-
ditions in (2.2), we obtain

— [plv + [pFFTv] =0, (2.4)

[(6F, - )] 0. (2.5

From (2.3) and (2.5) we derive that dy[pF; - v] = 0. Since 0;¢) # 0, we get [pF; - v] =0,

and then from (2.5) we further have pF;E v = 0. Then (2.4) infers that [p] = 0. Therefore
the jump conditions reduce to

pt=p", Yr=ut - v=u v (2.6)

To flatten and fix the free boundary I', we need to introduce the function ®(¢,z1, z2, z3)
to set the variable transformation ®* (¢, x1, 2, 23) as follows. We first consider the class
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of functions ®(t, z1, x2, x3) such that inf{d3®} > 0, and (¢, 1, x2,0) = ¢ (t, 21, z2). Then
we define

UﬁjE = (pgt,uat,Fét)(t,xl,xg,xg) = (p,u,F)(t,z1, 22, D(t, 21, 22, £13)),
for 3 > 0. In the following argument, we drop the index f for notation simplicity. Define
OE(t, 21, 20, 23) := D(t, 21, 29, £23).
Inspired by [10,14], it is natural to require d* satisfying the eikonal equation
8t<1>i + uial@i + vi(?g‘l)i —wt = 0,

for 3 > 0. This condition simplifies the expression of the nonlinear problem in the fixed
domain and guarantees the constant rank property of boundary matrix in the whole do-
main. Through this variable transformation, equations (1.1) become

U* + A (UH)OU* + Ax(UF) U

1 (2.7)
+ + + + + + +
+ 83(I):t [Ag(U ) — O dTI — 01D Al(U ) — 0@ AQ(U )]83U =0,
for z3 > 0 with the free boundary xz3 = 0, where
fu p 0 0 0 0 0 0 0 0 0 0 0 7
!
% u 0 0 —Fi1 O 0 —Fi5 O 0 —Fi3 O 0
0 0 u 0 0 —Fi1 O 0 —Fi2 O 0 —Fiz3 0
0 0 0 u 0 0 —Fi1 O 0 —Fi2 O 0 —Fi3
0 —-Fy1 O 0 u 0 0 0 0 0 0 0 0
. 0 0 —Fi1 O 0 U 0 0 0 0 0 0 0
Al(U) . 0 0 0 —Fi1 O 0 U 0 0 0 0 0 0
0 —Fi2 0 0 0 0 0 u 0 0 0 0 0
0 0 —Fi2 O 0 0 0 0 u 0 0 0 0
0 0 0 —-Fi2 O 0 0 0 0 u 0 0 0
0 —Fi3 O 0 0 0 0 0 0 0 u 0 0
0 0 —-Fi3 O 0 0 0 0 0 0 0 u 0
L O 0 0 —-Fiz3 O 0 0 0 0 0 0 0 u
v 0 P 0 0 0 0 0 0 0 0 0 0 7
0 v 0 0 —Fpx; O 0 —Fx O 0 —Fxs O 0
/
% 0 v 0 0 —F1 O 0 —Fyy O 0 —Fx3 O
0 0 0 v 0 0 —Fx» O 0 —Fx O 0 —Fbs
0 —Fy; O 0 v 0 0 0 0 0 0 0 0
. 0 0 —Fp; O 0 v 0 0 0 0 0 0 0
A2(U> . 0 0 0 —Fox; O 0 v 0 0 0 0 0 0 (28)
0 —Fsyy O 0 0 0 0 v 0 0 0 0 0
0 0 —Fxe O 0 0 0 0 v 0 0 0 0
0 0 0 —Fe O 0 0 0 0 v 0 0 0
0 —Fxzs O 0 0 0 0 0 0 0 v 0 0
0 0 —Fxz O 0 0 0 0 0 0 0 v 0
L O 0 0 —Fxs O 0 0 0 0 0 0 0 v
fw 0 0 P 0 0 0 0 0 0 0 0 0 7
0 w 0 0 —F31 O 0 —F32 O 0 —F33 O 0
0 0 w 0 0 —F31 O 0 —F32 O 0 —F33 O
/
% 0 0 w 0 0 —F31 O 0 —F3z3 O 0 —F33
0-Fs 0 O w 0O 0 0 0 0 0 0 0
. 0 0 —Fs4 0 0 w O O O O 0 0 0
A3(U) . 0 0 0 —F31 O 0 w 0 0 0 0 0 0
0 —F33 O 0 0 0 0 w 0 0 0 0 0
0 0 —F33 O 0 0 0 0 w 0 0 0 0
0 0 0 —F3 O 0 0 0 0 w 0 0 0
0 —F33 O 0 0 0 0 0 0 0 w 0 0
0 0 —F33 O 0 0 0 0 0 0 0 w 0
L O 0 0 —F33 O 0 0 0 0 0 0 0 w
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We can write
L(U*, &%) =0, if 23 > 0,
B(U*,¢) =0, if 23 =0,
(U=, 9)le=0 = (Us', %0),

where

L(U,®) = L(U, ®)U,
L(U,®) :=0; + A1 (U)d1 4+ Ay (U)dy + A3 (U, ®)0s,

(2.9)
A(U, ®) = 831(I>[A3(U) _ 0BT — DDA (U) — Bp® Ay (U],
(ut —u)op + (vF —v7)y) — (Wt —w™)
BU*,¢) = op +uTorp + vt dap —w™ : (2.10)

pt—p-
Remark 2.1. Note that by taking divergence of the third equations in (1.1), we end up
with
O¢(div(pF;)) =0, for j =1,2,3.
In column-wise components, we can write the intrinsic property (involution condition for
the elastic flow, refer to [12]) as follows:
div(pF;) =0, for j =1,2,3. (2.11)

The intrinsic property holds at any time throughout the flow if it is initially satisfied.
In the discussion of derivation of Rankine Hugoniot condition, ,oni -v = 0 can also be
regarded as an intrinsic property.

From (2.6), the elastic components should satisfy the following equations, which are
regarded as the restrictions on the initial data. We remark that if initially Foi -vg = 0,
then F*.v = 0, since it satisfies the transport equation. Therefore, the following equations
are satisfied naturally,

((F[} — F)01 + (Fy — Fyy)oop — (F3y — Fyp) =0,
Fiow + Fylooy — F5 =0,
(FYy — Fio)O + (Fyy — Fpp)00tp — (F3y — Fip) =0,
FLon + Fhooy — F3h =0,
(Fif — Fi3)0t + (B — Fog) 00t — (F3 — Fag) = 0,
| Fi501% + F3i000 — Fifs = 0,

where ®* = 1), at x3 = 0.

(2.12)

Remark 2.2. Tt is easy to check that the system (2.7) contains piecewise constant planar
solutions.

Remark 2.3. The boundary matrix for the problem (2.9) is diag(As (U, ®1), Az(U—, ®7)),
which has constant rank on the whole closed half space 3 > 0. This matrix has two positive
and two negative eigenvalues, and the remaining are zero eigenvalues. The boundary
x3 = 0 is characteristic and since one of the boundary conditions is needed to determine
the function 1, there should be three boundary conditions, see (2.10).
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2.2. Function spaces. Now we introduce some necessary functional spaces, i.e., weighted
Sobolev spaces in preparation for our main theorem. Let D’ denote the distributions and
define

HE(RP) 1= {u(t, 21, 29) € D/(R?) : € Mult, a1, 22) € H(RY)},
H’i(Ri) = {U(tax17$27$3) € D/(Ri) : 6_’%’[)(75,:171,1‘2,173) € Hs(Ri)}a
for s € R,v > 1, with equivalent norms
lallps ey = Nl ul ey, ol 2= lle™ ™l praqas

respectively, where
RY = {(t,z1,72,73) € R* 1 25 > 0}.
We define the norm

1 S| s
s = g [, (0 + IRV TRE) P, v € (R,

with %(€) being the Fourier transform of u with respect to (¢, x2,z3). Setting @ = e "tu,

we see that HU|’H§(R3) and ||@||s~ are equivalent, denoted by HUHH,?/(R3) ~ ||@l||s,y. Now,
we can define the space L?(R; Hf/(R?’)), endowed with the norm
2 e 2

ol gy = [ Nt a3)l ooy

We also have
2 1112 e 2
Mol gy = WollE = [ Nt aa)lE s

It is easy to see that when s =0, || - [[o = || - |[z2(rs) and ||| - [[|o,y is the usual norm of

L2(RY).

3. LINEAR STABILITY

The goal of this section is to study the linear stability of the three-dimensional vortex
sheets in elastodynamics with the initial data around a constant background state given
n (3.1). Sufficient and necessary conditions of weak stability and violent instability condi-
tions are obtained in Theorem 3.1 and Theorem 3.2, motivated by the approach proposed
by Coulombel-Secchi [10] and the upper triangularization method introduced in Chen—
Hu-Wang [5], both of which rely on a delicate spectral analysis on constant coefficient
problems. We want to emphasize that the stabilization phenomenon only occurs in a sub-
sonic bubble, which is in stark contrast with the two-dimensional elastic case [5] where
the vortex sheets are also stable in a supersonic region.

Note from Remark 2.2 that (2.7) admits piecewise constant solutions. Under a Galilean
transformation and the change of the scale of measurement, without loss of generality we
may assume that the piecewise constant background solution takes the following form:

Ut .= (P, ura0707F{hF§1707F{2’F£2707F{37F§370)T7
Uﬁ = (ﬁv ul’ 07 07 F1l17 F2ZI7O7F1127 F2127 07 F1l37 F2l370)T7 (3'1)

(T)i@, T1,T2, xg) = ﬂ:xg,
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where the constants g, u", u!, F Filj, i€{1,2}, j€{1,2,3} satisfy

u" +ul =0, FZ;—FFilj:O, and u", Fj; #0.

Remark 3.1. For the background solution, we assume the second and third direction of
the velocities to be zero by using the Galilean transformation and rigid transformation.
Compared with [44] and [46] for steady flows, this simplifies the linear constant coefficient
analysis. As shown in [44], when the tangential velocities are parallel, the planar contact
discontinuity is always linearly unstable. Therefore, in [46], only the case of non-parallelled
tangential velocities is considered. In [9], a simple criterion predicting neutral stability or
violent instability for two- or three-dimensional nonisentropic Euler equations is provided.
Here in our paper, the tangential velocities are parallel and new stable zone occurs that
is different from the steady three-dimensional flows [44] and [46].

Next, we linearize the system (2.7)-(2.10) around the background solution defined by
(3.1). Let

UF = (5, at, F¥) = U — 0F, ¢F = o — 3+

be some a small perturbation of the constant solution. Then the perturbed linearized
quantities satisfy:

QUT + AY(UH)UT + Ax(UH)0,U + A3(UF)33U* =0,
in 3 > 0, with the boundary condition at x3 = 0:
(u" —uh)drp — (wt — ™) =0,
Oy +u"d1p — T =0,
=0,

where ¢ = (&* — ®F)|,,_o = ¢ at z3 = 0. Therefore, we have

I o
where
cv=al g [+ [0 ain ol 6]
[0 o |60 ] [0 aton ][5
| (w — u)ohp — (it — ")
B(U,p) = O +.u7“81c'p —wT

pr—p-

Next we need to symmetrize the system (3.2). Here, we consider the change of variables

as follows,
T o)[U*
W—[OT][U}, (3.3)
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where T is the given matrix:

55 000 50 000000000
355 00 5 000000000
0 100 000O00O0OGO0O0O
0 01 0 000O00O0OOTO0DO
0 00 0 100000O0O0O
0 00 0010000000
T=]1 0 000001000000/, (3.4)
0 00 0 O00O0T100O00O00O
0 00 0 O00O0O0T10000O
0 00 0O00O0O00O0T1000
0 00 0 O00O0O00O0OTO0O
0 00 0O00O0O00O0O0OO0T1DO
| 0 00 0 000O0O0O0OO0 1]

¢ = /p'(p) stands for the local sound speed of constant solutions. Denote the components
of the new variable by

W = (WI7W27 o 7W26)T7
and

W = (Ws, Wy, Ws, We, Ws, Wy, W11, Wia, Wig, Wiz, Wis, Wig, War, Wag, Waa, Was)7,
W™ = (W, Wa, Wy, Wig, Wiz, Wia, Wis, Wag, Wagz, Wag) T,
W = (W3, Wy, Ws, -, Wz, Wig, Wiz, Wig, -+ , Wag) T,

Wne = (W, Wa, Wig, Wis)T.
(3.5)

After performing variable transformation, we multiply the system (3.2) by a symmetrizer
Ao = diag{2¢?,2¢?,1,1,1,1,1,1,1,1,1,1,1,2¢*, 2¢%,1,1,1,1,1,1,1,1,1,1,1}.
Then, we obtain that

LW = Ao W + Ao W + A0 W £ AsO3W = 0, x3>0,

Owp
BW™ne, ) = MW"|y—0 +b | O1p | =0,
o

(3.6)

where
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[2¢2umt 0 =2 0 0 0 —eF' 0 0 —cFy 0 0 —cFj]
0 22wl @ 0 0 0 —eFj 0 0 —cFE 0 0 —cFyy
-2 2wt 0 —F3 oo o —F o o -Fr3 o 0
0 0 o wil 0 —F3 o0 o —-F3' o 0 —-F3 o0
0 o —F' 0wt 0 0 0 0 0 0 0 0
0 0 o -F3 0 wl 0 0 0 0 0o 0 0
71"’[ = | —eFt —cF¢ 0 0 0 0o wrl 0 0 0 0 0 0 ,
0 0o —-F3 0o 0o 0 0o w0 0 0 o0 0
0 0 0 -F o o0 0 0 w0 0 0 0
—cFly —cF' 0 0 0 0 0 0o 0 w0 0 0
0 o -F3 0o 0o 0 0 0o 0 0 w0 0
0 0 0o —-F o o 0 0 0 0 0 w0
| —cF —cFj 0 0 0 0 0 0 0 0 o 0 ut |
[ o 0 0 - 0 0 —cF' 0 0 —cFpt 0 0 —erpy]
0 0 0 & 0 0 —cF' 0 0 —cFy 0 0 —cFyy
0 0 o o -F' o o -3t oo o -3t oo 0
-2 &2 0o o0 0 -F' o0 0 —-Fy 0 0 —Fy 0
0 o —-F3' 0o 0o o0 0 0 0 0 0 0 0
0 0 o -t o0 o 0 0 0 0 0 0 0
A= Ryl —erz 0 0o o o o o o o o o o |,
0 o -Fpl 0o 0 0 0 0 0 0 0 0 0
0 0 o —-Fpt 0 0 0 0 0 0 0 0 0
—cFpl —eFb 0 0 00 0 0 0 0 0 0 0
0 0 —Fy 0o 0 0 0 0 0 0 0 0 0
0 0 0 —Fy 0 0 0 0 0 0 0 0 0
| —cFyl —cF3l 0 0 0 0 0 0o 0 0 0 0 0 |

Az = diag{—2¢%,2¢,0,0,0,0,0,0,0,0,0,0,0,2c*, —2¢3,0,0,0,0,0,0,0,0,0,0,0},

and
—c —c ¢ ¢ 0 2u" 0
M=| —c —c 0 0 , b=|(1 4 0
-1 -1 1 -1 0 0 O
3.1. Main result. For j = 1,2,3 we denote
F; := the jth row of the deformation matrix F". (3.7)

From (3.1) we know that Fg = 0. We further define the vector projections (see Fig. 1)

IIy(a) := the parallel projection of a onto b, (3.9

HbL(a) :=a — IIy(a) = the perpendicular projection of a onto b.
Now we state our main result.

Theorem 3.1. (i) Assume that the background solution defined by (3.1) satisfies F1 xFq #
0. If

0 < (u")? < F(Fy,Fy), (3.9)
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A

“ )

\

Hb(a) b
FI1GURE 1. Vector projections

where F(F1,Fy) is defined in (3.54), then there is a positive constant C' such that for all
~v>1,W e H:j’(]Ri) and ¢ € H?(Rg), the following estimate holds:

S0y + W7 las—ol B + 16l
1 1 y (3.10)
< € ( SIE Wy + 25170V Ly, M e ) -

(ii) Assume that the background solution defined by (3.1) satisfies F1 x Fo £ 0. If
2
F(F1,Fy) < (u')? < [T, (Fy)| (3.11)

then there is a positive constant C such that for all v > 1,W € Hfi(Ri) and ¢ € H;l(R?’),
the following estimate holds:

MW N 2210y + W™=l By + 113

1 , ) 1 e ) (3.12)
< © (LW sy + 5l1B OV Loy, Bragar )
(i1i) Assume that the background solution defined by (3.1) satisfies
2
(u")? > ‘H#Q (Fl)( ; (3.13)

then the constant vortex sheet solutions (3.1) are linearly unstable.

Remark 3.2. Case (i) and Case (ii) provide the linear stability of the background solution
(3.1). The linear instability in Case (iii) is understood in the sense that the Lopatinskii
condition is violated.

Remark 3.3. The function F(F1,F3) is defined in (3.54), but its explicit expression is very
complicated and thus not provided. On the other hand, a rough bound is given by (see
(3.55))

I (Fp)[” I (F)[”

AU in vl < F(F1,F) < AU F2(2 vl :
Therefore the results in Case (i) and Case (ii) confirm the stabilization from elasticity.
More precisely, from the fact that

F(F1,Fo) =0 <= FixFy=0 (or F1Fy) < g, (F1)=0,

we see that the geometric property F1 x Fo # 0 gives a sufficient condition for stability.
Together with (3.13) in Case (iii) we further conclude that such a geometric condition
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is also necessary for stability. Moreover we see that the elastic stabilization is more
pronounced in the sense that the critical sonic speed |HI%2 (Fl)‘2 increases as F; and Fy
are closer to being orthogonal.

Remark 3.4. In Case (ii) we see that one only has a weak stability property (3.12) for
velocity ranging in an interval defined by (3.11) rather than at some discrete points as in
the two-dimensional case [5]. This stems from the stronger degeneracy of the Lopatinskﬁ
determinant due to the increased spatial dimension.

Remark 3.5. From Case (iii) we see that for the three-dimensional compressible elastic
vortex sheets there is only one stable region where the velocity is subsonic. This is very
different from the two-dimensional situation where elasticity can also produce a supersonic
stable region. Similar to Case (ii), this loss of stability is due to the the increased spatial
dimension, which can potentially host more unstable directions.

Remark 3.6. From the non-parallel condition F; x Fy # 0 it follows that at the free
boundary, rankF" = 2. Interestingly, such a geometric condition also appears as a suf-
ficient condition for stability in the study of a single-phase compressible elastodynamics
free boundary problem [43]. However another stabilization criterion in the case when the
non-parallel condition fails can be obtained in the form of the Rayleigh-Taylor sign condi-
tion. We want to point out that our free boundary problem is different from that of [43],
and it is the different boundary conditions that allow us to further infer the necessity of
the non-parallel condition for stability.

Remark 3.7. The subsonic condition (u")? < ‘H#Q (F1)|2 ensures that the projected fluid
velocity is below the projected “elastic” sound speed (i.e. the first inequality in (1.2))
along any direction. This is consistent with the two-dimensional case [5], where § becomes
a scalar, F € M?*2 and Fy = 0 in (1.2). To recover the 2D stable supersonic region
in [5] from Theorem 3.1 is not so straightforward. See Remark 3.14 for a more detailed
discussion.

Remark 3.8. Recall that (see, for example, [41]) three-dimensional compressible vortex
sheets are violently unstable. This can be recovered from our result by taking F = 0.

Remark 3.9. This paper focuses on the linear stability with constant coefficients of the
three-dimensional elastic vortex sheets. The nonlinear stability is more challenging and
will be addressed in future works.

Now, we perform the following transformation and simplification in our proof of Theo-
rem 3.1.
W=e "W, ¢=e ",
with v > 1. Introducing two new “y-dependent” operators £7 and B” by
LW = e LW = ’y.AoW + Ao@tW + Al(?lW + AQ@QW + A333W,
. B VP + O
BY(W" p) =e "'B(W", p) = MW" +b P
Dap
Then, we have |||e™"v|||s =~ ol 2y and lle™ " ul[sy = [Jul|ms. A direct consequence
of Theorem 3.1 is the following theorem.
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Theorem 3.2. (i) Assume that the background solution defined by (3.1) satisfies that
Fi xFy #0. If (3.9) is satisfied, then there is a positive constant C such that for all
v>1,W e Hg’(]Ri) and @ € H%(R?’), the following estimate holds:

sl

by + W™ lag=oll3 , + 12113
<o Lyewe, + Lys e 5)13
= '75||| H’2,fy+ 74” ( ’563:0730)”2,7 .

(ii) Assume that the background solution defined by (3.1) satisfies that F1 x Fo # 0. If
(3.11) is true, then there is a positive constant C' such that for all v > 1,W € Hfj(]Ri)
and ¢ € Hé‘(RS), the following estimate holds:

YW

(3.14)

2 F 2 <112
0,7 + HWnc’ISZOHO;y + H(AOHO,'Y

<o Lz, + L 5|2

< 77||| |%ﬂ+¢H (W z5=0, D)3, ) -

(iii) Assume that the background solution defined by (3.1) satisfies (3.13), then the constant
vortex sheet solutions (3.1) are linearly unstable.

(3.15)

3.2. Partial homogenization of the system and front elimination. In this section,
we perform certain transformation and simplification to eliminate the unknown wave front
@ from the linearized problem. Consider the following problem for W and ¢ on R‘j_ :

LW = f, if x5 > 0,
=5 i (3.16)
B’Y(W”C’@) =9 1f1'3:0,
where f and § are given source terms.
We can decompose the system (3.16) into two subsystems by observing the linear struc-

ture. First, we consider the following auxiliary problem for V :

LV = f, if 253 > 0, (3.17)
MV =0, ifz3=0, '
where
0100
M_[0010} (3.18)

From the symmetric hyperbolic theory introduced by Lax and Phillips [30], the boundary
condition is maximally dissipative and thus (3.17) has a solution such that the following
estimate holds:

o C, z
ﬂWW%S;Mﬂ%,HVWmﬂMWS;WﬂﬁW

for any nonnegative integer j. Then let us define W := W — V. It satisfies the following
homogenous equations:

{ﬁwv_o, if 3 > 0,

~ . (3.19)
BY(W"n o) =g:=¢g— MV"™, if x3=0.

Remark 3.10. We shall use the same notation to consider W as a solution to (3.19) rather
than the perturbation of planar vortex sheets in (3.5) for simplicity.
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From standard energy estimates, we obtain
WG < ClIW™ gl 3.

Then it remains to prove the following estimate on W:

C
IW7ay=ol 1§ + 16, < WHKH hoy (3.20)

where k = 2 or k = 3 will be discussed separately in the Section 3.6. In such a way,
we could achieve all the estimates in Theorem 3.2. Now, we perform the Fourier-Laplace
transform to the system (3.19), Laplace in time and Fourier in the tangential directions
of the hyperplane x3 = 0. Denote the variable in the frequency space by (d,7,7). Let
7 = v + id. Then, the PDE system (3.19) is transformed into the following ODE system
for W:

. L E dw .
(tAp + 271./41 +ﬁA2)VVA+ Agm =0, ifaxz>0, (3.21)
b(Ta 77’77)80+MWnc =g, if xr3 = 0,
where
- 2iu™n
b(7'7777ﬁ)=b[ . :|: T+Z'UT’I7
m 0

Due to the homogeneity of the equations (3.21) , we define a hemisphere
S={(r,n.7) : |[7*+n* + 7> =1, and RT > 0}

in the whole frequency space I1 := {(,7,7) : 7 € C,n,7 € R,|7|?> + n? + 7% # 0, RT > 0}.
It is noted that IT = {k - (r,n,7) : k > 0,(7,n,77) € £} = (0,00) - . Our argument will
be casted on the hemisphere ¥ and then be extended to the whole frequency space II by
applying the homogeneity property. Different from the two-dimensional elastic flows, due
to the extra frequency variable 7, the boundary symbol b(7,7,7) can vanish on ¥ if and
only if n = 0 and 7 = 0. We can rewrite the boundary conditions in (3.21) as follows:

2iu™n —c —c ¢ ¢ | __ a1
T+iwwn |+ | —¢ —c 0 0 |W=7g:=| g
0 1 -1 1 -1 5s

We see that . .
(7 +iu"n)p — cW1(0) — cW2(0) = g,
then we have .
PIBP < C (g7 + W lymol?) , W(rm,3) € TL

If 7 = n = 0, there is one-order of degeneracy in the front ¢, which yields the estimate for
the front,

C N
el < =5 (17 Lol P + 1191, ) - (3.22)

Lemma 3.1. There exists a C™ mapping Q : II — C3*3, which is homogeneous of degree
0, such that
0
Q(Tvnaﬁ)b(Tvna 77) = 0 ’
(7., 1)
where 1(1,n,7) = 4(u")?n? + |7 + iu"n|>.
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Proof. Define the map @ as

0 0 1

Q(Ta m, ﬁ) = T+ WTU _QZU’TW 0 9 V(T? 7, ’f/) € 27
2wy T—iu"n O

and extend ) to the whole frequency space by homogeneity of order zero. A simple
calculation concludes the proof of the lemma. O

Remark 3.11. We see that I(7,n,7m) = det Q(7,n,7) can vanish on ¥ when (7,7,7) =
(0,0,41). This implies that the additional direction of velocity leads to extra possible
direction of degeneracy.

Remark 3.12. Here, we obtain L? estimates for the wave fronts in our main theorem. In
fact, the non-parallel condition F; x Fy # 0 enhances the regularity (derivatives estimates)
of ¢ in the nonlinear analysis. This can be understood as an “ellipticity” property of the
front symbol and will play a key role in the forthcoming nonlinear analysis. Such a
property also appears in the study of a single-phase compressible elastic fluid [43] as well
as in the MHD vortex sheets [2,42].

Multiplying (3.21) by Q(7,n,7) yields the new boundary conditions:
Qb3+ QMW™ = Qg, at x3 = 0. (3.23)

Simple calculation tells us that

—1 1 1 —1
QM = | —c(t—iu"n) —c(r—ww'n) clr+iu"n) ot +iu'n) (3.24)
—c(T —3iu"n) —c(T —3iu"n) —2ciu™y —2ciu"n

on X, where 7 denotes the complex conjugate number of 7. It is noted that () is homoge-
neous of degree 0 in (7,7,7). Then, we consider the first two rows in the new boundary
condition (3.23) at x3 = 0 and the equation of (3.21) for x3 > 0. After eliminating the
front function ¢, we have

(T Ao + inAy + iAW + A9 =0, if a5 > 0,
LW =0 = H,

where we denote H to be a function that contains the first two rows of Q(1,7n,7)g and

g -1 1 1 -1
| —e(r—iun) —c(r —iu"n) e(r +iu'n) ot +iu'n)

on X and is a function with homogeneity of degree 0 after extension to the whole frequency
space II. Now, our goal is to obtain the estimate of ||[W"¢|,,—o||3 from the system (3.21).

3.3. Normal mode analysis. We will perform a mode-separation procedure as in [5] to
separate the outgoing modes and incoming modes from the system. This separation can
provide delicate estimates for the outgoing modes. With this we will show in Section 3.6
that the outgoing modes are indeed zero.
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In order to obtain an estimate of ]|/M7"C|$3ZOH% with respect to the source term in the

boundary conditions, we need to derive a system of W™¢. To this end, we will choose
twenty-two algebraic equations from (3.21):

c2m(—W1 + I//T\/g) + (7 + inuT)Wg
—i(nFi; + le2T1)/V[75 i(nFia + 77F22)W i(nFys + 77F23)W11 =0,
czz’f](—wl + Wg) + (7 + inuT)
—i(nFi; + ﬁF2T1)W6 — i(ﬁFu + ﬁF£2)/W7 —i(nFis + ﬁF2T3)W12 =0,
— i F]y + ) W3 + (1 + inu”) W5 = 0,
—i(nFYy + AF5) Wy + (1 + inu”) We = 0,
— ic(nF}y + 7F)Wh — ic(nFyy + 7F5)Wa + (1 + iu"n)Wr = 0,
— i(nFYy + Fg)Ws + (1 + inu") Ws = 0,
— i(nF}y + iFg) Wy + (7 + inu") Wy = 0,
ic(FYy + F3)Wi — ic(nFly + iFg)Wa + (7 +iu"n)Wio = 0,
—i(nFis + ﬁF£3)W3 + (7 + Z'77ur)ﬁ711 =0,
— i(nF}y + 1F5) Wy + (7 + inu") Wiz = 0,
— ic(nFjy + i1F) Wi — ic(nF]s + 7F5)Wa + (7 + iu"n) Wiz = 0,

CQin(fWM + /W15) + (1 +inu )W16

— i(nFYy + 03 Wis — i(nFly + 1F5)War — i(nFis + i1Fs)Was = 0,
CQin(—WM + W15) (1 + inul)/WN

— i(nFy + 7F%)Wig — i(nFly + 7Fl)Wag — i(nFlg + iFly)Was = 0,

—i(nFL + 1 F) Wi + (1 + inul ) Wis = 0,
—i(nFy + GFS)Wir + (1 + inul)Wig = 0,
— ic(nFly + 1F3)Wa — ic(nFly + iF5) Wi + (7 + iu'n)Wag = 0,
—i(nFly + AFL)Wig + (7 + inu))Way = 0,
— i(nFly + i1F)Wir + (7 + inu')Way = 0,
ic(nFly + Fly) Wi — ic(nFly + iFhy)Wis + (7 + iuly) Was = 0,
— i(nFly + 1 Fhy) Wi + (7 + inu!) Was = 0,
— i(nFls + 1F5) Wiz + (7 + inu!)Was = 0,
—ie(nFly + GFL) Wiy — ic(nFls + iiFL)Wis + (7 + iuln) Wag = 0.
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From (3.5), we can solve the above system by using “noncharacteristic” terms Wne =
(Wb WQ) W147 W15>T:

W, _ IR = W) (W — W)
(k])?+ky (k1)?+ Ky

Wy — —n(nFy{y + 1Fy) (W1 — Wh) Wy = —N(nF{y + 1F5) (Wi — Wh)

(K1) + K ’ (k7)2 + k3 ’

= _dc(nFf k) = | = = —=c*n(nFiy + f?Ffz)(Wl — Wa)
Wr = Wi+ Wa), W= ,

T M 5+ K
= PNF + ) (Wi = Wa)  —  ie(Fy + i) < |
W — 12 22 _ 12 22) 7 T

9 (2 + kL , Wi i (Wi + Wa),
Wiy = —Pn(nFls + 1F55) (W — Wa) Wiy = —PN(nF]3 4 1Fy3) (W1 — Wa)

(K7)? + k3 ’ (K7)? + k3 ’
 ie(nFT 4+ F) o~
Wis = (n 13kT Fgs) (W1 + Wa),
1

/W o ’iCQlelU(/W14 — ﬁ/\lg)) W - iCzﬁ(WML - ng,)

16 = N2 | 1l ) 17 = N2 .l

(k1)? + k3 (k1)? + k3

T = —CnmFL A F)(Wha = Wis) o =e*i(nFy + iF5) (Wi — Wis)

18 = ) 19 —

(kD)% + K
= ic(nFi, + nFY)

(k1)? + K ’
—cn(nFly + ﬁFQlQ)(/WM — Ww)

Wy = (/WM + /V[?Lf,), ng = ,
ki (K2 + K
- —Pii(nFly + FL)(Wia — Wis) =  ic(nFly+iFk) —  —

W — 12 22 Wy = 12 22) (T, + Whs),
22 T 23 i (Wia + Wis)
Wt = —c*n(nFis + 7Fs5)(Wia — Wis) Wos = —c*(nFls + 7F55)(Wia — Wis)

(k{)? + kY ’ (k1)? + Kb ’
—  dc(nFl +AFL) ~ =
Wae = (n 13kl i1F33) (Wia + Whs),
1
where

ko= i, kY = F 4+ Es)? + (nFYy + iE ) 4+ (nF + iFyy )2

Taking advantage of differential equations in (3.21), we obtain the ODE for Wne in the
following form:

d — —
—Wne = AW™ 3.25
dl‘g ’ ( )

where

l (3.26)
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with

1l 1 . ) . ) )
nr,l — Q(k; )2 + kg C(T/2 + 772)k7£ mr,l — 0(772 + 772)]6714 o kg
2cky’ 2((k71)2 + k3" 2((kN2 + k5 2cky!

Consider a background solution defined by (3.1). For a given direction vector s :=
(cosf,sinf) € S, we define

gr1(6) := (cos HFﬁl + sin HF;il)2 + (cos QFfél + sin HFQTQI)2 + (cos QFfél + sin GF;éZ)Q. (3.27)

We will see in the later discussion that the function g plays a role of a projected “elastic”
sound speed along the direction §.

From the classical theory of hyperbolic conservation laws [15], we need to bound the
components of W on the stable subspace of A by estimating HW”CLCB:OH%. We first
provide the following Hersh-type Lemma [18] which describes the stable subspace of A
defined on ¥ explicitly.

Lemma 3.2. For (1,n,7) € ¥ and Rt > 0, the matriz A defined in (3.26) admits four
eigenvalues +w” and Fw!, where Rw” and Rw' are negative. Moreover, the following
dispersion relations hold:

1 . N _
(@) = () = ) = = () + )9 @) + o7 + 7 (328)

]

n T ; ro_
TR he eigenvectors of w”", —w

following forms:

‘s

and sin =

where cosf = ,wh, —w! take the

E" = (a",b",0,0)", E} =(a",c",0,0)7,

3.29
El— = (07 0’ bl7al)T7 El— = (0’ 07 Cl7al)T7 ( )

where
anl _ mr,lar,l’ br,l _ (nr,l o wr,l)ar,l’ cr,l _ (nr,l + wnl)oér,l7

ot = (7 4w ) [(T + ") 4+ (0 + 7%)g,(0)).

Both w" and W' can admit a continuous extension to all the points such that Rt = 0,
and (1,m,7) € X. so can E and Eﬂc Moreover, two vectors E” and E' are linearly
independent for all frequency (1,m,7) € X.

According to the definition (3.26) of A, (3.29) holds on II, and we cannot diagonalize A
smoothly near the neighborhood of some “singular” points (7,7, 7) € ¥ satisfying m”! = 0
or w" =0, or 7 = +iu"n, or

r=i(zun =P+ )9 0))

It is noted that E” and E’, or E' and Eﬂr become parallel at these points. For 7 = +iu’n,
or 7 = i(xu"n + /(n? + 72)g.(0)), we name these points (7,7, 7) the poles of A. Next we
adopt the methodology of upper triangularization of matrix A in [5] when performing
separation of modes.
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3.4. Separation of modes. In this section, we need to concentrate our analysis in a
microlocal manner due to the degeneracy of the eigenbasis of A at some points on X
mentioned above. Following the argument in [5], for each point (79,70,70) € 2, we will
single out the outgoing modes of A in the neighborhood V € 3 of the point (79,70, 7o)
from the system (3.25). For the outgoing modes of A, they are exactly the components
of W™ which are not in the stable subspace of A. Applying this separation, we will
prove in Section 3.6 that for every (79,70,70) € X, these outgoing modes are all zeros in
VN {(r,n,7m) : RT > 0}. The compactness of ¥ then allows us to propagate this vanishing
of outgoing modes to the entire X N {(7,7n,7) : RT > 0}.

Compared with the two-dimensional elastic vortex sheets, the additional dimension
makes it more challenging to perform the separation of modes. The non-parallel condition:
rankF" = 2 is essential to ensure (7,7,7) € ¥. Meanwhile, the extra dimension in the
frequency space could potentially increase the possibility of instability.

Now we prove a proposition which is useful in the mode-separation for all points on X.

Proposition 3.1. For w™! defined in Lemma 3.2, we have
(7 + i)™ — (W) —n® = 7%) # 0, V(r,n,7) € .

Proof. We will check the signs of the real and imaginary parts of w™! at the point (7,7, 7) €
¥ with 7 > 0. To this end, as in the 2D case, we consider (x+iy)? = p-+iq for z,y, p, q € R,
and x < 0. Solving this equation leads to the solution formula

P+ VP + ¢ VPP +¢®—p
r=\ T y=seul\ (3-30)

for p,q € R?2\{p < 0,¢q = 0}.
Let w™ = 2" 4+ iy™! and (w™)?2 = p"l +ig™t, where 2™, y"! p™t, ¢! € R. From the
definition (3.28) of w™!, we can obtain that 2" < 0 and

2 _ 5+UT,Z 2 + 2 + ~2 0
pr,l _ v ( 77) = (77 n )gr,l( ) + 772 +7727 (3.31)

2v(8 + umt
qr,l — /7( 3 77)7 (332)
where we recall the definition of the function g,; in (3.27). From (3.30), we can obtain
that when (p™!,¢") ¢ {p < 0,q = 0} and 6 + u™'n # 0, y™ and § + u"'n are of opposite
signs. Here, we use the fact that v = R7 > 0. On the other hand, (3.30) does not serve as
a solution formula when (p™!, ¢") € {p < 0,q = 0}. At these points we have

v=0, d+u"'n#£0, and p"<O0.

Therefore, these points are on the boundary of 3. By Lemma 3.2, the values of w™! at the
boundary of ¥ are defined as the continuous extension limits of the interior values of w”'.
Similarly, the signs of 2™ and y™! can be treated by a continuity argument.

Compared with the 2D case, the way to extend w™ from the interior to the boundary
¥ is different in 3D. With the goal of still being able to determine the signs of z™! and
y"! through continuity, we will continuously extend w™" along a frequency path where the
ratio between 0 and a certain linear combination of {n,7} is fixed. This way the signs
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of y™ and § 4 u"ln are opposite correspondingly at those exceptional points (p"!, ¢™!) €
{p < 0,¢q = 0}. Hence we obtain that

if 6 4+ u™'n #£ 0, then y™! and & + u"'n are of opposite signs. (3.33)

Now, we continue to prove the proposition in the case (7+iu"n)w” —c((w")2—n?—7?) # 0
on Y. The other case, c((w')? —n? —7?) — (T +iu'n)w! # 0 can be dealt with using a similar
argument. We prove this by contradiction, i.e., assuming

(r+iu"n)w” — (W) =n* = 7) =0 (3.34)
holds. If 7+ iu"n = 0, the equation (3.34) becomes (w")? — n? — 71> = 0. Combining this
with (3.28) we obtain that

(” +177)9-(6) = 0.
Note that from (3.9), one has that rank F" = 2. Therefore, n = 7 = 0. And hence, 7 = 0.

This contradicts with (7,7,7) € X. Thus, we assume that 7 + iu"n # 0, and we obtain
that

AW =P
T 42U

5 o (3.35)
1 <(T+iurn) L +n.)gr(9)> _

& T +w'n
If R = v > 0, we can obtain that the real part of the right hand side of (3.35) is positive.
This is in contradiction with the definition Rw” < 0.

Thus we focus on the case v = 0. In this case, we obtain 7 + iu"n = i(J +u"n) # 0. By
(3.35), we know that Rw” = 0 and hence ¢" = 0 and p” < 0. It is noted that p” # 0. If
p" =0, from ¢" = 0, we obtain that w” = 0. Then, from (3.34), we have n = 77 = 0. By
(3.31), it follows that § = 0, and then 7 = 0. It contradicts with the fact that (7,n,7) € X.
Therefore, we shall focus on (7,7,7) € ¥, when 7+iu"n # 0,7 = 0 and p" < 0. This yields
that 6 +u"n # 0. However, by (3.35) and the fact that 7 = 0,

e G (4 ). (0)
c(d +urn)

Since p" < 0, using (3.31), we obtain that (6 +u™n)? — (n? + 77%)g-(6) > 0. Then, the sign
of Sw" is the same as the sign of § + u”"n, which leads to the contradiction with (3.33).
Therefore, (1 + iu™n)w” — c((w")? — n* — 7?) # 0 on X. This completes the proof of the
proposition. O

We will prove that the eigenvector E"! can not vanish at any point in ¥ using the

above proposition. Otherwise, if E = 0, we have m™a™ = 0 and (n“l — w"’l)of’l = 0.
Direct calculation tells us that o’ # 0. Then, m™a™ = 0 implies that m™ = 0. From
the definition of m™, we obtain that

(1 +iu"n)(n* +7°) (* +7%)g:(6)

c
2 rriwn)?t 1 iD)g(0) | 2e(r +iury)
Together with (n™ — w™)a”! =0 and (3.28), we obtain that

(7_ + iur,ln)wr,l _ C((wr,l)Q _ ,’72 _ 772) — O,nr,l — wr,l.
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This contradicts with Proposition 3.1. Construct a new matrix T’
T={E",F",E" F'},

by observing that vectors E"! are not degenerate in the neighborhood of (79, 70,70) € ¥
with

Fr = (07 170>0)T7 it m"a” 7& 0 at (7—077707770)7
(17 07 070)T7 if (nr - wr)ar # 0 at (7—0’ 7707770)7

and likewise

Fl _ (0707 1>O)T7 if mlal 7& 0 at (7—0’7707770)7
(07 07 07 1)T7 if (nl - wl)al 7é 0 at (7-0’ 7707770)'

Therefore, for any point (79,10,70) € %, there is an open neighborhood V of (79,70, 7o)
where T is invertible on V. Then, we have finished upper triangularization procedures:

w200

_ 0 —w" 0 0

T YAT = 00 o (3.36)
0 0 0 -
on V where A is a block matrix given in (3.26) and
erl —ﬁ, if m”a” ?é 0 at (TOa 1o, ﬁO)a
= r,l . ~
m, if (n™f —wrha™ £ 0 at (10,10, 7o)

3.5. Lopatinskii determinant. In this section, we aim to estimate the components of
W™¢|,.—o in the stable subspace of A combining the boundary conditions. This leads us
to study the invertibility of the matrix S(E", E') associated with the boundary condition

(see, for example, [35]), which results in analyzing the roots of the Lopatinskﬁ determinant:
A = det(B(E",EL))
= (T + iurn) (T + iuln) ((T +iun)w" — c((u/")2 —n? - ﬁz)) (3.37)
% (c((wl)2 _ n2 _ 772) _ (7_ + iuln)wl) (wlwr _ 772 _ ’f]2) ((,UT _|_wl).

It is easily seen that the Lopatinskii determinant A can vanish at certain points in .
Therefore the uniform Lopatinskii condition fails.
Lemma 3.3 (Root distribution). Consider a particular solution defined by (3.1). The
roots of the Lopatinskii determinant /A are distributed in the following ways:

(C1) If there ewists an so = (cos 0p,sinfy) € St with cos Oy # 0, such that

g9-(6o) 9r(6o)
cos? g cos2 6y’

< (u")? <2 + (3.38)

where g, is defined in (3.27). Then it holds that some roots of the Lopatinskii
determinant are in the interior of X, and hence the Lopatinskii condition fails.
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(C2) If

r\2 : 97"(9)
f .
0< ()< 0015%750 cos26’ (3.39)

gr(e) (gr(e) + 202)
4(gr(0) +¢*)
then all roots are at most double and on the boundary of ¥, and the Lopatinskiz

condition holds. Specifically, the roots (1,m,7) € X satisfy
(i) T = Fiu™lny, (at most double) or
(ii) T = £iVi\/n? + 12, where
VE = (u"cos0)? + 2 + g.(0) — /A + 4(u cos 0)2 (g,(0) + ¢2) (3.41)
) -1 ing = —-1
with cos 0 T and sin 0 T
(C3) If for all s € St, (3.39) holds and there exists an sy = (cos fg,sinfy) € S' such that

gr(HO) (gr<90) + 262)
"cosby)? = , 3.42
(u" cos ) 1 (9,(00) + &) (3.42)
then all roots are also on the boundary of ¥, and the Lopatinskii condition holds.
Now the roots (1,1m,7) € X are at most tripled and satisfy

and

(u" cos 0)? # (3.40)

T = +iu".

18 attainable and

(C4) If inf )

cos 0#0 cos?

\2 . gT(Q)
= inf —~ 3.43
(') cogé;é() cos2 6’ (343)
then all roots are on the boundary of ¥, and the Lopatinskii condition holds. More
precisely, the roots are (1,1m,7) € X such that

(i) T = Fiu"ly (at most double roots) or
(ii) T =0 (double root).

Remark 3.13. One can verify (see (3.52) in Lemma 3.4) that condition (3.39) makes sense
when F1 X F2 7é 0.

Proof. The proof of the above lemma depends on a careful analysis on each factor of the
Lopatinskii determinant. In the following, we will divide our analysis for each factor step
by step.

Step 1: The third and fourth factors (7 + iu"'n)w™ — c((w™)? —n% — 7).
These two factors are nonzero, since they have exactly the same form in Proposition 3.1.

Step 2: The first and second factors 7 + iu™!s.
Different from the two-dimensional elastic flows, by checking the two directions (7,7n,7) =
(0,0,41) we see that 7 = —iu"'n are not always the simple roots of 7 + iu"'n = 0,
respectively.

Step 3: The fifth factor w'w! — n% — 7%

Now we assume that
Wl —n? -2 =0. (3.44)
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If n =17 =0, we have w" = w! = —=, then w'wh # 0. Hence, w"w! —n% — 7% # 0. Therefore,
at least one of 1 and 7} is not zero. We introduce the following two variables.

T 7l

w

V = _—, Qr,l - -
From (3.44), we have that Q"Q! = —1, and hence (27)%(Q))? = 1. By (3.28), we obtain
that

(3.45)

@02 = 4 ((V +utcosd)? - g,0(6)) ~ 1. (3.46)

Hence, we have
((V + su")? = g,(0)) ((v + ulcos 6)? — gl(9)> —

Solving the above equation for V2, and using the quadratic formula, we obtain two roots
of the above equation:

V2 = (u" cos0)? + g,(0) + 2 — /A + 4(u” cos 0)2(g,(A) + 2), (3.47)
V= (u" cos0)% + g,(0) + ¢ + v/c* + 4(u” cos 0)2(gr(0) + c2). (3.48)

We will prove that the points (7,7,7) € ¥ with 7 = +iVhy/n? + 7% are not the roots of
(3.44). We assume V3 > 0. Simple calculation yields that

Vo +utcos® > \/c2+g.(0), and —Vio+u"'cosf < —+/c2+ g, (6).

If 7 = iVor/n2 + 72, we have v = R7T = 0, and § + u"'n = Va/n? + 72 + u™!n. We claim
that in this situation 6 +u"!n # 0. If § +u™'n = 0, say, for instance, 6 +u"n = 0, then from
(3.28), we have that w” is real and negative. If n = 0, 7 # 0, then we have 6 +uln = § # 0.
If n # 0, then we also have § 4+ u'n # 0. All of these cases lead to Sw! # 0. Thus w"w! can
not be a real number, which violates (3.44). Therefore 6 + u™'n # 0, Sw™ and § + u"ly
are of opposite signs respectively, and w” and w' are purely imaginary and

Ol = Qw2 + 2 € R,

from which we deduce that

Tl

v

Therefore, Q"Q! # —1 and (3.44) is not satisfied. Similarly we can show that (7,7,7) € X
with 7 = —iV,y/n? 4+ 7% are also not the roots for (3.44).

Sgn(Qr’l) = —sgn (‘/2 + ) = —sgn(Va + u"cos 0) = —1.

If the particular solution defined by (3.1) satisfies (3.38), then, together with (3.45), we
obtain that 7 = +iVj4/n? + 7% are real for a certain choice of (n,7). Therefore it follows
that 6 = 0. Since n # 0 and R7 # 0, we have § + u"n # 0. From (3.31) and (3.32), we
obtain that p" = p! and ¢" = —¢' # 0. Using (3.30), we have 2" = z!,y" = —y'. Note
that w” is the conjugate of w!. Then w"w! > 0. This implies that 7 = +iVj1/n2 + 72 are
the roots of (3.44). Hence, we can find a root (7,7n,7) with 7 > 0. This violates the
Lopatinskii conditions, which proves (C1).
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On the other hand, if (3.39) holds, then we have V2 > 0 for all § € [0,2n]. This
implies that 7 = +iVj+/n? + 772 are purely imaginary. For simplicity, we consider 7 =
iViv/n? + 12, then T = 0, but § # 0, and /n? + 72 # 0. We then have

Vi +u" cos ] < v/g,(0) + 2. (3.49)

By (3.28) and (3.49), it follows that (w™)? are both real and positive, and hence w"w! > 0.
Thus (7,7,7) € ¥ with 7 = £iV14/n? + 72 being the roots of (3.44). Now, we prove that
the roots to (3.44) are simple. Since (3.44) does not admit a root at n = 7 = 0, the points
(7,m,7) € ¥ satisfying w™ = 0 are not the roots of w™w! — n? — 72 = 0. From (3.28), w"!
are analytic near the points where w™ do not vanish. We can differentiate (3.46) with
respect to V at V' = V] to obtain that

dQrt i+ u™ cos @
dv vy Qnrle?
Thus,
d(Q QY + 1) (Vi 4 uTcos ) ()% + (Vi + ulcos 0)(Q7)?
dv ‘V:Vl B c2QrQl '
Using (3.46) and (3.47), we have
d(QrQl41) ’ _ 2V (V2 — g,(0) — ) 40, (3.50)
av V=1 AQrot

Hence, we have showed that (7,7,7) € ¥ with 7 = +iV34/n? + 72 are all simple roots of
(3.44) under the condition (3.9). We also have

Wl =i =i = (v £ iViVn? + )R (7,0, 7)
for some continuous function h* (7,7, 7) # 0 respectively.
If the borderline relation (3.43) holds, say inagé . g,(0)/cos® B is attained at some s, =
COS

(cosby,sinf,) € S'. Then at such an s, with the corresponding (n,7) we have 7 =
+iVi\/n2 + 72 = 0. So RT = § = 0. From (3.31) and (3.32) it follows that p™! = n>+7% > 0
and ¢! = 0, which implies that w™! are both negative and real, leading to w"w! > 0. There-
fore such a point (0,7,7) € X gives a root of (3.44). Now, we need to check the multiplicity
of this point, from (3.50) we know that the first derivative vanishes at V' = Vj. Direct
calculation indicates that the second derivative is non-degenerate there. Thus we conclude

(C4).

Step 4: The last factor w” + w'.
We turn to the last factor in (3.37):

W +w =0. (3.51)

It is easy to see from (3.28) that if R7 > 0 then Rw”™ < 0 and Rw' < 0, and thus w”+w! # 0.
So we will consider the case 7 = 0. Using (3.32), we have ¢! = 0. Condition (3.51) the
definition of (3.45) infer that (Q7)? = ()2, which leads to p" = p'. Using (3.31), we
obtain that

2u”n = 2ulon,
which implies én = 0. If § = = 0, then we have 7 # 0, and hence p™ > 0. Hence, w”
are real and negative, which contradicts with (3.51). If § # 0 and n = 0, then we can

l
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assume § > 0, and it follows that § +u"™n > 0. From (3.33), we have Sw” = Sw! < 0. This
contradicts with (3.51). Finally, we are left with n # 0 and § = 0. In this case we have

5 —(u" cos 0)? + (0
pr,l:(n2+n2)< ( ) 9()+1>‘

c2

Under the assumption (3.39), we have p” = p! > 0,¢" = ¢' = 0. Thus w™ are both real
and negative, contradicting (3.51).

We further remark that under the assumption (3.39), +u"n # +£Vi/n? + 712, the roots
will not coincide. Therefore, we have derived the possible roots (7,7, 7) of the Lopatinskii
determinant

7 = —iu™'y (at most double roots), T = +iVi\/n% + 72

This proves (C2).
The above argument reveals all the possibilities for the roots (7,7,7) of the Lopatinskii
determinant, that is,

r=—iw"ly, T=+iVivn2+72, or 7=0
with the assumption that " > 0. We have discussed the possibility when Vi = 0. The

final left-over case is when u"n = Vi\/n2 + 72, i.e., u" cos@ = Vj. Solving this relation
directly we find the condition (3.42), and finally we conclude Lemma 3.3. O

Remark 3.14. As is pointed out in Remark 3.7, to recover the 2D result of [5, Lemma 5.1],
we will take F € M?*? with Fo = 0, and 7 = 0 in the computation. Thus s degenerates
to a scalar, i.e. cosf = 1. This way the elastic sound speed becomes a constant

l l
gr = (F1})* + (F3)%,
which gives the stable subsonic region, with the “degenerate” elastic sound speed in (3.42)
being

(Fh + (F)?) (F)? + (Fl3) +2¢2)
(P2 + (P32 + )

On the other hand, the stable supersonic threshold in (3.38), which is unbounded in the
three-dimensional case, also becomes a constant given by

7l r,l
(F1i )? + (F13 )% +2¢7,

and hence agrees with [5, Lemma 5.1].

Lemma 3.3 provides a detailed description of the root distribution of the Lopatinskif
determinant under certain algebraic relation between the tangential velocity u” of the flow
and the projected elastic sound speed g,(#). The following lemma further unravels such
relation in terms of the elastic deformation.

Lemma 3.4. Consider a particular solution defined by (3.1) and recall the definitions
(3.27) and (3.7). Then

2

in = —_
cos 0#0 cos2 6 ‘Fz‘z

= ’Hi (F1)
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where we recall the projections operators in (3.8). This minimum is attained at s, =
(cosB,,sinf,) € St where
e, (F)|

tanf, =
13

(3.53)

Moreover, for F1,Fy € R3, set

- 00) (0:60) +22)
cos 070 4 cos? 0 (g, (0) + )

F(Fi,Fy) = (3.54)

Then F is well-defined, and

\H#Z(FD\Z
4

< F(F1,Fg) <

2
T, (F1)[” ;Fl)‘ . (3.55)

Proof. Using F1,Fy as in (3.7) we can write

gr(6)
cos2 6
Further introducing notations

F
t = }FQ’ «a := the angle between F; and Fa,
1

= ’F1’2 + ]F2]2tan2 0+ 2(F1 . Fg) tan 6.

the above becomes

9:(0)
cos2 0

= |F1|? (1 + 2t cos artan 6 + ¢* tan” §) (3.56)

= |F1|? (sin® @ + (cos a + ttan §)?) =: [F1|*£(6).

It is obvious that

0 2
gr(Q) = |Fy? <t2 (tan9 + cosa) + 1 — cos? a)
cos? 0 t

2

)

> [P (1 = cos? o) = |1, (F1)

giving (3.52), where equality holds if and only if § = 6, where tan, = — cos «/t, which
is (3.53).
For (3.54) we write

0:(0) (9:(0) +2¢)  [F12 F(8) (F(8) cos? 6 + 222)

= =: h(6 3.57
4cos? 0 (g, (0) + 2) 4 f(0) cos? 0 + & (6), (3:57)
where ¢ = ‘Fi Note that
1]
g9r(0) _ |F1f? g9r(0) _ |F1f?
fcos20 4 10) <o) < 2c0s20 2 1(©). (3.58)
Taking infimum and using (3.52) it holds that
[, ()| 11, (F) [
— < i <=2 71 .
4 - cols%f;éO h(e) - 2 (3 59)

Redefining f and h to be functions of = := tan 6 we see that both f and h are defined
for all z € R, and f — 400 as |x| — oo. From (3.58) it follows that h — 400 as |z| — oo.
Therefore inf,cg h, and thus inf.,sg20 h(0) exists. This means that the function F in
(3.54) is well-defined. Finally (3.55) follows from (3.59). O



28 R. M. CHEN, F. HUANG, D. WANG, AND D. YUAN

With the help of the above lemma we can interpret Lemma 3.3 in a geometrical way.

Lemma 3.5. Consider a particular solution defined by (3.1) and recall the definition (3.7).
Then the conditions in Lemma 3.3 can be equivalently stated as follows:

(Cl) <= (v ’HFQ Fl) ; (3.60)
(C2)«—=0< ( "2 < F(F1,Fy); (3.61)
(C3) = (u ) = F(F1,Fa); (3.62)
(C4) = (u" ’HFQ Fl)‘ . (3.63)

Proof. First we know from (3.52) that (3.63) holds.
From (3.56) we see that

(C1) = (u")* > [F1*f(6.).
To check the converse, since f(f) is quadratic in tan6 and f(#) — +oo as 6 — 7/2, we
know that there exists some 6 € (6,,7/2) such that

(u")? = [F1[f (D).
Continuity of f implies the existence of some 6y close to 6 such that
[F1%f(00) < (u")? < 2¢* + [F1]*f(0o),

which implies (C1).

For (3.61) and (3.62), it suffices to prove (3.62). The argument goes in a similar way as
we proved (3.60). The “=—" part follows easily from (3.54). For the “<=" part, i.e.,

F12£(0:) > (u")? = h(6),
using h(6) in (3.57) we find that
Fq? Fy?
17 (6) > h(6) > [F1[1(0) 400 as 0 L.
2 4 2

Continuity of h(6) implies the existence of some 6y such that (u")? = h(fp), leading to
(C3). O

Using Lemma 3.3, we have the following property on the stable subspace of A near the
the roots of the Lopatinskii determinant.

Lemma 3.6. Let (10,70, 70) € 2 be a root of the Lopatinskii determinant A. If F1 xFy # 0
and (3.9) holds, then there is a neighborhood of (10,70, 70) which excludes any other roots
of A and a constant kg, such that for any (t,1,7) € V and X~ € R?,

(i) If (3.39) and (3.40) hold, then

IBE", ENX" > koy'| X%,

(ii) Assume (3.39) and suppose (3.42) holds for some 6y, then
IBE", ENX" > koy*| X%,

gr(0)

(ii) If inf 7 is attainable and (3.43) holds, then when 79 = —iu™ng or 19 = 0 we

cos 0#0 COS 2
have

IB(E™, EYX™|? > oy | X%
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Proof. We rewrite the Lopatinskii matrix as follows:

—a” +bT bl - al :| _. |: d11 d12 :|

E" E") = , ,
BB, E) —c(t —iun)(a" + ")  c(r +iu"n)(al + b do1  da

First, we observe that each component of B(E", E') is continuous. We know that if one
element of this matrix is not zero at (7, 70, 7o), then there is a neighborhood V of (79, 19, 7o)
such that the matrix can be diagonalized by non-singular matrices P, Q in V, that is

PB(EL,EL)Q = [ (1) 2 ] . (3.64)

For instance, if di; # 0, then we have obtained the identity as follows

1
— 0 1 —d 1 0
d 1 s l 12 —
ER i Ein|
We note that in our case
dip = — (7 +iu'n)* + (F], + i1F3))* + (Fy + 71F55)* + (nF{s + 71F33)°]
X (7 +iu"n)w” — c((W")? = n* — 7)),

dip = — [(7 +iu'n)® + (nF{) + i1F5)* + (nFly + 71Fs)? + (nFiy + 71F33)°]
< [(r + i)t — e(h)? — o — )]

From previous argument, we note that (7 +iu”'n)w"™ —c((w"")? —n% —7?) # 0. Therefore,

dy1 = 0 if and only if 7 = —iu"n + i\/(nF{I +0E5)? 4+ (nF{y + 1F3)? + (nF{y + 7F5)?,

dy2 = 0 if and only if 7 =iu"n + i\/(nFﬁ +nF5)2 + (nFiy + 1F5,)? + (nF{5 + 1F5,)2.

Suppose di1 = d12 = 0, we have

7 =0, and 'y = £/ (1F}, + 7F5)2 + (1F]y + 1) + (0Ffy + i1Fg)2

If n = 0, then we have 77 = 0. This again leads to a contradiction with (7,7,7) € X. Hence,
n # 0. Therefore,

Ty #0, W #£0.

Simple calculation shows that do; # 0 and doo # 0. This argument is different from the
2D case, because of addition frequency directions. Hence, after performing diagonalzation
of the matrix B(E", E), for any (79,10, M), the matrix locally and continuously transform
into diag{1,A} in an open neighborhood V of (79,70,7). Therefore, by utilizing the
continuity and boundedness of d;;, the equation (3.64) implies that

BET, EL)X™* > skmin(1, |AP)| X%,

in V, where k > 0 depends only on the boundary point (79, 79,7). V can only be taken
as the neighborhood that contains the only one root of A. This finishes the proof. O
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3.6. Energy estimates. With all the preparation in the previous discussion, we are
ready to derive the desired energy estimates. For a generating point (79,n0,70), we can
find a neighborhood V where we have separated different modes of A and the estimates
of the Lopatinskii determinant. Note that A(7o,n9,7) # 0. Hence A # 0 at every point
of V. Repeating this throughout ¥ yields a finite covering {Vi}fil of 3 with generating
points { (7, ni, 771‘)}?;17 from which we can construct a smooth partition of the unity with
cut-off functions y; € Cg°(V;) for i = 1,--- , N associated with this covering such that
Zi]\il x? =1 on X. Such a covering includes all the neighborhoods V of (79,70, 7) such
that A(To,?]o, ﬁo) =0.

We start by deriving the energy estimate in each conic zone II; := {(7,n,7) : k -
(t,m,7m) €V, for some k > 0}. In each neighborhood V; of (7;,7;,7;), we extend x; and
the transformation matrix T; to the whole region II; as homogeneous mappings of degree
0 with respect to (7,71,7). Then we focus on

X =, T, 'We (3.65)
for all (1,n,7) € II;. X = (X1, Xo, X3, X4)7 satisfies the following system of ODEs
dX
— = (T 'AT))X.
dl‘g ( t )

Then we only need to estimate X for R7 > 0. From (3.36), the second and fourth equations
are
‘fgj = —w" X, Cg; = —w!'Xy, Y(r,n,7) €I,
with ®7 > 0. By (3.28), we obtain that Rw"!(7,7,7) < 0 provided that ®7 > 0. Besides,
since W(T, n,7,-) € L? and TZ-_1 is a smooth invertible mapping and bounded from above
in II;, we obtain that X (r,n,7,-) € L?, V(r,n,7) € II;. Hence solving the above ODE,
we obtain that

Xo =0, Xy =0, VY(r,n,n) €Il (3.66)
with ®7 > 0. For X; and X3, from (3.65) and (3.66) we have

W =T.X = (E",E") { ? ] . Y(r,n,7) € 1L,
3

with 87 > 0. Then, the boundary conditions become
= X
3
with 7 > 0.
If det(B(E", EL)) # 0 at (1,m;,7;), we obtain that
BEZ, BL)X ™ > wil X2,
where (7,7,7) € V; and X~ € R? and k; is a positive constant depending on (7, 1;, ;).
Since 8 is homogeneous of degree 0, we obtain that

B(EL, EL)XTI? 2> il X P,
where (7,71,7) € II; and X~ € R2. By (3.67), we obtain that

2
X
3 373—0

Y(r,n,1n) € 1L, (3.67)

)
xr3=0

2
< %|H|2, V(r,n,7) € 1L, (3.68)
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with ®7 > 0.
If (73,m4,7;) is a simple root of A, from the proof of Lemma 3.6, we obtain that

|BET, BV = ki) X[

for all (1,n,7) € V; and X~ € R2. Since 3 is homogeneous of degree 0, we obtain that
1BE", EL)|)* > kin?| X,

where (7,7,7) € II; and X~ € R2. Using (3.67), we have

2
FAE
X3 x3=0 N
with 7 > 0.

If (7;,m:,7;) is a double root of A we obtain that
BB, EL)X " > k' X712, V(7,m,7) € Vi

(|72 +n? + 7%)
/‘GHQ

|H[*, V(7,n,7) € 1L (3.69)

and X~ € R2. Since A3 is homogeneous of degree 0, we obtain that
(7[> + 0 + )[BT, EDX P = k| X P,
where (7,7,7) € II; and X~ € R2. Using (3.67), we have
Xz (71* +n* +7%)?

X 2
1
<
|: X3 :|m30 - ﬁi’yll
with R7 > 0. From (3.66), (3.68)-(3.70) we have the following estimate for X in II;,
(\T >+ 7 + %)’
ki

Here, j = 1, 2 represents the multiplicity of the roots of Lopatinskﬁ determinant.

|H[?, ¥(r,n,7) € 1L (3.70)

| X | z5=0]? < |H|?. (3.71)

Now, we prove the main theorem.

Proof of Theorem 3.1. When (3.9) holds, from Lemma 3.6, we know that either 3(E", E)
is invertible at (7;,n;,7;) or (7i,n;,7;) is root of A with multiplicity at most two. From
(3.71) we know that for i =1,--- | N,

T +n°+ -
‘X‘xg 0‘2 (| ’ 77 77 ) ‘H‘Q V(Tanan) S Hz
kit
holds with 7 > 0. From (3.65), we have
2 2
= T[> + 17 +n
z3=0 K/ny

Combining the boundedness of T; in II; and adding all the estimates over all the conic
zones {IL;} |, we have
(I7[* +n* +7°)?

2
=C i [H, Y(r,n,7) €I (3.72)

_
e

xg:ﬂ’

with R7 > 0. Integrating the inequality (3.72) with respect to (d,7,7) over R? yields
HW’I’LC
x

C oo
< —
ollo < SallolB,
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which gives (3.10).

When (3.11) holds, from Lemma 3.6, it follows that either 3(E", E') is an invertible
matrix at (7;,1;,7;) or (73, 1,7;) is a root of A with multiplicity at most three. Thus a
similar argument to the above proves (3.12). O
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