Algorithm and System Co-design for Efficient Subgraph-based
Graph Representation Learning

Haoteng Yin', Muhan Zhang*, Yanbang Wang?®, Jianguo Wang', Pan Li’

"Department of Computer Science, Purdue University

¥ Institute for Artificial Intelligence, Peking University

SDepartment of Computer Science, Cornell University
yinht, csjgwang, panli}@purdue.edu ¥ muhan@pku.edu.cn ¥ ywangdr@cs.cornell.edu

ABSTRACT

Subgraph-based graph representation learning (SGRL) has been
recently proposed to deal with some fundamental challenges en-
countered by canonical graph neural networks (GNNSs), and has
demonstrated advantages in many important data science applica-
tions such as link, relation and motif prediction. However, current
SGRL approaches suffer from scalability issues since they require ex-
tracting subgraphs for each training or test query. Recent solutions
that scale up canonical GNNs may not apply to SGRL. Here, we pro-
pose a novel framework SUREL for scalable SGRL by co-designing
the learning algorithm and its system support. SUREL adopts walk-
based decomposition of subgraphs and reuses the walks to form
subgraphs, which substantially reduces the redundancy of subgraph
extraction and supports parallel computation. Experiments over
six homogeneous, heterogeneous and higher-order graphs with
millions of nodes and edges demonstrate the effectiveness and scal-
ability of SUREL. In particular, compared to SGRL baselines, SUREL
achieves 10x speed-up with comparable or even better prediction
performance; while compared to canonical GNNs, SUREL achieves
50% prediction accuracy improvement.

PVLDB Reference Format:

Haoteng Yin, Muhan Zhang, Yanbang Wang, Jianguo Wang, Pan Li.
Algorithm and System Co-design for Efficient Subgraph-based Graph
Representation Learning. PVLDB, 15(11): 2788 - 2796, 2022.
doi:10.14778/3551793.3551831

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Graph-COM/SUREL.git.

1 INTRODUCTION

Graph-structured data is prevalent to model relations and interac-
tions between elements in real-world applications [19]. Graph rep-
resentation learning (GRL) aims to learn representations of graph-
structured data and has recently become a hot research topic [11].
Previous works on GRL focus on either model design or system de-
sign while very few works jointly consider them. Works on model
design tend to propose more expressive, generalizable and robust
GRL models while paying less attention to their deployment [27, 34].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551831

Hence, many theoretically powerful models can hardly apply to
large real-world graphs. On the other hand, research on system
design focuses on system-level techniques for better model devel-
opment, such as graph partitioning [6], sub-sampling [12, 45] and
pipelining [16, 33, 46, 50]. However, they only consider basic GRL
models, in particular graph neural network (GNN) models, yet often
overlook their modeling limitations to solve practical GRL tasks.

Canonical GNNs [12, 18] share a common framework: each node
is associated with a vector representation that gets iteratively up-
dated by aggregating the representations from its neighboring
nodes via graph convolution layers. The final prediction is made
by combining the representations of nodes of interest. Although
recent successes in system research have greatly pumped up the ef-
ficiency [8, 37], the GNN framework intrinsically suffers from three
modeling limitations. First, information may be over-squashed into
a single node representation that results in subpar performance
when multiple tasks are associated, e.g. to predict multiple rela-
tions or links attached to the same node [1, 7]. Second, canonical
GNNs cannot capture intra-node distance information due to lim-
ited expressive power [20, 35], and thus fail to make predictions
over a set of nodes (See Fig. 1a), such as substructure counting [2, 5]
and higher-order pattern prediction [31, 49]. Third, the depth of
GNNs is entangled with the range of the receptive field. For more
non-linearity, using deeper GNNs comes with a larger but possibly
unnecessary receptive field, which poses the risk of contaminating
the representations with irrelevant information [14, 44].

Recently, subgraph-based GRL (SGRL) has emerged as a new
trend and has shown superior performance in tasks such as link
prediction [47, 49], relation prediction [32], higher-order pattern
prediction [20, 24], temporal network modeling [39], recommender
systems [48], graph meta-learning [14], and subgraph matching [23,
25] and prediction [38]. Different from canonical GNNs, SGRL ex-
tracts a subgraph patch for each training and test query and learns
the representation of the extracted patch for final prediction (See
Fig. 1b). For example, SEAL [47, 49] learns the representation of
a subgraph around a given node pair to predict the link between
them. This framework fundamentally overcomes the above three
limitations. First, subgraph extraction allows decoupling the con-
tributions made by a node to different queries, which prevents in-
formation over-squashing. Second, subgraph patches can be paired
with distance-related features that favor prediction over a set of
nodes [20, 49]. Third, subgraph extraction disentangles model depth
and range of receptive field, which allows learning a rather non-
linear model with only relevant local subgraphs as input.

Despite their importance, the SGRL framework has not received
as much attention as the canonical GNN framework in the system

2788

https://doi.org/10.14778/3551793.3551831
https://github.com/Graph-COM/SUREL.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551831
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(a) Subtree Rooted at

i v ‘
: Nodeswandv : w i
| o8 T |
| w v 1 N 57 e \
l el @ o H !
!) o | @ ‘
! = ! o [1
} [] o] @ : w D / \—>]

|
¢ ¢ 1 A |

Figure 1: A Toy Example of SGRL: the task is to predict whether
uw or uv is more likely to form a link. Ideally, if this comes from a
social network, uv is more likely linked because they share a com-
mon neighbor. However, canonical GNNs cannot tell such differ-
ence since w and v share the same subtree structures resulting in the
same representation [40]. SGRL solves this problem by extracting
a subgraph patch around each queried node pair. Prediction based
on the subgraph representation provides much better performance
than canonical GNNs [47, 49].

research community. The underlying challenge comes from the
subgraph extraction step in SGRL, which can be rather irregular
and time-consuming. Specifically, SGRL requires to materialize
a subgraph patch for each query during training and inference.
Previous works of SGRL typically extract subgraphs offline for all
such queries [24, 47], but it is not scalable for large graphs due
to extensive memory need. Meanwhile, the online extraction [44]
is not an option as it requires considerable processing time. The
irregularity of subgraphs further makes it difficult to efficiently
handle the extraction process in both cases.

Here, we aim to fill the gap by designing a novel computational
framework SUREL, to support SGRL over large graphs. SUREL
consists of a new system-friendly learning algorithm for SGRL and
a scalable system to support this algorithm. The crucial design of
SUREL is to reduce the overhead caused by the online subgraph
extraction, which all current SGRL approaches suffer from.

The key idea behind SUREL is to break (and down-sample) sub-
graphs into random walks of regular size that can be easily sam-
pled and, more importantly, reused among different queries. To
compensate for the missing structural information after subgraph
decomposition, we introduce relative position encoding (RPE), an
intra-node distance feature that records the position of each node in
the sampled subgraph. Specifically, for each node u in the network,
SUREL collects a certain number of random walk starting from u.
Each node appearing in these walks uses its landing counts at each
step as the RPE vector. Overall, the set of collected walks paired
with RPEs can be viewed as a subgraph patch centered at u. The
complexity of the above process is linear with the number of nodes,
and can be done in parallel and offline. For training and inference,
given a queried node set Q, SUREL first groups the sampled walks
originated from all nodes in Q. Then, it implicitly joins the subgraph
patches centered at each node in Q by combining their node-level
RPEs into a query-level RPE for each node associated in the grouped
walks, which can also be executed in full parallel. Finally, SUREL
uses neural networks to learn the representation of the joined set
of walks attached with query-level RPEs for final prediction. Since
these walks are regular, the training process can be done quickly
by GPU. The system architecture of SUREL is illustrated in Fig. 2.

Our contributions can be summarized as follows: (1) A Novel
System-Friendly Algorithm. We propose the first scalable algo-
rithm for SGRL tasks by adopting a novel walk-based computation

framework. This framework uses regular data structures and al-
lows extreme system acceleration. (2) Dedicated System Support
(Open-source). We design SUREL to support the proposed algo-
rithm. It can rapidly sample walks, encode positional features, and
join them to represent multiple subgraphs in parallel. SUREL adopts
many system optimization techniques including parallelization,
memory management, load balancing, etc. (3) High Performance
and Efficiency. We evaluate SUREL on link/relation/motif three
prediction tasks over 6 real-world graphs of millions of nodes/edges.
SUREL significantly outperform the current SGRL approaches, and
executes 10X faster in training and testing. Meanwhile, benefiting
from the SGRL essence, SUREL outperforms canonical GNNs by a
great margin on prediction performance (almost 50% in all tasks).

2 PRELIMINARIES AND RELATED WORKS

In this section, we set up notations, formulate the SGRL problem
and review some related works.

2.1 Notations

Definition 2.1 (Graph-structured data). Let G = (V, &, X) denote
an attributed graph, where V = [n] and & C VXV are the node set
and the edge set respectively. X € R™ denotes the node attributes
with d-dimension. Further, we use N, to represent the set of nodes
in the direct neighborhood of node v, i.e., Ny = {u : (u,v) € E}.

Definition 2.2 (m-hop Subgraph). Given a graph G and a node set
of interest Q, let Qg denote the m-hop neighboring subgraph w.r.t
the set Q. gg is the induced subgraph of G, of which the node set
V" includes the set Q and all the nodes in G whose shortest path
distance to Q is less than or equal to m. Its edge set is a subset of &,
where each edge has both endpoints in its node set ’Vé" The nodes
in (Vé" still carry the original node attributes if G is attributed.

2.2 Graph Learning Problems and Background
Now, we formally formulate the GRL and SGRL problems.

Definition 2.3 (Graph Representation Learning (GRL)). Given a
graph G and a queried set of nodes Q, graph representation learning
aims to learn a mapping from the graph-structured data to some
predicting labels as f(G, Q) — y, where the mapping (G, Q) may
reflect structures and node attributes of G and their relation to Q.

Definition 2.4 (Subgraph-based GRL (SGRL)). Given a node set Q
over an ambient graph G and a positive integer m, SGRL is to learn
the mapping to some labels, which takes the m-hop neighboring
subgraph of Q in G as the input f(gg, Q) — y. An SGRL task

typically is given some labeled node set queries {(Q;, yl-)}{.“:1 for

L+N

training and other unlabeled node set queries {Q;};7;}, for testing.

We list a few important examples of SGRL tasks. Link pre-
diction seeks to estimate the likelihood of a link between two
endpoints in a given graph. Additionally, it can be generalized to
predict the type of links, such as relation prediction for heteroge-
neous graphs. In this case, the set Q corresponds to a pair of nodes.
The network scientific community has identified the importance of
leveraging the local induced subgraphs for link prediction [21]. For
example, the number of common friends (shown as neighbors in
a social network) implies how likely two individuals may become

2789

https://github.com/Graph-COM/SUREL.git

friends in the future. Another generalized form of link prediction
is higher-order pattern prediction, where the set Q consists of
three or more nodes. The goal is to predict whether the set of nodes
in Q will foster a covered edge (termed hyperedge).

Graph neural networks (GNN5s). Canonical GNNs associate
each node v with a vector representation h, which is learned and
updated by aggregating messages from v’s neighbors, as

h% = UPDATE (h’;‘l,AGGREGATE ({hﬁ‘1 lu e Nz,})) .

Here, UPDATE is implemented by neural networks while AGGRE-
GATE is a pooling operation invariant to the order of the neighbors.
By unfolding the neighborhood around each node, the computa-
tion graph to get each node representation forms a tree structure.
According to Def. 2.4, canonical GNNs seem also able to perform
SGRL by encoding the local subtree rooted at each node into a node
representation (See Fig. 1a). Nevertheless, by this way, each node
representation only separately reflects the subgraph around each
node but cannot jointly represent the subgraph around multiple
nodes, which yields the problem in Fig. 1. However, the SGRL frame-
work considered in this work is able to learn the representation of
the joint subgraph around a queried node set.

2.3 Other Related Works

Without exception, previous works focus on improving the scal-
ability of canonical GNNs and their system support, but some of
their techniques inspire the design of SUREL.

To overcome the memory bottleneck of GPU when processing
large-scaled graphs, sub-sampling the graph structure is a widely
adopted strategy. GraphSAGE [12] and VR-GCN [4] use uniform
sampling schema and variance reduction technique respectively to
restrict the size of node neighbors; PIN-SAGE [42] exploits Person-
alized PageRank (PPR) scores to sample neighbors. FastGCN [3] and
ASGCN [15] perform independent layer-wise node sampling to al-
low neighborhood sharing. Cluster-GCN [6] and GraphSAINT [45]
study subgraph-based mini-batching approaches to reduce the size
of training graphs. Note that the subgraphs in our setting are sub-
stantially different from theirs, since our subgraphs work as features
for queries while their subgraphs are a compensatory choice to
achieve better scalability.

Many works better the system support for GNNs. DGL [37] and
PyG [8] are designed for scalable single-machine GNN training.
Marius [26] is proposed to efficiently learn large-scale graph em-
beddings on a single machine. There are several distributed systems
dedicated to GNNs: AliGraph [41] addresses the storage issue of
applying GNNs on massive industrial graphs; AGL [46] employs
a subgraph-based system for GRL; ROC [16] builds a multi-GPU
framework for deeper and larger GNN models; Dorylus [33] de-
signs a CPU-based distributed system for GNN training. G° [22]
speedups GNN training via supporting parallel graph-structured
operations. Zhou et al. [51] uses feature dimension pruning to ac-
celerate large-scale GNN inference. However, all these systems
only support canonical GNNs so they all suffer from the intrinsic
modeling limitations of GNNs.

3 THE ARCHITECTURE OF SUREL

In this section, we first give an overview of the SUREL framework
as shown in Fig. 2. Then, we focus on the design and the implemen-
tation of three modules: Walk Sampler & Relative Position Encoder

2790

d
Node Subgraph Walk Relative Position
Sampler Decomposition Sampler Encoder

! 1
! |
! 1
! 1
! 1
| > |
| Walk-based @+0>=@>O; g:mli\:\:\:‘ -
: Subgraph Storage ©@>0>0>@; lo5s mEmj :
1 Q. - |
: Preprocessing [Set of WalksW“] [RP Encoding Xu] :
N D2 _ﬁ ______ -
SGRL Pipeline Query Q = {u,v} Gl based
uery-base:
Subgraph Mini- —_—D Subgraph Joining
batching Training < Xyo WXy o, VT
Subgraph

Model Serving

g
Representation Q Neural Encoding

Figure 2: The System Architecture of Subgraph-based Graph
Representation Learning Framework (SUREL).

(Preprocessing), Walk-based Subgraph Storage, Query-based Sub-
graph Joining & Neural Encoding. At last, we elaborate an efficient
training pipeline with Subgraph Query Mini-batching.

3.1 Overview

Existing SGRL frameworks that extract a subgraph per query do not
support efficient training and inference. m-hop subgraph extraction
faces the size “explosion” issue as many nodes have significantly
large degrees in real-world networks. Moreover, subgraphs of dif-
ferent sizes cause workload fluctuation, hindering load balancing
and memory management.

Subgraph extraction can be replaced with efficient walk-based
sampling, which sidesteps all above issues via regulating the num-
ber and the length of sampled walks. The number and the length of
these walks are small constants, so the space and time complexity
here is only linear w.r.t the number of nodes. Specifically, during
preprocessing, SUREL reduces the subgraph around each node in a
given graph to a set of random walks originated from it. To compen-
sate for the loss of structural information after breaking subgraphs
into walks, an intra-node distance feature termed relative positional
encoding (RPE) is proposed, which enables locating each node in
the sampled subgraph. The collected set of walks paired with its
RPEs is hosted in the walk-based subgraph storage, with a dedicated
data structure designed to support rapid and intensive access. The
preprocessing flow is presented in the upper part of Fig. 2.

For training and testing, given a query (set of nodes), SUREL
employs subgraph joining to implicitly construct a subgraph around
the entire query in full parallel. First, all the walks originated from
the queried node set are grouped. Then, the precomputed node-level
RPEs are joined into query-level RPEs. SUREL further adopts neural
networks to encode the grouped walks paired with query-level
RPEs, and makes final predictions based on the obtained subgraph
representation. A mini-batching strategy is designed to maximize
data reuse during training by exploiting the query overlaps.

3.2 Preprocessing - Walk Sampling & Encoding

The bottleneck of current SGRL frameworks is how to cheaply ac-
quire the m-hop neighbors for each queried set of nodes. SUREL
proposes to decompose the m-hop subgraph into a set of m-length
walks that start from the queried set of nodes. As the walks are
regular, their storage and access are extremely efficient. This also

Walk-based Subgraph Storage A
Random Walks Landing Counts Pruning & Reindexing

Set of Walks

Relative Positional\ 1 Reduced RPE Array T\

(M=2 by m=2 steps) Encoding X Index Value
J (0) |ofo|o
: Ko [2,0,0] =
@:@’@’@: Xy 020 | | M [olof1k
@-O>@ @ [0,0.1-2F-F" (2) |o §2 o],
TN D X [0,0,1] o o
"""""" Xy [0,0,1] Dictionary . |
Ko [0,2,0] M : Vi = Xu(RPE-ID,) |

Xy [0,0,1] SN oA O R g
X, [2,0,0] : Vu ®® @ ®r:

Prepoces% Query-based Subgraph Joining
N
{“ vy Joined Walks Query-level RPEs X, .
forQuery Q@ .-
SN~ N XuzUXUI,TE{ubav}

@ [2,0,0],[0,0,1])
@0+ (® (10,2,0],0,2,0)) :
@Q>®+@: @ o001 :

@*@*@ (@ (0,0,1,12.0,0) :

Figure 3: An Illustration of Joining RPE into Query-level
RPEs with the Support of Walk-based Subgraph Storage.

resolves the computational problem caused by the long-tailed dis-
tribution of node degrees. More importantly, the collected walks
grouped by their starting nodes can be shared and reused among
different queries. Our design decouples SGRL from redundant sub-
graph extraction and enables the reusability of preprocessed data.
We summarize the preprocessing routines with the support of hash-
indexed storage in Algorithm 1 and introduce the specifics next.

Walk Sampling. During preprocessing, SUREL samples M-many
m-step walks for every node in a given graph. As Fig. 3 (upper left)
shows, the sampled walks are grouped in a set ‘W,,, where u denotes
the starting node of these walks. Walk sampling can be easily di-
vided into parallelizable pieces. The parallelization is implemented
based on NumPy and OpenMP framework in C. Moreover, to further
accelerate walk sampling, we use compressed sparse row (CSR) to
represent the graph. The CSR format consists of two arrays, idxptr
of length |V| + 1 used to record the degrees of nodes, and indices
of size |&E|, each row of which corresponds to the neighbor list
per node. CSR allows intensive fast access to the neighbors of a
node while keeping the memory cost low, which is vital for walk
sampling in large-scale graphs.

Relative Positional Encoding (RPE). Structural information
gets lost after breaking subgraphs into walks. SUREL compensates
such loss via RPE to locate the relative position of a node in each
sampled subgraph, which characterizes the structural contribution
of the node to its corresponding subgraph.

For each set of walks ‘W,,, we first establish a set ‘V,, that contains
distinct nodes appearing in ‘W,,. Define node-level RPE X, : ‘V,, —
R™*! a5 follows: for each node x € V,, a vector X, x € R™ g
assigned, where Xy, x[i] is the landing counts of node x at position
i in all walks of ‘W,,. In SUREL, RPE can be computed on the fly as
walks get sampled, thus resulting in nearly zero extra computational
cost. The set of walks W, paired with the RPE X,, essentially
characterize a sub-sampled subgraph around the node u. Next, we
present a dedicated data structure to host ‘W, and X, altogether.

2791

Algorithm 1: Data Preprocessing in SUREL

Input: Graph G; number of walks M; step of walks m
Output: Associative array A, RPE array 7~
1 Initialize the array A and 7, the dictionary H
2 for each nodeu € G do
3 Run M times m-step random walks on G as a set of walk
W, e ZMxm,
4 Add the key V;, = set(‘W,,) to Hy;
5 Calculate RPE for Vx € V,,, save the value X, x to 7,
and write its index in 7~ as RPE-ID,, x back to Hy, (x);
6 Insert {u : (Wy, Hy)} to A
7 end
8 Prune 7 and update the value of H by re-indexing.

3.3 Walk-based Subgraph Storage

It is easy to manage the collected set of walks due to its regularity.
An m#* M-sized chunk is allocated to each set of walks, which assists
to speed up data fetching. How to organize node-level RPE presents
a real challenge because the cardinality of the set |V, | varies from
node to node. One naive way to avoid such irregularity is to directly
scatter these RPEs back to nodes in previously collected walks. But,
this gives an m * M * (m + 1) tensor, resulting in an unrealizable
memory need. Moreover, it loses track of node IDs in walks that
are needed for joining subgraphs later.

We use an associative array A to organize all walk-based sub-
graphs as shown in the upper part of Fig. 3. For each node u € V,
its corresponding entry in A is a node-level subgraph formed as
a tuple ("W, Hy). Here, ‘W, is a set of walks starting from u, and
Hy is a dictionary that maps the unique node set V;, of ‘W, to its
corresponding node-level RPE X,,. The use of dictionary resolves
irregularities in V,, mentioned above, while maintaining the con-
nection between node IDs and their RPEs. In addition, array 7~
is introduced to store RPE values centrally, rather than scattered
across dictionaries. As Fig. 3 (upper right) shows, the value of H,, (x)
is now replaced with the index of the RPE value X, x stored in 7~
accordingly, noted as RPE-IDy, x. This design overall guarantees the
access of RPE in O(1) time.

The above A and H,, are built on top of uthash’s macros !, with
extended support for arbitrary insertions and deletions of key—value
pairs. It offers data access and search in O(1) time on average, which
is about as good as the direct address table but greatly reduces
the space wastage. In particular, it has no dependency or need
for communication between multiple hash queries, thus can be
pleasingly executed in parallel. Both A and H,, are stored in RAM
on the CPU side. As we observed in Fig. 3, there are many repeated
RPE values. Once all nodes are sampled, the array 7~ can be pruned
to remove duplicates. RPE-IDs will be updated synchronously when
7 is reindexed. For example, both node a and v have the RPE value
of [0, 0, 1], whose index in 7™ is (1) after pruning. Thus, both H,,(a)
and H,y, (v) are assigned to the new RPE-ID as (1). The shape of 7
is regular and its size is usually small after pruning, which can be
fully loaded in GPU. In practice, we found that pining RPEs in GPU
memory is critical, as it can significantly reduce the communication
cost of moving data back and forth between RAM and SDRAM.

!https://troydhanson.github.io/uthash/

https://troydhanson.github.io/uthash/

3.4 Query-based Subgraph Joining

The storage designed above records the downsampled subgraph
around each node. As SGRL is mostly useful for making predictions
over a set of nodes Q, here we further illustrate how to get the
joined subgraph around all the nodes u € Q.

The idea is to concatenate all set of walks [..., W, ...] foru € Q,
since each set of walks ‘W, can be viewed as a subgraph around u.
Besides, each node x in the walks will be paired with a query-level
RPE Xp . that characterizes the relative position of node x in the
joint subgraph around the queried set Q. Specifically, Xg x is de-
fined by joining all RPEs X, x for u € Q, ie.,, Xgx = WyeoXux (=
[Xux,-]) € RM+DXIQI There will be some u € Q such that
x ¢ YV, for which Xy, x is set to all zeros. Through this proce-
dure, the joined subgraph with query-level RPEs is sent to GPU for
representation learning and then model inference.

The data structure described in Sec. 3.3 enables a highly parallel
implementation of subgraph joining along with optimized memory
management. On the CPU side, X . is not directly used to assemble
walks. Instead, we use a query-level RPE-ID that joins node-level
RPE indices in 7, i.e. use RPE-IDg y = [..,RPE-IDyy, ...] € RI€!
for u € Q, which reduces the memory cost from (m + 1) = |Q| to
|Q|. For instance, in Fig. 3 (bottom right), Xg,, = ([2,0,0], [0,0,1])
can be substituted by RPE-IDg,, = (3,1), as their RPE values locate
at the entry (3) and (1) of 7. As follows, SUREL pre-allocates an
array with the fixed-size [m * M « |Q|, |Q|], where m « M * |Q]| is
the size of walks around Q. Then, SUREL fills the index array with
RPE-ID, x by multithreads. Note that RPE-ID,, 5 can be rapidly
retrieved via the dictionary operation H,, (x). Lastly, assembling
RPE values to walks is performed on GPU via the indexing operation
Xux =7 (RPE-IDy,), where 7 is pinned in GPU memory earlier.
SUREL incorporates a Python/C hybrid API for subgraph joining,
building on top of NumPy, PyTorch, OpenMP and uthash.

Some remarks can be made here. First, the above algorithm con-
tains some redundancy to compute the query-level RPE-ID for the
nodes that appear multiple times in the walks. In practice, we find
that about half of the nodes appear only once, thus doubling the
computation time at most. To avoid such redundancy, one can first
compute the set union Vg = U, oV, and then compute the query-
level RPE-ID by traversing all nodes in V. However, parallel set
union is difficult to implement efficiently. When multithreading
is enabled, we observe a significant increase in the efficiency of
SUREL, as opposed to the union operation. Also, by dynamically
adjusting the number of threads, the workload between CPU and
GPU can be well balanced. Second, we have empirically found that
using RPE-ID instead of RPE to assemble walks provides an observ-
able performance boost (speed up by 2X or more), otherwise data
communication between CPU and GPU would the main bottleneck.

3.5 Neural Encoding

After subgraph joining for each query, the obtained subgraph is
represented by a concatenated set of walks on which nodes are
paired with query-level RPEs (See Fig. 3). Next, we introduce neural
networks to encode these walks into a subgraph representation hg.

Due to its regularity, any sequential models, e.g., MLP, CNN,
RNN, and transformers can be adopted for sampled walks. We test
RNN and MLP for neural encoding, both of which achieve similar

2792

Algorithm 2: The Training Pipeline of SUREL
Input: A graph G, a set of training queries {(Q;, y;)}, batch
capacity Bj, batch size By
Output: A Neural Network for Neural Encoding NN(-)
1 Prepare the collection of set of walks ‘W and RPEs X

2 for iter = 1,..., max_iter do
3 Initialize the set Q = 0 to track reached queries;
4 Randomly choose a seed-set of nodes V from UQ;

5 Run breath-first search to expand V and Q until

|V| =By or |Q| = By;

6 Generate negative training queries (if not given) for a
mini-batch and put them into @;

7 Perform subgraph joining for queries in Q;

8 Encode the concatenated walks by NN(-) to get the
subgraph representation hg for each query;

9 Use backpropagation [29] to optimize model parameters.
10 end

results. Next, we take the RNN as an example. We encode each walk
W = (wo, Wi, ... wm) € W as enc(W) = RNN({f (X0, w;) }i=0.1,...m)>
where w;’s denote the node at step i in one sampled walk. Here,
f is to encode the query-level RPE. Node or edge attributes for
each step wi € W can be supported by attaching those attributes
after its RPE. To obtain the final subgraph representation of Q, we
aggregate the encoding of all the associated walks through a mean
pooling, i.e., hp = mean({enc(W)|W starts from some u € Q}).In
the end, a two-layer classifier is used to make prediction by taking
hg as input. In our experiments, all the tasks can be formulated as
binary classification, and thus we adopt Binary Cross Entropy as
the loss function.

3.6 The Training and Serving Pipelines

SUREL organically incorporates the storage designed in Sec. 3.3
and the subgraph-joining operation described in Sec. 3.4 to achieve
efficient training and model serving.

Subgraph queries Q’s are sets of nodes, which often come from a
common ambient on a large graph. There might be many overlaps
between different queries and their m-hop induced subgraphs. If
the queried subgraphs are known in prior, we may put these queries
with high node overlap into the same batch to improve data reuse.
Here, queries of each given task are assumed to have the same
size, e.g. |Q| = 2 for link prediction. In practice, test queries are
usually given online while the training ones can be prepared in
advance. Hence, we propose to accelerate the training pipeline by
mini-batching the overlapping queries. Practitioners can choose the
appropriate pipeline according to the specific situation. Algorithm
2 summarizes the overall training procedure of SUREL.

Mini-batching for Training. We first randomly sample a seed-
set of nodes V from the union of queried node sets UQ. Then, we
run breadth-first search (BFS) to expand the seed-set V. Neighbor
fetching of the BFS here is based on the grouped queries instead
of the original graph: a neighbor of node u is defined as the node
that shares at least one query with it. During BFS, the reached
queries will be added to a set Q. The expansion stops once the
size of either the seed-set V or the mini-batch Q reaches some

Table 1: Summary Statistics for Evaluation Datasets.

Dataset Type #Nodes #Edges
citation2 Homo. 2,927,963 30,561,187
collab Homo. 235,868 1,285,465
ppa Homo. 576,289 30,326,273
ozb-ma Hetero Paper(P): 736,389 P-A: 7,145,660
gh-mag " Author(A): 1,134,649 P-P: 5,416,271
91,685 jected
tags-math Higher. 1,629 (projected)

822,059 (hyperedges)
DBLP- . 7,904,336 (projected)
coauthor Higher. 1,924,991 3,700,067 (hyperedges)

pre-defined limits. Since the data structure for each query in SUREL
after subgraph joining is regular, it is easy to decide the size limits
of seed-set and mini-batch based on resource availability (i.e. GPU
memory). In practice, this BFS procedure improves reusability of
data within each mini-batch, and may significantly decrease the
communication cost between CPU and GPU. If the training set only
contains positive queries (often in link/motif prediction tasks), we
design an efficient sampling strategy for negative queries by the
same principle that randomly pairs them within the same batch.

4 EVALUATION

In this section, we aim to evaluate the following points:

e Regarding prediction performance, can SUREL outperform state-
of-the-art SGRL models? Can SUREL significantly outperform
canonical GNNs and transductive graph embedding methods due
to the claimed benefit of SGRL?

o Regarding runtime, can SUREL significantly outperform state-of-
the-art SGRL models? Can SUREL achieve runtime performance
comparable to canonical GNNs? Previous SGRL models are typi-
cally much slower than canonical GNNS.

e How about the parameter sensitivity of SUREL? How do the
parameters m and M impact the overall performance?

o How is the parallel design of SUREL performing and scaling?

4.1 Evaluation Setup

We conduct extensive experiments to evaluate the proposed frame-
work with three kinds of graphs (homogeneous, heterogeneous,
and higher-order homogeneous) on three corresponding types of
tasks, namely, link prediction, relation prediction and higher-order
pattern prediction. Homogeneous graphs are the graphs without
node/link types. Heterogeneous graphs include node/link types.
Higher-order graphs contain higher-order links that may connect
more than 2 nodes. The dataset statistics are summarized in Table
1, most of which are larger than the datasets used in [50, 51], not to
mention that our node-set prediction task is much more complex
than the node classification task considered in the previous works.

Open Graph Benchmark (OGB). We use three link prediction
and one relation prediction datasets [13]: ppa - a protein interaction
network, collab - a collaboration network, and citation2 - a
citation network; and one heterogeneous network ogb-mag, which
contains four types of nodes (paper, author, institution and field)
and their relations extracted from MAG [36].

Higher-order Graph Dataset. DBLP-coauthor is a temporal
higher-order network that records co-authorship of papers as times-
tamped higher-order links. tags-math contains sets of tags that

2793

Table 2: Comparison of SGRL Methods for Subgraph Sam-
pling. Suppose using O(|E]) many queries and S to denote
the average size of sampled subgraphs. The wall-clock time
is measured on citation2 test set with p = 16 threads.

Methods | SEAL (1-hop) [47,49] | DE-GNN [20] | SUREL
Time Complexity 0(S|&) IGED) 0('"7"4)
Wall Time 36h > 1 month 26s

are applied to questions on the website math.stackexchange.com
as higher-order links. For the two higher-order graphs, SUREL
and all the baselines will treat them as standard graphs by project-
ing higher-order links into cliques. However, the training and test
queries are generated based on higher-order links detailed next.

Settings. For Link Prediction, we follow the data split as OGB
requires to isolating the validation and test links (queries) from the
graphs. For Relation Prediction, the relations of paper-author (P-A)
and paper-citation (P-P) are selected. The dataset is split based on
timestamps. 0.5% of existing edges of each target relation type are
selected from ogb-mag. For each paper, two authors/citations are
picked from its P-A/P-P relations respectively, one for validation
and the other for testing. The remaining links are used for training.
For Higher-order Pattern Prediction, we focus on predicting whether
two nodes will be connected to a third node concurrently via a
higher-order link in the future. Specifically, positive queries are
node triplets, where two nodes are linked before the timestamp ¢
and the third node establishes connection to the pair via a higher-
order link after ¢. The split ratio of positive node triplets is 60/20/20
for training/validation/testing. For Relation Prediction and Higher-
order Pattern Prediction, each positive query is paired with 1000
randomly sampled negative queries (except tags-math uses 100)
in testing. For fair comparison, all baselines are tested with the
same set of negative queries sampled individually for each dataset.
All experiments are run 10 times independently, and we report the
mean performance and standard deviations.

Baselines. We consider three classes of baselines. Graph Embed-
ding methods for transductive learning: Node2vec [10] and Deep-
Walk [28], which learns a single embedding for each node and
may suffer from the information over-squashing issue; Canonical
GNNs: GCN [18], GraphSAGE [12], GraphSAINT [45], Cluster-GCN
[6], Relational GCN (R-GCN) [30], Relation-aware Heterogeneous
Graph Neural Network (R-HGNN) [43]; SGRL models: SEAL[47, 49],
DE-GNNJ20]. SEAL supports both offline and online subgraph ex-
traction per query. However, it takes SEAL 2+ hours and 102GB
RAM to offline extract 2% training subgraphs on citation2. Thus,
we only keep the online setting for SEAL. DE-GNN only supports
offline subgraph extraction. Table 2 compares subgraph sampling
for different SGRL methods. We adopt official implementations of
above baselines with tuned parameters that match reported results.
SUREL uses an 2-layer MLP for embeddings of RPEs and an 2-layer
RNN to encode query-level joined walks. The obtained subgraph
embeddings are fed into an MLP classifier for final prediction. De-
fault training parameters are: learning rate 1r=1e-3 with early
stopping of 5-epoch patience, dropout p=0.1, Adam [17] as the
optimizer, batch capacity By = 1500, and batch size By = 32. Hidden
dimension d and walk parameters M, m are investigated in Sec. 4.4.
Detailed parameter configurations can be found in the attached
artifact and Appendix D of the arxiv version of this work [link].

math.stackexchange.com
https://arxiv.org/abs/2202.13538

Table 3: Results for Link Prediction, Relation Prediction,
and Higher-order Pattern Prediction.

Table 4: Breakdown of Runtime, Memory Consumption for
Different Models on citation2, collab and DBLP-coauthor.
Training time is calculated if no better validation result is

Models citation2 collab ppa observed in 3 consecutive epochs, which assumes the model
MRR (%) Hits@50 (%) Hits@100 (%) has converged. Full-batch training models need NVIDIA
NOdeZVCc 61.28+0.15 47.54+0.78 18.05+0.52 A100 (48GB) GPUS', reSultS OfWhiCh are markedwith *. Other
DeepWalk 84.47+0.04 49.08+0.93 27.80+1.71 models take less time on A100 than on RTX 6000.
GCN 84.74+0.21 44.75+1.07 18.67+1.32 Models ‘ Runtime (s) Memory (GB)
SAGE 82.60+0.36 54.63+1.12 16.55+2.40 | Prep. | Train Inf. | Total | RAM SDRAM
Cluster-GCN ~ 80.04+0.25 44.02+137 3.56+0.40 < GON TR R BCERE
GraphSAINT 79.85+0.40 53.12+£0.52 3.83+1.33 S Cluster-GCN | 197 2,663 82 2,942 | 183 14.07
S GraphSAINT | 140 3,845 86 4,071 | 16.9 14.77
SEAL 87.67+0.32 63.64%0.71 48.80+3.16 +:3 SEAL (1-hop) | 46 | 22,296 130,312 | 152,654 | 36.5 3.35
SUREL 89.74+0.18 63.34+£0.52 53.23+1.03 © SUREL 31 2,096 7,959 10,086 15.2 4.50
del. MAG(P-A) MAG(P-P) tags-math DBLP-coauthor GCN 6 840 0.1 846 3.2 5.17
Models MRR (%) MRR (%) MRR (%) MRR (%) 4 Cluster-GCN | 8 649 0.2 666 3.4 5.29
peye N " N N .'Z.o' GraphSAINT | <1 6,746 0.2 6,747 3.2 6.58
N 39.43%0.29 57.43%0.30 51.64+0.27 37.95+2.59 S SEAL (1-hop) 10 7.675 37 7.722 15.4 6.97
SAGE 25.35£1.49 60.54+1.60 54.68+2.03 22.91+£0.94 SUREL <1 1,720 8 1,728 3.6 557
R-GCN 37.10£1.05 56.8244.71 - -
R-HGNN 33.41:247 45.91%3.28 - - o GCN* - 153 95 248 | 80 25.80
- g SAGE * - 86 77 161 7.5 24.70
DE-GNN - - 36.67+1.59 Timeout SUREL 10 430 1,667 2107 8.6 8.61
SUREL 45.33+2.94 82.47+0.26 71.86+2.15 97.66+2.89

Metric. The evaluation metrics include Hits@K and Mean Recip-
rocal Rank (MRR). Hit@K counts the percentage of positive samples
ranked at the top-K place against all the negative ones. MRR firstly
calculates the inverse of the ranking of the first correct prediction
against the given number of paired negative samples, and then an
average is taken over the total queries.

Environment. We use a server with four Intel Xeon Gold 6248R
CPUs, 1TB DRAM, and eight NVIDIA RTX 6000 (24GB) GPUs.

4.2 Prediction Performance Analysis

Table 3 shows results of three prediction tasks. Apparently, for
these three link prediction benchmarks, the performance of SGRL
models is significantly better than transductive graph embedding
models and canonical GNNs, particularly for the challenging tasks
over ppa and collab. Within SGRL models, SUREL sets two SOTA
results on ppa and citation2, and gets comparable performance on
collab against SEAL, which validates the modeling effectiveness
of our proposed walk-based framework. For relation prediction and
higher-order pattern prediction, we observe a large gap (up to 60%)
between canonical GNNs and SUREL-based models, especially in
higher-order cases. This again demonstrates the inherent modeling
limitation of canonical GNNss to predict over a set of nodes. DE-GNN
suffers from serious scalability issues when employing subgraph
extraction for higher-order pattern prediction. Our best attempt is
to deploy DE-GNN on tags-math by using 10% training samples,
while the other three graphs failed. DE-GNN spends more than 300
hours preprocessing just 5% training queries of DBLP-coauthor.

4.3 Runtime and Memory Complexity Analysis

Table 4 reports the runtime, memory consumption comparison
on a single machine (using one GPU) between canonical GNNs
and SGRL models. SUREL offers a reasonable total runtime on
these benchmarks compared with canonical GNNs. Meanwhile, its

2794

preprocessing overhead is negligible as showed in Table 4 under the
term ‘Prep.’, and the higher-order case can be efficiently handled as
well. SEAL adopts online extraction, and thus the cost is not counted
in preprocessing, while its training suffers from the computation
bottleneck. DE-GNN uses offline extraction, and it takes 15+ hours
and 98GB RAM to process training queries in tags-math, which is
obviously incapable of scaling to DBLP-coauthor (so not present
in Table 4). Overall, SUREL substantially accelerates the subgraph
extraction and makes it feasible for SGRL on large-scale graphs.

In terms of memory management, SUREL achieves comparable
RAM usage to canonical GNNs, because the number of walks M
and the steps m are small constants in practice. The extra memory
cost is linear in |V|, so the total memory cost is still dominated by
the original graph. However, SEAL induces much more RAM usage
as it extracts subgraphs of long-tail sizes, and its total memory cost
is often super-linear in |V|. Both SEAL and SUREL consume much
less SDRAM because they do not need GPU to load large adjacency
matrices and host node representations.

We further profile the training and inference performance, and
present it in the left of Fig. 4. The time-to-accuracy comparison
between canonical GNNs and SGRL models is shown in Fig. 4(a).
Each dot indicates one training epoch for full-batch GCN, SEAL
and SUREL, 10 training epochs for Cluster-GCN and GraphSAINT.
As it shows, both SEAL and SUREL use 1-3 epochs to get good
enough performance, and each epoch of SUREL takes around 1/10
time of SEAL on citation2. The time per epoch of full-batch GCN
is comparable with SUREL, while Cluster-GCN and GraphSAINT
are faster. However, these models generally take longer time to
converge to even subpar performance. On ppa, the curve of SEAL
is pretty oscillating, leading to longer convergence. SUREL uses
large M and m to achieve better and more stable performance on
ppa, so the training time per epoch is comparable with SEAL. The
training curves of canonical GNN baselines are not plotted for ppa
because of their poor performance (See Table 3).

3000

o
8

2500

%
8

2000

3
9010z

GCN(full-batch) 1500
——Cluster-GCN
—=-GraphSAINT
SEAL
SUREL

Test MRR
S

Test Hits@100
P
TLI9T

=
& &

1000

SEAL

g
8

SUREL

8

Inference Throughput (query/ms)

500 1000
Time (min) - ppa

0 2000 4000 6000 8000 0 1500
Time (s) - citation2

(a) Time-to-accuracy

°

GCN (full-batch) Cluster-GCN ~ GraphSAINT

(b) Inference Throughput

Mcitation2 M collab

sovTe

100*4 W m 200%3 W m 400%2 W
100*4) m200%3)

0 l ‘ ‘
1 2 4 8 16

Number of Threads

(c) Throughput

—e—Walk --=-Est_Walk —s—Join ----Est_loin

400*21

£81
58 &
5 8

w8 &8
Runtime of Walk Sampler (s)
58 &8 &
|
|
|
|
|
Runtime of RPE Joining (s)

Walk Sampler Throughput (node/ms)

RPE Joining Throughput (query/ms)

II; 5
I

SUREL

8 12 16
Number of Threads

(d) Runtime

&
=
.
<l
SeAL

o
IS

Figure 4: (a-b) Performance Profiling of Training & Inference; (c-d) Performance Scaling of SUREL (Walk Sampler and Query-

level RPE Joining) against Different Number of Threads.

collab

M=400
s M=200
M=200
4 me100
2
0
2

2 2 2 3 a4 2 3 4 4 a 2 2
Step of Walks Step of Walks Step of Walks

citation2 collab citation2
100

M=200M=400 =200

4

(b) Training Time per Batch (2K queries)

=100 M=200M=200

o M100M=200
%0 M=100y.50

EY
60
M=100
50
a0
2 3 4 a4 a

Step of Walks

Test MRR

M=100M=100
m=50

Test Hits@50

Time per Ba
Time per Batch (s)

(a) Prediction Performance (m/M)

Inference Time (x1000s)

citation2 collab citation2

92 8974 889

32 64 9%

Hidden Dimension (m=4, M=200)

=100

=200
EY
5 W=200
60
. M=200
5 a0
10 M=100
N 20
0 o
2 2 2 3 4

Step of Walks

Test MRR

Inference Time(s)

Test Hits@50

32 64 9%

Step of Walks Hidden Dimension (m=2, M=400)

(c) Inference Time (d) Prediction Performance (dim)

Figure 5: Hyper-parameter Analysis: the number of walks M, the step of walks m, and the hidden dimension d.

Fig. 4(b) provides the comparison of end-to-end inference through-
put between two classes of models. Canonical GNNs offer rapid
inference, since they generate node representations as the inter-
mediate computation results that are shared across all queries. But
as aforementioned, sharing node representations may over-squash
useful information and degenerate performance as shown in Ta-
ble 3. SEAL, as SGRL, achieves good prediction performance but
its inference is extremely slow, because of subgraph extraction per
query. SUREL fundamentally solves this bottleneck by replacing
the extraction with walk-based subgraph joining. It is 4 — 16X faster
than SEAL on inference for link prediction, and achieves even more
speedup than DE-GNN in higher-order settings.

4.4 Significant Hyperparameter Analysis

The number M, the step m of walks and the hidden dimension d
effect scalability and accuracy of SUREL. To examine their impact,
we evaluate SUREL on citation2, alarge sparse graph, and collab,
a medium dense graph, for different values of m, M, and d.
Prediction Performance. Fig. 5(a) and 5(d) show the predic-
tion results. As expected, the performance consistently increases
if we use a larger number of walks M. But for the step m, it is not
always true that longer steps will guarantee better results, which
depends on the specifics of the dataset. For instance, in network
citation2,to accurately predict the link between two papers, more
steps are needed as it would capture a larger group of papers which
share similar semantics. While for collab, the case is different, as
deeper walks would include more noise for predicting collabora-
tions between two authors. In general, some small m (2 ~ 5) and
M (50 ~ 400) ensure adequate performance. By adjusting m and
M, we can achieve the trade-off between accuracy and scalability,
none of which is achievable through other SGRL models. Moreover,
SUREL is insensitive to the hidden dimension as shown by Fig. 5(d).
Training and Inference Time Cost. As Figs. 5(b) and 5(c)
demonstrated, the time of walk sampling and subgraph joining
is nearly linear w.r.t. the total number of walks (m * M) under the
same number of threads (16 by default). Here, we do not regulate
M based on the degree of each node in a query, which may induce

2795

certain duplication in sampled walks originated from the nodes
with small degrees. Using degree-adaptive M is promising to further
improve the scalability of SUREL while keeping good prediction
performance. We leave such investigation for future study.

4.5 Performance Scaling

To investigate the scaling performance of the parallel implemen-
tation, we examine the runtime of heavy operations in SUREL by
using different numbers of threads. Fig. 4(c) shows the throughput
of walk sampler and query-level RPE joining on citation2. The
runtime is also compared to the estimated runtime by Amdahl’s
law [9] shown in Fig. 4(d): walk sampling and RPE joining are in
good agreement with the expected speedup, thus implying well
parallelized implementation.

5 CONCLUSION

We propose a novel computational paradigm, SUREL for subgraph-
based representation learning on large-scale graphs. SUREL targets
predicting relations over set of nodes. It decouples graph struc-
tures into sets of walks to avoid irregularities in subgraphs and
enable reuse of intermediate results. It then applies walk-based
subgraph joining paired with relative positional encoding for repre-
sentation learning of queried node sets. Such design allows for full
parallelization and significantly improves model scalability. SUREL
incorporates the principle of algorithm and system co-design that
unlocks the full potential of learning on large-scale data with lim-
ited resources. To the best of our knowledge, this is the first work to
study subgraph-based representation learning from the perspective
of system scalability. Experiments also show that SUREL achieves
superior performance in both prediction and scalability on three
different SGRL tasks over six large, real-world graph benchmarks.

ACKNOWLEDGMENTS

We greatly thank all the reviewers for valuable feedback and ac-
tionable suggestions. H. Yin and P. Li are supported by the 2021
JPMorgan Faculty Award and the National Science Foundation
(NSF) award HDR-2117997.

REFERENCES

(1]

[2

—

(3]

(4]

[12]

[13]

[14]

[15

[16]

[17]
(18]

[19

[20]

[21]

[22

[23]

[24]

[25]

[26]

[27

Uri Alon and Eran Yahav. 2020. On the bottleneck of graph neural networks and
its practical implications. In International Conference on Learning Representations.
Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein.
2020. Improving graph neural network expressivity via subgraph isomorphism
counting. In ICML 2020 Workshop on Graph Representation Learning and Beyond.
Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcen: fast learning with graph
convolutional networks via importance sampling. In International Conference on
Learning Representations.

Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic training of graph convolu-
tional networks with variance reduction. In International Conference on Machine
Learning. PMLR, 942-950.

Zhengdao Chen, Lei Chen, Villar Soledad, and Joan Bruna. 2020. Can Graph Neu-
ral Networks Count Substructures?. In Advances in Neural Information Processing
Systems, Vol. 33.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gen: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 257-266.

Alessandro Epasto and Bryan Perozzi. 2019. Is a single embedding enough? Learn-
ing node representations that capture multiple social contexts. In Proceedings of
the Web Conference 2019. Association for Computing Machinery, 394-404.
Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. In ICLR 2019 Workshop on Representation Learning on
Graphs and Manifolds.

Ananth Grama, Vipin Kumar, Anshul Gupta, and George Karypis. 2003. Intro-
duction to parallel computing. Pearson Education.

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 855-864.

William L Hamilton. 2020. Graph representation learning. Synthesis Lectures on
Artifical Intelligence and Machine Learning 14, 3 (2020), 1-159.

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025-1035.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. arXiv preprint arXiv:2005.00687 (2020).

Kexin Huang and Marinka Zitnik. 2020. Graph meta learning via local subgraphs.
In Advances in Neural Information Processing Systems, Vol. 33.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive
Sampling Towards Fast Graph Representation Learning. In Advances in Neural
Information Processing Systems, Vol. 31.

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improving
the accuracy, scalability, and performance of graph neural networks with roc.
Proceedings of Machine Learning and Systems 2 (2020), 187-198.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations.

Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representations.
Daphne Koller, Nir Friedman, Sao DZzeroski, Charles Sutton, Andrew McCallum,
Avi Pfeffer, Pieter Abbeel, Ming-Fai Wong, Chris Meek, Jennifer Neville, et al.
2007. Introduction to statistical relational learning. MIT press.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. 2020. Distance Encod-
ing: Design Provably More Powerful Neural Networks for Graph Representation
Learning. In Advances in Neural Information Processing Systems, Vol. 33.

David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for
social networks. Journal of the American society for information science and
technology 58, 7 (2007), 1019-1031.

Husong Liu, Shengliang Lu, Xinyu Chen, and Bingsheng He. 2020. G3: when
graph neural networks meet parallel graph processing systems on GPUs. Pro-
ceedings of the VLDB Endowment 13, 12 (2020), 2813-2816.

Xin Liu, Haojie Pan, Mutian He, Yangqiu Song, Xin Jiang, and Lifeng Shang. 2020.
Neural subgraph isomorphism counting. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1959-1969.
Yunyu Liu, Jianzhu Ma, and Pan Li. 2022. Neural Predicting Higher-Order Patterns
in Temporal Networks. In Proceedings of the Web Conference 2022. Association
for Computing Machinery, 1340-1351.

Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec,
et al. 2020. Neural Subgraph Matching. arXiv preprint arXiv:2007.03092 (2020).
Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2021. Marius: Learning Massive Graph Embeddings on a Single
Machine. In 15th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 21). 533-549.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings of the AAAI Conference on

2796

(28]

[29

[30

(31]

[33

(34

[35

&
2

[37

[38

[39

S
=

(41

[42

[43]

[44

[45

[46

[47

[48

[49

o
=

[51

Artificial Intelligence, Vol. 33. 4602-4609.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 701-710.

David E Rumelhart, Geoffrey E Hinton, and Ronald] Williams. 1986. Learning
representations by back-propagating errors. nature 323, 6088 (1986), 533-536.
Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593-607.
Balasubramaniam Srinivasan and Bruno Ribeiro. 2020. On the Equivalence be-
tween Node Embeddings and Structural Graph Representations. In International
Conference on Learning Representations.

Komal Teru, Etienne Denis, and Will Hamilton. 2020. Inductive relation prediction
by subgraph reasoning. In International Conference on Machine Learning. PMLR,
9448-9457.

John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu.
2021. Dorylus: Affordable, Scalable, and Accurate GNN Training with Distributed
CPU Servers and Serverless Threads. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). 495-514.

Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In International Confer-
ence on Learning Representations.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. 2022. Equivariant and
Stable Positional Encoding for More Powerful Graph Neural Networks. In Inter-
national Conference on Learning Representations.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies 1, 1 (2020), 396-413.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing
Zhou, Qi Huang, Chao Ma, et al. 2019. Deep Graph Library: Towards Efficient
and Scalable Deep Learning on Graphs. In ICLR 2019 Workshop on Representation
Learning on Graphs and Manifolds.

Xiyuan Wang and Muhan Zhang. 2022. GLASS: GNN with Labeling Tricks
for Subgraph Representation Learning. In International Conference on Learning
Representations.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In International Conference on Learning Representations.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

Hongxia Yang. 2019. Aligraph: A comprehensive graph neural network platform.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 3165-3166.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974-983.

Le Yu, Leilei Sun, Bowen Du, Chuanren Liu, Weifeng Lv, and Hui Xiong. 2022.
Heterogeneous graph representation learning with relation awareness. IEEE
Transactions on Knowledge and Data Engineering (2022).

Hanging Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich,
Rajgopal Kannan, Viktor Prasanna, Long Jin, and Ren Chen. 2021. Decoupling the
Depth and Scope of Graph Neural Networks. In Advances in Neural Information
Processing Systems, Vol. 34.

Hangqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2020. Graphsaint: Graph sampling based inductive learning method.
In International Conference on Learning Representations.

Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song,
Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi. 2020. AGL: a scalable
system for industrial-purpose graph machine learning. Proceedings of the VLDB
Endowment 13, 12 (2020), 3125-3137.

Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. In Advances in Neural Information Processing Systems, Vol. 31.
Muhan Zhang and Yixin Chen. 2020. Inductive Matrix Completion Based on
Graph Neural Networks. In International Conference on Learning Representations.
Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. 2021. Labeling
Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation
Learning. In Advances in Neural Information Processing Systems, Vol. 34.
Wentao Zhang, Zhi Yang, Yexin Wang, Yu Shen, Yang Li, Liang Wang, and Bin
Cui. 2021. GRAIN: Improving Data Efficiency of GraPh Neural Networks via
Diversified inFluence Maximization. Proceedings of the VLDB Endowment 14, 11
(2021), 2473-2482.

Hongkuan Zhou, Ajitesh Srivastava, Hanging Zeng, Rajgopal Kannan, and Vik-
tor Prasanna. 2021. Accelerating Large Scale Real-Time GNN Inference Using
Channel Pruning. Proceedings of the VLDB Endowment 14, 9 (2021), 1597-1605.

