INVISCID LIMIT OF COMPRESSIBLE VISCOELASTIC EQUATIONS
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ABSTRACT. The inviscid limit for the two-dimensional compressible viscoelastic equations in
the half plane is considered under the no-slip boundary condition. When the initial deforma-
tion tensor is a perturbation of the identity matrix and the initial density is near a positive
constant, we establish the uniform estimates of solutions to the compressible viscoelastic
flows in the conormal Sobolev spaces. It is well-known that for the corresponding inviscid
limit of the compressible Navier-Stokes equations with the no-slip boundary condition, one
does not expect the uniform energy estimates of solutions due to the appearance of strong
boundary layers. However, when the deformation tensor effect is taken into account, our
results show that the deformation tensor plays an important role in the vanishing viscosity
process and can surprisingly prevent the formation of strong boundary layers. As a result
we are able to justify the inviscid limit of solutions for the compressible viscous flows under
the no-slip boundary condition governed by the viscoelastic equations, based on the uniform
conormal regularity estimates achieved in this paper.

1. INTRODUCTION

In this paper we consider the inviscid limit for the two-dimensional compressible viscoelastic
equations in the half plane:

dp® + V- (p7uf) =0,
PEOuE + pPut - VUt — epAu® — e(p + \)Vdiva® + Vp(pf) = div(pfFEFeT), (1.1)
OF +u* - VF*=Vu®-F°, t>0, x=(z,y) € RL =R xRy,
where p° denotes the density, u® = (u®,v®) the velocity, and F¢ = (F§, F5) T the deformation
tensor matrix with Ff = (1 + ff, f5), F5 = (f5,1+ fi); the viscosity coefficients pe and e

satisfy > 0 and (u + A) > 0 with € € (0,1) being a small parameter, and the pressure p(p)
is a function of the density p that is given by the following formula in the isentropic case:

pp)=p", y=1, (1.2)

where 7 is the adiabatic constant. We refer the readers to [7,19,34] for the discussions on the
physical background of viscoelasticity. The initial data of (1.1) is given by

ps(oaxay) :pU(xay)7 u6(03$ay) :uo(az,y), Fe(O,x,y) :Fo(;v,y), (13)
and the no-slip boundary condition is imposed on the velocity,
u®(t,z,0) = 0. (1.4)
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Since the equations of deformation tensor F¢ are a hyperbolic system, one does not need to
impose any boundary condition for F¢ due to (1.4), and the value of F¢ on the boundary is
determined by its initial value. In this paper, we consider the case that

F()(.’B,O) :]IQXQ, (15)

where [ox9 is a 2 x 2 identity matrix. Formally, when ¢ = 0, the equations in (1.1) are reduced
to the following ideal compressible elastodynamic equations:

A’ + V- (p°u’) =0,
P20’ + pPul - Vu® + Vp(p°) = div(p"FOFOT), (1.6)
OF’+u’ - VF'=vu’-F° ¢t>0, x=(z,y) €R%.

The aim of this paper is to justify the vanishing viscosity limit from the viscoelastic equations
(1.1) to the inviscid elastodynamic equations (1.6) as ¢ — 0 under the no-slip boundary
condition (1.4) in the half plane.

There have been extensive studies on the existence of solutions to both the incompressible
and compressible viscoelastic equations; see [13,15,16,22-24, 28], the survey paper [14] and
the references therein. The inviscid limit of solutions for the Cauchy problem was studied in
many papers such as [1,6,20,30,38] for the incompressible Navier-Stokes equations and in [3]
for the incompressible viscoelastic equations; see also [5,8,12,17,21] and their references for
other related vanishing viscosity limits of the Cauchy problem for the compressible Navier-
Stokes equations. When the inviscid limit problem is considered in a domain with a physical
boundary, the vanishing viscosity limit problem is usually more challenging due to the possible
presence of boundary layers [10,32,37,39,41]. In particular, if a strong boundary layer appears,
the inviscid limit usually becomes extremely difficult because of the uncontrollability of the
vorticity of boundary layer corrector. If the no-slip boundary condition (1.4) is replaced by
the so-called Navier-slip boundary conditions, the strong boundary layer will disappear, and
the inviscid limit has been established in [40,42] for the compressible Navier-Stokes equations.
For the corresponding inviscid limit of the incompressible Navier-Stokes equations with the
Navier-slip boundary conditions, we refer the readers to [2,4,18,31,43] and the references
therein.

When the no-slip boundary condition is imposed, the inviscid limit problem in a domain
with a boundary is more complicated and less developed in analysis. To the best of our
knowledge, the inviscid limit of the unsteady incompressible Navier-Stokes equations with
the no-slip boundary condition was proved only in the analytic function framework or in the
Gevrey settings; see [9,29,35,36] and the references therein. For the incompressible magneto-
hydrodynamic (MHD) equations with the no-slip boundary condition, the well-posedness of
solutions to the MHD boundary layer equations and the validity of Prandtl boundary layer
expansion in the Sobolev spaces were obtained in [25,26] provided that the tangential com-
ponent of magnetic field does not degenerate near the physical boundary initially; and it was
proved in [27] that there are no strong boundary layers in the inviscid limit for the incom-
pressible non-resistive MHD system when the normal component of magnetic field does not
degenerate near the physical boundary initially. However, the inviscid limit of the compress-
ible Navier-Stokes equations with the no-slip boundary condition in the half plane is still open,
except for the linearized Navier-Stokes equations [44], even in the analytic function spaces or
in the Gevrey class owing to the appearance of strong boundary layers [10,41]. In this paper,
we consider the inviscid limit for the compressible viscoelastic equations in the half plane
with the no-slip boundary condition. We find that the deformation tensor in viscoelasticity
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has a significant effect on the vanishing viscosity process and can prevent the formation of
strong boundary layers. For this reason we are able to justify the inviscid limit of solutions for
the compressible viscous flows governed by the viscoelastic equations (1.1) under the no-slip
boundary condition.

To formulate our main results, let us define the conormal Sobolev spaces that will be used
in this paper. Set the conormal derivative operators as the following:

Zo=0,  Z1=0., Zo=9W)dy,  Z°=ZZ{"Z",

with o = (ao,a1,02) and |a] = ag + a1 + az. Here the weight function ¢(y) satisfies
©(0) =0, ¢'(0) >0, [|0ll L < C (i = 0,...,m for some integer m > 0), and ¢ (y) has uniform
lower and upper positive bounds away from the physical boundary, that is C~! < p(y) < C
for some C' > 1 when y > § > 0 with some constant § > 0. For example, p(y) = y/(1 + y)
may be used as a weight function. Define the following two conormal Sobolev spaces:

Hy([0,4] x RY) = {f : Z2°f € L*([0,#] x R), |a] < m},
and
H([0,8] x RY) = {f : 2% € L>([0,t], L*(R})), |a| < m}.
For a given t > 0,

P2 = 3 1277

laj<m

then
t
1f 1 m = / 1£(5)[I2,ds, £ 13m = sup [[£(s)]l2-
0 0<s<t
As usual we use the notation:
W ((0,¢) x RE) = {f : Z°f € L=([0,t] x RY), |a| < m},

and

1 Ollmoe = 3 1251, |

laf<m

Denote the energy by
Non(t) =11 (0" = 1,0, F° = Too) Iy + = (105 (0%, £5) 121 + 1026°, 51122

1060, T2+ 9206, 0, F) 2+ [V
2 2 2 3 2
te <Hay“6”Hg’;fl n HayufHHg,;,Q) , (1.7)

We always take 0 < e < 1 and define
A" () ={(p—1,u,F —laxa) € H, Oy(p,u,F) € H L ag(p, u, F) € Hg;_z )
Now we state our main theorem as follows.
Theorem 1.1. Let m > 8 be an integer. Suppose that the initial data (po,uo,Fo) satisfies
1(po — 1,10, Fo — Tax2) |17, + 18y (p0, w0, Fo)ll—1 + 18, (V o, Vo, VFo)|[2, 5 < 00, (1.8)
for some sufficiently small positive constant og, and
podet(Fo) =1,  div(pFg) = 0. (1.9)
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Then, there exist a time T' > 0 that is independent of € and a unique solution U = (p®,u®, F¢)
€ A"™(T)) to (1.1)-(1.4), such that
(1) the following estimate holds for t € [0,T],

Nin(t) +[1(p° = 1,0, F* — Do) (t)[[1,00 + [V (07, 0%, F) (#)]]1,00 < Co, (1.10)
where C' > 0 is some constant independent of €;
(2) there exists a function U° = (p°,u®, FO) € A™(T) satisfying the following limit:

: e __ 7170 e _ 170\\/. —
i%teS’fé%]H(U 0%, 0y(UF = U")) (s D)[| poo 2y = 0, (1.11)

and U° = (p°, u®, FO) is a unique solution to the ideal compressible elastodynamic equations
(1.6) with the same initial data (po,ue,Fo) and the no-slip boundary condition.

Remark 1.1. Since we are considering the solutions to the compressible flows of viscoelasticity
in the conormal Sobolev spaces, we need to avoid the appearance of vacuum and degeneracy
of deformation tensor matrix, which is guaranteed by the smallness condition (1.8).

Remark 1.2. The time regularity requirements on the initial data can be changed to the spatial
regularity requirements through the equations. We believe that the regularity requirements
in Theorem 1.1 are not optimal.

Remark 1.3. It is noted that the identity matrix Io«o is not essential in the analysis. In fact,
we only need to assume that the component 1+ f7 is not zero initially. We choose the initial
data of the deformation tensor as a small perturbation of the identity matrix solely for the
sake of simplicity of presentation. Moreover, the form of pressure is also not essential, and our
results can be extended to more general forms of pressure without causing more difficulties.

Remark 1.4. Based on the uniform conormal energy estimates (1.10) achieved in the first part
of Theorem 1.1, the inviscid limit in the second part of Theorem 1.1 can be regarded as a
direct consequence of the first part by using some compactness arguments as in [31].

Next we shall explain the main difficulties and the strategy to prove the main theorem.
It is well known that when the inviscid limit is considered in a domain with a physical
boundary, the uniform estimates of normal derivatives for solutions with respect to the small
viscosity parameter are very difficult to obtain. Usually, it is impossible to achieve these
uniform estimates due to the presence of strong boundary layers for the solutions to both the
incompressible and compressible Navier-Stokes equations with the no-slip boundary condition.
Surprisingly, if the deformation tensor in viscoelasticity is taken into account, even though
the no-slip boundary condition is imposed on the velocity, the uniform estimates of normal
derivatives for solutions to the compressible viscoelastic fluid equations can be achieved, which
is the main finding of this paper. In other words, our results in Theorem 1.1 show that the
deformation tensor can prevent the strong boundary layers from occurring. These observations
are obviously different from both the compressible and incompressible Navier-Stokes equations
with the no-slip boundary condition. The effect of the deformation tensor is essentially used
in deriving the conormal energy estimates.

We shall present below our strategy to establish the uniform estimates of normal derivatives
for all components of u®, F¢ and p® in four main steps.

Step I: Estimates of d,v° and dyu®. From the second and third equations in (4.2) on the
deformation tensor F¢, we can write the normal derivatives in terms of the components of F¢
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as the following:

1
OF = oz (DWF + D+ 0, f — [50,0°)

1+ [
and
1
Oyu’ = T (O f5 +u0, f5 +v°0y f5 — f30.u°).
4
Then, using the estimate
A oo |2 iz + [ 2]
-1 = || ~ 2 Lo
ylatm o) L Y @) ey o)l
/UE
S 103 s 12087+ || 187

we see that, at least for the case of suitably small || Zs f§ ||, we can control ||0yv°||,,—1 by the
quantity (1+ P(QE))||(us, v, 5, £)|lm, where Q(t) denotes the W™ *-norm of the solution
and its first-order derivatives, and P is a generic polynomial that will be frequently used
in the estimates of the paper. Using the similar arguments and the estimate of ||0yv®||pm—1,
one can derive the estimate of ||0yu®||;,—1. Here the a priori assumption that 1+ ff has a
positive lower bound is required, which is guaranteed by the requirement that the initial data
of the deformation tensor matrix is a small perturbation of the identity matrix. We remark
that the deformation tensor F¢ plays an essential role here. It is not clear how to obtain the
uniform conormal estimates of the normal derivatives for the tangential velocity u® without
the viscoelasticity effect under the no-slip boundary condition.

Step II: Estimates of 0,f5. As for the estimate of 0, f5, the equation of u* will be used.
However, notice that there is also a second-order normal derivative term of 5u8§u5 in the
equation of u®, as a consequence we need to estimate p°(1 + f§)0,f5 + eué)gus instead of
p (14 f§)0y, f5. Due to the conormal derivatives terms on the right hand side of the equation,
taking the L?-norm on both sides will produce a mixed term of 2uep®(1 + fj)ayffazua. To
handle the mixed term, we apply the operator J, on the equation of f5 and multiply this
equation by 2ued, f5, then we produce the same mixed term with the opposite sign. Adding
these two estimates together will cancel the mixed terms and achieve the L? estimates of
p*(1+ f5)0y f5 and suagug. Similarly, the H™~! norms also can be done. Here the a priori
assumption that 1+ f§ and p® have positive lower bounds is required, which is guaranteed by
the requirement that the initial data of the deformation tensor matrix is a small perturbation
of the identity matrix and the density is a small perturbation of the constant 1.

Step III: Estimates of 0,p°. By the similar arguments to those in Step II, we use the
equations of v* and p¢ in the following manner:

Oyp® — (2p + )\)685’05 =.., Op® +yp 0y v° = ...
Moreover, the following relationship will be essentially used:
ot 150,05 = —— I ey
Y(pe) !
and
(1+/f9)?

p (L+ [0y fi = *Waypg + .
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due to the equations 0, (p°(1+ f7)) + 9y(p°f5) = 0 and 0, (p°f5) + 0y (p°(1 + £5)) = 0, which
are guaranteed by imposing the same constraint on the initial data (see (1.9) and Proposition
2.1). This relationship is used to change the terms involving 0, f§ and 0, ff in the equation
of v* to the form of dyp®, then it can be merged into dyp° on the left hand side. In this way,

the L? estimates of (1 + %) Oyp® and (2 + )\)6(95115 are established. By the same

line, the H”~! norms will be obtained.

Step IV: Estimates of d,f5,0,f{ and 0, f{. In this paper, the initial data of Fo and pg
are required to satisfy the natural constraints (1.9), then the smooth solutions also satisfy the
same relationship (c.f. [15]). Consequently, it follows that

1 1
Oy fs = E (=0:(p"(L+ f1)) = f3040°),  Oyfi = * (=02(p"f3) — (L + f1)0yp) -

Thus, the estimates of 9, f5 and 0, f; can be derived. As for the estimate of 9, f7, it can be
directly deduced from the following equation:

1 1
Oy = {ay (p) FO,(F5fD) — (14 ff)ayfz}

T+
__ {a (1) T 10,55 — L (f50,07 + 0007 £5)) + L (50,07 + a:,;(psf;))} ,
L+ L7 \p R pe it

using the property: p®det(F¢) = 1.

With the above four steps we obtain the estimates of the first order normal derivatives.
Finally, to close the energy estimates, it suffices to control Q(¢) by the conormal energy
estimates. According to Lemma 2.2, in order to estimate Q(t), we still need to derive the
conormal estimates of the second order normal derivatives. We repeat the above four steps
for the second order normal derivatives to complete the energy estimate procedure, and then
justify the inviscid limit of (1.1) under the no-slip boundary condition.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries and
technical lemmas. Section 3 is devoted to deriving the uniform conormal energy estimates
of solutions to (1.1)-(1.4). In Section 4, we establish the conormal estimates for the normal
derivatives of solutions to (1.1)-(1.4). Based on the uniform estimates established in Sections
3 and 4, we prove the main Theorem 1.1 in Section 5.

2. PRELIMINARY

In this section, we shall present some technical lemmas that will be used frequently in the
analysis of the paper later.

We first recall the following generalized Sobolev-Gagliardo-Nirenberg-Moser inequality in
the conormal Sobolev spaces (see [11] and the proof):

Lemma 2.1. For the functions f,g € L>=([0,t] x R2) N HZ([0,t] x R?), it holds that

t t t
[ Wz @ Pas S 1z, [ lads+ ol [ 17G)Eds for lo]+ 18] < m

Here we note that the notation A < B means A < CB for some generic constant C' and
1A= 1 2 we)-

Then we recall the following anisotropic Sobolev embedding property in the conormal
Sobolev spaces (see [33] and the proof):
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Lemma 2.2. Let f(t,x) € H2 ([0,t] x R2) and 0, f(t,x) € H2([0,t] x R2), then

t
1£IEs, S ||f(0)||3+II%J”(O)IIer/0 (LF (3 + 19y £ ()13) ds

To handle the commutators, it is helpful to introduce the following formula (see [33] and
the proof):

Lemma 2.3. There exist two families of bounded smooth functions {¢km(y) to<k<m-1 and
{*™(y) Yo<k<m—1, such that

m—1 m—1
1257, 0y) = > Srm(y) 250, = Y "™ ()0, Z5.
k=0 k=0

Based on Lemma 2.3, the following lemma holds true.

Lemma 2.4. There exists a generic constant C' > 1, such that

CTY NVZRP < | Vull?, < O IV 2Rl
k=0 k=0

Proof. Denote k = (ko, k1, ko), then

m m m
D IVZRu| =) 125Vl + Y1125 21 10y, Z5%ull,

k=0 k=0 k=0
ko—1
<Vullm + Y 16k () 25° 21" Z30yu)| < C|[Vul|m,
7=0

where the commutator [0, Z¥] = 0 is used. And the other inequality can be proved similarly.
O

Lemma 2.5. There exist two families of bounded smooth functions {¢1 km(y), P2,k,m(Y) bo<k<m—1
and {¢"F"(y), $**™(y) Yo<k<m-—1, such that

,_.

m—1 m—

[Zg”,@;] = Z <¢1,k,m(y)Z§ay + G2,,m(Y) Z2 32) ( @M (y) Dy Z5 + ¢2’k’m(y>‘9§Z§> .
k=0 k=0

Lemma 2.6. There exists a family of bounded smooth functions {¢k m(y) }o<k<m—1, such that

1251/ ey f = Zwkm )Z5 (f/#);

and there exists a family of bounded smooth functions {/*™(y)}o<k<m_1, such that

m—1
125", o)) f = > VP () Z5((y) f)-
k=0

The above two Lemmas 2.5 and 2.6 and the proofs can also be found in [33].
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Proposition 2.1. Assume that (p°,u®,F¢) is a smooth solution to (1.1)-(1.4). Then, the
following identities

p°det(F°) =1, (2.1)
and
div(p°F<T) =0 (2.2)
hold for t € [0,T], provided that these constraints are satisfied initially.
The proof of Proposition 2.1 can be found in [15].

3. CONORMAL ENERGY ESTIMATES

In this section we shall derive the uniform conormal estimates of solutions to (1.1)-(1.4).
Firstly, we set
P =1+4+p".
For simplicity of presentation, we omit the symbols € and “~” in the following sections without
causing any confusion. It is convenient to rewrite system (1.1) as the following:

Ohp+ V- ((1+p)u) =0,
(14 p)ou+ (1+pu-Vu—(1+4p)(G1+e1) VGy
—(14p)(G2 +e2) VG2 + Vp = —euV x w+e(2p + \)Vdivu, (3.1)
0;G1+u-VGq = (Gl + e1) - Vu,
0;Ga +u-VGg = (Gz + ez) - Vu,

with
u= (U,'U), w = 8yu_8xv7 Gl = (f17f3)7 G2 = (f27f4)7 €1 = (170)7 €2 = (071)7
and Vx = (=0y, Op).

The no-slip boundary condition is imposed as the following:
u(t,z,0) = 0. (3.2)
We will establish the following uniform conormal energy estimates in this section.

Proposition 3.1. Under the assumptions in Theorem 1.1, there exists a sufficiently small
eo > 0, such that for any 0 < & < g, the smooth solutions (p,u, Gy, Gz) to (3.1)-(5.2) satisfy
the following a priori estimates:

I = 1,4, G, G) (|2 + ¢ /0 IVu(r)|2,dr
S~ 1. Gr GO +0 [ Vs, e +02 [ [T2u(r)|R, s
0 0
(14 PQ))) /0 (Va2 + VG ()31 + [VGa() 3 1) dr  (3.3)

t
+ 1+ P(Q(1))) /O (Ite = V(D)7 + (@), + G2 + 1G2(7)17)dr,
for some small § > 0 to be determined later, where

Qt) = Sup {IIp = Lu, G1, G2)(7)[l1,00 + [V, VI, VG1, VG2)(T)
<7<t

‘l,oo}v
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and P(-) is a polynomial.

Proof. Applying the conormal derivative operator Z® (|a| < m) to the system (3.1) yields the
following system:

WZ% + Z*V - (14 p)u) =0,
(14 p)0Z%+ 1+ p)u-VZ — (1+p)(G1+e1) - VZGy
—(14+p)(G2+e2) - VZGa+ Z*Vp

3
= —epZV x w+ (2 + N ZoVdiva + Y P,
=1
8tZaG1 +u- VZaGl = (Gl + e1) -VZ% + Cff,
0:Z%Gg +u-VZ%Gg = (Gz + 62) -VZ% + Cg,

with
Cr=—[2°0+plm=— > CopZlpZtu,
181>1,6-+r=a

Cy=-[Z2%(1+pu-Viu

=— ) CopZ’((1+p)u)Z"Vu— (1+p)u-[2* Vu,

[81>1,6+r=a

Cy =[Z2% (1+p)(G1+er) VIG1L+[Z% (14 p)(Gz + e2) - V]G2

= Y CapZ’(14p)(G1+€1))Z"VG1 + (1 + p)(G1 +e1) - [Z% V]Gy

18121,8+r=a

+ > CapZP((1+p)(Ga +€2))Z°VGa + (1 + p)(Ga + e2) - (27, V]Ga,
|81>1,8+r=a

and
CZ‘ = — [Za, u - V]Gl + [Za, (Gl + e1) . V]u
=— ) CupZ’uz"VGi—u-[Z*V|Gy
[B1>1,8+Kr=a
+ ) CapZ’(Gi+e1)Z°Vu—(Gy+er) [Z% V],
|B1>1,8+K=cx
Ce =—12%u-V|G2+ 2%, (G2 + e2) - V]u
=— Y CopZ’uZ"VGz—u-[Z* V|G
181>1,8+Kr=a
+ > CapZ’(Gz+e2)Z"Vu— (Gz+ez)- 2% Vu
1B|=1,+k=ar
Multiplying the second equation in (3.4) by Z%u, the third equation by (1 + p)Z*Gq, and

the fourth equation by (14 p)Z“G2, adding the resulting equations together, and integrating
them over Ri, we have

d [1
dt/2(1+p)(lzau|2+IZQG1\2+|Z“G2Z)dx+/Z"‘Vp~Z‘“udx
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=— ,us/Z"‘V X w- Z%dx + (2p + )\)E/Zanivu - Z%uadx (3.5)

+ /(Clo‘ +C5+CF) - Z%adx + /(1 +p)Cf - Z%Grdx + /(1 + p)CE - Z¥Gadx,
where the integration by parts, the boundary conditions (3.2) and the following facts are used:
Op+V-((1+pu)=0,  div((1+p)FT) =0,

due to the first equation in (3.1) and Proposition 2.1.
Notice that

—a/Zanw-Zaudx
=— E/V X Z% - Z%udx — s/[Zo‘,Vx]w - Z%dx
< - s/z%v x Z%dx + Ce||V2u|m—1|[al/m
=_ a/ZawZaV X udx — 5/Zaw[Zo‘, V xJudx + Ce||V2u|m—1][ufm

< / 1Z°0[2d% + Ce|[Vullm [Vttt + Cel| V2t [l

< —ellV x Z%ul® + 66| VPull}, + 0e || Vull7, + Cs(e| Vull7,y + [[ull7,),

for some small § > 0 to be determined later, where for the first and second inequalities
Lemmas 2.3 and 2.4 are used. Similarly, one has

E/Zanivu-Zaudx
= E/VZadivu : Zaudx+€/[Z“,V]divu - Z%udx

<-—¢ / Z%divu - divZ%udx + €|Vl m_1][ul/m
< —elldivZull* + 6| V?ulf7, -y + del|Vull7, + Cs(elVullz, _y + [[ull7,)-

Combining (3.5) and the following inequality
20|V Z%ul? S ¥ x Z%ul? + (24 + \)[divZeul?,

where ¢ is a generic constant, we obtain

1 t
[ 504 0Z0aP + (226 20 GaP)ax + ca= [ [V 27ulPar
0

t
+/ /ZO‘Vp-Zo‘udxdT
0
1

S / 51+ p0)(|Z2°u*(0) +|2°Ga[*(0) +]2°G2(0)[*)dx (3.6)

t t t
402 [ VP dr 4 b= [ IVadr + Coe [ [u(r)|, e
0 0 0
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! 2 ! 2 2 2 2 2
+06/0 ||11(T)|de+/O (CTll” + e (17 + lIes ™ 4+ ICEI° + IC5]17)dr
t
+ C/ (1Z°u))? + |2°Ga|* + | 2° G| *dr
0

where the a priori assumption of ||p||f~ < 1/2 is used.
Next, we handle the term involving the pressure. First,

/t/Zo‘Vp-Zo‘udxdT = /t/Zo‘V(p— 1) - Z%uadxdr

/ /VZO‘ —1) Zo‘udxd7'+/ /ZO‘ - Z%adxdr
> [ 200 1) anztudsar [l 9l

—/0 /Zo‘(p—l)~Z°‘divudxdT—(5/0 |Vpl|?,_ dr

t
er /0 (lp — 1I2, + (a2, + [Vul?,_)dr

Then, it follows from the first equation in (3.1) that

-1
d1vu_—ﬁ—£.vp:_u_i

-V(p—1).
PP P P

Applying the operator Z%(|a| < m) on the above equation gives

Z%(p —1
Zodivu = — 220 =D 0 pag,
P P
1

- Z CapZ” <) Z%(p—1)
|BI>1,8+r=a P

- Y CupZ® < ) Z"V(p—1).
|BI>1,8+r=a P

Now we deal with the above right hand side term by term as follows. For the first term, one

has,
[ [ 700 Z0 g,
//(’ZQ 271) Q)thdT_/ /'Za (p> dr

1Z%(p |Z%(p 0)|? b
/ 29p t) / 2p 0) dx_c‘ 2 Lw/ 1Z2%(p — 1)]*dr,
1Z2°(p = 1)(®)] 1Z2(p — 1)(0))]
—/mwd"/m@dx (1+P(@ /II —1)(7)||%,dr,
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where and hereafter we use the a priori assumption that ||p||ze < 1/2, which will be justified
later by choosing o in Theorem 1.1 suitably small; for the second term,

t
/ /za(p 1)L Z2oV(p — 1)dxdr
0 p

:/Ot/ZO‘(p— NVZ%p—1)- ;dxdT+At/Za(p— 1)%[v,z"‘](p— 1)dxdr

2 t
> / I — D)(r)|2dr
Lo JO

> 6/ IVpI2_ydr — Cs(1+ P(Q /H C 1)),

u
- / Ve o120 = 1)(0)dx = 8|Vl 1= Cy

for the third term, by direct calculations we have

Cag/ /ZO‘ —1Z5< >Z( 1),
|B|>1,B+n «

- Clell,oo/O 12 = D)) lm | 2% (p = 1)(7)ld7
-1+ P(Q(t)))/ (2 = D)) lm | 2% (p = 1)(7) |7
1+ P(Q / (p — 1) (7). dr,

where in the first inequality Lemma 2.1 is used; and similarly for the fourth term,

caﬁ/ /za ( p) Z5V(p—1)

/0 190 1122 (0 — 1)(7) 7

\5|>1 B+r=a

Ol /0 IOl 22 = D(lr
> / IVpIP, ydr — C5(1 + PQ(1))) / (@2, + [ - ()2 dr
0 0

Next, we estimate the terms involving C* (i = 1,...,5) in (3.6) as follows. First, we have the
following estimates,

t
/ lCsPdr < / 12° 025wy Pdr
0

|,3|>175+H a

t
<ol o /O g2 ydr + g3 /0 loll2.dr
t
<(1+ P(Q())) /0 Upll2, + [w)I2.)dr,
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and

/ legirar s S0 / 125((1 + p)w) 25V ul2dr + (1 + p)ul3 / IVul2,_dr

181>1,8+r=c

S+ P(Q(1))) /O (V)71 + ()7, + lla()7)dr

Similarly, one has,

/0 g 2dr <1+ PQ(1))) /0 (VG (M) [2,y + [IVGa(r) |2 )dr

+(1+ P(Q(1)) /0 (Uo7 + 1G5 + 1G2(7)[7,)dr

and

/0 (lIC3 12 + [1c2|?)dr
<1+ P@Q() /0 (V@21 + (VG ()2 y + [V Ga(r)|2 1 )dr

+(1+ P(QM))) /O (a7 + 1G5 + 1G2(7)7,)d7

Substituting all of the above estimates into (3.6), we obtain

1
/(1 + p)(yzauF + |ZaG1|2 + | Z°G2|?)dx

Za
/| dx+cls/ |V Z%|*dr
2719
S [ 0+ m1Z7aP0) + 120G (0) + 2°Ga(0 dx+/ M P ax
t
L / IVp(r) |2, ydr + Cs(1 / 1o - D(m)|2.dr (3.7)
0

T b2 /0 IV2u(r) [,y dr + be /0 IVu()|2.dr
(14 PQ) /0 (V)2 + (VG (M)20y + VG (r)|2ydr

t
+(1+ P(Q(1))) /0 ez + a5 + 1G5 + 1G2(7)7)dr

Summing (3.7) over |a| < m, choosing ¢ suitably small and using Lemma 2.4, we have

t
I(p - 1,0, G, G2) (DI + € /0 IVu(r)|2.dr
t t
<l(p— 1,u, Gy, G2) (0)]% + 6 /0 IVp(r) 2, ydr + 82 /0 IVu(n)|2,_ydr  (38)

+(1+ P(Q(t)))/0 (Va1 + IVGL(T) 71 + IV G2(7)I[7, - 1d7
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+ (1+ P(Q®))) /0 (It = D@7 + (), + 1G5, + (G2 (1)]7,)dr,

where the following fact of equivalence is used:

CHlpll < llp = 117 < Cllpllz, (3.

Nej
~—

holds for some generic constant C' > 1, due to (1.2) and the a priori assumption that ||p|| e <
1/2. Therefore, the proof of Proposition 3.1 is completed.

To close the energy estimates, it suffices to derive the estimates of Q(t), ||V (u, G1, G2)||m-1
and ||Vp||m—1, which is the main task in the next section.

4. ESTIMATES OF NORMAL DERIVATIVES

To estimate ||V (u, G1,Gz,p)|lm—1 on the right hand side of (3.8), it suffices to estimate
|0y(u, G1,G2,Dp)||m—1, since [|0z(u, G1,G2,p)|lm-1 < [[(0,G1,G2,p — 1)||m as 0, = Z;. In
this section, we focus on the estimates of the normal derivatives for (u, G1,Gz2) and p. We
will derive the conormal estimates for both the first and second order normal derivatives of
each component for (u, Gy, Gz2) and p in the subsequent subsections.

Proposition 4.1. Under the assumptions in Theorem 1.1, there exists a sufficiently small
g0 > 0, such that for any 0 < € < &g, the smooth solution (p,u, G1, G2) to (3.1)-(3.2) satisfies
the following a priori estimate:

1(p = 1,0, G1, G2) (D)5, + €10y L2 (B) 71 + 105 L1702 + 10,271 + 195p(8)7,-2)

t t
+ 6/0 IV u(7)|7,dr + /0 (0P ()71 + 1971 + 10y G1 (T 71 + 110, G2 () 17,1 )T
t
+ /0 05p(T) 17—z + 1050(T) 1702 + 105G (7) |72 + 105 G2(7) 17, —2)dT

+ 82/0 (105 u(r) 311 + 105u(T) [F0—a + 1050(T) 7,1 + [050()7—5)dT
Slip = 1,0, G1, G2)(0) 17, + 19y £2(0) 17,1 + 195 £20) 7,2 + 19,2 (0) 17,1 + 1952(0) 17,—2)
+ 1+ P(Q(1))) /0 (P llm) + a7 + PUIGL(D) Im) + P(1G2(7)lm))dr,  (4.1)

where

Q(t) = sup {[[(p —1,u,G1,G2)(7)
<7<t

1,00 + [(Vp,Vu,VG1,VG2)(7)|[1,00 }

and P(-) is a polynomial.

4.1. Estimates of J,v and 857). To estimate the normal derivatives of each component, it
is convenient to rewrite the equations of (G1, Gz) in (3.1) as

O f1 +u0, f1 + Uayfl = (1 + fl)ﬁxu + fgayu,
O fo + u0y fo +v0y fo = faOru+ (14 f4)0yu,
Oif3 +u0y f3 +v0y f3 = (1 + f1)0.v + f30yv,
O fa 4+ u0p fa + v0yfa = f20,v + (1 + f1)0yv.

(4.2)
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From the fourth equation in (4.2), we have

8yv = 1+1f4(8tf4 + w0y f1 + Uayf4 — fg(%v). (4.3)

Step 1. Applying the operator Z¢ (Ja| < m — 1) on (4.3), we get

1
Zaayv =zZ“ {(8tf4 + U0y fa + v0y fa — fgaxv)} .
L+ fa

I (o) | =7 (o)

5 v N
NHH | Wl et il 'H e

SNyl oo | Fallm + Nl fallveo (10yvllm—1 + [0y vl oo P(|l fallm—1))
SA+ PQO)) P fallm) + [ fall1.ol|Oyllm—1, (4.4)

o [ Ofs o of L2
g <1+f4>H+HZ ()| (o)

<\l 10 |2 ()| + | s | vt

1100 fall o || 2° (1+f4>' 0]l + (|00 Lo || 2 <1+f4>H

Notice that

and

H 1 + f4 [,°
SA 4+ PQW)) (P fallm) + [[0llm + I f2llm—1 + [[ellm—1),

where we used the a priori assumption of || f4]/z~ < 1/2. Summing all of above inequalities
over |a] < m — 1 and using the a priori assumption of || f4][1,00 < Coop with o being in
Theorem 1.1 and Cj being a suitably large constant independent of oy and ¢ to be determined
later, we obtain the following estimate by choosing o sufficiently small once Cj is fixed,

10yvllm—1 S (1 + PQEN) P fallm) + [0llm + [ f2llm—1 + lullm—1)- (4.5)

Step 2. To control ||Vull1,0 in Q(t), it is necessary to derive the conormal estimates of 851).
Applying the operator Z¢0, (Ja| < m — 2) on the equation (4.3) gives

1
1+ fa

0 Mt
Z%0, +||Z%0
Y (1 + fa I\1+ fa
ry| M Gyl |
Z%0y
' <1 + Ja > " ‘ 1+ fa
Now, we estimate each of the terms on the right hand side as follows. Firstly,

oo (25| = | () |+ [ (a0 (7))

SOy fall1,co ([ fallm—2) + 10y fallm—1

Z”‘@jv = Zaay { (O¢fa + w0y fa + v0y f4 — fgaxv)} .

Then

a 92
12262 s'
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+ 110c fall Lo 10y fallm—2 + 110y fal oo Pl fallm—2)) + |0y fall oo || fallm—1
SA+PQW) (P fallm—1) + 10y fallm—1),

where the a priori estimate of || fy||r < 1/2 is used again; secondly,

o w0y fa o Za U
|70, (325 <[# (00| + |2 (0 (55))]

1
S+ PRIy fall1,oo(ullm—2 + Pl fallm—2)) + [l o< |0y fallm—1
+ (L+ P(QW))NOz fall oo (10yullm—2 + 10y fallm—2) + 119y (w; fa)ll ool fallm—1
SA+ PRM))([ullm—2 + P fallm—1) + 18y fallm—1 + 18y ullm—2)-
|

Similarly,

7o)<l () | (00 (7))

S+ (P([fallm—2) + [l f2llm—2 + [vllm—1 + |0y fallm—2 + |0y fallm—2 + [[Oyv]lm—1)-

Moreover,
« Uaf4 a Za v
720, (725)) |7 (o) |7 (o0 (577,))]

o 1 v o v
:‘Z (( T ) o) ”ayayﬁ)‘* z <8yf4ay (w))H
<1+ PQEN18y0llmns + Pl fall2) + 1y Fallmr)

(1t PQUON 10,0z + |9y fillmez + [0z + P fallm—z))
<1+ QNP fallms) + [z + 1y Fillms + [8y0llm2).

Consequently, summing all of above inequalities over |a|] < m — 2 yields that
1050 ]lm—2 S+ PQO) (P fallm—1) + | follm—2 + l[ullm—2 + [[o]lm—-1)
+ (L + PQM))) Iy fallm—1 + 19y follm—2 + 10yvllm—1 + | Oyullm—2)
SA+PQM) (P fallm) + I fallm—1 + llullm-1 + [[v]lm)
+ (L+ PRIy fallm—1 + 19y follm—2 + 19y ullm—2), (4.6)

where (4.5) is used in the second inequality.

4.2. Estimates of d,u and Bgu. From the second equation in (4.2), we have

Gyu = (6tf2 + u0y f2 + 00 f2 — f28 u) (4.7)

1
1+ f
A similar argument to (4.5) yields that

10y ullm—1 S (T+ PQ)) (I (w, f2)llm + Pl fallm—1) + 10yv|lm—1)-

Then, by using (4.5), we have

10yullm—1 S (1 4+ PQE))(I(w, v, f2)llm + P fallm))- (4.8)
Applying the operator Z¢0, (Ja] < m —2) on (4.7) gives
Zocaiu = Zaay {1 —:f4 ((%fg + ’U,azfg + Uayfg — fg@wu)} . (49)
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Similar arguments to (4.6) give
185 ullm—2
S+ PQ®)) (1v]lm—2 + Pl fallm—2) + [[(u; f2)llm—1
+ 110y (v, f)llm—2 + 110y (u, fo) 1)
SA+PQ®)) (1w, v, f2)llm + Pl fallm) + 10y follm—1 + 10y fallm—2), (4.10)
where in the second inequality both (4.5) and (4.8) are used.

4.3. Estimate of 0, f,. It is convenient to rewrite the momentum equations in (3.1) as the
following:

(1+p)0u+ (1 + pJudeu+ (1 + p)vdyu — (14 p)(1+ f1)02f1r — (1 + p) f30, /1
(14 p) fadufo — (L4 )1+ fi)0yfo — pe0Pu — pedu
—(p+ AN)e0z(ug +vy) + Orp =0

(L4 p)0ww + (1 + p)udev + (1 + p)voyv — (1 + p)(L 4 f1)0x f3 — (1 4 p) f30y f3
—(1 4 p) faOrfa — (L + p) (1 + f2)8y fa — pedyv — pedyv
—(p+ N)edy(ug + vy) + Oyp = 0.

(4.11)

\
Step 1. According to the first equation in (4.11), we have
(14 p) (1 + f4)0yfo + pedyu
(14 p)8u + (1 + p)udeu + (14 p)vdyu — (14 p)(1 + f1)0ufr — (1 +p) f20, 1 (4.12)
— (1 + p) f205f2 — ped2u — (1 + N)edy (ug + vy) + 0D
Applying the operator Z¢ (|a] < m — 1) on the both sides of (4.12), one has,

(14 p)(1+ f4) Z%0y f2 + enZ*02u

=Z%{(1+ p)Ou+ (1 + p)udu + (1 + p)voyu}

+ Z=+p) A+ f1)0:f1 — (1 + p) f30y 1 — (1 + p) f20: fo}

T 20— pedPu — (i NeDu(ug + 1) + 0up} — (2% (1 p)(1+ fu0yfor (4.13)
Taking the L? inner product over Ri on the both sides of the above equality yields that

1L+ p)(1+ f1)2°0, fo2 + 122 2°02u|® + 2ue / (14 )1+ f4)2°0, 2 - Z°02udx

SN+ p)deullzy + 111+ pudsulF,_y + [[(1+ p)odyullz,_y
+ 1A+ )1+ )0 fill—r + 11+ p) f30y fillze—y + 11 + p) f20r fall s
+e|0pull7, + 210yl + 10pll7—1 (4.14)
+ 12+ )+ fON o 18y foll7—2 + 10y f2ll 2o | Z((1 + p) (1 + fa)) |72
S+ PQW) (1w, f1, f2) I + 1100 v, f3, f) oy + 10yull—y + 10y f2ll7—2)
+1|0zpllm—1 + €2 (D, 0y0) 7, + | f3 11 Foo 1y f1ll -
S+ P@Q®)) (1w, v, f1, f2) I + 105 f3) o1 +P(Hf4\|m) + 118y f27-2)
H[105pll—1 + 211 (Da, Do) 7 + [Lf511F o0 1y f1 1
where (4.8) is used in the last inequality.
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Step 2. It remains to handle the mixed term 2u5/(1 + )1+ f4)Z%0y f2 - Zaf);udx on the

left hand side of (4. 14) From the second equation in (4.2), we have
1
—0 —————(fo0,u — uO; fo — VO, f2). 4.15
i f ] i f2 — YA (f2 f2 yf2) (4.15)
Applying the operator Z¢0, (Ja] < m — 1) on the equation (4.15) leads to
1
(L+ f4)

_ya f2 7* o 7# N .
=7 ay( f4 > (1+f4)8:1:Z ayf? (1—|—f4)ayZ Byf2+C67 (416)

0 20y fo — 2O

where
ca:—{zaa ! 8]]‘ [ S ]f [ ! ]f. (4.17)
6 y7(1+f4)t 2 = y’(l‘i‘f) 2 — y7(1+f) 2
Multiplying (4.16) by 2ue(1 +
Ri give that

p)(1 + f1)Z°0, f2 and integrating the resulting equation over

e—||\/ 1+ p)Z%0y, f2||* — 2,u5/(1 +p)(1 + f4) 20y fZ*Oudx (4.18)
=2u€/(1 + )1+ f4)2°0, f22°0, <1 ff4 8xu> dx + Q/w/(l +p)(1 + f2)Z°0, f2C8 dx,

where the equation of 0;p + 0,((1 + p)u) + 9y ((1 + p)v) = 0 is used. For the terms on the
right hand side of (4.18), by the Cauchy-Schwarz inequality, we have

2#8/(1 +p)(1+ f1)Z90, f2Z°0, (1 _{2f4(9xu) dx

+ ‘2”&/(1 +p)(1 + f1)Z90, foCq dx

= 2u5/(1 +p)(1 + f1)Z°0, f2 2 <8y (1—{-2f4> Oru + 1 _{ 7 0.0 u> dx

+ ‘2;45/(1 +p) (1 + f1)Z°0, f2CG dx

<81+ p)(1 + f2)Z°0, fo?

+ Ose? x (HZa <8y <1 —{2f4) U 1—{f 0,0 u>

for some small constant 6 > 0 to be determined later. Note that

o fo f 2
RAES -

2 (7)1,
1+ fa

J2
S 8y (1‘|‘f4) [,o°
f2 2 2
+H1+f4

2
+ Hcg\P) :

2

lull7 + 10zulZe ||

-1

f2
14 f4

10yull2 + 18,ul. H

L m—1
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S+ PQE) (7, + 18yully, + 10y (2, f)llm—y + [ f2ll7my + Pl fallm-1))-

Step 3. For the second term on the right hand side of (4.18), we need to estimate the com-
mutator Cg defined in (4.17). First, we have

2
[zaay,

(1+f)at} 2

=17 (8 <1+f>8tf2> { +f}ata y
o, ([ mt 10 1
<1+f4> Vel + 01212 2 <Hf4>

1
+HZ<1+]‘> (0Ll 1+”8f2H1°°H <1+f>

S+ Pl + 10y (f2, f) 71 + Pl fallm—1)),

2

2

AN

2 2

-2

and similarly,

2
u

700 ]
=7 (o (7)) + |70 g 2ot

2
2 u
elosti o ()|

u
ez ()] ||ayf2||?n_1+|ayf2||%,ooHZ(1ff4>

SA+ PN ULl + lulFey + P fallm—1) + 18y (w, fz,f4)||m 1)

Next, we notice that

2

2

N

2 2

v

(1+f4)ay] 2
=z {ay <1+vf4> ayf2} + [Za, {a _:_}f4)] yOyf2 + ——— 1 +f (2%, 0y]0y f2 (4.19)

29,

with

B(_Y K
Y CupZ (1+f4>z 30y fo.

|B]>1,8+r=

7 ) et -

The first term in (4.19) can be estimated as the following:

1 () )

SA+P@QMNUdyollz—1 + 10y follar + 10y fallza—y + Pl fallm—1) + [[v]I7-1)-

2
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Step 4. We now estimate the second and the third terms, that is, the two commutators in
(4.19). For the first commutator, we have the following computation,

B K
Z <1+f>288f2

- <ZB <(1+ng)90(1/)) + [Zﬁ, w(ly)} 1-|-Uf4> (Z"0(y)0y0y f2 + [Z%, ¢(y)|0y0y f2) ,

where
[Zﬁ’ o) ]1+f4 Z_%‘/’”ﬁ (so(y)<1+f4>>

for some bounded smooth functions ¢, 3(y) due to Lemma 2.6, and similarly,

12", 0(4)]0,0yf2 = Zm £(4)9,0, f2)

for some bounded smooth functions wgﬁ(y). Then, according to Lemma 2.1, we have the
following estimate:
2

H[Zauw)}aaf?
B v #
s Y Z(Hh)zayayfg

18>1,B+r=
S+ PR )))(H8 vzt + 10y fallz -1 + P fallm-1)).

For the second commutator in (4.19), we write

2

(2%,0,)0, f2 = Zqﬁea )0, 2°0, f2

with ¢g o(y) being bounded smooth functlons due to Lemma 2.3. Then,
2

0y0y fo

2

=HWWWW
S+ PQN))19y fall s

Consequently,

2
v

—FF0
T
S+ PQM)) (100l + 10y fallzaey + 110y fallma—1 + P fallm—1) + [0l 7—1)-
Substituting all of the above estimates into (4.18) yields the following estimate:
pe LIV T D20, o) — 2 / (L+ p)(1+ f1)2°0, f2Z*02udx
<O+ p) (1 + f1) 20y fol (4.20)

9,
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+Cse*(1+ P(Q(1))) (HUIlfn + 1 2l + Pl fallm—1) + 0l
+10yull7, + 100y + 10y a7y + H8yf4‘|?nfl)'
Step 5. Combining (4.14) and (4.20) together and choosing ¢ suitably small, we obtain

,UfiH\/ L+p)Z°0y ol + (L + p) (1 + f4) 220y fol * + 2| 2Ol
SA+PQM®)) (Iw v, fr )7 + (s f3) 7y + Pl fallm) + 118y f2117—2)
H 105Dl 1 + €2[1(Dou, Oy0) 17 + [ f3l1700 10y f1 I (4.21)
21+ PQ®) (I9yullz, + 10yvl7—1 + 10y fallza—y + 10y fallzn) -
Choosing €qg to be sufficiently small and for 0 < € < g9 summing the above inequalities over

la] < m —1 lead to

d
e 2110y Fallm—1 + 10y Fallm—1 + €*105ull—y

S+ P@QM®) (I(w, v, fr, )7 + (s f3)ll7—1 + Pl fallm))
+ IIf)po 1+ 2Bz, 0y0) |17, + N f3 12 10y f1ll7 -1 (4.22)

21+ PQ) (I10yull7, + 19y fall7-1) »
where the mathematical induction arguments and the following a priori estimates are used:
lpllzee <172, lfalle <1/2, Q1) < C.

More precisely, notice that the order of conormal derivatives is up to m — 1 on the left hand
side of (4.21), and there exist terms of ||, f2|2,_5 and €%(1 + P(Q(t)))||0y f2||2,_; on the right
hand side of (4.21), then the first term is absorbed by using the mathematical induction
arguments, and the second term is absorbed by choosing ¢ sufficiently small and the a priori
assumption of Q(¢) < C. And (4.5) is also used in deriving (4.22).

4.4. Estimate of 65 f2. Next, we will derive the conormal energy estimates of 85 fo.

Step 1. Applying the operator Z“0y (Jo| < m — 2) on the both sides of (4.12) yields
(14 p)(1+ f4)Z°0; f2 + enZ®Ou
= Z%0y{(1 + p)Oru+ (1 + p)udyu + (1 + p)voyu}
+ Z2°0,{=(1+ p)(1 + [1)0u fr = (1 + p) f30y 1 — (1 + p) f2Ou f2} (4.23)
+ Z90y{ —ped2u — (u + N)edy (ug + vy) + 9ep} — [Z2%0y, (1 + p)(1 + f4)]0y fo.

Taking the L? inner product on the both sides of the above equality, we obtain
1L+ )1 + £4) 2002 fol|? + 2] 2°03ul? + 2pe / (L+ p)(1+ 1) 22025 - 2° 9P udx
SNZ20, (1 + p)0w)|I” + 120, (1 + p)udzu) |* + 1| Z%8y (1 + p)vdyu)||?
11298, ((1+ p) (1 + f0)8 )1 + 1270, (1 + p) f20, /1) (4.24)
11298, ((1+ p) 2B f2) | + 2| 240, 07ull” + 2| 28,0, 0|
+ 11220y 0up )1 + 128y, (1 + p) (L + f0))0y fol*.
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Here we only need to deal several typical terms in (4.24) since other terms can be handled
similarly. First, we have
1220,((1 + p)deu)||?
<1 Z*(@ypdru) |” + 112 ((1 + p)Ordyu) |
<N10ypllze lullz1 + 10l Foo 19ypll7 o + (1 + NI Ee) 1Oyl s + 10yullf collol7 s
S+ PQE) (Nlullfsy + llpll7 2 + 19ypll7 o + [10yull7 1)
SA+ PN Ulw,v, fall7 + 72 + P fallm) + 100117, —2),
where the estimate (4.8) is used in the last inequality. By the same argument, we get
1228y (1 + pudzu) | + 1290, (1 + p) (1 + f1)Ouf1)II* + 1 20, (1 + p) f20u f2)
S+ PQEN) I, fr, ) l7r + ol + 10ypll5 2 + 10y (us 1, F2)l1701)
S+ PQEN) (1w v, )5 + 1 fllzs + lollZ—s + P fallm) + 10upl7—2 + 10y (f1, f2) 7 1)
Next,
20, (1 + p)vdyu) = Z%(D,pvdu) + Z°((1 + p)dydyu) + Z°((1 + p)od,dyu),

where
1220y pvdyu)|® + (| 2°((1 + p)Byvdyu)|?
S+ PQO)) (1o, 0)l[7—2 + 18y (0, 1w, 0) |75
S+ PQ)) (1 (w, v, f2)ll7 + pll7—a + Pl fallm) + 10yplla—2,
and
2. \112 v ?
2+ sl = |2 (14 ) ()0,0,0)
S+ P Iollin—2 + 10yvlla—o + |8yullz, 1)
S+ PN lli—2 + (w0, £2) Il + Pl fallm))-
Similarly,

Z%0y((1 + p) f30y f1) = Z%(Oypf30y f1) + Z%((1 + p)Oy f30y f1) + Z*((1 + p) f30y0y f1),
where
12%(8yp f30y JO)II? + 112°((1 + )0y f30, /1)1
SA+ PN UIpli—a + 1f3llm—a + 10ypll7 s + 10y fill7 o + 10y f3]7, ),

and
12°((1+ p) f30,0, 1)
S Y0 I1Z2%((+ p) f3) 2505 1)1

B+r=a

= > 12°((1+ p) f3) 27(0; f)|I* + > 12°((1 + p) f2) 270, f)|1?
1BI<|ed/2,84rK=cx 1B1>]al/2,84+K=a

S Y 12+ ) 1252 )

1BI<|al/2,8+k=a
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+ > 1Z2((L+ p) ) T2 150y 127 (B 1) e 12
1B1>]al/2,8+K=a

S Z HZB((I+p)f3)HLg°(L§)”ayzﬁ((1+/))f3)HL;O(L%)HZR(agfl)H%,%
1B1<]a|/2,8+ K=

+ > 1Z7((1 + p)£3)ll 2210y 27 (1 + p) f3) 22 | 27 (0 f) e 122
1B]>]al/2,6+r=a
S+ PQW)N Il + 13l + 10ypll7 -2 + 10y 317 -2) 105 f1 173,

provided that m > 8, where Lemma 2.4 is used in the last inequality. Now we deal with the
last term of commutator in (4.24). Note that

220y, 1+ p) (1 + f))0y fo = Z¥0y (1 + p) (1 + f2))0yfo) + (2%, (1 + p)(L + f4)]0; fa,

where

1228y (1 + p) (1 + f))9y £2)IP S (1 + PQ)) I, fa)llz—2 + 11(yp, By fo, By f1) [17—2),

and
112, (1 + p)(1 + f4)10; fo|?
SO 125+ p) (1 + £2)) 250 f2)IIP

18121,8+K=a

_ S 1Z°((1+ p) (1 + f2)) Z5(02 f) >

1<|B|<]al/2,+K=a

+ > 1Z5((1+ p) (1 + f2) 250, f2)II?

1BI>]al/2,+K=c

D SR (R RS A Pt Y SN
1<|BI<|el /2,4 r=a
+ > ||ZB((1+P)(1+f4))||%g:(/;§o)||ZK(3Zf2)||%;o(L§)
181>|al/2,8+K=cx
S > 127 (1 + p) (L + f))ll 2o 2210y 2° (1 + p) (L + fa))l Lo 22 125(85 f2) 172
1<|BI<|al 2,6+ r=a
+ Y 1Z2((1+ p) (L + fa))lle2 185 27 (1 + p) (1 + )22 12785 fo) | o (12

BI>]al/2,8+r=a

S+ PQEN oIz + 1 fall7—2 + 10ypll 2 + 10y fall7-2) 105 217 s,

provided that m > 8, where Lemma 2.4 is used in the last inequality.
Consequently, from the above estimates and (4.24) we arrive at

(L + p) (1 + f2) Z90; fol* + 1*e*|| Z*Bul|* + 2pe /(1 +p)(1+ f4) 228} f2 - Z*8udx

S+ PRI (w, v, f2)llm + fls + P fallm) + [1(p, £3)l70—2)
+ (L4 PQ))) 10y (f1, f2)ll7-1 + 10y (p, 3, f1)lI70—2)
+110yplin -1 + 2l10yully, + €2 [105vl[7, -y (4.25)
+(1+ Pl + sl + 190ypl5 -2 + 110y f317-2) 107 f1 1173
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+ 1+ PQE ez + fal7—2 + 1050172 + 10y fall 72 10 Fall7—s.
Step 2. Applying the operator Z*d; (Ja| < m—2) on the equation (1+ fy) x (4.15) gives that
W20} fo — (1 + f4)Z%0u = Z°O;(f20pu) — up 240, fo — v0, Z°0, fo + CF,  (4.26)
where
C¢ = [Z2°07, (1 + f1)|0yu — [Z°02,udy| f2 — |20}, v, fa. (4.27)
Multiplying (4.26) by 2ue(1 + p)Z O‘82 f2 and integrating the resulting equality over R? give

sf”\/ 1+ p)Z2%0; fol* — 2u€/(1 +p) (1 + f4) 290 fZ°Oudx (4.28)

=2ue /(1 + p)Zaagngo‘@f/(fg@xu)dx + 2pue /(1 + p)Zo‘E)zfgC?dx.
Since
85 (f20,u) = 8§f28xu + 20y f20,0yu + fzf)x@ju,

by the Cauchy-Schwarz inequality, we get

‘2,us / (1+ p)Z°0; f2Z°0., (f20zu) dx + 2pue / (1+ p)Z°0; fC3dx

<O+ p) (L + f)Z2°0, fo* + Co?||CE 12

+ C5e? || 2% (82 fadpu + 20, f20:Dyu + f20,0%u) ||

Notice that
(0% 2 (0%
122 (8 f20zu) [|” + 112 (8, f20:0yw) |

Oy 2 N
_ Hz <¢<;> so(y)ayayh) 12 0, F20s0y0)
<10yl oo 10y fol2_y + 18, ol . 1Byl
<1+ QU I0yulls s + 19y f2]% ).

and

122 ( f20.02u) |

2 2
s 3 Hzﬁ f2Z”8mc')§uH + Y HZﬁng“&U@;uH
1B1<al/2,6-+r=a 181> lal/2,6-+r=a
2
B 2,112
s S el e,

1BI<|al/2,6+r=a

P

1B1>]al/2,8+k=c

Sy e

18I<|al/2,8+k=a

w3 |7, e,
18>l /2,8+K=a x x

VA& 2,112
L2 (10) 127020, ull o 12

K 2
L% (L2 ‘ayZﬁfQHLgo(Lg) HZ awa;““,;gc

2,112
127020y ul| 100 12
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S+ PQW))(Ifllr—2 + 10y ol ) 105 ullz, .

provided that m > 4.
Step 3. Next, we deal with the estimates for commutator of C< defined in (4.27). First,

(225, (1 + f2)] oyl

SN2 (9500 + fooyu) |” + 12% (0, (1 + f0)0,0,w)|* + [[[2%, (1 + f2)] 0 0ul|”
Since
1
Oyfa = 7 —{=0:((1 + p) f2) = (1 + f4)9yp}
1+p

due to 9;((1+ p) f2) + 9y ((1 + p)(1 + f1)) =0, then

|2 (221 + f1)0 u)H2

=2 (0 (15, C-out 4 ) = 1+ 10000} ) 00

2

2 2

I (o180
2 2
o (o (2 ) o o (355 )
2
e (25

SO+ PQW)) (o222 + 10,0112 + 10yull3a + 1020l
1 fall2ie + 10y ali2s ) 192112,

(1 PQU) (1950 £2) s + 1100, Fo) s+ 1Ll + 10y (s )z,

where the following estimates are used in the last inequality:

(o (M523 ) o (155 )

+
<01+ PQU (1040 £2) s + 1o, ) By + 1 fallZams + 10, )Pz

()|

B (1+f4)8yu K a2
Z <1+,0 Z%0p

2

and

|z

S )

181<|al/2,8+r=0x

2

(1+f4)ayu> P
+ Z 78 < 7 3yp
1B|>|al/2,B+r=a 1+p

1+f 8u K 2
s 3 (e )H N7

181<|al/2,8+r=cx
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N 3 2 <(1+f4)8yu>

2 112
— 1270213 1

18]>]al/2,8+K=a L3 (L)
(1 + f4)0yu (1+ f4)0yu ka2 112
S > ' 2" (Hy 0,2° Ty 1Z" oyl
18I<al/2,8+r=a P Lg(L3) p Lo (12)
g ((ALF f)dyu g ((ALF f)dyu w212
+ Z < T+ . OyZ T5p v \Z 3yPHLgo(L§)

1B1>]al/2,8+r=a

S+ P(Q(1))) (lel o+ 10y l7 s + 10y ull7 s + 105l

a2z + 10y fall2i2 ) 1021122,

provided that m > 6.
Moreover,

12 (9y(1 + f1)0,05u)|?
S+ PQONNOy fallzna (105 ullz—o + 105ull7,—s),
and

112, (1 + f2)] 920,

2 2
< 3 Z8(1+ f4) Z“aguH Y Hzﬁ(1+f4) Z“agjuH
1<|B|<al/2,8+r=0 181> ]od /2,8+r=0
B B K93
< 3 z (1+f4)HLgO(L2) 0,2° 1+ )|, o 1270 pullrs
1<|BI<]al/2,8+r=c Y
S SN Py C ) (B /N T I e 2 s
18]>]al/2,8+r=a * *
S+ PR falliez + 18y fall ) 105wl 7,3, (4.29)
provided that m > 6.
Similarly,

(279} uds] fo||”
<2020 £2)||” + 112°(0yudady f2) I + || 12w/ 0 (1) 0n 0 ()32 f2) |
Sl 7—s + 105l 7—) | fallm—y + (18yull s + 1050l 7—2) 19y Foll7—s (4.30)
and
(2702, 00,) £l
1200300, £2)||* + 122000, 0, )P + 1120/ 0 W) ()0, )|
SUOGvllim—s + 10507 -2)10y follm—2 + (10401l —s + 19507 —2) 195 F2 I 7o (4.31)
Step 4. Consequently, from (4.28) we have

ua—”x/ (1+p) Za32f2]\2 - 2u5/(1 +p)(1+ f4)Za8§ngo‘8§’udx
oM+ p) (1 + £1) 220, f2)* + €2 (10yull 7o + 105ulls,—2) 10y f2l7 1
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+e2{(1070]m—2 + 105017210y fo |72 + (10501 —s + 105017 —2) 195 Fol 702}
+ 2L+ PQWN) U0y (o, us fo)) =1 + (o f2) 7=y + 1 fall s + 10y fall7—2)
e2(1+ P(Q)) (I f2llm—2 + 18y fol -2 105l -1 (4.32)
21+ PQ) oz + 10yplln—2 + 18yu |7z + |05ul 7,
+ Hf4Hm72 + 118y fallm—2) X 105 pll7—2
+ (| fallmma + 12l + 18y fall2) (105wl 7z + 1185l —2)-
Combining (4.25) and (4.32) and choosing ¢ suitably small, we have

usiw L+ p) 220 fo|* + |1+ p) (L + ) Z°0, fol * + 1€ || 2 0ul*
SA+ PO UI(w, v, fo)llz + 1 Fllz—1 + Pl Fallm) +1(os f3)l[7—2)
+ (1 +PQON U0y (frs f2) 1 + 19y, f3s 1) l7—2)
H10yp )71 + 2 10yullm + 2105vl171 + 2 (10yull7—a + 105l 7 -2) 19y 27—
+(L+ PR Nplln—z + £z + 10ypll—z + 10y f3ll7—2) 105 f1 7
+ (1 + PQONUIpl7—2 + 1 fall s + 19ypll7—s + Hayf4||m—2)||a§f2”m—3‘
+ {10501 —a + 1050 3—2) 10y follm—2 + (100 ][ —2 + 1950172 —2) 195 F2 I 702}
+ 2L+ PQ) 10y (py ws ) l7aer + (o, f2)llmmr + I fall7—z + 10y fall7—2)
+e2(L+ PQW)) (I fallri—z + 10y foll ) 185 ull, - (4.33)
+e2(1+ P@Q1))) (ol + 10ypll—2 + 10yull o + 10 ull7, -
+ || fallZes + 10y fall7—a) X 1050117 —s
+ (| falli—z + 12l + 1y fall—2) (185072 + 10 ul7—2)-
4.5. Estimate of Jyp. From the second equation in (4.11), we have
Oyp — (210 + )\)58511 =—(1+p)0w — (1 + p)udzv — (1 + p)voyv + (1 + p)(1 + f1)0=f3
(14 p) f30y f3 + (1 + p) f20u fa + (L4 p) (14 £2)0y fa + ped?v + (1 + N)edyu,.
Since 0,((1 + p) f2) + 0y((1 + p)(1 + f4)) = 0, then
(L4 0)(1+ )9, 1 =1+ F){=0a (L + p)f2) — (L + f1)3, 0}
— (1 + f0)8:((1+ p) f2) — (1 + f4)*Byp

- oo+ ) -
similarly,
2
(14 00,3 = =01+ P+ ) =~ L0y

due to 0, ((1 + p)(1 + f1)) + 9y((1 + p) f3) = 0. Consequently,

2 2
<1 + fi;a f;f“f > Oyp — (2p + Nedv

=— (14 p)0w — (1 + p)udyv — (1 + p)voyv (4.34)
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+ (L4 p)(1+ f1)0ef3—f30:((1 + p)(1 + f1))
+ (1+ p) 200 fs — (14 f4)0:((1L+ p) f2) + pediv + (b + A)edyus.

Step 1. Applying the operator Z¢ (Ja| < m — 1) on (4.34) leads to

2 1 2
(1 + W) Z%0yp — (21 + )\)sZa@;v

=7 — (14 p)0w — (1 + p)udyv — (1 + p)voyv
+ (L4 p)(L+ f1)0u f3 — f30:((L+p) (1 + f1))}
£ 20 {14 D) folufs — (14 f1)0u((1 4 p)fo) + 020+ (s + NeDyug} + €5, (435)

where
fi+Qa+ f4)2>}
Cg= 2% 14+ =——— )| Oyp.
® [ ( y(T+ppt )P
Taking L? inner product on the both sides of (4.35) over R? gives
2
1 + f4) a a
H( 1+p )1 >Z Oyp|| + (2u+ A 200l

L+ )? Y\ jag o zo
_2(2M+)\)5/ <1+721+£§3—1> Z%0ypZ*9vdx

<1 Z2*{ = (14 p)dv — (1 + p)udyv — (1 + p)vdyv
+ (L + )L+ 1) fz — f20:((1+ p) (L + 1)) }?

+ |21+ p) f20u fs — (L + f2)0u((1 + p) fo) + pedZv + (1 + N)edyuy M + [|CS |2
2

<

ze {—(1 +p)0w — (1 + p)udyv — (1 + p)ﬁﬂy)ayv +(1+p)(1+ fl)axf:%}

12 {=F302((1 + p)(L + f)}II* (4.36)
121+ p) f20ufa — (1 + f4)0a((1 + p) f2) + pediv + (n+ Nedyua | + [ICF?
S+ P@QMNI(ps 05 f1s fos 30 f) i+ lullni—1 + 10y0]17, 1)
+2[[(8zv, dyu) 7, + IC1I?
S+ PN (o, v, f1, f2 f3, fa)llo + 1 fill 1)
+ (L4 PQO)Oypllm—o + 21820, 0yu) 17,

where we have used (4.5) and the following estimates in the last inequality:

T

2

Y1+ p)—t
24+ 2\ 240+ 2\
5HZ<1+5;<1+[))7- ) 00l + 10l Z(1+§(HW_1 ) -

S+ PQINUI0ypll—2 + Plpllm—1) + [1(f3, fa) I -1)-



INVISCID LIMIT OF COMPRESSIBLE VISCOELASTIC EQUATIONS 29
Step 2. From the equation of conservation of mass, we have
1 1
— O + Oyv = —— (u0xp + vOyP) — Oy ui. 4.37
ywp Y 0 ) = 0 (4.37)
Applying the operator Z¢9, (Ja] < m — 1) on (4.37) yields
1 1
— 0 Z%0yp + Zac();v = ——(u0, Z“Oyp + v0, Z*0yp) — Z*0y0u + Cg, (4.38)
Yp Yp
with
cy = — {Zaa 1&5]}?— [ZO‘(? La ]p— [Z“@ ”a]p
- I ) xz 9 .
" p " Tap™?
Multiplying (4.38) by
f3 4+ (1 + fa)?
22u+Ne (1 + =—————
(Bu+2) < (14 p)t

and integrating the resulting equality over Ra_, we obtain

)Z@wé2Mthmd¢%p

2
2
7€ H pJ@f‘Z%%p +2@M+ow{/( fali;%%?>zu@mz%ﬁmm
:g/ <<a(paf3af4)> + (Ua(p7f3,f4)> + <Ua(p,f3,f4)> )(Zaayp)QdX
P ¢ vp z P y
- 5/2a(p, f3,f4)ZO‘8ypZa3y8xudx+5/2a(p, I3, f4)Z%0ypC§dx (4.39)
First,
‘/( p,f3f4 > <ua(pzy‘£33f4)> + <va(pa’y{?3af4)> )(Zaayp)de
x Yy
e(1+P(Q ()))IIZO‘QJPH2
and

5/a(p7 f37f4)ZaaypZaayaz’Lde
Se(L+ P(Q®)))[12%9ypll| 2 9y Oyl
<612°0yp|)* + Cse® (1 + P(Q(1)) 1 20, 0ul*.

Step 3. The commutator Cg is estimated as follows. We note that

a(p, f3, f4)Z2°0,pCSdx| < 8| Z°0ypl|* + Cse®|lalp, f5. f4) 1= IS 1%

For the first term in C§', one has
1 1
<[ (o (55) )+ [ 53] o]
P P

0.3
o (3) )] b (28) )

where
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SHypll e lpellm—1 + lIptll o (1 + P(Q(E)) 10ypllm—1 + P(llp = 1llm-1))

and

S+ PQ)(10ypllm—1 + P(lp = 1llm)),

[ 2]
P

S

18]>1,84+K=a

slo Gl

S+ P@ ()))( (Ilp = Hlm—1) + [19ypllm—1)-

A (f;jg) Z"8,0yp

10ypllm—1 + |0ypll1,c0 P(l[p = Lllm—1)

Similarly, we have

70,

A

174N

(3)
(3)

>

IBI>1,8+r=c

U
Oy | — Oxp|| Lo +
16 LTSS

|B1>1,84+k=c
u
9, () H 10spl 1

10ypllm—1 + 10ypll1.00

oJo]-|
P

10xpllm—1 +
o>

7 <7p> 7"0u0up

10xpllm—1 +

Lo

U

P

m—1

SA+ PP = Um) + [[ullm—r + [0ypllm—1 + [|0yullm-1),

and
v
Z%0y, — | O,
[ Y ’yp} v
v
= — + 0y0, ‘
< Y (w) p) [ w] uP
v 1 v
- 0y0 p‘
<y<w> > [ " ely ]so(y) Y
v
<[ (ay< >3yp)H H (wso )Zﬁ (<p(y)ayayp)H
\ﬁ|>1 B+r=
<+ PQE) 9yl + 10,01 + P(Ip — 1) + [lm1).
Substituting all of the above inequalities into (4.39) gives
2
p7f37f4 a f3 (1+f4)2 « o 02

214 PQ

)(10ypll7—1 + 18yull5 -y + HayUHm—l +ullf— + [ollm—1 + P(llp = 1))

+ 5HZ°“3yp||2 + 6(1 +PQONIIZ0ypll* + (1 + P(Q1) | 9yull,. (4.40)
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Combining (4.36) and (4. 40) and choosing ¢ and ¢ suitably small, we have

d a 2
€ ‘ (p’j;’ J4) Z%0yp H <1 + (11/;”]041)> ZOyp|| + (2u+ X)X Z700|)?
S+ P10, frs far f3, fa) o + Ny + P(lp = ) + 10ypl7—2) (4.41)

+e%(1+ PQW))II(9ov, 0yu) 17, + (1 + PQ))) (10ypllm 1 + 10yull7—y + 10y0]17-1)-

We remark that in order to derive (4.41) we have used the equivalence between ||p||,, and ||p—
1||m, and the a priori assumption that ||p||re~ < 1/2,||fallr~ < 1/2 and Q(t) < C; moreover,
the smallness of € is required, which is used to absorb the term of (1 + P(Q(%)))||Z%*0yp|| on
the right hand side of (4.40).

Summing (4.41) over |a| < m — 1, choosing ¢ suitably small and using the mathematical
induction argument yield that

2

d a(p, f3, f1) + (14 fa)? ’ 2211 52,112
e | [ArLety,, ‘ | B o euareag
SO+ PQM®)))([I(u,v flyf2,f37f4)H2 + P([lp = lm)) + &*(1 + P(Q))|(8xv, Byu) |7,

(4.42)
where (4.5) and (4.8) are used.

4.6. Estimate of 85]). We now derive the estimates on 851).
Step 1. Applying the operator Z¢0, (Ja] < m —2) on (4.34) leads to
f32+(1+f4)2 a a2 a3
<1 + B Z%0up — (21 + N)eZ%0,v
=Z“0y{ — (1 + p)ow — (1 + p)udyv — (1 + p)vdyv
+ (L+p) (1 + f1)0ufs — f30:((1+ p) (1 + 1)) }

+ Z9Oy{(1 + p) 20 f1 — (1 + f1)0:((1 + p) f2) + ped2v + (u+ Nedyuz} +Cfy  (4.43)

with

f3+ (L + fa)?
AL+ pp T |

Taking L? inner product on both sides of (4.43) over R%, we arrive at

co = [Zaay, 1+

2

1 + «a «a
H( +p)£> )Z pl| + (2p+ N 20|
f32 + (1 + f4)2 an2, 7aq3

<N Z¥0y{—(1 4 p)Orv — (1 + p)udzv — (1 + p)voyv
+ (L4 p) L+ 1) f3 — f30:((1+ p)(1+ f1))}]?
1290y {(1 + p) foOu fa — (L + f2)0u((1 + p) f2) + pediv + (p + Nedyuz }|* + |Co ||
S+ PO oy v, f1, F2r f3 fa) 7y + l[ll72)
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+ 1+ PQN 10y (0, v, f2, fa)llmn1 + 10y (w, f1)ln—2) + %(10y0]17, (4.44)
+e%|0ullz, -1 + [ICT |
SA+P@QMNUp, fr. fo )7y + Nullf—z + P fallm) + V117,

+ (14 PQW)I0y(p, f2, f)ll7—1 + 10y fill—2) + 2110y0ll5, + e2[105ull7, 1 + ICTII7,

where (4.5) and (4.8) are used. in the last inequality. It remains to estimate the term of
commutator C{j. First we note that

(B
IR [ G
SA+ PP falm-2) + Pllplln-2) + 18y (e, fi)l7-2)

+(1+ )2 ene |
2 (M) zoi

Icsol* =

2 2

gl

D>

1B|21,8+ k=0

By the similar arguments to (4.29), we have

Z 7B <f§(+ (1 +f4)2> Z“(?Zp ?

1 -1
181>1,8+r=a Y1+ )
< kA2, 112 8 f3+ (1+ fa)? ?
S > 1Z270,pll72 || Z B
1<|BI<|al/2,+r=a RS Ly
2 2\ |12
k52,112 g (fs A+ f1)°
b 1zl |2 (B
|B1>]al/2,8+Kk=a LZ(Lg)
< Z ||Z“82p||%2 78 <W) ‘ayzﬁ (W>
Py T YA+ gz YA+ 0)77 e ra)
D D e (f3+<1+f4>) 5 78 <f3+<1+f4>>
Py o) Y@+ g 1 Y1+ )7 Sl

SA+ PP f3llm—2) + Pl fallm—2) + Plpllm—2) + 18y fall7—2 + 10ypll5 ) 195017054
provided that m > 8. Consequently,

IC5a1” S(1+ PQ)) (Pl f3llm—2) + Pl fallm—2) + P([lpllm—2)
110y fallzn—2 + 19ypll7—2) 19517 -3

+ (L4 PQ))) (Pl fallm—2) + P(llpllm—2) + 19y (p, fa) l7—2)-
Then, we have from (4.44),

1+f4) e
| A ) o

P+ S Jagz o
2(2u+>\)5/<1+W)Z ngZ ag’vdx

2
+ (2p + X% 27 00]?
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S+ PQI(p, for f3)llm—1 + 1w S5 + Pl fallm) + [[0]]7,) (4.45)
+ 1+ P@QWN Uy ps for f3, Fa)llmr + 10y 1l o) + 210yl + 2105wl
+ (1 + PQW)) (Pl f5lm—2) + Pl fallm—2) + P(llpllm—2)
+ 110y fallz—2 + 10ypll—2) 195pII7, s-

Step 2. Again, from the equation of conservation of mass, we have

Op + YpOyv = —(u0zp + vOyp) — VPO u. (4.46)
Applying the operator Z*9; (Ja| < m —2) on (4.46) yields
8tZa8§p + VpZaf)Sv = —u8xZa8§p — vayZO‘aSp - Zaag(’ypazu) +C1, (4.47)

with
C?l = - [Zaasﬁp] 63/” - [Zaas’ uax] b - [Zaaz,vﬁy] p.
Multiplying (4.47) by

1 f2+(1+f4)2 a a(p>f37f4) o

~
and integrating the resulting equality over Ri, we get

2
2 2
% ' a(”’j;’ 1) 702 +2(2M+A)e/ (1 + ff’yaf;;ff ) Z°02pZ° 9vdx
—E/ ((a(p7f3af4)> + <ua(p,f3,f4)> + (Ua(p7f37f4)> )(Zaagp)de
P t P x p )
—c / QCWZa@;pZa@S(’ypawu)dx+ / zwgzaagpcmx. (4.48)

First,

) ‘ / ((a(p, i f4)>t . <ua(p;£3,f4)>x . (va(pzyj;z,ﬁ;))y) (720 dx

e+ PQM)IZ o5l

and
‘E/G(P,ig, f4)Z0‘8§pZ°‘8§(fyp8xu)dx\
S611Z2%02p|1* + Cse* (1 + P(Q(1)))[12%0; (vpdau) I
S611Z2402p|1* + Cse* (1 + P(Q()) (|1 2%(02pdeu) |* + | 2% (8ypdaOyu) |I” + | Z* (p0:0u) ||?).
Note that
12 (82p0,u)||” + |2* (8,p0:Dyu) >

o aﬂﬂu 2 «
z (w(y)so@)ayayp) 2% (9yp0n0y0)|
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SOyl oo 19yp117, 1 + 19ypl1T o 18yull7—
S+ PN UI0yull7 1 + 10017 1).

and

|12 (p0a02u) |

2 2
s Y | #ezad > |2ezra0k
18I<]al/2,5+r=a 161> |ai/2,5+5=a
2
B 2, 1|2
D DI (I EacXl 8

1BI<]|el/2,8+K=a

P

2 oo
181>l /2, 8+r=a L)

< 2%
~ Z H P L (L2)
18I<]al/2,8+Kk=a Y

n 3 Hzﬁ
1]>|al/2,8+r=a
SO+ PN+ [lp = 12 + 10ypll7 o) |02ullz, 1.

provided that m > 4.
The commutator of C{} is estimated as follows. For the first term in C{}, it is noted that

2,112
127020y ul| 100 (12

0,2, 17703501l
z \My

K 2,112
2 1Z 8may“HL;O(Lg)

12792 3] 00 < [z (@2 | + 12227 (0,0020) | + 12w
For the above three terms on the right hand side, we have the following estimates:

12 (@5p0,0) |
2
_/ Z Zﬂ(GZp)Z"””ay@ + Z Zﬁ(azp)Zﬁayv dx
1BI<|al/2,8+K=c |8]>]al/2,8+K=a
2

5/ Z z° (af,p) Z80yv | dx
1BI<|el/2,8+K=a
2

+/ Z z8 (851)) Z"0yv | dx

181>|al/2,+K=a

S > 1Z7 00122 (L0 HZ 3ypH
181<|al/2,8+r=c

TR DR I g P
181>al/2,8+k=c

S > 1250yl 2 (2) 0y Z" Oyvll L2 12)
B1<lai/2,3+r=a

Le(L2)

L2(L2)

5]

‘ZB+1 sz

L2(L2) Le(L2)
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1/2 1/2 1/2
D 120l 18,250, 127 Oy
181>l /2,8+K=0x

x 0,270 leL/sz

S+ P10yl + 1050117, -2)195pI17, o,

and similarly,

112°, 9} 0,020]” < (1 + PQN)(IIp = 1 + 18yplI2_2) |00 12,3,

2703,

L2(L2)

as well as
122 (9, (79),0y0) 1> S (1 + PQD10ypll—2 (1050172 + 10501 70—2)-

Consequently, for the first term in C{, one has

1[Z295, vp) 9,0
S+ PN I7—a + 1050117, —2) 195pl5 -2 } (4.49)

+ (1 +PQOD{Ip = Ures + 10yplm-2) 10,0l -5 + 10yp 171050702 + 1850l 70—2) }-
The second term in C{; can be dealt with similarly as the following:

I [Z°85, ud.] pl*
S+ PN NOyulli—s + 10ypll—1 } (4.50)

+ 1+ PQW{(llp = U=y + 18yp Il D10 ull,—o + 105p 1o (Il 7o + 10yull72) }-
For the third term in C{|, we notice that

[2402,v0,] p =2 (92v0,p) + Z* (20,00;p) + (2%, v] Ojp
=7 (02v0,p) + 2Z°(9,v0;p) + [Z“, (pz’y)] ©(y)0,02p,
which can also be handled similarly as the following:
12295, v0,] p]

S+ PR {Iypl 7o (105 0ll7—2 + 105 0l70—2) + 105 pl7—2 10y 01—z + 1050117 —2) }
(4.51)

Consequently, we have from (4.48)-(4.51),

2
%a Wzaajp +2(2u + Ne / <1 + W) Z°0;pZ* Ojvdx
S 6+ 1+ P Z05pl* + (1 + P(Q(1)(0yullz -1 + 10,217 -1)
+2(1+PQW) A+ llp— 12 o + [0ypl17 o) 105wl (4.52)
+(1 4+ PQUON{10y0l7,—2 + 105 0[5, -2) 05 pl17—2 }
+e2(1 4+ PQUON{(lp = Uln—s + 10ypl 7085017 —5 + [0yl -2 (10501172 + [1050]]7,-2) }
+2(1+ PQON{lp — Uit + 10ypli— D05l —a + 10501 o (lull7—s + 10y ull—2) }
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Step 3. Combining (4.45) and (4.52) together and choosing ¢ and ¢ suitably small lead to

a’(paf37f4) an2 (1+f4) a2
dt w2 P H<1+ 7L+ p)t )Z o

< 1L+ PQON (o, for f3) 71 + 1y )0 + P fallm) + [[01]5)

+ 1+ P@QWN Uy ps fo, f3, fa)llmnr + 10y Sl o) + 210y 0ll5, + 2105wl

+ 1+ PQ®) (Pl fsllm—2) + Pl fallm—2) + P(llpllm—2)

+ 10y fallsa + 10yplln—2) 195pI17 5

L+ P(QN)(|0yully, 1 + 19ypll 1)

L+ PQM))A+ Ip— 17,5+ Haypll 2 195ullz, (4.53)

L+ PQU{ (19501172 + 1050l[7,-2) 19572 }
Q1))
Q1))

2

d
2+ A% 200

e*(
e*(
e%(
21+ P@QM)N{(Ilp = 12 + 19yl - z)||33v|! s+ 10ypl5 2 (105052 + 1950l —2) }
21+ PNl — L7 + 10ypl5 - )05 ull7 2 + 105015 2 (lull7, -2 + 10yull7,—2) }

4.7. Estimates of J,f; and (’35 f1. As for the normal derivatives of fi, we use the following
formulation

1

I+ f1)(1+ f1) — fafs = Tp

due to (1 + p)detF = 1. Then

Iy hr S {311 (1> + 0y(fafs) — (1 + fl)ayf4}

(1+ fa) L+p
__ ! 1 _fi
{0 (1) + B0 - e o+ 0+ )
1 1+ f1
+ e L o+ o+ i}

due to

(1 +p) 1+ f1)) +0y((1+p)f3) =0, 0u((L+p)f2) + 0y (1 + p)(1 + fa)) =

Then, the following two inequalities hold true:
2

10y fill71 S 1+f i 0y follim—1

+(1+PQ@ ()))(Ilayﬂllm 1+ sl1 + Plpllm) + 111 follo + P fallm—1))  (4.54)

and

105 f1 1172
S+ PR fo, Sl + Plpllm) + Pl fallm-1))
+ 1+ PO 1950172 + 10ypl5 -1 + 105 fll7 2
110y fill -1 + 10y f3llm—z + 10y fall7—2). (4.55)
where (4.54) is used.
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4.8. Estimates of 6; f3 and 8; fa (i =1,2). By the divergence free conditions, we have

0y = T =01+ D)1+ 1)) = Fidy}

and
1
Oyfa = m{—az((l +p)f2) = (1 + f1)Oyp}-
Consequently,
053121 S (1+ PQUN o + 11 fal2) + [ fllB IOyl (456)
By similar arguments, it follows that
10y fallm—1 S (L +P@Q)))lpll7 + I fll, + 18ypllm—1 + [l fall7r); (4.57)
moreover,
195 f311 72
SA+PQENUplm—1 + 1(Fr, F3)lloy + 10y (o, ) ooy + 10y f3llm—2) + I fll7o0 105 pl1 72
(4.58)
and
195 fall7—
SO+ PN (s for fa)llmaer + 19y (0, ) lm—1 + 18y fal 7z + (L + [ fall2) 195 p||$n(2)' )
4.59

Finally, by combining the estimates (3.8), (4.5), (4.6), (4.8), (4.10), (4.22), (4.33), (4.42),
(4.53), (4.54)-(4.59), we shall be able to complete the proof of Proposition 4.1. We remark
that for this purpose we may apply the multiplications: (4.22) x My and (4.42) x M; with
My and M; being suitably large to cancel the terms 52]]8§v\|72n71 in (4.33) and 52”%“”72714
n (4.53), moreover, it can also cancel ||9yp||%,_; in the right hand sides of (4.54) and (4.57)
due to a priori assumption Q(t) < C, and ¢ in (3.8) is chosen to be suitably small. And the
a priori assumption of || f3|| L < Cooyp is also used. To derive the L7  -norms of second order
normal derivatives, we also need the following facts:

S 10,0 o )2 S 1000 2 20O+ [ 10,0 o £ 1 < Cor
and

t
Sup, 218, (u, v) ()72 < 2195 (u, v) (0|7, +/ e?[18, (u, v)(s) |- 1ds < Cooo, (i =1,2),

due to the condition (1.8) and the a priori assumptions:

t t
AH%%&M@%J%S@VU% AQMWM@%JMS@rU%@—L%

where the constant Cj is suitably large and g is sufficiently small in Theorem 1.1. Then, the
Lix—norms of the second order normal derivatives appearing on the right hand sides of (4.33)
and (4.53) can be absorbed by related terms on the left hand sides due to the smallness of o
and €.
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5. PROOF OF THEOREM 1.1

We are ready to prove the estimate (1.10) in Theorem 1.1. Using the estimates in Propo-
sitions 4.1, we have

2
1(p = 1,0, G1, G2)())lI7, + ellOy L2 (D) 171 + € 10y, -y + €0 2O 2 + < |5,

t

+ /O (elIva(n)II7, +*(105ully,y + 105ull7—2) + e (105vll5, 1 + 1055, —2))dr
t

+/0 (10, (0, G1, G2)(7) 701 + 195 (1, G1, G2)(7) 7, —2)dT

[ (10 10l ) e
<P — 1,0, G, Ga)(O) 2, + 0, F2(0) 2,y + ¢ [0yp(0) |2, + €O a(0) |2,
+e RO, + 1+ PQW) [ 160,61, Ga)(r) (5.1)
Set
W) =ll(p— 1w, G, Ga)(DI2, + 2|0y O,y + 10,012 + O faI2 o +2 020,

t

+/0 (elVa()I7, + I07ullf,— + 105ulls, o) + 2 (1050]15, 1 + 1950117, 2))dr
t

+/0 19y (w, G1, G2)(7)[I7, 1 + 105 (1, G1, G2) () [, —5)d

t
9 2
—i—/o <HayPHm71 + Hé’;pHm_2> dr.
By Lemma 2.2, we have

I(p — 1,u,G1,G2) (1) |11
Slip —1,u,G1, G2)(0) 13 + [19y(p, u, G1, G2)(0)|[3

t
+/0 (I(p = 1,0, G1, G2)(T)[I7 + [0y (p, w, G1, G2) (1) [3)dr S W (£)(1 +t) + o,

and
|(Vp, Vu,VG1,VG2)(t)|1,00
SI(Vp, Vu, VG1, VG2)(0)[[3 + [0, (Vp, Vu, VG1, VG2)(0)|3
+ [ (9.7, YG1, TG+ 10,(Vp, Y, VG, W Ga) () )i
§W(t§(1 +1t) + oo,
provided that m > 5. Then one has
W(t) Sll(p - 1,u,G1,G2)(0)|12, + e[|y f2(0) 12,1 + < 10,p(0)[12,_,
+el0] f200) |0 + € Haip(O)Hi,2 + (1 + P(W(t)(1+1) + 00)) W(t)t. (5.2)
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Let the time t and og be suitably small, it follows that
2 2
W(t) =[l(p — 1,0, G1, G2) ()7, + €lldy fo () [y + 10yl 1 +ll0; f2(t) 7=z + € (|05,

t

4 / V)2, + 2(102ul2 s + [05ul2, o) + 22020y + [030]2,_s))dr
t

4 / (19, (0, G1, Ga)(7)[2_; + 02(w, Gy, ) ()|[%_)dr

t
2
+ [ (1upli s+ 95, ) ar

Sl — 1,0, Gr, G2)(0) 7, + €ll9y f2(0) 17,1 + e 19p(0)]I

m—1

+el|lO2f2(0) |2,y + € [[02p(0)]7, . (5.3)
and

I(p = 1,u,G1,G2) ()17 o0 + |(VP, VU, VG1, VG2)(1)]|1,00
Slp = 1,0, G1, G2) ()17, + €119y £2(0) 17—y + € [10,p(O)12,_,
+e02f2(0)|2, 5 + € | 2p(O)|[7,_, + 18y (p, u. G1, G2) (0)]3
+ 18, (Vp, Vu, VG1, VG2)(0)||2. (5.4)

Consequently, the following a prior: assumptions hold true:

ol < 1/2, | fallLee < 1/2

by letting oo in Theorem 1.1 be suitably small. In fact, the following estimates hold true:

Cy Co Co
| fallpe < 700a lpl1,00 < ?UO’ [l fall1,00 < 700’

and

t C t ) C ‘
[ 10 o @B as < Pon [ o306 ds < T, (1= 1.2),

where (Y is a suitably large constant. Based on the uniform a priori estimates established
above, we can achieve the estimate (1.10) and further verify the inviscid limit in Theorem 1.1
by the similar arguments to those in [31]. We omit the details here. The proof of Theorem
1.1 is completed.
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