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Abstract. The inviscid limit for the two-dimensional compressible viscoelastic equations in
the half plane is considered under the no-slip boundary condition. When the initial deforma-
tion tensor is a perturbation of the identity matrix and the initial density is near a positive
constant, we establish the uniform estimates of solutions to the compressible viscoelastic
flows in the conormal Sobolev spaces. It is well-known that for the corresponding inviscid
limit of the compressible Navier-Stokes equations with the no-slip boundary condition, one
does not expect the uniform energy estimates of solutions due to the appearance of strong
boundary layers. However, when the deformation tensor effect is taken into account, our
results show that the deformation tensor plays an important role in the vanishing viscosity
process and can surprisingly prevent the formation of strong boundary layers. As a result
we are able to justify the inviscid limit of solutions for the compressible viscous flows under
the no-slip boundary condition governed by the viscoelastic equations, based on the uniform
conormal regularity estimates achieved in this paper.

1. Introduction

In this paper we consider the inviscid limit for the two-dimensional compressible viscoelastic
equations in the half plane:

∂tρ
ε +∇ · (ρεuε) = 0,

ρε∂tu
ε + ρεuε · ∇uε − εµ4uε − ε(µ+ λ)∇divuε +∇p(ρε) = div(ρεFεFε>),

∂tF
ε + uε · ∇Fε = ∇uε · Fε, t > 0, x = (x, y) ∈ R2

+ := R× R+,
(1.1)

where ρε denotes the density, uε = (uε, vε) the velocity, and Fε = (F ε
1 , F

ε
2 )

> the deformation
tensor matrix with F ε

1 = (1 + f ε1 , f
ε
2 ), F

ε
2 = (f ε3 , 1 + f ε4 ); the viscosity coefficients µε and λε

satisfy µ > 0 and (µ+ λ) > 0 with ε ∈ (0, 1) being a small parameter, and the pressure p(ρ)
is a function of the density ρ that is given by the following formula in the isentropic case:

p(ρ) = ργ , γ ≥ 1, (1.2)

where γ is the adiabatic constant. We refer the readers to [7,19,34] for the discussions on the
physical background of viscoelasticity. The initial data of (1.1) is given by

ρε(0, x, y) = ρ0(x, y), uε(0, x, y) = u0(x, y), Fε(0, x, y) = F0(x, y), (1.3)

and the no-slip boundary condition is imposed on the velocity,

uε(t, x, 0) = 0. (1.4)
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Since the equations of deformation tensor Fε are a hyperbolic system, one does not need to
impose any boundary condition for Fε due to (1.4), and the value of Fε on the boundary is
determined by its initial value. In this paper, we consider the case that

F0(x, 0) = I2×2, (1.5)

where I2×2 is a 2×2 identity matrix. Formally, when ε = 0, the equations in (1.1) are reduced
to the following ideal compressible elastodynamic equations:

∂tρ
0 +∇ · (ρ0u0) = 0,

ρ0∂tu
0 + ρ0u0 · ∇u0 +∇p(ρ0) = div(ρ0F0F0>),

∂tF
0 + u0 · ∇F0 = ∇u0 · F0, t > 0, x = (x, y) ∈ R2

+.
(1.6)

The aim of this paper is to justify the vanishing viscosity limit from the viscoelastic equations
(1.1) to the inviscid elastodynamic equations (1.6) as ε → 0 under the no-slip boundary
condition (1.4) in the half plane.

There have been extensive studies on the existence of solutions to both the incompressible
and compressible viscoelastic equations; see [13, 15, 16, 22–24, 28], the survey paper [14] and
the references therein. The inviscid limit of solutions for the Cauchy problem was studied in
many papers such as [1,6,20,30,38] for the incompressible Navier-Stokes equations and in [3]
for the incompressible viscoelastic equations; see also [5, 8, 12, 17, 21] and their references for
other related vanishing viscosity limits of the Cauchy problem for the compressible Navier-
Stokes equations. When the inviscid limit problem is considered in a domain with a physical
boundary, the vanishing viscosity limit problem is usually more challenging due to the possible
presence of boundary layers [10,32,37,39,41]. In particular, if a strong boundary layer appears,
the inviscid limit usually becomes extremely difficult because of the uncontrollability of the
vorticity of boundary layer corrector. If the no-slip boundary condition (1.4) is replaced by
the so-called Navier-slip boundary conditions, the strong boundary layer will disappear, and
the inviscid limit has been established in [40,42] for the compressible Navier-Stokes equations.
For the corresponding inviscid limit of the incompressible Navier-Stokes equations with the
Navier-slip boundary conditions, we refer the readers to [2, 4, 18, 31, 43] and the references
therein.

When the no-slip boundary condition is imposed, the inviscid limit problem in a domain
with a boundary is more complicated and less developed in analysis. To the best of our
knowledge, the inviscid limit of the unsteady incompressible Navier-Stokes equations with
the no-slip boundary condition was proved only in the analytic function framework or in the
Gevrey settings; see [9,29,35,36] and the references therein. For the incompressible magneto-
hydrodynamic (MHD) equations with the no-slip boundary condition, the well-posedness of
solutions to the MHD boundary layer equations and the validity of Prandtl boundary layer
expansion in the Sobolev spaces were obtained in [25, 26] provided that the tangential com-
ponent of magnetic field does not degenerate near the physical boundary initially; and it was
proved in [27] that there are no strong boundary layers in the inviscid limit for the incom-
pressible non-resistive MHD system when the normal component of magnetic field does not
degenerate near the physical boundary initially. However, the inviscid limit of the compress-
ible Navier-Stokes equations with the no-slip boundary condition in the half plane is still open,
except for the linearized Navier-Stokes equations [44], even in the analytic function spaces or
in the Gevrey class owing to the appearance of strong boundary layers [10,41]. In this paper,
we consider the inviscid limit for the compressible viscoelastic equations in the half plane
with the no-slip boundary condition. We find that the deformation tensor in viscoelasticity
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has a significant effect on the vanishing viscosity process and can prevent the formation of
strong boundary layers. For this reason we are able to justify the inviscid limit of solutions for
the compressible viscous flows governed by the viscoelastic equations (1.1) under the no-slip
boundary condition.

To formulate our main results, let us define the conormal Sobolev spaces that will be used
in this paper. Set the conormal derivative operators as the following:

Z0 = ∂t, Z1 = ∂x, Z2 = ϕ(y)∂y, Zα = Zα0
0 Zα1

1 Zα2
2 ,

with α = (α0, α1, α2) and |α| = α0 + α1 + α2. Here the weight function ϕ(y) satisfies
ϕ(0) = 0, ϕ′(0) > 0, ‖∂iyϕ‖L∞ ≤ C (i = 0, ...,m for some integerm > 0), and ϕ(y) has uniform

lower and upper positive bounds away from the physical boundary, that is C−1 ≤ ϕ(y) ≤ C
for some C > 1 when y ≥ δ > 0 with some constant δ > 0. For example, ϕ(y) = y/(1 + y)
may be used as a weight function. Define the following two conormal Sobolev spaces:

Hm
co([0, t]× R2

+) = {f : Zαf ∈ L2([0, t]× R2
+), |α| ≤ m},

and

Hm
co([0, t]× R2

+) = {f : Zαf ∈ L∞([0, t], L2(R2
+)), |α| ≤ m}.

For a given t > 0,

‖f(t)‖2m =
∑

|α|≤m

‖Zαf(t, ·)‖2L2(R2
+),

then

‖f‖2Hm
co

=

∫ t

0
‖f(s)‖2mds, ‖f‖2Hm

co
= sup

0≤s≤t
‖f(s)‖2m.

As usual we use the notation:

Wm,∞
co ([0, t]× R2

+) = {f : Zαf ∈ L∞([0, t]× R2
+), |α| ≤ m},

and

‖f(t)‖m,∞ =
∑

|α|≤m

‖Zαf(t, ·)‖L∞ .

Denote the energy by

Nm(t) =‖(ρε − 1,uε,Fε − I2×2)‖2Hm
co
+ ε

(
‖∂y(ρε, f ε2 )‖2Hm−1

co
+ ‖∂2y(ρε, f ε2 )‖2Hm−2

co

)
+ ‖∂y(ρε,uε,Fε)‖2

Hm−1
co

+ ‖∂2y(ρε,uε,Fε)‖2
Hm−2

co
+ ε‖∇uε‖2Hm

co

+ ε2
(
‖∂2yuε‖2

Hm−1
co

+ ‖∂3yuε‖2
Hm−2

co

)
. (1.7)

We always take 0 < ε < 1 and define

Λm(t) = {(ρ− 1,u,F− I2×2) ∈ Hm
co, ∂y(ρ,u,F) ∈ Hm−1

co , ∂2y(ρ,u,F) ∈ Hm−2
co }.

Now we state our main theorem as follows.

Theorem 1.1. Let m > 8 be an integer. Suppose that the initial data (ρ0,u0,F0) satisfies

‖(ρ0 − 1,u0,F0 − I2×2)‖2m + ‖∂y(ρ0,u0,F0)‖2m−1 + ‖∂y(∇ρ0,∇u0,∇F0)‖2m−2 ≤ σ0, (1.8)

for some sufficiently small positive constant σ0, and

ρ0 det(F0) = 1, div(ρ0F
>
0 ) = 0. (1.9)
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Then, there exist a time T > 0 that is independent of ε and a unique solution U ε = (ρε,uε,Fε)
∈ Λm(T ) to (1.1)-(1.4), such that
(1) the following estimate holds for t ∈ [0, T ],

Nm(t) + ‖(ρε − 1,uε,Fε − I2×2)(t)‖1,∞ + ‖∇(ρε,uε,Fε)(t)‖1,∞ ≤ Cσ0, (1.10)

where C > 0 is some constant independent of ε;
(2) there exists a function U0 = (ρ0,u0,F0) ∈ Λm(T ) satisfying the following limit:

lim
ε→0

sup
t∈[0,T ]

∥∥(U ε − U0, ∂y(U
ε − U0))(·, t)

∥∥
L∞(R2

+)
= 0, (1.11)

and U0 = (ρ0,u0,F0) is a unique solution to the ideal compressible elastodynamic equations
(1.6) with the same initial data (ρ0,u0,F0) and the no-slip boundary condition.

Remark 1.1. Since we are considering the solutions to the compressible flows of viscoelasticity
in the conormal Sobolev spaces, we need to avoid the appearance of vacuum and degeneracy
of deformation tensor matrix, which is guaranteed by the smallness condition (1.8).

Remark 1.2. The time regularity requirements on the initial data can be changed to the spatial
regularity requirements through the equations. We believe that the regularity requirements
in Theorem 1.1 are not optimal.

Remark 1.3. It is noted that the identity matrix I2×2 is not essential in the analysis. In fact,
we only need to assume that the component 1 + f ε4 is not zero initially. We choose the initial
data of the deformation tensor as a small perturbation of the identity matrix solely for the
sake of simplicity of presentation. Moreover, the form of pressure is also not essential, and our
results can be extended to more general forms of pressure without causing more difficulties.

Remark 1.4. Based on the uniform conormal energy estimates (1.10) achieved in the first part
of Theorem 1.1, the inviscid limit in the second part of Theorem 1.1 can be regarded as a
direct consequence of the first part by using some compactness arguments as in [31].

Next we shall explain the main difficulties and the strategy to prove the main theorem.
It is well known that when the inviscid limit is considered in a domain with a physical
boundary, the uniform estimates of normal derivatives for solutions with respect to the small
viscosity parameter are very difficult to obtain. Usually, it is impossible to achieve these
uniform estimates due to the presence of strong boundary layers for the solutions to both the
incompressible and compressible Navier-Stokes equations with the no-slip boundary condition.
Surprisingly, if the deformation tensor in viscoelasticity is taken into account, even though
the no-slip boundary condition is imposed on the velocity, the uniform estimates of normal
derivatives for solutions to the compressible viscoelastic fluid equations can be achieved, which
is the main finding of this paper. In other words, our results in Theorem 1.1 show that the
deformation tensor can prevent the strong boundary layers from occurring. These observations
are obviously different from both the compressible and incompressible Navier-Stokes equations
with the no-slip boundary condition. The effect of the deformation tensor is essentially used
in deriving the conormal energy estimates.

We shall present below our strategy to establish the uniform estimates of normal derivatives
for all components of uε,Fε and pε in four main steps.

Step I: Estimates of ∂yv
ε and ∂yu

ε. From the second and third equations in (4.2) on the
deformation tensor Fε, we can write the normal derivatives in terms of the components of Fε
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as the following:

∂yv
ε =

1

1 + f ε4
(∂tf

ε
4 + uε∂xf

ε
4 + vε∂yf

ε
4 − f ε2∂xv

ε) ,

and

∂yu
ε =

1

1 + f ε4
(∂tf

ε
2 + uε∂xf

ε
2 + vε∂yf

ε
2 − f ε2∂xu

ε) .

Then, using the estimate

‖vε∂yf ε4‖m−1 =

∥∥∥∥ vε

ϕ(y)
ϕ(y)∂yf

ε
4

∥∥∥∥
m−1

.

∥∥∥∥ vε

ϕ(y)

∥∥∥∥
m−1

‖Z2f
ε
4‖L∞ +

∥∥∥∥ vε

ϕ(y)

∥∥∥∥
L∞

‖f ε4‖m

. ‖∂yvε‖m−1 ‖Z2f
ε
4‖L∞ +

∥∥∥∥ vε

ϕ(y)

∥∥∥∥
L∞

‖f ε4‖m,

we see that, at least for the case of suitably small ‖Z2f
ε
4‖L∞ , we can control ‖∂yvε‖m−1 by the

quantity (1 + P (Q(t)))‖(uε, vε, f ε2 , f ε4 )‖m, where Q(t) denotes the W 1,∞
co -norm of the solution

and its first-order derivatives, and P is a generic polynomial that will be frequently used
in the estimates of the paper. Using the similar arguments and the estimate of ‖∂yvε‖m−1,
one can derive the estimate of ‖∂yuε‖m−1. Here the a priori assumption that 1 + f ε4 has a
positive lower bound is required, which is guaranteed by the requirement that the initial data
of the deformation tensor matrix is a small perturbation of the identity matrix. We remark
that the deformation tensor Fε plays an essential role here. It is not clear how to obtain the
uniform conormal estimates of the normal derivatives for the tangential velocity uε without
the viscoelasticity effect under the no-slip boundary condition.

Step II: Estimates of ∂yf
ε
2 . As for the estimate of ∂yf

ε
2 , the equation of uε will be used.

However, notice that there is also a second-order normal derivative term of εµ∂2yu
ε in the

equation of uε, as a consequence we need to estimate ρε(1 + f ε4 )∂yf
ε
2 + εµ∂2yu

ε instead of
ρε(1+ f ε4 )∂yf

ε
2 . Due to the conormal derivatives terms on the right hand side of the equation,

taking the L2-norm on both sides will produce a mixed term of 2µερε(1 + f ε4 )∂yf
ε
2∂

2
yu

ε. To
handle the mixed term, we apply the operator ∂y on the equation of f ε2 and multiply this
equation by 2µε∂yf

ε
2 , then we produce the same mixed term with the opposite sign. Adding

these two estimates together will cancel the mixed terms and achieve the L2 estimates of
ρε(1 + f ε4 )∂yf

ε
2 and εµ∂2yu

ε. Similarly, the Hm−1
co norms also can be done. Here the a priori

assumption that 1+ f ε4 and ρε have positive lower bounds is required, which is guaranteed by
the requirement that the initial data of the deformation tensor matrix is a small perturbation
of the identity matrix and the density is a small perturbation of the constant 1.

Step III: Estimates of ∂yp
ε. By the similar arguments to those in Step II, we use the

equations of vε and ρε in the following manner:

∂yp
ε − (2µ+ λ)ε∂2yv

ε = ..., ∂tp
ε + γpε∂yv

ε = ...

Moreover, the following relationship will be essentially used:

ρεf ε3∂yf
ε
3 = − (f ε3 )

2

γ(ρε)γ−1
∂yp

ε + ...,

and

ρε(1 + f ε4 )∂yf
ε
4 = −(1 + f ε4 )

2

γ(ρε)γ−1
∂yp

ε + ...
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due to the equations ∂x(ρ
ε(1 + f ε1 )) + ∂y(ρ

εf ε3 ) = 0 and ∂x(ρ
εf ε2 ) + ∂y(ρ

ε(1 + f ε4 )) = 0, which
are guaranteed by imposing the same constraint on the initial data (see (1.9) and Proposition
2.1). This relationship is used to change the terms involving ∂yf

ε
3 and ∂yf

ε
4 in the equation

of vε to the form of ∂yp
ε, then it can be merged into ∂yp

ε on the left hand side. In this way,

the L2 estimates of
(
1 +

(fε
3 )

2+(1+fε
4 )

2

γ(ρε)γ−1

)
∂yp

ε and (2µ+ λ)ε∂2yv
ε are established. By the same

line, the Hm−1
co norms will be obtained.

Step IV: Estimates of ∂yf
ε
3 , ∂yf

ε
4 and ∂yf

ε
1 . In this paper, the initial data of F0 and ρ0

are required to satisfy the natural constraints (1.9), then the smooth solutions also satisfy the
same relationship (c.f. [15]). Consequently, it follows that

∂yf
ε
3 =

1

ρε
(−∂x(ρε(1 + f ε1 ))− f ε3∂yρ

ε) , ∂yf
ε
4 =

1

ρε
(−∂x(ρεf ε2 )− (1 + f ε4 )∂yρ

ε) .

Thus, the estimates of ∂yf
ε
3 and ∂yf

ε
4 can be derived. As for the estimate of ∂yf

ε
1 , it can be

directly deduced from the following equation:

∂yf
ε
1 =

1

(1 + f ε4 )

{
∂y

(
1

ρε

)
+ ∂y(f

ε
2f

ε
3 )− (1 + f ε1 )∂yf

ε
4

}
=

1

(1 + f ε4 )

{
∂y

(
1

ρε

)
+ f ε3∂yf

ε
2 − f ε2

ρε
(f ε3∂yρ

ε + ∂x(ρ
εf ε1 )) +

f ε1
ρε

(f ε4∂yρ
ε + ∂x(ρ

εf ε2 ))

}
,

using the property: ρε det(Fε) = 1.
With the above four steps we obtain the estimates of the first order normal derivatives.

Finally, to close the energy estimates, it suffices to control Q(t) by the conormal energy
estimates. According to Lemma 2.2, in order to estimate Q(t), we still need to derive the
conormal estimates of the second order normal derivatives. We repeat the above four steps
for the second order normal derivatives to complete the energy estimate procedure, and then
justify the inviscid limit of (1.1) under the no-slip boundary condition.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries and
technical lemmas. Section 3 is devoted to deriving the uniform conormal energy estimates
of solutions to (1.1)-(1.4). In Section 4, we establish the conormal estimates for the normal
derivatives of solutions to (1.1)-(1.4). Based on the uniform estimates established in Sections
3 and 4, we prove the main Theorem 1.1 in Section 5.

2. Preliminary

In this section, we shall present some technical lemmas that will be used frequently in the
analysis of the paper later.

We first recall the following generalized Sobolev-Gagliardo-Nirenberg-Moser inequality in
the conormal Sobolev spaces (see [11] and the proof):

Lemma 2.1. For the functions f, g ∈ L∞([0, t]× R2
+) ∩Hm

co([0, t]× R2
+), it holds that∫ t

0
‖(ZαfZβg)(s)‖2ds . ‖f‖2L∞

t,x

∫ t

0
‖g(s)‖2mds+ ‖g‖2L∞

t,x

∫ t

0
‖f(s)‖2mds for |α|+ |β| ≤ m.

Here we note that the notation A . B means A ≤ CB for some generic constant C and
‖ · ‖ := ‖ · ‖L2(R2

+).

Then we recall the following anisotropic Sobolev embedding property in the conormal
Sobolev spaces (see [33] and the proof):
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Lemma 2.2. Let f(t,x) ∈ H3
co([0, t]× R2

+) and ∂yf(t,x) ∈ H2
co([0, t]× R2

+), then

‖f‖2L∞
t,x

. ‖f(0)‖22 + ‖∂yf(0)‖21 +
∫ t

0

(
‖f(s)‖23 + ‖∂yf(s)‖22

)
ds.

To handle the commutators, it is helpful to introduce the following formula (see [33] and
the proof):

Lemma 2.3. There exist two families of bounded smooth functions {φk,m(y)}0≤k≤m−1 and

{φk,m(y)}0≤k≤m−1, such that

[Zm
2 , ∂y] =

m−1∑
k=0

φk,m(y)Zk
2∂y =

m−1∑
k=0

φk,m(y)∂yZ
k
2 .

Based on Lemma 2.3, the following lemma holds true.

Lemma 2.4. There exists a generic constant C > 1, such that

C−1
m∑
k=0

‖∇Zku‖2 ≤ ‖∇u‖2m ≤ C
m∑
k=0

‖∇Zku‖2.

Proof. Denote k = (k0, k1, k2), then

m∑
k=0

‖∇Zku‖ =
m∑
k=0

‖Zk∇u‖+
m∑
k=0

‖Zk0
0 Z

k1
1 [∂y, Z

k2
2 ]u‖,

≤‖∇u‖m +

k2−1∑
j=0

‖φj,k2(y)Z
k0
0 Z

k1
1 Z

j
2∂yu‖ ≤ C‖∇u‖m,

where the commutator [∂x, Z
k] = 0 is used. And the other inequality can be proved similarly.

�

Lemma 2.5. There exist two families of bounded smooth functions {φ1,k,m(y), φ2,k,m(y)}0≤k≤m−1

and {φ1,k,m(y), φ2,k,m(y)}0≤k≤m−1, such that

[Zm
2 , ∂

2
y ] =

m−1∑
k=0

(
φ1,k,m(y)Zk

2∂y + φ2,k,m(y)Zk
2∂

2
y

)
=

m−1∑
k=0

(
φ1,k,m(y)∂yZ

k
2 + φ2,k,m(y)∂2yZ

k
2

)
.

Lemma 2.6. There exists a family of bounded smooth functions {ψk,m(y)}0≤k≤m−1, such that

[Zm
2 , 1/ϕ(y)]f =

m−1∑
k=0

ψk,m(y)Zk
2 (f/ϕ);

and there exists a family of bounded smooth functions {ψk,m(y)}0≤k≤m−1, such that

[Zm
2 , ϕ(y)]f =

m−1∑
k=0

ψk,m(y)Zk
2 (ϕ(y)f).

The above two Lemmas 2.5 and 2.6 and the proofs can also be found in [33].
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Proposition 2.1. Assume that (ρε,uε,Fε) is a smooth solution to (1.1)-(1.4). Then, the
following identities

ρε det(Fε) = 1, (2.1)

and

div(ρεFε>) = 0 (2.2)

hold for t ∈ [0, T ], provided that these constraints are satisfied initially.

The proof of Proposition 2.1 can be found in [15].

3. Conormal Energy Estimates

In this section we shall derive the uniform conormal estimates of solutions to (1.1)-(1.4).
Firstly, we set

ρε = 1 + ρ̃ε.

For simplicity of presentation, we omit the symbols ε and “∼” in the following sections without
causing any confusion. It is convenient to rewrite system (1.1) as the following:

∂tρ+∇ · ((1 + ρ)u) = 0,
(1 + ρ)∂tu+ (1 + ρ)u · ∇u− (1 + ρ)(G1 + e1) · ∇G1

−(1 + ρ)(G2 + e2) · ∇G2 +∇p = −εµ∇× ω + ε(2µ+ λ)∇divu,
∂tG1 + u · ∇G1 = (G1 + e1) · ∇u,
∂tG2 + u · ∇G2 = (G2 + e2) · ∇u,

(3.1)

with

u = (u, v), ω = ∂yu− ∂xv, G1 = (f1, f3), G2 = (f2, f4), e1 = (1, 0), e2 = (0, 1),

and ∇× = (−∂y, ∂x).
The no-slip boundary condition is imposed as the following:

u(t, x, 0) = 0. (3.2)

We will establish the following uniform conormal energy estimates in this section.

Proposition 3.1. Under the assumptions in Theorem 1.1, there exists a sufficiently small
ε0 > 0, such that for any 0 < ε < ε0, the smooth solutions (ρ,u,G1,G2) to (3.1)-(3.2) satisfy
the following a priori estimates:

‖(p− 1,u,G1,G2)(t)‖2m + ε

∫ t

0
‖∇u(τ)‖2mdτ

.‖(p− 1,u,G1,G2)(0)‖2m + δ

∫ t

0
‖∇p(τ)‖2m−1dτ + δε2

∫ t

0
‖∇2u(τ)‖2m−1dτ

+ (1 + P (Q(t)))

∫ t

0

(
‖∇u(τ)‖2m−1 + ‖∇G1(τ)‖2m−1 + ‖∇G2(τ)‖2m−1

)
dτ (3.3)

+ (1 + P (Q(t)))

∫ t

0
(‖(p− 1)(τ)‖2m + ‖u(τ)‖2m + ‖G1(τ)‖2m + ‖G2(τ)‖2m)dτ,

for some small δ > 0 to be determined later, where

Q(t) = sup
0≤τ≤t

{‖(p− 1,u,G1,G2)(τ)‖1,∞ + ‖(∇p,∇u,∇G1,∇G2)(τ)‖1,∞},
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and P (·) is a polynomial.

Proof. Applying the conormal derivative operator Zα (|α| ≤ m) to the system (3.1) yields the
following system:

∂tZ
αρ+ Zα∇ · ((1 + ρ)u) = 0,

(1 + ρ)∂tZ
αu+ (1 + ρ)u · ∇Zαu− (1 + ρ)(G1 + e1) · ∇ZαG1

−(1 + ρ)(G2 + e2) · ∇ZαG2 + Zα∇p

= −εµZα∇× ω + ε(2µ+ λ)Zα∇divu+

3∑
i=1

Cα
i ,

∂tZ
αG1 + u · ∇ZαG1 = (G1 + e1) · ∇Zαu+ Cα

4 ,

∂tZ
αG2 + u · ∇ZαG2 = (G2 + e2) · ∇Zαu+ Cα

5 ,

(3.4)

with

Cα
1 = −[Zα, (1 + ρ)]ut = −

∑
|β|≥1,β+κ=α

CαβZ
βρZκut,

Cα
2 = −[Zα, (1 + ρ)u · ∇]u

= −
∑

|β|≥1,β+κ=α

CαβZ
β((1 + ρ)u)Zκ∇u− (1 + ρ)u · [Zα,∇]u,

Cα
3 = [Zα, (1 + ρ)(G1 + e1) · ∇]G1 + [Zα, (1 + ρ)(G2 + e2) · ∇]G2

=
∑

|β|≥1,β+κ=α

CαβZ
β((1 + ρ)(G1 + e1))Z

κ∇G1 + (1 + ρ)(G1 + e1) · [Zα,∇]G1

+
∑

|β|≥1,β+κ=α

CαβZ
β((1 + ρ)(G2 + e2))Z

κ∇G2 + (1 + ρ)(G2 + e2) · [Zα,∇]G2,

and 

Cα
4 =− [Zα,u · ∇]G1 + [Zα, (G1 + e1) · ∇]u

=−
∑

|β|≥1,β+κ=α

CαβZ
βuZκ∇G1 − u · [Zα,∇]G1

+
∑

|β|≥1,β+κ=α

CαβZ
β(G1 + e1)Z

κ∇u− (G1 + e1) · [Zα,∇]u,

Cα
5 =− [Zα,u · ∇]G2 + [Zα, (G2 + e2) · ∇]u

=−
∑

|β|≥1,β+κ=α

CαβZ
βuZκ∇G2 − u · [Zα,∇]G2

+
∑

|β|≥1,β+κ=α

CαβZ
β(G2 + e2)Z

κ∇u− (G2 + e2) · [Zα,∇]u.

Multiplying the second equation in (3.4) by Zαu, the third equation by (1 + ρ)ZαG1, and
the fourth equation by (1+ ρ)ZαG2, adding the resulting equations together, and integrating
them over R2

+, we have

d

dt

∫
1

2
(1 + ρ)(|Zαu|2 + |ZαG1|2 + |ZαG2|2)dx+

∫
Zα∇p · Zαudx
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=− µε

∫
Zα∇× ω · Zαudx+ (2µ+ λ)ε

∫
Zα∇divu · Zαudx (3.5)

+

∫
(Cα

1 + Cα
2 + Cα

3 ) · Zαudx+

∫
(1 + ρ)Cα

4 · ZαG1dx+

∫
(1 + ρ)Cα

5 · ZαG2dx,

where the integration by parts, the boundary conditions (3.2) and the following facts are used:

∂tρ+∇ · ((1 + ρ)u) = 0, div((1 + ρ)F>) = 0,

due to the first equation in (3.1) and Proposition 2.1.
Notice that

− ε

∫
Zα∇× ω · Zαudx

=− ε

∫
∇× Zαω · Zαudx− ε

∫
[Zα,∇×]ω · Zαudx

≤− ε

∫
Zαω∇× Zαudx+ Cε‖∇2u‖m−1‖u‖m

=− ε

∫
ZαωZα∇× udx− ε

∫
Zαω[Zα,∇×]udx+ Cε‖∇2u‖m−1‖u‖m

≤− ε

∫
|Zαω|2dx+ Cε‖∇u‖m‖∇u‖m−1 + Cε‖∇2u‖m−1‖u‖m

≤− ε‖∇ × Zαu‖2 + δε2‖∇2u‖2m−1 + δε‖∇u‖2m + Cδ(ε‖∇u‖2m−1 + ‖u‖2m),

for some small δ > 0 to be determined later, where for the first and second inequalities
Lemmas 2.3 and 2.4 are used. Similarly, one has

ε

∫
Zα∇divu · Zαudx

= ε

∫
∇Zαdivu · Zαudx+ ε

∫
[Zα,∇]divu · Zαudx

≤− ε

∫
Zαdivu · divZαudx+ ε‖∇2u‖m−1‖u‖m

≤− ε‖divZαu‖2 + δε2‖∇2u‖2m−1 + δε‖∇u‖2m + Cδ(ε‖∇u‖2m−1 + ‖u‖2m).

Combining (3.5) and the following inequality

2c1‖∇Zαu‖2 . µ‖∇ × Zαu‖2 + (2µ+ λ)‖divZαu‖2,

where c1 is a generic constant, we obtain∫
1

2
(1 + ρ)(|Zαu|2 + |ZαG1|2 + |ZαG2|2)dx+ c1ε

∫ t

0
‖∇Zαu‖2dτ

+

∫ t

0

∫
Zα∇p · Zαudxdτ

.
∫

1

2
(1 + ρ0)(|Zαu|2(0) + |ZαG1|2(0) + |ZαG2(0)|2)dx (3.6)

+ δε2
∫ t

0
‖∇2u(τ)‖2m−1dτ + δε

∫ t

0
‖∇u(τ)‖2mdτ + Cδε

∫ t

0
‖∇u(τ)‖2m−1dτ
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+ Cδ

∫ t

0
‖u(τ)‖2mdτ +

∫ t

0
(‖Cα

1 ‖2 + ‖Cα
2 ‖2 + ‖Cα

3 ‖2 + ‖Cα
4 ‖2 + ‖Cα

5 ‖2)dτ

+ C

∫ t

0
(‖Zαu‖2 + ‖ZαG1‖2 + ‖ZαG2‖)2dτ,

where the a priori assumption of ‖ρ‖L∞ ≤ 1/2 is used.
Next, we handle the term involving the pressure. First,∫ t

0

∫
Zα∇p · Zαudxdτ =

∫ t

0

∫
Zα∇(p− 1) · Zαudxdτ

=

∫ t

0

∫
∇Zα(p− 1) · Zαudxdτ +

∫ t

0

∫
[Zα,∇](p− 1) · Zαudxdτ

≥−
∫ t

0

∫
Zα(p− 1) · divZαudxdτ −

∫ t

0
‖u‖m‖∇p‖m−1dτ

≥−
∫ t

0

∫
Zα(p− 1) · Zαdivudxdτ − δ

∫ t

0
‖∇p‖2m−1dτ

− Cδ

∫ t

0
(‖p− 1‖2m + ‖u‖2m + ‖∇u‖2m−1)dτ.

Then, it follows from the first equation in (3.1) that

divu = − pt
γp

− u

γp
· ∇p = −(p− 1)t

γp
− u

γp
· ∇(p− 1).

Applying the operator Zα(|α| ≤ m) on the above equation gives

Zαdivu =− Zα(p− 1)t
γp

− u

γp
· Zα∇(p− 1)

−
∑

|β|≥1,β+κ=α

CαβZ
β

(
1

γp

)
Zκ(p− 1)t

−
∑

|β|≥1,β+κ=α

CαβZ
β

(
u

γp

)
Zκ∇(p− 1).

Now we deal with the above right hand side term by term as follows. For the first term, one
has, ∫ t

0

∫
Zα(p− 1) · Z

α(p− 1)t
γp

dxdτ

=

∫ t

0

∫ (
|Zα(p− 1)|2

2γp

)
t

dxdτ −
∫ t

0

∫
|Zα(p− 1)|2

(
1

2γp

)
t

dxdτ

≥
∫

|Zα(p− 1)(t)|2

2γp(t)
dx−

∫
|Zα(p− 1)(0)|2

2γp(0)
dx− C

∥∥∥∥ ptp2
∥∥∥∥
L∞

∫ t

0
‖Zα(p− 1)‖2dτ,

≥
∫

|Zα(p− 1)(t)|2

2γp(t)
dx−

∫
|Zα(p− 1)(0)|2

2γp(0)
dx− (1 + P (Q(t)))

∫ t

0
‖(p− 1)(τ)‖2mdτ,
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where and hereafter we use the a priori assumption that ‖ρ‖L∞ ≤ 1/2, which will be justified
later by choosing σ0 in Theorem 1.1 suitably small; for the second term,∫ t

0

∫
Zα(p− 1)

u

γp
· Zα∇(p− 1)dxdτ

=

∫ t

0

∫
Zα(p− 1)∇Zα(p− 1) · u

γp
dxdτ +

∫ t

0

∫
Zα(p− 1)

u

γp
[∇, Zα](p− 1)dxdτ

≥−
∫

∇ · u

2γp
|Zα(p− 1)(t)|2dx− δ‖∇p‖2m−1dτ − Cδ

∥∥∥∥up
∥∥∥∥2
L∞

∫ t

0
‖(p− 1)(τ)‖2mdτ

≥− δ

∫ t

0
‖∇p‖2m−1dτ − Cδ(1 + P (Q(t)))

∫ t

0
‖(p− 1)(τ)‖2mdτ,

for the third term, by direct calculations we have∑
|β|≥1,β+κ=α

Cαβ

∫ t

0

∫
Zα(p− 1)Zβ

(
1

γp

)
Zκ(p− 1)t

≥− C‖p‖1,∞
∫ t

0
‖(p− 1)(τ)‖m‖Zα(p− 1)(τ)‖dτ

≥− (1 + P (Q(t)))

∫ t

0
‖(p− 1)(τ)‖m‖Zα(p− 1)(τ)‖dτ

≥− (1 + P (Q(t)))

∫ t

0
‖(p− 1)(τ)‖2mdτ,

where in the first inequality Lemma 2.1 is used; and similarly for the fourth term,∑
|β|≥1,β+κ=α

Cαβ

∫ t

0

∫
Zα(p− 1)Zβ

(
u

γp

)
Zκ∇(p− 1)

≥− C‖ u

γp
‖1,∞

∫ t

0
‖∇p(τ)‖m−1‖Zα(p− 1)(τ)‖dτ

− C‖p‖1,∞
∫ t

0
‖u
p
(τ)‖m‖Zα(p− 1)(τ)‖dτ

≥− δ

∫ t

0
‖∇p‖2m−1dτ − Cδ(1 + P (Q(t)))

∫ t

0
(‖u(τ)‖2m + ‖(p− 1)(τ)‖2m)dτ.

Next, we estimate the terms involving Cα
i (i = 1, ..., 5) in (3.6) as follows. First, we have the

following estimates,∫ t

0
‖Cα

1 ‖2dτ .
∑

|β|≥1,β+κ=α

∫ t

0
‖ZβρZκut‖2dτ

.‖ρ‖21,∞
∫ t

0
‖ut‖2m−1dτ + ‖ut‖2L∞

∫ t

0
‖ρ‖2mdτ

.(1 + P (Q(t)))

∫ t

0
(‖ρ‖2m + ‖u)‖2m)dτ,
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and∫ t

0
‖Cα

2 ‖2dτ .
∑

|β|≥1,β+κ=α

∫ t

0
‖Zβ((1 + ρ)u)Zκ∇u‖2dτ + ‖(1 + ρ)u‖2L∞

∫ t

0
‖∇u‖2m−1dτ

.(1 + P (Q(t)))

∫ t

0
(‖∇u(τ)‖2m−1 + ‖ρ(τ)‖2m + ‖u(τ)‖2m)dτ.

Similarly, one has,∫ t

0
‖Cα

3 ‖2dτ .(1 + P (Q(t)))

∫ t

0
(‖∇G1(τ)‖2m−1 + ‖∇G2(τ)‖2m−1)dτ

+ (1 + P (Q(t)))

∫ t

0
(‖ρ(τ)‖2m + ‖G1(τ)‖2m + ‖G2(τ)‖2m)dτ,

and ∫ t

0
(‖Cα

4 ‖2 + ‖Cα
5 ‖2)dτ

.(1 + P (Q(t)))

∫ t

0
(‖∇u(τ)‖2m−1 + ‖∇G1(τ)‖2m−1 + ‖∇G2(τ)‖2m−1)dτ

+ (1 + P (Q(t)))

∫ t

0
(‖u(τ)‖2m + ‖G1(τ)‖2m + ‖G2(τ)‖2m)dτ.

Substituting all of the above estimates into (3.6), we obtain∫
1

2
(1 + ρ)(|Zαu|2 + |ZαG1|2 + |ZαG2|2)dx

+

∫
|Zα(p− 1)(t)|2

2γp(t)
dx+ c1ε

∫ t

0
‖∇Zαu‖2dτ

.
∫

1

2
(1 + ρ0)(|Zαu|2(0) + |ZαG1|2(0) + |ZαG2(0)|2)dx+

∫
|Zα(p− 1)(0)|2

2γp(0)
dx

+ δ

∫ t

0
‖∇p(τ)‖2m−1dτ + Cδ(1 + P (Q(t)))

∫ t

0
‖(p− 1)(τ)‖2mdτ (3.7)

+ δε2
∫ t

0
‖∇2u(τ)‖2m−1dτ + δε

∫ t

0
‖∇u(τ)‖2mdτ

+ (1 + P (Q(t)))

∫ t

0
(‖∇u(τ)‖2m−1 + ‖∇G1(τ)‖2m−1 + ‖∇G2(τ)‖2m−1dτ

+ (1 + P (Q(t)))

∫ t

0
(‖ρ(τ)‖2m + ‖u(τ)‖2m + ‖G1(τ)‖2m + ‖G2(τ)‖2m)dτ.

Summing (3.7) over |α| ≤ m, choosing δ suitably small and using Lemma 2.4, we have

‖(p− 1,u,G1,G2)(t)‖2m + ε

∫ t

0
‖∇u(τ)‖2mdτ

.‖(p− 1,u,G1,G2)(0)‖2m + δ

∫ t

0
‖∇p(τ)‖2m−1dτ + δε2

∫ t

0
‖∇2u(τ)‖2m−1dτ (3.8)

+ (1 + P (Q(t)))

∫ t

0
(‖∇u(τ)‖2m−1 + ‖∇G1(τ)‖2m−1 + ‖∇G2(τ)‖2m−1dτ
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+ (1 + P (Q(t)))

∫ t

0
(‖(p− 1)(τ)‖2m + ‖u(τ)‖2m + ‖G1(τ)‖2m + ‖G2(τ)‖2m)dτ,

where the following fact of equivalence is used:

C−1‖ρ‖2m ≤ ‖p− 1‖2m ≤ C‖ρ‖2m (3.9)

holds for some generic constant C > 1, due to (1.2) and the a priori assumption that ‖ρ‖L∞ ≤
1/2. Therefore, the proof of Proposition 3.1 is completed. �

To close the energy estimates, it suffices to derive the estimates of Q(t), ‖∇(u,G1,G2)‖m−1

and ‖∇p‖m−1, which is the main task in the next section.

4. Estimates of Normal Derivatives

To estimate ‖∇(u,G1,G2, p)‖m−1 on the right hand side of (3.8), it suffices to estimate
‖∂y(u,G1,G2, p)‖m−1, since ‖∂x(u,G1,G2, p)‖m−1 ≤ ‖(u,G1,G2, p − 1)‖m as ∂x = Z1. In
this section, we focus on the estimates of the normal derivatives for (u,G1,G2) and p. We
will derive the conormal estimates for both the first and second order normal derivatives of
each component for (u,G1,G2) and p in the subsequent subsections.

Proposition 4.1. Under the assumptions in Theorem 1.1, there exists a sufficiently small
ε0 > 0, such that for any 0 < ε < ε0, the smooth solution (ρ,u,G1,G2) to (3.1)-(3.2) satisfies
the following a priori estimate:

‖(p− 1,u,G1,G2)(t)‖2m + ε(‖∂yf2(t)‖2m−1 + ‖∂2yf2(t)‖2m−2 + ‖∂yp(t)‖2m−1 + ‖∂2yp(t)‖2m−2)

+ ε

∫ t

0
‖∇u(τ)‖2mdτ +

∫ t

0
(‖∂yp(τ)‖2m−1 + ‖∂yu(τ)‖2m−1 + ‖∂yG1(τ)‖2m−1 + ‖∂yG2(τ)‖2m−1)dτ

+

∫ t

0
(‖∂2yp(τ)‖2m−2 + ‖∂2yu(τ)‖2m−2 + ‖∂2yG1(τ)‖2m−2 + ‖∂2yG2(τ)‖2m−2)dτ

+ ε2
∫ t

0
(‖∂2yu(τ)‖2m−1 + ‖∂3yu(τ)‖2m−2 + ‖∂2yv(τ)‖2m−1 + ‖∂3yv(τ)‖2m−2)dτ

.‖(p− 1,u,G1,G2)(0)‖2m + ε(‖∂yf2(0)‖2m−1 + ‖∂2yf2(0)‖2m−2 + ‖∂yp(0)‖2m−1 + ‖∂2yp(0)‖2m−2)

+ (1 + P (Q(t)))

∫ t

0

(
P (‖ρ(τ)‖m) + ‖u(τ)‖2m + P (‖G1(τ)‖m) + P (‖G2(τ)‖m)

)
dτ, (4.1)

where

Q(t) = sup
0≤τ≤t

{‖(p− 1,u,G1,G2)(τ)‖1,∞ + ‖(∇p,∇u,∇G1,∇G2)(τ)‖1,∞},

and P (·) is a polynomial.

4.1. Estimates of ∂yv and ∂2yv. To estimate the normal derivatives of each component, it
is convenient to rewrite the equations of (G1,G2) in (3.1) as

∂tf1 + u∂xf1 + v∂yf1 = (1 + f1)∂xu+ f3∂yu,
∂tf2 + u∂xf2 + v∂yf2 = f2∂xu+ (1 + f4)∂yu,
∂tf3 + u∂xf3 + v∂yf3 = (1 + f1)∂xv + f3∂yv,
∂tf4 + u∂xf4 + v∂yf4 = f2∂xv + (1 + f4)∂yv.

(4.2)
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From the fourth equation in (4.2), we have

∂yv =
1

1 + f4
(∂tf4 + u∂xf4 + v∂yf4 − f2∂xv). (4.3)

Step 1. Applying the operator Zα (|α| ≤ m− 1) on (4.3), we get

Zα∂yv = Zα

{
1

1 + f4
(∂tf4 + u∂xf4 + v∂yf4 − f2∂xv)

}
.

Notice that ∥∥∥∥Zα

(
v

1 + f4
∂yf4

)∥∥∥∥ =

∥∥∥∥Zα

(
1

1 + f4

v

ϕ(y)
ϕ(y)∂yf4

)∥∥∥∥
.

∥∥∥∥ 1

1 + f4

v

ϕ(y)

∥∥∥∥
L∞

‖f4‖m + ‖ϕ(y)∂yf4‖L∞

∥∥∥∥ 1

1 + f4

v

ϕ(y)

∥∥∥∥
m−1

.‖∂yv‖L∞‖f4‖m + ‖f4‖1,∞(‖∂yv‖m−1 + ‖∂yv‖L∞P (‖f4‖m−1))

.(1 + P (Q(t)))P (‖f4‖m) + ‖f4‖1,∞‖∂yv‖m−1, (4.4)

and ∥∥∥∥Zα

(
∂tf4
1 + f4

)∥∥∥∥+ ∥∥∥∥Zα

(
u

1 + f4
∂xf4

)∥∥∥∥+ ∥∥∥∥Zα

(
f2

1 + f4
∂xv

)∥∥∥∥
.

∥∥∥∥ 1

1 + f4

∥∥∥∥
L∞

‖f4‖m + ‖∂tf4‖L∞

∥∥∥∥Zα

(
1

1 + f4

)∥∥∥∥+ ∥∥∥∥ u

1 + f4

∥∥∥∥
L∞

‖f4‖m

+ ‖∂xf4‖L∞

∥∥∥∥Zα

(
u

1 + f4

)∥∥∥∥+ ∥∥∥∥ f2
1 + f4

∥∥∥∥
L∞

‖v‖m + ‖∂xv‖L∞

∥∥∥∥Zα

(
f2

1 + f4

)∥∥∥∥
.(1 + P (Q(t)))(P (‖f4‖m) + ‖v‖m + ‖f2‖m−1 + ‖u‖m−1),

where we used the a priori assumption of ‖f4‖L∞ ≤ 1/2. Summing all of above inequalities
over |α| ≤ m − 1 and using the a priori assumption of ‖f4‖1,∞ ≤ C0σ0 with σ0 being in
Theorem 1.1 and C0 being a suitably large constant independent of σ0 and ε to be determined
later, we obtain the following estimate by choosing σ0 sufficiently small once C0 is fixed,

‖∂yv‖m−1 . (1 + P (Q(t)))(P (‖f4‖m) + ‖v‖m + ‖f2‖m−1 + ‖u‖m−1). (4.5)

Step 2. To control ‖∇v‖1,∞ in Q(t), it is necessary to derive the conormal estimates of ∂2yv.
Applying the operator Zα∂y (|α| ≤ m− 2) on the equation (4.3) gives

Zα∂2yv = Zα∂y

{
1

1 + f4
(∂tf4 + u∂xf4 + v∂yf4 − f2∂xv)

}
.

Then

‖Zα∂2yv‖ ≤
∥∥∥∥Zα∂y

(
∂tf4
1 + f4

)∥∥∥∥+ ∥∥∥∥Zα∂y

(
u∂xf4
1 + f4

)∥∥∥∥
+

∥∥∥∥Zα∂y

(
v∂yf4
1 + f4

)∥∥∥∥+ ∥∥∥∥Zα∂y

(
f2∂xv

1 + f4

)∥∥∥∥ .
Now, we estimate each of the terms on the right hand side as follows. Firstly,∥∥∥∥Zα∂y

(
∂tf4
1 + f4

)∥∥∥∥ ≤
∥∥∥∥Zα

(
1

1 + f4
∂y∂tf4

)∥∥∥∥+ ∥∥∥∥Zα

(
∂tf4∂y

(
1

1 + f4

))∥∥∥∥
.‖∂yf4‖1,∞P (‖f4‖m−2) + ‖∂yf4‖m−1



16 D. WANG AND F. XIE

+ ‖∂tf4‖L∞(‖∂yf4‖m−2 + ‖∂yf4‖L∞P (‖f4‖m−2)) + ‖∂yf4‖L∞‖f4‖m−1

.(1 + P (Q(t)))(P (‖f4‖m−1) + ‖∂yf4‖m−1),

where the a priori estimate of ‖f4‖L∞ ≤ 1/2 is used again; secondly,∥∥∥∥Zα∂y

(
u∂xf4
1 + f4

)∥∥∥∥ ≤
∥∥∥∥Zα

(
u

1 + f4
∂y∂xf4

)∥∥∥∥+ ∥∥∥∥Zα

(
∂xf4∂y

(
u

1 + f4

))∥∥∥∥
.(1 + P (Q(t)))‖∂yf4‖1,∞(‖u‖m−2 + P (‖f4‖m−2)) + ‖u‖L∞‖∂yf4‖m−1

+ (1 + P (Q(t)))‖∂xf4‖L∞(‖∂yu‖m−2 + ‖∂yf4‖m−2) + ‖∂y(u, f4)‖L∞‖f4‖m−1

.(1 + P (Q(t)))(‖u‖m−2 + P (‖f4‖m−1) + ‖∂yf4‖m−1 + ‖∂yu‖m−2).

Similarly,∥∥∥∥Zα∂y

(
f2∂xv

1 + f4

)∥∥∥∥ ≤
∥∥∥∥Zα

(
f2

1 + f4
∂y∂xv

)∥∥∥∥+ ∥∥∥∥Zα

(
∂xv∂y

(
f2

1 + f4

))∥∥∥∥
.(1 + P (Q(t)))(P (‖f4‖m−2) + ‖f2‖m−2 + ‖v‖m−1 + ‖∂yf4‖m−2 + ‖∂yf2‖m−2 + ‖∂yv‖m−1).

Moreover, ∥∥∥∥Zα∂y

(
v∂yf4
1 + f4

)∥∥∥∥ ≤
∥∥∥∥Zα

(
v

1 + f4
∂y∂yf4

)∥∥∥∥+ ∥∥∥∥Zα

(
∂yf4∂y

(
v

1 + f4

))∥∥∥∥
=

∥∥∥∥Zα

(
1

(1 + f4)

v

ϕ(y)
ϕ(y)∂y∂yf4

)∥∥∥∥+ ∥∥∥∥Zα

(
∂yf4∂y

(
v

1 + f4

))∥∥∥∥
.(1 + P (Q(t)))(‖∂yv‖m−2 + P (‖f4‖m−2) + ‖∂yf4‖m−1)

+ (1 + P (Q(t)))(‖∂yv‖m−2 + ‖∂yf4‖m−2 + ‖v‖m−2 + P (‖f4‖m−2))

.(1 + P (Q(t)))(P (‖f4‖m−2) + ‖v‖m−2 + ‖∂yf4‖m−1 + ‖∂yv‖m−2).

Consequently, summing all of above inequalities over |α| ≤ m− 2 yields that

‖∂2yv‖m−2 .(1 + P (Q(t)))(P (‖f4‖m−1) + ‖f2‖m−2 + ‖u‖m−2 + ‖v‖m−1)

+ (1 + P (Q(t)))(‖∂yf4‖m−1 + ‖∂yf2‖m−2 + ‖∂yv‖m−1 + ‖∂yu‖m−2)

.(1 + P (Q(t)))(P (‖f4‖m) + ‖f2‖m−1 + ‖u‖m−1 + ‖v‖m)

+ (1 + P (Q(t)))(‖∂yf4‖m−1 + ‖∂yf2‖m−2 + ‖∂yu‖m−2), (4.6)

where (4.5) is used in the second inequality.

4.2. Estimates of ∂yu and ∂2yu. From the second equation in (4.2), we have

∂yu =
1

1 + f4
(∂tf2 + u∂xf2 + v∂yf2 − f2∂xu) . (4.7)

A similar argument to (4.5) yields that

‖∂yu‖m−1 . (1 + P (Q(t)))(‖(u, f2)‖m + P (‖f4‖m−1) + ‖∂yv‖m−1).

Then, by using (4.5), we have

‖∂yu‖m−1 . (1 + P (Q(t)))(‖(u, v, f2)‖m + P (‖f4‖m)). (4.8)

Applying the operator Zα∂y (|α| ≤ m− 2) on (4.7) gives

Zα∂2yu = Zα∂y

{
1

1 + f4
(∂tf2 + u∂xf2 + v∂yf2 − f2∂xu)

}
. (4.9)
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Similar arguments to (4.6) give

‖∂2yu‖m−2

.(1 + P (Q(t)))
(
‖v‖m−2 + P (‖f4‖m−2) + ‖(u, f2)‖m−1

+ ‖∂y(v, f4)‖m−2 + ‖∂y(u, f2)‖m−1

)
.(1 + P (Q(t)))

(
‖(u, v, f2)‖m + P (‖f4‖m) + ‖∂yf2‖m−1 + ‖∂yf4‖m−2

)
, (4.10)

where in the second inequality both (4.5) and (4.8) are used.

4.3. Estimate of ∂yf2. It is convenient to rewrite the momentum equations in (3.1) as the
following:

(1 + ρ)∂tu+ (1 + ρ)u∂xu+ (1 + ρ)v∂yu− (1 + ρ)(1 + f1)∂xf1 − (1 + ρ)f3∂yf1

−(1 + ρ)f2∂xf2 − (1 + ρ)(1 + f4)∂yf2 − µε∂2yu− µε∂2xu

−(µ+ λ)ε∂x(ux + vy) + ∂xp = 0,

(1 + ρ)∂tv + (1 + ρ)u∂xv + (1 + ρ)v∂yv − (1 + ρ)(1 + f1)∂xf3 − (1 + ρ)f3∂yf3

−(1 + ρ)f2∂xf4 − (1 + ρ)(1 + f4)∂yf4 − µε∂2yv − µε∂2xv

−(µ+ λ)ε∂y(ux + vy) + ∂yp = 0.

(4.11)

Step 1. According to the first equation in (4.11), we have

(1 + ρ)(1 + f4)∂yf2 + µε∂2yu

=(1 + ρ)∂tu+ (1 + ρ)u∂xu+ (1 + ρ)v∂yu− (1 + ρ)(1 + f1)∂xf1 − (1 + ρ)f3∂yf1 (4.12)

− (1 + ρ)f2∂xf2 − µε∂2xu− (µ+ λ)ε∂x(ux + vy) + ∂xp.

Applying the operator Zα (|α| ≤ m− 1) on the both sides of (4.12), one has,

(1 + ρ)(1 + f4)Z
α∂yf2 + εµZα∂2yu

=Zα{(1 + ρ)∂tu+ (1 + ρ)u∂xu+ (1 + ρ)v∂yu}
+ Zα{−(1 + ρ)(1 + f1)∂xf1 − (1 + ρ)f3∂yf1 − (1 + ρ)f2∂xf2}
+ Zα{−µε∂2xu− (µ+ λ)ε∂x(ux + vy) + ∂xp} − [Zα, (1 + ρ)(1 + f4)]∂yf2. (4.13)

Taking the L2 inner product over R2
+ on the both sides of the above equality yields that

‖(1 + ρ)(1 + f4)Z
α∂yf2‖2 + µ2ε2‖Zα∂2yu‖2 + 2µε

∫
(1 + ρ)(1 + f4)Z

α∂yf2 · Zα∂2yudx

.‖(1 + ρ)∂tu‖2m−1 + ‖(1 + ρ)u∂xu‖2m−1 + ‖(1 + ρ)v∂yu‖2m−1

+ ‖(1 + ρ)(1 + f1)∂xf1‖2m−1 + ‖(1 + ρ)f3∂yf1‖2m−1 + ‖(1 + ρ)f2∂xf2‖2m−1

+ ε2‖∂xu‖2m + ε2‖∂yv‖2m + ‖∂xp‖2m−1 (4.14)

+ ‖Z((1 + ρ)(1 + f4))‖2L∞‖∂yf2‖2m−2 + ‖∂yf2‖2L∞‖Z((1 + ρ)(1 + f4))‖2m−2

.(1 + P (Q(t)))
(
‖(u, f1, f2)‖2m + ‖(ρ, v, f3, f4)‖2m−1 + ‖∂yu‖2m−1 + ‖∂yf2‖2m−2

)
+ ‖∂xp‖2m−1 + ε2‖(∂xu, ∂yv)‖2m + ‖f3‖2L∞‖∂yf1‖2m−1

.(1 + P (Q(t)))
(
‖(u, v, f1, f2)‖2m + ‖(ρ, f3)‖2m−1 + P (‖f4‖m) + ‖∂yf2‖2m−2

)
+ ‖∂xp‖2m−1 + ε2‖(∂xu, ∂yv)‖2m + ‖f3‖2L∞‖∂yf1‖2m−1,

where (4.8) is used in the last inequality.
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Step 2. It remains to handle the mixed term 2µε

∫
(1 + ρ)(1 + f4)Z

α∂yf2 · Zα∂2yudx on the

left hand side of (4.14). From the second equation in (4.2), we have

1

(1 + f4)
∂tf2 − ∂yu =

1

(1 + f4)
(f2∂xu− u∂xf2 − v∂yf2). (4.15)

Applying the operator Zα∂y (|α| ≤ m− 1) on the equation (4.15) leads to

1

(1 + f4)
∂tZ

α∂yf2 − Zα∂2yu

=Zα∂y

(
f2

1 + f4
∂xu

)
− u

(1 + f4)
∂xZ

α∂yf2 −
v

(1 + f4)
∂yZ

α∂yf2 + Cα
6 , (4.16)

where

Cα
6 = −

[
Zα∂y,

1

(1 + f4)
∂t

]
f2 −

[
Zα∂y,

u

(1 + f4)
∂x

]
f2 −

[
Zα∂y,

v

(1 + f4)
∂y

]
f2. (4.17)

Multiplying (4.16) by 2µε(1 + ρ)(1 + f4)Z
α∂yf2 and integrating the resulting equation over

R2
+ give that

µε
d

dt
‖
√
(1 + ρ)Zα∂yf2‖2 − 2µε

∫
(1 + ρ)(1 + f4)Z

α∂yf2Z
α∂2yudx (4.18)

=2µε

∫
(1 + ρ)(1 + f4)Z

α∂yf2Z
α∂y

(
f2

1 + f4
∂xu

)
dx+ 2µε

∫
(1 + ρ)(1 + f4)Z

α∂yf2Cα
6 dx,

where the equation of ∂tρ + ∂x((1 + ρ)u) + ∂y((1 + ρ)v) = 0 is used. For the terms on the
right hand side of (4.18), by the Cauchy-Schwarz inequality, we have∣∣∣∣2µε ∫ (1 + ρ)(1 + f4)Z

α∂yf2Z
α∂y

(
f2

1 + f4
∂xu

)
dx

∣∣∣∣
+

∣∣∣∣2µε ∫ (1 + ρ)(1 + f4)Z
α∂yf2Cα

6 dx

∣∣∣∣
=

∣∣∣∣2µε ∫ (1 + ρ)(1 + f4)Z
α∂yf2Z

α

(
∂y

(
f2

1 + f4

)
∂xu+

f2
1 + f4

∂x∂yu

)
dx

∣∣∣∣
+

∣∣∣∣2µε ∫ (1 + ρ)(1 + f4)Z
α∂yf2Cα

6 dx

∣∣∣∣
≤δ‖(1 + ρ)(1 + f4)Z

α∂yf2‖2

+ Cδε
2 ×

(∥∥∥∥Zα

(
∂y

(
f2

1 + f4

)
∂xu+

f2
1 + f4

∂x∂yu

)∥∥∥∥2 + ‖Cα
6 ‖2
)
,

for some small constant δ > 0 to be determined later. Note that∥∥∥∥Zα

(
∂y

(
f2

1 + f4

)
∂xu+

f2
1 + f4

∂x∂yu

)∥∥∥∥2
.

∥∥∥∥∂y ( f2
1 + f4

)∥∥∥∥2
L∞

‖u‖2m + ‖∂xu‖2L∞

∥∥∥∥∂y ( f2
1 + f4

)∥∥∥∥2
m−1

+

∥∥∥∥ f2
1 + f4

∥∥∥∥2
L∞

‖∂yu‖2m + ‖∂yu‖21,∞
∥∥∥∥ f2
1 + f4

∥∥∥∥2
m−1
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.(1 + P (Q(t)))(‖u‖2m + ‖∂yu‖2m + ‖∂y(f2, f4)‖2m−1 + ‖f2‖2m−1 + P (‖f4‖m−1)).

Step 3. For the second term on the right hand side of (4.18), we need to estimate the com-
mutator Cα

6 defined in (4.17). First, we have∥∥∥∥[Zα∂y,
1

(1 + f4)
∂t

]
f2

∥∥∥∥2
=

∥∥∥∥Zα

(
∂y

(
1

1 + f4

)
∂tf2

)
+

[
Zα,

1

1 + f4

]
∂t∂yf2

∥∥∥∥2
.

∥∥∥∥∂y ( 1

1 + f4

)∥∥∥∥2
L∞

‖f2‖2m + ‖∂tf2‖2L∞

∥∥∥∥∂y ( 1

1 + f4

)∥∥∥∥2
m−1

+

∥∥∥∥Z ( 1

1 + f4

)∥∥∥∥2
L∞

‖∂yf2‖2m−1 + ‖∂yf2‖21,∞
∥∥∥∥Z ( 1

1 + f4

)∥∥∥∥2
m−2

.(1 + P (Q(t)))(‖f2‖2m + ‖∂y(f2, f4)‖2m−1 + P (‖f4‖m−1)),

and similarly,∥∥∥∥[Zα∂y,
u

(1 + f4)
∂x

]
f2

∥∥∥∥2
=

∥∥∥∥Zα

(
∂y

(
u

1 + f4

)
∂xf2

)
+

[
Zα,

u

(1 + f4)

]
∂x∂yf2

∥∥∥∥2
.

∥∥∥∥∂y ( u

1 + f4

)∥∥∥∥2
L∞

‖f2‖2m + ‖∂xf2‖2L∞

∥∥∥∥∂y ( u

1 + f4

)∥∥∥∥2
m−1

+

∥∥∥∥Z ( u

1 + f4

)∥∥∥∥2
L∞

‖∂yf2‖2m−1 + ‖∂yf2‖21,∞
∥∥∥∥Z ( u

1 + f4

)∥∥∥∥2
m−2

.(1 + P (Q(t)))(‖f2‖2m + ‖u‖2m−1 + P (‖f4‖m−1) + ‖∂y(u, f2, f4)‖2m−1).

Next, we notice that[
Zα∂y,

v

(1 + f4)
∂y

]
f2

=Zα

{
∂y

(
v

1 + f4

)
∂yf2

}
+

[
Zα,

v

(1 + f4)

]
∂y∂yf2 +

v

1 + f4
[Zα, ∂y]∂yf2 (4.19)

with [
Zα,

v

(1 + f4)

]
∂y∂yf2 =

∑
|β|≥1,β+κ=α

CαβZ
β

(
v

1 + f4

)
Zκ∂y∂yf2.

The first term in (4.19) can be estimated as the following:∥∥∥∥Zα

{
∂y

(
v

1 + f4

)
∂yf2

}∥∥∥∥2
.(1 + P (Q(t)))(‖∂yv‖2m−1 + ‖∂yf2‖2m−1 + ‖∂yf4‖2m−1 + P (‖f4‖m−1) + ‖v‖2m−1).
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Step 4. We now estimate the second and the third terms, that is, the two commutators in
(4.19). For the first commutator, we have the following computation,

Zβ

(
v

1 + f4

)
Zκ∂y∂yf2

=

(
Zβ

(
v

(1 + f4)ϕ(y)

)
+

[
Zβ ,

1

ϕ(y)

]
v

1 + f4

)
(Zκϕ(y)∂y∂yf2 + [Zκ, ϕ(y)]∂y∂yf2) ,

where [
Zβ ,

1

ϕ(y)

]
v

1 + f4
=

β−1∑
η=0

ψη,β(y)Z
η

(
v

ϕ(y)(1 + f4)

)
for some bounded smooth functions ψη,β(y) due to Lemma 2.6, and similarly,

[Zκ, ϕ(y)]∂y∂yf2 =

κ−1∑
θ=0

ψθ,κ(y)Z
θ(ϕ(y)∂y∂yf2)

for some bounded smooth functions ψθ,κ(y). Then, according to Lemma 2.1, we have the
following estimate: ∥∥∥∥[Zα,

v

(1 + f4)

]
∂y∂yf2

∥∥∥∥2
.

∑
|β|≥1,β+κ=α

∥∥∥∥Zβ

(
v

1 + f4

)
Zκ∂y∂yf2

∥∥∥∥2
.(1 + P (Q(t)))(‖∂yv‖2m−1 + ‖∂yf2‖2m−1 + P (‖f4‖m−1)).

For the second commutator in (4.19), we write

[Zα, ∂y]∂yf2 =
m−2∑
θ=0

φθ,α(y)∂yZ
θ∂yf2

with φθ,α(y) being bounded smooth functions due to Lemma 2.3. Then,∥∥∥∥ v

1 + f4
[Zα, ∂y]∂yf2

∥∥∥∥2
=

∥∥∥∥ v

(1 + f4)ϕ(y)
ϕ(y)[Zα, ∂y]∂yf2

∥∥∥∥2
.(1 + P (Q(t)))‖∂yf2‖2m−1.

Consequently,∥∥∥∥[Zα∂y,
v

(1 + f4)
∂y

]
f2

∥∥∥∥2
.(1 + P (Q(t)))

(
‖∂yv‖2m−1 + ‖∂yf2‖2m−1 + ‖∂yf4‖2m−1 + P (‖f4‖m−1) + ‖v‖2m−1

)
.

Substituting all of the above estimates into (4.18) yields the following estimate:

µε
d

dt
‖
√
(1 + ρ)Zα∂yf2‖2 − 2µε

∫
(1 + ρ)(1 + f4)Z

α∂yf2Z
α∂2yudx

≤δ‖(1 + ρ)(1 + f4)Z
α∂yf2‖2 (4.20)
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+ Cδε
2(1 + P (Q(t)))

(
‖u‖2m + ‖f2‖2m + P (‖f4‖m−1) + ‖v‖2m−1

+ ‖∂yu‖2m + ‖∂yv‖2m−1 + ‖∂yf2‖2m−1 + ‖∂yf4‖2m−1

)
.

Step 5. Combining (4.14) and (4.20) together and choosing δ suitably small, we obtain

µε
d

dt
‖
√

(1 + ρ)Zα∂yf2‖2 + ‖(1 + ρ)(1 + f4)Z
α∂yf2‖2 + µ2ε2‖Zα∂2yu‖2

.(1 + P (Q(t)))
(
‖(u, v, f1, f2)‖2m + ‖(ρ, f3)‖2m−1 + P (‖f4‖m) + ‖∂yf2‖2m−2

)
+ ‖∂xp‖2m−1 + ε2‖(∂xu, ∂yv)‖2m + ‖f3‖2L∞‖∂yf1‖2m−1 (4.21)

+ ε2(1 + P (Q(t)))
(
‖∂yu‖2m + ‖∂yv‖2m−1 + ‖∂yf2‖2m−1 + ‖∂yf4‖2m−1

)
.

Choosing ε0 to be sufficiently small and for 0 < ε < ε0 summing the above inequalities over
|α| ≤ m− 1 lead to

µε
d

dt
‖∂yf2‖2m−1 + ‖∂yf2‖2m−1 + ε2‖∂2yu‖2m−1

.(1 + P (Q(t)))
(
‖(u, v, f1, f2)‖2m + ‖(ρ, f3)‖2m−1 + P (‖f4‖m)

)
+ ‖∂xp‖2m−1 + ε2‖(∂xu, ∂yv)‖2m + ‖f3‖2L∞‖∂yf1‖2m−1 (4.22)

+ ε2(1 + P (Q(t)))
(
‖∂yu‖2m + ‖∂yf4‖2m−1

)
,

where the mathematical induction arguments and the following a priori estimates are used:

‖ρ‖L∞ ≤ 1/2, ‖f4‖L∞ ≤ 1/2, Q(t) ≤ C.

More precisely, notice that the order of conormal derivatives is up to m− 1 on the left hand
side of (4.21), and there exist terms of ‖∂yf2‖2m−2 and ε2(1+P (Q(t)))‖∂yf2‖2m−1 on the right
hand side of (4.21), then the first term is absorbed by using the mathematical induction
arguments, and the second term is absorbed by choosing ε sufficiently small and the a priori
assumption of Q(t) ≤ C. And (4.5) is also used in deriving (4.22).

4.4. Estimate of ∂2yf2. Next, we will derive the conormal energy estimates of ∂2yf2.

Step 1. Applying the operator Zα∂y (|α| ≤ m− 2) on the both sides of (4.12) yields

(1 + ρ)(1 + f4)Z
α∂2yf2 + εµZα∂3yu

= Zα∂y{(1 + ρ)∂tu+ (1 + ρ)u∂xu+ (1 + ρ)v∂yu}
+ Zα∂y{−(1 + ρ)(1 + f1)∂xf1 − (1 + ρ)f3∂yf1 − (1 + ρ)f2∂xf2} (4.23)

+ Zα∂y{−µε∂2xu− (µ+ λ)ε∂x(ux + vy) + ∂xp} − [Zα∂y, (1 + ρ)(1 + f4)]∂yf2.

Taking the L2 inner product on the both sides of the above equality, we obtain

‖(1 + ρ)(1 + f4)Z
α∂2yf2‖2 + µ2ε2‖Zα∂3yu‖2 + 2µε

∫
(1 + ρ)(1 + f4)Z

α∂2yf2 · Zα∂3yudx

.‖Zα∂y((1 + ρ)∂tu)‖2 + ‖Zα∂y((1 + ρ)u∂xu)‖2 + ‖Zα∂y((1 + ρ)v∂yu)‖2

+ ‖Zα∂y((1 + ρ)(1 + f1)∂xf1)‖2 + ‖Zα∂y((1 + ρ)f3∂yf1)‖2 (4.24)

+ ‖Zα∂y((1 + ρ)f2∂xf2)‖2 + ε2‖Zα∂y∂
2
xu‖2 + ε2‖Zα∂y∂

2
xyv‖2

+ ‖Zα∂y∂xp‖2 + ‖[Zα∂y, (1 + ρ)(1 + f4)]∂yf2‖2.
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Here we only need to deal several typical terms in (4.24) since other terms can be handled
similarly. First, we have

‖Zα∂y((1 + ρ)∂tu)‖2

≤‖Zα(∂yρ∂tu)‖2 + ‖Zα((1 + ρ)∂t∂yu)‖2

≤‖∂yρ‖2L∞‖u‖2m−1 + ‖∂tu‖2L∞‖∂yρ‖2m−2 + (1 + ‖ρ‖2L∞)‖∂yu‖2m−1 + ‖∂yu‖21,∞‖ρ‖2m−2

.(1 + P (Q(t)))(‖u‖2m−1 + ‖ρ‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yu‖2m−1)

.(1 + P (Q(t)))(‖u, v, f2‖2m + ‖ρ‖2m−2 + P (‖f4‖m) + ‖∂yρ‖2m−2),

where the estimate (4.8) is used in the last inequality. By the same argument, we get

‖Zα∂y((1 + ρ)u∂xu)‖2 + ‖Zα∂y((1 + ρ)(1 + f1)∂xf1)‖2 + ‖Zα∂y((1 + ρ)f2∂xf2)‖2

.(1 + P (Q(t)))(‖(u, f1, f2)‖2m−1 + ‖ρ‖2m−2 + ‖∂yρ‖2m−2 + ‖∂y(u, f1, f2)‖2m−1)

.(1 + P (Q(t)))
(
‖(u, v, f2)‖2m + ‖f1‖2m−1 + ‖ρ‖2m−2 + P (‖f4‖m) + ‖∂yρ‖2m−2 + ‖∂y(f1, f2)‖2m−1

)
.

Next,

Zα∂y((1 + ρ)v∂yu) = Zα(∂yρv∂yu) + Zα((1 + ρ)∂yv∂yu) + Zα((1 + ρ)v∂y∂yu),

where

‖Zα(∂yρv∂yu)‖2 + ‖Zα((1 + ρ)∂yv∂yu)‖2

.(1 + P (Q(t)))(‖(ρ, v)‖2m−2 + ‖∂y(ρ, u, v)‖2m−2

.(1 + P (Q(t)))(‖(u, v, f2)‖2m + ‖ρ‖2m−2 + P (‖f4‖m) + ‖∂yρ‖2m−2,

and

‖Zα((1 + ρ)v∂2yu)‖2 =
∥∥∥∥Zα

(
(1 + ρ)

v

ϕ(y)
ϕ(y)∂y∂yu

)∥∥∥∥2
.(1 + P (Q(t)))(‖ρ‖2m−2 + ‖∂yv‖2m−2 + ‖∂yu‖2m−1)

.(1 + P (Q(t)))(‖ρ‖2m−2 + ‖(u, v, f2)‖2m + P (‖f4‖m)).

Similarly,

Zα∂y((1 + ρ)f3∂yf1) = Zα(∂yρf3∂yf1) + Zα((1 + ρ)∂yf3∂yf1) + Zα((1 + ρ)f3∂y∂yf1),

where

‖Zα(∂yρf3∂yf1)‖2 + ‖Zα((1 + ρ)∂yf3∂yf1)‖2

.(1 + P (Q(t)))(‖ρ‖2m−2 + ‖f3‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yf1‖2m−2 + ‖∂yf3‖2m−2),

and

‖Zα((1 + ρ)f3∂y∂yf1)‖2

.
∑

β+κ=α

‖Zβ((1 + ρ)f3)Z
κ(∂2yf1)‖2

=
∑

|β|≤|α|/2,β+κ=α

‖Zβ((1 + ρ)f3)Z
κ(∂2yf1)‖2 +

∑
|β|>|α|/2,β+κ=α

‖Zβ((1 + ρ)f3)Z
κ(∂2yf1)‖2

.
∑

|β|≤|α|/2,β+κ=α

‖Zβ((1 + ρ)f3)‖2L∞
x,y

‖Zκ(∂2yf1)‖2L2
x
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+
∑

|β|>|α|/2,β+κ=α

‖Zβ((1 + ρ)f3)‖2L2
x(L

∞
y )‖Z

κ(∂2yf1)‖2L∞
x (L2

y)

.
∑

|β|≤|α|/2,β+κ=α

‖Zβ((1 + ρ)f3)‖L∞
x (L2

y)
‖∂yZβ((1 + ρ)f3)‖L∞

x (L2
y)
‖Zκ(∂2yf1)‖2L2

x

+
∑

|β|>|α|/2,β+κ=α

‖Zβ((1 + ρ)f3)‖L2
x
‖∂yZβ((1 + ρ)f3)‖L2

x
‖Zκ(∂2yf1)‖2L∞

x (L2
y)

.(1 + P (Q(t)))(‖ρ‖2m−2 + ‖f3‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yf3‖2m−2)‖∂2yf1‖2m−3,

provided that m > 8, where Lemma 2.4 is used in the last inequality. Now we deal with the
last term of commutator in (4.24). Note that

[Zα∂y, (1 + ρ)(1 + f4)]∂yf2 = Zα(∂y((1 + ρ)(1 + f4))∂yf2) + [Zα, (1 + ρ)(1 + f4)]∂
2
yf2,

where

‖Zα(∂y((1 + ρ)(1 + f4))∂yf2)‖2 . (1 + P (Q(t)))(‖(ρ, f4)‖2m−2 + ‖(∂yρ, ∂yf2, ∂yf4)‖2m−2),

and

‖[Zα, (1 + ρ)(1 + f4)]∂
2
yf2‖2

.
∑

|β|≥1,β+κ=α

‖Zβ((1 + ρ)(1 + f4))Z
κ(∂2yf2)‖2

=
∑

1≤|β|≤|α|/2,β+κ=α

‖Zβ((1 + ρ)(1 + f4))Z
κ(∂2yf2)‖2

+
∑

|β|>|α|/2,β+κ=α

‖Zβ((1 + ρ)(1 + f4))Z
κ(∂2yf2)‖2

.
∑

1≤|β|≤|α|/2,β+κ=α

‖Zβ((1 + ρ)(1 + f4))‖2L∞
x,y

‖Zκ(∂2yf2)‖2L2
x

+
∑

|β|>|α|/2,β+κ=α

‖Zβ((1 + ρ)(1 + f4))‖2L2
x(L

∞
y )‖Z

κ(∂2yf2)‖2L∞
x (L2

y)

.
∑

1≤|β|≤|α|/2,β+κ=α

‖Zβ((1 + ρ)(1 + f4))‖L∞
x (L2

y)
‖∂yZβ((1 + ρ)(1 + f4))‖L∞

x (L2
y)
‖Zκ(∂2yf2)‖2L2

x

+
∑

|β|>|α|/2,β+κ=α

‖Zβ((1 + ρ)(1 + f4))‖L2
x
‖∂yZβ((1 + ρ)(1 + f4))‖L2

x
‖Zκ(∂2yf2)‖2L∞

x (L2
y)

.(1 + P (Q(t)))(‖ρ‖2m−2 + ‖f4‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yf4‖2m−2)‖∂2yf2‖2m−3,

provided that m > 8, where Lemma 2.4 is used in the last inequality.
Consequently, from the above estimates and (4.24) we arrive at

‖(1 + ρ)(1 + f4)Z
α∂2yf2‖2 + µ2ε2‖Zα∂3yu‖2 + 2µε

∫
(1 + ρ)(1 + f4)Z

α∂2yf2 · Zα∂3yudx

.(1 + P (Q(t)))(‖(u, v, f2)‖2m + ‖f1‖2m−1 + P (‖f4‖m) + ‖(ρ, f3)‖2m−2)

+ (1 + P (Q(t)))(‖∂y(f1, f2)‖2m−1 + ‖∂y(ρ, f3, f4)‖2m−2)

+ ‖∂yp‖2m−1 + ε2‖∂yu‖2m + ε2‖∂2yv‖2m−1 (4.25)

+(1 + P (Q(t)))(‖ρ‖2m−2 + ‖f3‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yf3‖2m−2)‖∂2yf1‖2m−3
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+ (1 + P (Q(t)))(‖ρ‖2m−2 + ‖f4‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yf4‖2m−2)‖∂2yf2‖2m−3.

Step 2. Applying the operator Zα∂2y (|α| ≤ m−2) on the equation (1+f4)× (4.15) gives that

∂tZ
α∂2yf2 − (1 + f4)Z

α∂3yu = Zα∂2y(f2∂xu)− u∂xZ
α∂2yf2 − v∂yZ

α∂2yf2 + Cα
7 , (4.26)

where

Cα
7 = [Zα∂2y , (1 + f4)]∂yu− [Zα∂2y , u∂x]f2 − [Zα∂2y , v∂y]f2. (4.27)

Multiplying (4.26) by 2µε(1 + ρ)Zα∂2yf2 and integrating the resulting equality over R2
+ give

µε
d

dt
‖
√
(1 + ρ)Zα∂2yf2‖2 − 2µε

∫
(1 + ρ)(1 + f4)Z

α∂2yf2Z
α∂3yudx (4.28)

=2µε

∫
(1 + ρ)Zα∂2yf2Z

α∂2y(f2∂xu)dx+ 2µε

∫
(1 + ρ)Zα∂2yf2Cα

7 dx.

Since

∂2y (f2∂xu) = ∂2yf2∂xu+ 2∂yf2∂x∂yu+ f2∂x∂
2
yu,

by the Cauchy-Schwarz inequality, we get∣∣∣∣2µε ∫ (1 + ρ)Zα∂2yf2Z
α∂2y (f2∂xu) dx+ 2µε

∫
(1 + ρ)Zα∂2yf2Cα

7 dx

∣∣∣∣
≤δ‖(1 + ρ)(1 + f4)Z

α∂2yf2‖2 + Cδε
2‖Cα

7 ‖2

+ Cδε
2
∥∥Zα

(
∂2yf2∂xu+ 2∂yf2∂x∂yu+ f2∂x∂

2
yu
)∥∥2 .

Notice that ∥∥Zα
(
∂2yf2∂xu

)∥∥2 + ‖Zα (∂yf2∂x∂yu)‖2

=

∥∥∥∥Zα

(
∂xu

ϕ(y)
ϕ(y)∂y∂yf2

)∥∥∥∥2 + ‖Zα (∂yf2∂x∂yu)‖2

.‖∂yu‖21,∞ ‖∂yf2‖2m−1 + ‖∂yf2‖21,∞ ‖∂yu‖2m−1

.(1 + P (Q(t)))(‖∂yu‖2m−1 + ‖∂yf2‖2m−1),

and ∥∥Zα(f2∂x∂
2
yu)
∥∥2

.
∑

|β|≤|α|/2,β+κ=α

∥∥∥Zβf2Z
κ∂x∂

2
yu
∥∥∥2 + ∑

|β|>|α|/2,β+κ=α

∥∥∥Zβf2Z
κ∂x∂

2
yu
∥∥∥2

.
∑

|β|≤|α|/2,β+κ=α

∥∥∥Zβf2

∥∥∥2
L∞
x,y

∥∥Zκ∂x∂
2
yu
∥∥2
L2
x

+
∑

|β|>|α|/2,β+κ=α

∥∥∥Zβf2

∥∥∥2
L2
x(L

∞
y )

‖Zκ∂x∂
2
yu‖2L∞

x (L2
y)

.
∑

|β|≤|α|/2,β+κ=α

∥∥∥Zβf2

∥∥∥
L∞
x (L2

y)

∥∥∥∂yZβf2

∥∥∥
L∞
x (L2

y)

∥∥Zκ∂x∂
2
yu
∥∥2
L2
x

+
∑

|β|>|α|/2,β+κ=α

∥∥∥Zβf2

∥∥∥
L2
x

∥∥∥∂yZβf2

∥∥∥
L2
x

‖Zκ∂x∂
2
yu‖2L∞

x (L2
y)
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.(1 + P (Q(t)))(‖f2‖2m−2 + ‖∂yf2‖2m−2)‖∂2yu‖2m−1,

provided that m > 4.

Step 3. Next, we deal with the estimates for commutator of Cα
7 defined in (4.27). First,∥∥[Zα∂2y , (1 + f4)

]
∂yu
∥∥2

.
∥∥Zα

(
∂2y(1 + f4)∂yu

)∥∥2 + ‖Zα (∂y(1 + f4)∂y∂yu)‖2 +
∥∥[Zα, (1 + f4)] ∂

2
y∂yu

∥∥2 .
Since

∂yf4 =
1

1 + ρ
{−∂x((1 + ρ)f2)− (1 + f4)∂yρ}

due to ∂x((1 + ρ)f2) + ∂y((1 + ρ)(1 + f4)) = 0, then∥∥Zα
(
∂2y(1 + f4)∂yu

)∥∥2
=

∥∥∥∥Zα

(
∂y

(
1

1 + ρ
{−∂x((1 + ρ)f2)− (1 + f4)∂yρ}

)
∂yu

)∥∥∥∥2
.

∥∥∥∥Zα

(
∂y

(
∂x((1 + ρ)f2)

1 + ρ

)
∂yu

)∥∥∥∥2 + ∥∥∥∥Zα

(
∂y

(
(1 + f4)∂yρ

1 + ρ

)
∂yu

)∥∥∥∥2
.

∥∥∥∥Zα

(
∂y

(
∂x((1 + ρ)f2)

1 + ρ

)
∂yu

)∥∥∥∥2 + ∥∥∥∥Zα

(
∂y

(
1 + f4
1 + ρ

)
∂yρ∂yu

)∥∥∥∥2
+

∥∥∥∥Zα

(
(1 + f4)∂yu

1 + ρ
∂2yρ

)∥∥∥∥2
.(1 + P (Q(t)))

(
‖ρ‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yu‖2m−2 + ‖∂2yu‖2m−2

+ ‖f4‖2m−2 + ‖∂yf4‖2m−2

)
‖∂2yρ‖2m−2

+ (1 + P (Q(t)))
(
‖∂y(ρ, f2)‖2m−1 + ‖(ρ, f2)‖2m−1 + ‖f4‖2m−2 + ‖∂y(u, f4)‖2m−2

)
,

where the following estimates are used in the last inequality:∥∥∥∥Zα

(
∂y

(
∂x((1 + ρ)f2)

1 + ρ

)
∂yu

)∥∥∥∥2 + ∥∥∥∥Zα

(
∂y

(
1 + f4
1 + ρ

)
∂yρ∂yu

)∥∥∥∥2
.(1 + P (Q(t)))

(
‖∂y(ρ, f2)‖2m−1 + ‖(ρ, f2)‖2m−1 + ‖f4‖2m−2 + ‖∂y(u, f4)‖2m−2

)
,

and ∥∥∥∥Zα

(
(1 + f4)∂yu

1 + ρ
∂2yρ

)∥∥∥∥2
.

∑
|β|≤|α|/2,β+κ=α

∥∥∥∥Zβ

(
(1 + f4)∂yu

1 + ρ

)
Zκ∂2yρ

∥∥∥∥2

+
∑

|β|>|α|/2,β+κ=α

∥∥∥∥Zβ

(
(1 + f4)∂yu

1 + ρ

)
Zκ∂2yρ

∥∥∥∥2
.

∑
|β|≤|α|/2,β+κ=α

∥∥∥∥Zβ

(
(1 + f4)∂yu

1 + ρ

)∥∥∥∥
L∞
x,y

∥∥Zκ∂2yρ
∥∥2
L2
x
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+
∑

|β|>|α|/2,β+κ=α

∥∥∥∥Zβ

(
(1 + f4)∂yu

1 + ρ

)∥∥∥∥
L2
x(L

∞
y )

‖Zκ∂2yρ‖2L∞
x (L2

y)

.
∑

|β|≤|α|/2,β+κ=α

∥∥∥∥Zβ

(
(1 + f4)∂yu

1 + ρ

)∥∥∥∥
L∞
x (L2

y)

∥∥∥∥∂yZβ

(
(1 + f4)∂yu

1 + ρ

)∥∥∥∥
L∞
x (L2

y)

∥∥Zκ∂2yρ
∥∥2
L2
x

+
∑

|β|>|α|/2,β+κ=α

∥∥∥∥Zβ

(
(1 + f4)∂yu

1 + ρ

)∥∥∥∥
L2
x

∥∥∥∥∂yZβ

(
(1 + f4)∂yu

1 + ρ

)∥∥∥∥
L2
x

‖Zκ∂2yρ‖2L∞
x (L2

y)

.(1 + P (Q(t)))
(
‖ρ‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yu‖2m−2 + ‖∂2yu‖2m−2

+ ‖f4‖2m−2 + ‖∂yf4‖2m−2

)
‖∂2yρ‖2m−2,

provided that m > 6.
Moreover,

‖Zα (∂y(1 + f4)∂y∂yu)‖2

.(1 + P (Q(t)))‖∂yf4‖2m−2(‖∂2yu‖2m−2 + ‖∂3yu‖2m−2),

and ∥∥[Zα, (1 + f4)] ∂
2
y∂yu

∥∥2
.

∑
1≤|β|≤|α|/2,β+κ=α

∥∥∥Zβ (1 + f4)Z
κ∂3yu

∥∥∥2 + ∑
|β|>|α|/2,β+κ=α

∥∥∥Zβ (1 + f4)Z
κ∂3yu

∥∥∥2
.

∑
1≤|β|≤|α|/2,β+κ=α

∥∥∥Zβ (1 + f4)
∥∥∥
L∞
x (L2

y)

∥∥∥∂yZβ (1 + f4)
∥∥∥
L∞
x (L2

y)

∥∥Zκ∂3yu
∥∥2
L2
x

+
∑

|β|>|α|/2,β+κ=α

∥∥∥Zβ (1 + f4)
∥∥∥
L2
x

∥∥∥∂yZβ (1 + f4)
∥∥∥
L2
x

‖Zκ∂3yu‖2L∞
x (L2

y)

.(1 + P (Q(t)))(‖f4‖2m−2 + ‖∂yf4‖2m−2)‖∂3yu‖2m−3, (4.29)

provided that m > 6.
Similarly,∥∥[Zα∂2y , u∂x

]
f2
∥∥2

.
∥∥Zα(∂2yu∂xf2)

∥∥2 + ‖Zα(∂yu∂x∂yf2)‖2 +
∥∥[Zα, u/ϕ(y)]∂xϕ(y)∂

2
yf2)

∥∥2
.(‖∂2yu‖2m−2 + ‖∂3yu‖2m−2)‖f2‖2m−1 + (‖∂yu‖2m−2 + ‖∂2yu‖2m−2)‖∂yf2‖2m−1 (4.30)

and ∥∥[Zα∂2y , v∂y
]
f2
∥∥2

.
∥∥Zα(∂2yv∂yf2)

∥∥2 + ‖Zα(∂yv∂y∂yf2)‖2 +
∥∥[Zα, v/ϕ(y)]ϕ(y)∂y∂

2
yf2)

∥∥2
.(‖∂2yv‖2m−2 + ‖∂3yv‖2m−2)‖∂yf2‖2m−2 + (‖∂yv‖2m−2 + ‖∂2yv‖2m−2)‖∂2yf2‖2m−2. (4.31)

Step 4. Consequently, from (4.28) we have

µε
d

dt
‖
√

(1 + ρ)Zα∂2yf2‖2 − 2µε

∫
(1 + ρ)(1 + f4)Z

α∂2yf2Z
α∂3yudx

.δ‖(1 + ρ)(1 + f4)Z
α∂2yf2‖2 + ε2(‖∂yu‖2m−2 + ‖∂2yu‖2m−2)‖∂yf2‖2m−1
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+ ε2{(‖∂2yv‖2m−2 + ‖∂3yv‖2m−2)‖∂yf2‖2m−2 + (‖∂yv‖2m−2 + ‖∂2yv‖2m−2)‖∂2yf2‖2m−2}
+ ε2(1 + P (Q(t)))(‖∂y(ρ, u, f2))‖2m−1 + ‖(ρ, f2)‖2m−1 + ‖f4‖2m−2 + ‖∂yf4‖2m−2)

+ ε2(1 + P (Q(t)))(‖f2‖2m−2 + ‖∂yf2‖2m−2)‖∂2yu‖2m−1 (4.32)

+ ε2(1 + P (Q(t)))(‖ρ‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yu‖2m−2 + ‖∂2yu‖2m−2

+ ‖f4‖2m−2 + ‖∂yf4‖2m−2)× ‖∂2yρ‖2m−2

+ ε2(‖f4‖2m−2 + ‖f2‖2m−1 + ‖∂yf4‖2m−2)(‖∂2yu‖2m−2 + ‖∂3yu‖2m−2).

Combining (4.25) and (4.32) and choosing δ suitably small, we have

µε
d

dt
‖
√

(1 + ρ)Zα∂2yf2‖2 + ‖(1 + ρ)(1 + f4)Z
α∂2yf2‖2 + µ2ε2‖Zα∂3yu‖2

.(1 + P (Q(t)))(‖(u, v, f2)‖2m + ‖f1‖2m−1 + P (‖f4‖m) + ‖(ρ, f3)‖2m−2)

+ (1 + P (Q(t)))(‖∂y(f1, f2)‖2m−1 + ‖∂y(ρ, f3, f4)‖2m−2)

+ ‖∂yp‖2m−1 + ε2‖∂yu‖2m + ε2‖∂2yv‖2m−1 + ε2(‖∂yu‖2m−2 + ‖∂2yu‖2m−2)‖∂yf2‖2m−1

+(1 + P (Q(t)))(‖ρ‖2m−2 + ‖f3‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yf3‖2m−2)‖∂2yf1‖2m−3

+ (1 + P (Q(t)))(‖ρ‖2m−2 + ‖f4‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yf4‖2m−2)‖∂2yf2‖2m−3.

+ ε2{(‖∂2yv‖2m−2 + ‖∂3yv‖2m−2)‖∂yf2‖2m−2 + (‖∂yv‖2m−2 + ‖∂2yv‖2m−2)‖∂2yf2‖2m−2}
+ ε2(1 + P (Q(t)))(‖∂y(ρ, u, f2))‖2m−1 + ‖(ρ, f2)‖2m−1 + ‖f4‖2m−2 + ‖∂yf4‖2m−2)

+ ε2(1 + P (Q(t)))(‖f2‖2m−2 + ‖∂yf2‖2m−2)‖∂2yu‖2m−1 (4.33)

+ ε2(1 + P (Q(t)))(‖ρ‖2m−2 + ‖∂yρ‖2m−2 + ‖∂yu‖2m−2 + ‖∂2yu‖2m−2

+ ‖f4‖2m−2 + ‖∂yf4‖2m−2)× ‖∂2yρ‖2m−2

+ ε2(‖f4‖2m−2 + ‖f2‖2m−1 + ‖∂yf4‖2m−2)(‖∂2yu‖2m−2 + ‖∂3yu‖2m−2).

4.5. Estimate of ∂yp. From the second equation in (4.11), we have

∂yp− (2µ+ λ)ε∂2yv = −(1 + ρ)∂tv − (1 + ρ)u∂xv − (1 + ρ)v∂yv + (1 + ρ)(1 + f1)∂xf3

+(1 + ρ)f3∂yf3 + (1 + ρ)f2∂xf4 + (1 + ρ)(1 + f4)∂yf4 + µε∂2xv + (µ+ λ)ε∂yux.

Since ∂x((1 + ρ)f2) + ∂y((1 + ρ)(1 + f4)) = 0, then

(1 + ρ)(1 + f4)∂yf4 =(1 + f4){−∂x((1 + ρ)f2)− (1 + f4)∂yρ}
=− (1 + f4)∂x((1 + ρ)f2)− (1 + f4)

2∂yρ

=− (1 + f4)∂x((1 + ρ)f2)−
(1 + f4)

2

γ(1 + ρ)γ−1
∂yp,

similarly,

(1 + ρ)f3∂yf3 = −f3∂x((1 + ρ)(1 + f1))−
f23

γ(1 + ρ)γ−1
∂yp,

due to ∂x((1 + ρ)(1 + f1)) + ∂y((1 + ρ)f3) = 0. Consequently,(
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
∂yp− (2µ+ λ)ε∂2yv

=− (1 + ρ)∂tv − (1 + ρ)u∂xv − (1 + ρ)v∂yv (4.34)



28 D. WANG AND F. XIE

+ (1 + ρ)(1 + f1)∂xf3−f3∂x((1 + ρ)(1 + f1))

+ (1 + ρ)f2∂xf4 − (1 + f4)∂x((1 + ρ)f2) + µε∂2xv + (µ+ λ)ε∂yux.

Step 1. Applying the operator Zα (|α| ≤ m− 1) on (4.34) leads to(
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂yp− (2µ+ λ)εZα∂2yv

=Zα
{
− (1 + ρ)∂tv − (1 + ρ)u∂xv − (1 + ρ)v∂yv

+ (1 + ρ)(1 + f1)∂xf3 − f3∂x((1 + ρ)(1 + f1))
}

+ Zα
{
(1 + ρ)f2∂xf4 − (1 + f4)∂x((1 + ρ)f2) + µε∂2xv + (µ+ λ)ε∂yux

}
+ Cα

8 , (4.35)

where

Cα
8 =

[
Zα,

(
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)]
∂yp.

Taking L2 inner product on the both sides of (4.35) over R2
+ gives∥∥∥∥(1 + f23 + (1 + f4)

2

γ(1 + ρ)γ−1

)
Zα∂yp

∥∥∥∥2 + (2µ+ λ)2ε2‖Zα∂2yv‖2

− 2(2µ+ λ)ε

∫ (
1 +

(1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂ypZ

α∂2yvdx

≤‖Zα
{
− (1 + ρ)∂tv − (1 + ρ)u∂xv − (1 + ρ)v∂yv

+ (1 + ρ)(1 + f1)∂xf3 − f3∂x((1 + ρ)(1 + f1))
}
‖2

+ ‖Zα{(1 + ρ)f2∂xf4 − (1 + f4)∂x((1 + ρ)f2) + µε∂2xv + (µ+ λ)ε∂yux}‖2 + ‖Cα
8 ‖2

≤
∥∥∥∥Zα

{
−(1 + ρ)∂tv − (1 + ρ)u∂xv − (1 + ρ)

v

ϕ(y)
ϕ(y)∂yv + (1 + ρ)(1 + f1)∂xf3

}∥∥∥∥2
+ ‖Zα {−f3∂x((1 + ρ)(1 + f1))}‖2 (4.36)

+ ‖Zα{(1 + ρ)f2∂xf4 − (1 + f4)∂x((1 + ρ)f2) + µε∂2xv + (µ+ λ)ε∂yux}‖2 + ‖Cα
8 ‖2

.(1 + P (Q(t)))(‖(ρ, v, f1, f2, f3, f4)‖2m + ‖u‖2m−1 + ‖∂yv‖2m−1)

+ ε2‖(∂xv, ∂yu)‖2m + ‖Cα
8 ‖2

.(1 + P (Q(t)))(‖(ρ, v, f1, f2, f3, f4)‖2m + ‖f1‖2m−1)

+ (1 + P (Q(t)))‖∂yp‖2m−2 + ε2‖(∂xv, ∂yu)‖2m,

where we have used (4.5) and the following estimates in the last inequality:

‖Cα
8 ‖2 =

∥∥∥∥[Zα,

(
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)]
∂yp

∥∥∥∥2
.

∥∥∥∥Z (1 + f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)∥∥∥∥2
L∞

‖∂yp‖2m−2 + ‖∂yp‖2L∞

∥∥∥∥Z (1 + f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)∥∥∥∥2
m−2

.(1 + P (Q(t)))(‖∂yp‖2m−2 + P (‖ρ‖m−1) + ‖(f3, f4)‖2m−1).
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Step 2. From the equation of conservation of mass, we have

1

γp
∂tp+ ∂yv = − 1

γp
(u∂xp+ v∂yp)− ∂xu. (4.37)

Applying the operator Zα∂y (|α| ≤ m− 1) on (4.37) yields

1

γp
∂tZ

α∂yp+ Zα∂2yv = − 1

γp
(u∂xZ

α∂yp+ v∂yZ
α∂yp)− Zα∂y∂xu+ Cα

9 , (4.38)

with

Cα
9 = −

[
Zα∂y,

1

γp
∂t

]
p−

[
Zα∂y,

u

γp
∂x

]
p−

[
Zα∂y,

v

γp
∂y

]
p.

Multiplying (4.38) by

2(2µ+ λ)ε

(
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂yp , 2a(ρ, f3, f4)εZ

α∂yp

and integrating the resulting equality over R2
+, we obtain

d

dt
ε

∥∥∥∥∥
√
a(ρ, f3, f4)

γp
Zα∂yp

∥∥∥∥∥
2

+ 2(2µ+ λ)ε

∫ (
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂ypZ

α∂2yvdx

=ε

∫ ((
a(ρ, f3, f4)

γp

)
t

+

(
ua(ρ, f3, f4)

γp

)
x

+

(
va(ρ, f3, f4)

γp

)
y

)
(Zα∂yp)

2dx

− ε

∫
2a(ρ, f3, f4)Z

α∂ypZ
α∂y∂xudx+ ε

∫
2a(ρ, f3, f4)Z

α∂ypCα
9 dx. (4.39)

First,

ε

∣∣∣∣∣
∫ ((

a(ρ, f3f4)

γp

)
t

+

(
ua(ρ, f3, f4)

γp

)
x

+

(
va(ρ, f3, f4)

γp

)
y

)
(Zα∂yp)

2dx

∣∣∣∣∣
.ε(1 + P (Q(t)))‖Zα∂yp‖2,

and ∣∣∣∣ε ∫ a(ρ, f3, f4)Z
α∂ypZ

α∂y∂xudx

∣∣∣∣
.ε(1 + P (Q(t)))‖Zα∂yp‖‖Zα∂y∂xu‖
.δ‖Zα∂yp‖2 + Cδε

2(1 + P (Q(t)))‖Zα∂y∂xu‖2.

Step 3. The commutator Cα
9 is estimated as follows. We note that

ε

∣∣∣∣∫ a(ρ, f3, f4)Z
α∂ypCα

9 dx

∣∣∣∣ ≤ δ‖Zα∂yp‖2 + Cδε
2‖a(ρ, f3, f4)‖2L∞‖Cα

9 ‖2.

For the first term in Cα
9 , one has∥∥∥∥[Zα∂y,
1

γp
∂t

]
p

∥∥∥∥ ≤
∥∥∥∥Zα

(
∂y

(
1

γp

)
∂tp

)∥∥∥∥+ ∥∥∥∥[Zα,
1

γp

]
∂t∂yp

∥∥∥∥ ,
where ∥∥∥∥Zα

(
∂y

(
1

γp

)
∂tp

)∥∥∥∥ =

∥∥∥∥Zα

((
∂yp

γp2

)
∂tp

)∥∥∥∥
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.‖∂yp‖L∞‖pt‖m−1 + ‖pt‖L∞(1 + P (Q(t)))(‖∂yp‖m−1 + P (‖p− 1‖m−1))

.(1 + P (Q(t)))(‖∂yp‖m−1 + P (‖p− 1‖m)),

and ∥∥∥∥[Zα,
1

γp

]
∂t∂yp

∥∥∥∥
.

∑
|β|≥1,β+κ=α

∥∥∥∥Zβ

(
1

γp

)
Zκ∂t∂yp

∥∥∥∥
.

∥∥∥∥Z ( 1

γp

)∥∥∥∥
L∞

‖∂yp‖m−1 + ‖∂yp‖1,∞P (‖p− 1‖m−1)

.(1 + P (Q(t)))(P (‖p− 1‖m−1) + ‖∂yp‖m−1).

Similarly, we have∥∥∥∥[Zα∂y,
u

γp
∂x

]
p

∥∥∥∥ =

∥∥∥∥Zα

(
∂y

(
u

γp

)
∂xp

)
+

[
Zα,

u

γp

]
∂x∂yp

∥∥∥∥
.

∥∥∥∥∂y ( u

γp

)∥∥∥∥
L∞

‖∂xp‖m−1 +

∥∥∥∥∂y ( u

γp

)∥∥∥∥
m−1

‖∂xp‖L∞ +
∑

|β|≥1,β+κ=α

∥∥∥∥Zβ

(
u

γp

)
Zκ∂x∂yp

∥∥∥∥
.

∥∥∥∥∂y ( u

γp

)∥∥∥∥
L∞

‖∂xp‖m−1 +

∥∥∥∥∂y ( u

γp

)∥∥∥∥
m−1

‖∂xp‖L∞

+
∑

|β|≥1,β+κ=α

∥∥∥∥Z ( u

γp

)∥∥∥∥
L∞

‖∂yp‖m−1 + ‖∂yp‖1,∞
∥∥∥∥ uγp

∥∥∥∥
m−1

.(1 + P (Q(t)))(P (‖p− 1‖m) + ‖u‖m−1 + ‖∂yp‖m−1 + ‖∂yu‖m−1),

and ∥∥∥∥[Zα∂y,
v

γp

]
∂yp

∥∥∥∥
=

∥∥∥∥Zα

(
∂y

(
v

γp

)
∂yp

)
+

[
Zα,

v

γp

]
∂y∂yp

∥∥∥∥
=

∥∥∥∥Zα

(
∂y

(
v

γp

)
∂yp

)
+

[
Zα,

1

γp

v

ϕ(y)

]
ϕ(y)∂y∂yp

∥∥∥∥
.

∥∥∥∥Zα

(
∂y

(
v

γp

)
∂yp

)∥∥∥∥+ ∑
|β|≥1,β+κ=α

∥∥∥∥Zβ

(
1

γp

v

ϕ(y)

)
Zκ (ϕ(y)∂y∂yp)

∥∥∥∥
.(1 + P (Q(t)))(‖∂yp‖m−1 + ‖∂yv‖m−1 + P (‖p− 1‖m−1) + ‖v‖m−1).

Substituting all of the above inequalities into (4.39) gives

d

dt
ε

∥∥∥∥∥
√
a(ρ, f3, f4)

γp
Zα∂yp

∥∥∥∥∥
2

+ 2(2µ+ λ)ε

∫ (
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂ypZ

α∂2yvdx

. ε2(1 + P (Q(t)))
(
‖∂yp‖2m−1 + ‖∂yu‖2m−1 + ‖∂yv‖2m−1 + ‖u‖2m−1 + ‖v‖m−1 + P (‖p− 1‖m)

)
+ δ‖Zα∂yp‖2 + ε(1 + P (Q(t)))‖Zα∂yp‖2 + ε2(1 + P (Q(t)))‖∂yu‖2m. (4.40)
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Combining (4.36) and (4.40) and choosing δ and ε suitably small, we have

d

dt
ε

∥∥∥∥∥
√
a(ρ, f3, f4)

γp
Zα∂yp

∥∥∥∥∥
2

+

∥∥∥∥(1 + f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂yp

∥∥∥∥2 + (2µ+ λ)2ε2‖Zα∂2yv‖2

.(1 + P (Q(t)))(‖(v, f1, f2, f3, f4)‖2m + ‖u‖2m−1 + P (‖p− 1‖m) + ‖∂yp‖2m−2) (4.41)

+ ε2(1 + P (Q(t)))‖(∂xv, ∂yu)‖2m + ε2(1 + P (Q(t)))(‖∂yp‖2m−1 + ‖∂yu‖2m−1 + ‖∂yv‖2m−1).

We remark that in order to derive (4.41) we have used the equivalence between ‖ρ‖m and ‖p−
1‖m, and the a priori assumption that ‖ρ‖L∞ ≤ 1/2, ‖f4‖L∞ ≤ 1/2 and Q(t) ≤ C; moreover,
the smallness of ε is required, which is used to absorb the term of ε(1 + P (Q(t)))‖Zα∂yp‖ on
the right hand side of (4.40).

Summing (4.41) over |α| ≤ m − 1, choosing ε suitably small and using the mathematical
induction argument yield that

d

dt
ε

∥∥∥∥∥
√
a(ρ, f3, f4)

γp
∂yp

∥∥∥∥∥
2

m−1

+

∥∥∥∥(1 + f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
∂yp

∥∥∥∥2
m−1

+ (2µ+ λ)2ε2‖∂2yv‖2m−1

.(1 + P (Q(t)))(‖(u, v, f1, f2, f3, f4)‖2m + P (‖p− 1‖m)) + ε2(1 + P (Q(t)))‖(∂xv, ∂yu)‖2m.
(4.42)

where (4.5) and (4.8) are used.

4.6. Estimate of ∂2yp. We now derive the estimates on ∂2yp.

Step 1. Applying the operator Zα∂y (|α| ≤ m− 2) on (4.34) leads to(
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂2yp− (2µ+ λ)εZα∂3yv

=Zα∂y
{
− (1 + ρ)∂tv − (1 + ρ)u∂xv − (1 + ρ)v∂yv

+ (1 + ρ)(1 + f1)∂xf3 − f3∂x((1 + ρ)(1 + f1))
}

+ Zα∂y{(1 + ρ)f2∂xf4 − (1 + f4)∂x((1 + ρ)f2) + µε∂2xv + (µ+ λ)ε∂yux}+ Cα
10 (4.43)

with

Cα
10 =

[
Zα∂y, 1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

]
∂yp.

Taking L2 inner product on both sides of (4.43) over R2
+, we arrive at∥∥∥∥(1 + f23 + (1 + f4)

2

γ(1 + ρ)γ−1

)
Zα∂2yp

∥∥∥∥2 + (2µ+ λ)2ε2‖Zα∂3yv‖2

− 2(2µ+ λ)ε

∫ (
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂2ypZ

α∂3yvdx

≤‖Zα∂y{−(1 + ρ)∂tv − (1 + ρ)u∂xv − (1 + ρ)v∂yv

+ (1 + ρ)(1 + f1)∂xf3 − f3∂x((1 + ρ)(1 + f1))}‖2

+ ‖Zα∂y{(1 + ρ)f2∂xf4 − (1 + f4)∂x((1 + ρ)f2) + µε∂2xv + (µ+ λ)ε∂yux}‖2 + ‖Cα
10‖2

.(1 + P (Q(t)))(‖(ρ, v, f1, f2, f3, f4)‖2m−1 + ‖u‖2m−2)
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+ (1 + P (Q(t)))(‖∂y(ρ, v, f2, f4)‖2m−1 + ‖∂y(u, f1)‖2m−2) + ε2‖∂yv‖2m (4.44)

+ ε2‖∂2yu‖2m−1 + ‖Cα
10‖2

.(1 + P (Q(t)))(‖(ρ, f1, f2, f3)‖2m−1 + ‖u‖2m−2 + P (‖f4‖m) + ‖v‖2m)

+ (1 + P (Q(t)))(‖∂y(ρ, f2, f4)‖2m−1 + ‖∂yf1‖2m−2) + ε2‖∂yv‖2m + ε2‖∂2yu‖2m−1 + ‖Cα
10‖2,

where (4.5) and (4.8) are used. in the last inequality. It remains to estimate the term of
commutator Cα

10. First we note that

‖Cα
10‖2 =

∥∥∥∥[Zα∂y,

(
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)]
∂yp

∥∥∥∥2
=

∥∥∥∥Zα

(
∂y

(
f23 + (1 + f4)

2

γ(1 + ρ)γ−1

)
∂yp

)∥∥∥∥2 + ∥∥∥∥[Zα,

(
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)]
∂2yp

∥∥∥∥2
.(1 + P (Q(t)))(P (‖f4‖m−2) + P (‖ρ‖m−2) + ‖∂y(ρ, f4)‖2m−2)

+
∑

|β|≥1,β+κ=α

∥∥∥∥Zβ

(
f23 + (1 + f4)

2

γ(1 + ρ)γ−1

)
Zκ∂2yp

∥∥∥∥2 .
By the similar arguments to (4.29), we have∑

|β|≥1,β+κ=α

∥∥∥∥Zβ

(
f23 + (1 + f4)

2

γ(1 + ρ)γ−1

)
Zκ∂2yp

∥∥∥∥2

.
∑

1≤|β|≤|α|/2,β+κ=α

‖Zκ∂2yp‖2L2
x

∥∥∥∥Zβ

(
f23 + (1 + f4)

2

γ(1 + ρ)γ−1

)∥∥∥∥2
L∞
x

+
∑

|β|>|α|/2,β+κ=α

‖Zκ∂2yp‖2L∞
x (L2

y)

∥∥∥∥Zβ

(
f23 + (1 + f4)

2

γ(1 + ρ)γ−1

)∥∥∥∥2
L2
x(L

∞
y )

.
∑

1≤|β|≤|α|/2,β+κ=α

‖Zκ∂2yp‖2L2
x

∥∥∥∥Zβ

(
f23 + (1 + f4)

2

γ(1 + ρ)γ−1

)∥∥∥∥
L∞
x (L2

y)

∥∥∥∥∂yZβ

(
f23 + (1 + f4)

2

γ(1 + ρ)γ−1

)∥∥∥∥
L∞
x (L2

y)

+
∑

|β|>|α|/2,β+κ=α

‖Zκ∂2yp‖2L∞
x (L2

y)

∥∥∥∥Zβ

(
f23 + (1 + f4)

2

γ(1 + ρ)γ−1

)∥∥∥∥
L2
x

∥∥∥∥∂yZβ

(
f23 + (1 + f4)

2

γ(1 + ρ)γ−1

)∥∥∥∥
L2
x

.(1 + P (Q(t)))(P (‖f3‖m−2) + P (‖f4‖m−2) + P (‖ρ‖m−2) + ‖∂yf4‖2m−2 + ‖∂yρ‖2m−2)‖∂2yp‖2m−3,

provided that m > 8. Consequently,

‖Cα
10‖2 .(1 + P (Q(t)))

(
P (‖f3‖m−2) + P (‖f4‖m−2) + P (‖ρ‖m−2)

+ ‖∂yf4‖2m−2 + ‖∂yρ‖2m−2

)
‖∂2yp‖2m−3

+ (1 + P (Q(t)))(P (‖f4‖m−2) + P (‖ρ‖m−2) + ‖∂y(ρ, f4)‖2m−2).

Then, we have from (4.44),∥∥∥∥(1 + f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂2yp

∥∥∥∥2 + (2µ+ λ)2ε2‖Zα∂3yv‖2

− 2(2µ+ λ)ε

∫ (
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂2ypZ

α∂3yvdx
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.(1 + P (Q(t)))(‖(ρ, f2, f3)‖2m−1 + ‖(u, f1)‖2m−2 + P (‖f4‖m) + ‖v‖2m) (4.45)

+ (1 + P (Q(t)))(‖∂y(ρ, f2, f3, f4)‖2m−1 + ‖∂yf1‖2m−2) + ε2‖∂yv‖2m + ε2‖∂2yu‖2m−1

+ (1 + P (Q(t)))
(
P (‖f3‖m−2) + P (‖f4‖m−2) + P (‖ρ‖m−2)

+ ‖∂yf4‖2m−2 + ‖∂yρ‖2m−2

)
‖∂2yp‖2m−3.

Step 2. Again, from the equation of conservation of mass, we have

∂tp+ γp∂yv = −(u∂xp+ v∂yp)− γp∂xu. (4.46)

Applying the operator Zα∂2y (|α| ≤ m− 2) on (4.46) yields

∂tZ
α∂2yp+ γpZα∂3yv = −u∂xZα∂2yp− v∂yZ

α∂2yp− Zα∂2y(γp∂xu) + Cα
11, (4.47)

with

Cα
11 = −

[
Zα∂2y , γp

]
∂yv −

[
Zα∂2y , u∂x

]
p−

[
Zα∂2y , v∂y

]
p.

Multiplying (4.47) by

2(2µ+ λ)ε
1

γp

(
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂2yp , 2

a(ρ, f3, f4)

γp
εZα∂2yp

and integrating the resulting equality over R2
+, we get

d

dt
ε

∥∥∥∥∥
√
a(ρ, f3, f4)

γp
Zα∂2yp

∥∥∥∥∥
2

+ 2(2µ+ λ)ε

∫ (
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂2ypZ

α∂3yvdx

=ε

∫ ((
a(ρ, f3, f4)

γp

)
t

+

(
ua(ρ, f3, f4)

γp

)
x

+

(
va(ρ, f3, f4)

γp

)
y

)
(Zα∂2yp)

2dx

− ε

∫
2
a(ρ, f3, f4)

γp
Zα∂2ypZ

α∂2y(γp∂xu)dx+

∫
2
a(ρ, f3, f4)

γp
εZα∂2ypCα

11dx. (4.48)

First,

ε

∣∣∣∣∣
∫ ((

a(ρ, f3, f4)

γp

)
t

+

(
ua(ρ, f3, f4)

γp

)
x

+

(
va(ρ, f3, f4)

γp

)
y

)
(Zα∂2yp)

2dx

∣∣∣∣∣
.ε(1 + P (Q(t)))‖Zα∂2yp‖2,

and

|ε
∫
a(ρ, f3, f4)

γp
Zα∂2ypZ

α∂2y(γp∂xu)dx|

.δ‖Zα∂2yp‖2 + Cδε
2(1 + P (Q(t)))‖Zα∂2y(γp∂xu)‖2

.δ‖Zα∂2yp‖2 + Cδε
2(1 + P (Q(t)))(‖Zα(∂2yp∂xu)‖2 + ‖Zα(∂yp∂x∂yu)‖2 + ‖Zα(p∂x∂

2
yu)‖2).

Note that ∥∥Zα
(
∂2yp∂xu

)∥∥2 + ‖Zα (∂yp∂x∂yu)‖2

=

∥∥∥∥Zα

(
∂xu

ϕ(y)
ϕ(y)∂y∂yp

)∥∥∥∥2 + ‖Zα (∂yp∂x∂yu)‖2
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.‖∂yu‖21,∞ ‖∂yp‖2m−1 + ‖∂yp‖21,∞ ‖∂yu‖2m−1

.(1 + P (Q(t)))(‖∂yu‖2m−1 + ‖∂yp‖2m−1),

and ∥∥Zα(p∂x∂
2
yu)
∥∥2

.
∑

|β|≤|α|/2,β+κ=α

∥∥∥ZβpZκ∂x∂
2
yu
∥∥∥2 + ∑

|β|>|α|/2,β+κ=α

∥∥∥ZβpZκ∂x∂
2
yu
∥∥∥2

.
∑

|β|≤|α|/2,β+κ=α

∥∥∥Zβp
∥∥∥2
L∞
x,y

∥∥Zκ∂x∂
2
yu
∥∥2
L2
x

+
∑

|β|>|α|/2,β+κ=α

∥∥∥Zβp
∥∥∥2
L2
x(L

∞
y )

‖Zκ∂x∂
2
yu‖2L∞

x (L2
y)

.
∑

|β|≤|α|/2,β+κ=α

∥∥∥Zβp
∥∥∥
L∞
x (L2

y)

∥∥∥∂yZβp
∥∥∥
L∞
x (L2

y)

∥∥Zκ∂x∂
2
yu
∥∥2
L2
x

+
∑

|β|>|α|/2,β+κ=α

∥∥∥Zβp
∥∥∥
L2
x

∥∥∥∂yZβp
∥∥∥
L2
x

‖Zκ∂x∂
2
yu‖2L∞

x (L2
y)

.(1 + P (Q(t)))(1 + ‖p− 1‖2m−2 + ‖∂yp‖2m−2)‖∂2yu‖2m−1,

provided that m > 4.
The commutator of Cα

11 is estimated as follows. For the first term in Cα
11, it is noted that∥∥[Zα∂2y , γp

]
∂yv
∥∥ ≤

∥∥γZα
(
∂2yp∂yv

)∥∥+ ∥∥2γZα
(
∂yp∂

2
yv
)∥∥+ ∥∥[Zα, γp]∂3yv

∥∥ .
For the above three terms on the right hand side, we have the following estimates:∥∥Zα

(
∂2yp∂yv

)∥∥2
=

∫  ∑
|β|≤|α|/2,β+κ=α

Zβ(∂2yp)Z
κ∂yv +

∑
|β|>|α|/2,β+κ=α

Zβ(∂2yp)Z
κ∂yv

2

dx

.
∫  ∑

|β|≤|α|/2,β+κ=α

Zβ
(
∂2yp
)
Zκ∂yv

2

dx

+

∫  ∑
|β|>|α|/2,β+κ=α

Zβ
(
∂2yp
)
Zκ∂yv

2

dx

.
∑

|β|≤|α|/2,β+κ=α

‖Zκ∂yv‖2L2
x(L

∞
y )

∥∥∥Zβ∂2yp
∥∥∥2
L∞
x (L2

y)

+
∑

|β|>|α|/2,β+κ=α

‖Zκ∂yv‖2L∞
x (L∞

y )

∥∥∥Zβ∂2yp
∥∥∥2
L2
x(L

2
y)

.
∑

|β|≤|α|/2,β+κ=α

‖Zκ∂yv‖L2
x(L

2
y)
‖∂yZκ∂yv‖L2

x(L
2
y)

∥∥∥Zβ∂2yp
∥∥∥
L2
x(L

2
y)

∥∥∥Zβ+1∂2yp
∥∥∥
L∞
x (L2

y)
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+
∑

|β|>|α|/2,β+κ=α

‖Zκ∂yv‖1/2L2
x(L

2
y)
‖∂yZκ∂yv‖1/2L2

x(L
2
y)
‖Zκ+1∂yv‖1/2L2

x(L
2
y)

× ‖∂yZκ+1∂yv‖1/2L2
x(L

2
y)

∥∥∥Zβ∂2yp
∥∥∥2
L2
x(L

2
y)

.(1 + P (Q(t)))(‖∂yv‖2m−2 + ‖∂2yv‖2m−2)‖∂2yp‖2m−2,

and similarly,∥∥[Zα, γp] ∂y∂
2
yv
∥∥2 . (1 + P (Q(t)))(‖p− 1‖2m−2 + ‖∂yp‖2m−2)‖∂3yv‖2m−3,

as well as

‖2Zα (∂y(γp)∂y∂yv)‖2 . (1 + P (Q(t)))‖∂yp‖2m−2(‖∂2yv‖2m−2 + ‖∂3yv‖2m−2).

Consequently, for the first term in Cα
11, one has∥∥[Zα∂2y , γp

]
∂yv
∥∥

.(1 + P (Q(t)))
{
‖∂yv‖2m−2 + ‖∂2yv‖2m−2)‖∂2yp‖2m−2

}
(4.49)

+ (1 + P (Q(t)))
{
(‖p− 1‖2m−2 + ‖∂yp‖2m−2)‖∂3yv‖2m−3 + ‖∂yp‖2m−2(‖∂2yv‖2m−2 + ‖∂3yv‖2m−2)

}
.

The second term in Cα
11 can be dealt with similarly as the following:

‖
[
Zα∂2y , u∂x

]
p‖2

.(1 + P (Q(t)))
{
‖∂yu‖2m−2 + ‖∂yp‖2m−1

}
(4.50)

+ (1 + P (Q(t)))
{
(‖p− 1‖2m−1 + ‖∂yp‖2m−1)‖∂2yu‖2m−2 + ‖∂2yp‖2m−2(‖u‖2m−2 + ‖∂yu‖2m−2)

}
.

For the third term in Cα
11, we notice that[

Zα∂2y , v∂y
]
p =Zα

(
∂2yv∂yp

)
+ Zα

(
2∂yv∂

2
yp
)
+ [Zα, v] ∂3yp

=Zα
(
∂2yv∂yp

)
+ 2Zα(∂yv∂

2
yp) +

[
Zα,

v

ϕ(y)

]
ϕ(y)∂y∂

2
yp,

which can also be handled similarly as the following:∥∥[Zα∂2y , v∂y
]
p
∥∥

.(1 + P (Q(t)))
{
‖∂yp‖2m−2(‖∂2yv‖2m−2 + ‖∂3yv‖2m−2) + ‖∂2yp‖2m−2(‖∂yv‖2m−2 + ‖∂2yv‖2m−2)

}
.

(4.51)

Consequently, we have from (4.48)-(4.51),

d

dt
ε

∥∥∥∥∥
√
a(ρ, f3, f4)

γp
Zα∂2yp

∥∥∥∥∥
2

+ 2(2µ+ λ)ε

∫ (
1 +

f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂2ypZ

α∂3yvdx

. (δ + (1 + P (Q(t)))ε)‖Zα∂2yp‖2 + ε2(1 + P (Q(t)))(‖∂yu‖2m−1 + ‖∂yp‖2m−1)

+ ε2(1 + P (Q(t)))(1 + ‖p− 1‖2m−2 + ‖∂yp‖2m−2)‖∂2yu‖2m−1 (4.52)

+ ε2(1 + P (Q(t)))
{
(‖∂yv‖2m−2 + ‖∂2yv‖2m−2)‖∂2yp‖2m−2

}
+ ε2(1 + P (Q(t)))

{
(‖p− 1‖2m−2 + ‖∂yp‖2m−2)‖∂3yv‖2m−3 + ‖∂yp‖2m−2(‖∂2yv‖2m−2 + ‖∂3yv‖2m−2)

}
+ ε2(1 + P (Q(t)))

{
(‖p− 1‖2m−1 + ‖∂yp‖2m−1)‖∂2yu‖2m−2 + ‖∂2yp‖2m−2(‖u‖2m−2 + ‖∂yu‖2m−2)

}
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Step 3. Combining (4.45) and (4.52) together and choosing δ and ε suitably small lead to

d

dt
ε

∥∥∥∥∥
√
a(ρ, f3, f4)

γp
Zα∂2yp

∥∥∥∥∥
2

+

∥∥∥∥(1 + f23 + (1 + f4)
2

γ(1 + ρ)γ−1

)
Zα∂2yp

∥∥∥∥2 + (2µ+ λ)2ε2‖Zα∂3yv‖2

. (1 + P (Q(t)))(‖(ρ, f2, f3)‖2m−1 + ‖(u, f1)‖2m−2 + P (‖f4‖m) + ‖v‖2m)

+ (1 + P (Q(t)))(‖∂y(ρ, f2, f3, f4)‖2m−1 + ‖∂yf1‖2m−2) + ε2‖∂yv‖2m + ε2‖∂2yu‖2m−1

+ (1 + P (Q(t)))
(
P (‖f3‖m−2) + P (‖f4‖m−2) + P (‖ρ‖m−2)

+ ‖∂yf4‖2m−2 + ‖∂yρ‖2m−2

)
‖∂2yp‖2m−3

+ ε2(1 + P (Q(t)))(‖∂yu‖2m−1 + ‖∂yp‖2m−1)

+ ε2(1 + P (Q(t)))(1 + ‖p− 1‖2m−2 + ‖∂yp‖2m−2)‖∂2yu‖2m−1 (4.53)

+ ε2(1 + P (Q(t)))
{
(‖∂yv‖2m−2 + ‖∂2yv‖2m−2)‖∂2yp‖2m−2

}
+ ε2(1 + P (Q(t)))

{
(‖p− 1‖2m−2 + ‖∂yp‖2m−2)‖∂3yv‖2m−3 + ‖∂yp‖2m−2(‖∂2yv‖2m−2 + ‖∂3yv‖2m−2)

}
+ ε2(1 + P (Q(t)))

{
(‖p− 1‖2m−1 + ‖∂yp‖2m−1)‖∂2yu‖2m−2 + ‖∂2yp‖2m−2(‖u‖2m−2 + ‖∂yu‖2m−2)

}
4.7. Estimates of ∂yf1 and ∂2yf1. As for the normal derivatives of f1, we use the following
formulation

(1 + f1)(1 + f4)− f2f3 =
1

1 + ρ

due to (1 + ρ)detF = 1. Then

∂yf1 =
1

(1 + f4)

{
∂y

(
1

1 + ρ

)
+ ∂y(f2f3)− (1 + f1)∂yf4

}
=

1

(1 + f4)

{
∂y

(
1

1 + ρ

)
+ f3∂yf2 −

f2
1 + ρ

(f3∂yρ+ ∂x((1 + ρ)(1 + f1)))

}
+

1

(1 + f4)

{
1 + f1
1 + ρ

((1 + f4)∂yρ+ ∂x((1 + ρ)f2))

}
.

due to

∂x((1 + ρ)(1 + f1)) + ∂y((1 + ρ)f3) = 0, ∂x((1 + ρ)f2) + ∂y((1 + ρ)(1 + f4)) = 0.

Then, the following two inequalities hold true:

‖∂yf1‖2m−1 .

∥∥∥∥ f3
1 + f4

∥∥∥∥2
L∞

‖∂yf2‖2m−1

+ (1 + P (Q(t)))(‖∂yρ‖2m−1 + ‖f3‖2m−1 + P (‖ρ‖m) + ‖f1, f2‖2m + P (‖f4‖m−1)) (4.54)

and

‖∂2yf1‖2m−2

.(1 + P (Q(t)))(‖f1, f2, f3‖2m + P (‖ρ‖m) + P (‖f4‖m−1))

+ (1 + P (Q(t)))
(
‖∂2yρ‖2m−2 + ‖∂yρ‖2m−1 + ‖∂2yf2‖2m−2

+ ‖∂yf1‖2m−1 + ‖∂yf3‖2m−2 + ‖∂yf4‖2m−2

)
, (4.55)

where (4.54) is used.
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4.8. Estimates of ∂iyf3 and ∂iyf4 (i = 1, 2). By the divergence free conditions, we have

∂yf3 =
1

1 + ρ
{−∂x((1 + ρ)(1 + f1))− f3∂yρ},

and

∂yf4 =
1

1 + ρ
{−∂x((1 + ρ)f2)− (1 + f4)∂yρ}.

Consequently,

‖∂yf3‖2m−1 . (1 + P (Q(t)))(‖ρ‖2m + ‖f1, f3‖2m) + ‖f3‖2L∞‖∂yρ‖2m−1, (4.56)

By similar arguments, it follows that

‖∂yf4‖2m−1 . (1 + P (Q(t)))(‖ρ‖2m + ‖f2‖2m + ‖∂yρ‖2m−1 + ‖f4‖2m−1); (4.57)

moreover,

‖∂2yf3‖2m−2

.(1 + P (Q(t)))(‖ρ‖2m−1 + ‖(f1, f3)‖2m−1 + ‖∂y(ρ, f1)‖2m−1 + ‖∂yf3‖2m−2) + ‖f3‖2L∞‖∂2yρ‖2m−2,
(4.58)

and

‖∂2yf4‖2m−2

.(1 + P (Q(t)))(‖(ρ, f2, f4)‖2m−1 + ‖∂y(ρ, f2)‖2m−1 + ‖∂yf4‖2m−2 + (1 + ‖f4‖2m)‖∂2yρ‖2m−2).
(4.59)

Finally, by combining the estimates (3.8), (4.5), (4.6), (4.8), (4.10), (4.22), (4.33), (4.42),
(4.53), (4.54)-(4.59), we shall be able to complete the proof of Proposition 4.1. We remark
that for this purpose we may apply the multiplications: (4.22) ×M0 and (4.42) ×M1 with
M0 and M1 being suitably large to cancel the terms ε2‖∂2yv‖2m−1 in (4.33) and ε2‖∂2yu‖2m−1

in (4.53), moreover, it can also cancel ‖∂yρ‖2m−1 in the right hand sides of (4.54) and (4.57)
due to a priori assumption Q(t) ≤ C, and δ in (3.8) is chosen to be suitably small. And the
a priori assumption of ‖f3‖L∞ ≤ C0σ0 is also used. To derive the L2

t,x-norms of second order
normal derivatives, we also need the following facts:

sup
0≤s≤t

‖∂y(p, f2, f4)(s)‖2m−2 . ‖∂y(p, f2, f4)(0)‖2m−2 +

∫ t

0
‖∂y(p, f2, f4)(s)‖2m−1ds ≤ C0σ0,

and

sup
0≤s≤t

ε2‖∂iy(u, v)(s)‖2m−2 . ε2‖∂iy(u, v)(0)‖2m−2 +

∫ t

0
ε2‖∂iy(u, v)(s)‖2m−1ds ≤ C0σ0, (i = 1, 2),

due to the condition (1.8) and the a priori assumptions:∫ t

0
‖∂y(p, f2, f4)(s)‖2m−1ds ≤ (C0 − 1)σ0,

∫ t

0
ε2‖∂iy(u, v)(s)‖2m−1ds ≤ (C0 − 1)σ0, (i = 1, 2),

where the constant C0 is suitably large and σ0 is sufficiently small in Theorem 1.1. Then, the
L2
t,x-norms of the second order normal derivatives appearing on the right hand sides of (4.33)

and (4.53) can be absorbed by related terms on the left hand sides due to the smallness of σ0
and ε.
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5. Proof of Theorem 1.1

We are ready to prove the estimate (1.10) in Theorem 1.1. Using the estimates in Propo-
sitions 4.1, we have

‖(p− 1,u,G1,G2)(t)‖2m + ε‖∂yf2(t)‖2m−1 + ε ‖∂yp‖2m−1 + ε‖∂2yf2(t)‖2m−2 + ε
∥∥∂2yp∥∥2m−2

+

∫ t

0
(ε‖∇u(τ)‖2m + ε2(‖∂2yu‖2m−1 + ‖∂3yu‖2m−2) + ε2(‖∂2yv‖2m−1 + ‖∂3yv‖2m−2))dτ

+

∫ t

0
(‖∂y(u,G1,G2)(τ)‖2m−1 + ‖∂2y(u,G1,G2)(τ)‖2m−2)dτ

+

∫ t

0

(
‖∂yp‖2m−1 +

∥∥∂2yp∥∥2m−2

)
dτ

.‖(p− 1,u,G1,G2)(0)‖2m + ε‖∂yf2(0)‖2m−1 + ε ‖∂yp(0)‖2m−1 + ε‖∂2yf2(0)‖2m−2

+ ε
∥∥∂2yp(0)∥∥2m−2

+ (1 + P (Q(t)))

∫ t

0
‖(ρ,u,G1,G2)(τ)‖2mdτ. (5.1)

Set

W (t) =‖(p− 1,u,G1,G2)(t)‖2m + ε‖∂yf2(t)‖2m−1 + ε ‖∂yp‖2m−1 + ε‖∂2yf2(t)‖2m−2 + ε
∥∥∂2yp∥∥2m−2

+

∫ t

0
(ε‖∇u(τ)‖2m + ε2(‖∂2yu‖2m−1 + ‖∂3yu‖2m−2) + ε2(‖∂2yv‖2m−1 + ‖∂3yv‖2m−2))dτ

+

∫ t

0
(‖∂y(u,G1,G2)(τ)‖2m−1 + ‖∂2y(u,G1,G2)(τ)‖2m−2)dτ

+

∫ t

0

(
‖∂yp‖2m−1 +

∥∥∂2yp∥∥2m−2

)
dτ.

By Lemma 2.2, we have

‖(p− 1,u,G1,G2)(t)‖21,∞
.‖(p− 1,u,G1,G2)(0)‖23 + ‖∂y(p,u,G1,G2)(0)‖23

+

∫ t

0
(‖(p− 1,u,G1,G2)(τ)‖24 + ‖∂y(p,u,G1,G2)(τ)‖23)dτ .W (t)(1 + t) + σ0,

and

‖(∇p,∇u,∇G1,∇G2)(t)‖1,∞
.‖(∇p,∇u,∇G1,∇G2)(0)‖23 + ‖∂y(∇p,∇u,∇G1,∇G2)(0)‖23

+

∫ t

0
(‖(∇p,∇u,∇G1,∇G2)(τ)‖24 + ‖∂y(∇p,∇u,∇G1,∇G2)(τ)‖23)dτ

.W (t)(1 + t) + σ0,

provided that m > 5. Then one has

W (t) .‖(p− 1,u,G1,G2)(0)‖2m + ε‖∂yf2(0)‖2m−1 + ε ‖∂yp(0)‖2m−1

+ ε‖∂2yf2(0)‖2m−2 + ε
∥∥∂2yp(0)∥∥2m−2

+ (1 + P (W (t)(1 + t) + σ0))W (t)t. (5.2)
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Let the time t and σ0 be suitably small, it follows that

W (t) =‖(p− 1,u,G1,G2)(t)‖2m + ε‖∂yf2(t)‖2m−1 + ε ‖∂yp‖2m−1 + ε‖∂2yf2(t)‖2m−2 + ε
∥∥∂2yp∥∥2m−2

+

∫ t

0
(ε‖∇u(τ)‖2m + ε2(‖∂2yu‖2m−1 + ‖∂3yu‖2m−2) + ε2(‖∂2yv‖2m−1 + ‖∂3yv‖2m−2))dτ

+

∫ t

0
(‖∂y(u,G1,G2)(τ)‖2m−1 + ‖∂2y(u,G1,G2)(τ)‖2m−2)dτ

+

∫ t

0

(
‖∂yp‖2m−1 +

∥∥∂2yp∥∥2m−2

)
dτ

.‖(p− 1,u,G1,G2)(0)‖2m + ε‖∂yf2(0)‖2m−1 + ε ‖∂yp(0)‖2m−1

+ ε‖∂2yf2(0)‖2m−2 + ε
∥∥∂2yp(0)∥∥2m−2

, (5.3)

and

‖(p− 1,u,G1,G2)(t)‖21,∞ + ‖(∇p,∇u,∇G1,∇G2)(t)‖1,∞
.‖(p− 1,u,G1,G2)(0)‖2m + ε‖∂yf2(0)‖2m−1 + ε ‖∂yp(0)‖2m−1

+ ε‖∂2yf2(0)‖2m−2 + ε
∥∥∂2yp(0)∥∥2m−2

+ ‖∂y(p,u,G1,G2)(0)‖23
+ ‖∂y(∇p,∇u,∇G1,∇G2)(0)‖23. (5.4)

Consequently, the following a priori assumptions hold true:

‖ρ‖L∞ < 1/2, ‖f4‖L∞ < 1/2

by letting σ0 in Theorem 1.1 be suitably small. In fact, the following estimates hold true:

‖f3‖L∞ ≤ C0

2
σ0, ‖ρ‖1,∞ ≤ C0

2
σ0, ‖f4‖1,∞ ≤ C0

2
σ0,

and ∫ t

0
‖∂y(p, f2, f4)(s)‖2m−1ds ≤

C0

2
σ0,

∫ t

0
ε2‖∂iy(u, v)(s)‖2m−1ds ≤

C0

2
σ0, (i = 1, 2),

where C0 is a suitably large constant. Based on the uniform a priori estimates established
above, we can achieve the estimate (1.10) and further verify the inviscid limit in Theorem 1.1
by the similar arguments to those in [31]. We omit the details here. The proof of Theorem
1.1 is completed.

Acknowledgement

The research of D. Wang was partially supported by the National Science Foundation under
grants DMS-1907519 and DMS-2219384. F. Xie’s research was supported by National Natural
Science Foundation of China No.11831003 and Shanghai Science and Technology Innovation
Action Plan No. 20JC1413000.



40 D. WANG AND F. XIE

References

[1]H. Abidi, R. Danchin, Optimal bounds for the inviscid limit of Navier-Stokes equations. Asymptot. Anal.
38(1) (2004), 35-46.

[2]H. Beir˜ao Da Veiga, Vorticity and regularity for flows under the Navier boundary condition. Commun.
Pure Appl. Anal. 5(4) (2006), 907-918.

[3]Y. Cai, Z. Lei, F.-H. Lin, N. Masmoudi, Vanishing viscosity limit for incompressible viscoelasticity in two
dimensions, Comm. Pure Appl. Math. 72(10) (2019), 2063-2120.

[4]G.-Q. Chen, S. Li, Z. Qian, The inviscid limit of the Navier-Stokes equations with kinematic and Navier
boundary conditions. arXiv:1812.06565 [math.AP], 2018.

[5]G.-Q. Chen, M. Perepelitsa, Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations
for compressible fluid flow. Comm. Pure Appl. Math. 63 (2010), 1469-1504.

[6]P. Constantin, J. Wu, Inviscid limit for vortex patches, Nonlinearity 8 (1995), 735-742.
[7]C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Fourth edition. Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325. Springer-Verlag,
Berlin, 2016.
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