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ABSTRACT
Trapping diffusive particles at surfaces is a key step in many systems in chemical and biological physics. Trapping often occurs via reactive
patches on the surface and/or the particle. The theory of boundary homogenization has been used inmany prior works to estimate the effective
trapping rate for such a system in the case that either (i) the surface is patchy and the particle is uniformly reactive or (ii) the particle is patchy
and the surface is uniformly reactive. In this paper, we estimate the trapping rate for the case that the surface and the particle are both patchy.
In particular, the particle diffuses translationally and rotationally and reacts with the surface when a patch on the particle contacts a patch on
the surface. We first formulate a stochastic model and derive a five-dimensional partial differential equation describing the reaction time. We
then usematched asymptotic analysis to derive the effective trapping rate, assuming that the patches are roughly evenly distributed and occupy
a small fraction of the surface and the particle. This trapping rate involves the electrostatic capacitance of a four-dimensional duocylinder,
which we compute using a kinetic Monte Carlo algorithm. We further use Brownian local time theory to derive a simple heuristic estimate
of the trapping rate and show that it is remarkably close to the asymptotic estimate. Finally, we develop a kinetic Monte Carlo algorithm to
simulate the full stochastic system and then use these simulations to confirm the accuracy of our trapping rate estimates and homogenization
theory.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0135048

I. INTRODUCTION
Many systems in chemical and biological physics involve

diffusive particles being trapped at surfaces. Trapping often occurs
via localized “patches” (or “traps,” “binding sites,” “pores,” etc.)
on the surface, meaning a particle reacts if it contacts a patch but
reflects from the rest of the surface. Examples include proteins bind-
ing to receptors on a cell membrane;1 industrial processes, such as
filtration2 and gas separation;3 reactions on porous catalyst support
structures;4 diffusion current to collections of microelectrodes;5 and
water transpiration through plant stomata.6,7

Mathematical models of trapping by such “patchy” surfaces
typically use the diffusion equation to describe particle motion with
absorbing boundary conditions at patches and reflecting boundary
conditions on the rest of the surface (imposing absorbing bound-
ary conditions is a common approximation, but it has recently come
under scrutiny8–10). These mixed boundary conditions are often
replaced by a single effective “trapping rate” κ > 0 in a technique
called “boundary homogenization.”11,12 This trapping rate (also
called the reactivity, leakage parameter, homogenization constant,

reaction constant, or radiation constant) encapsulates the effective
trapping properties of the patchy surface.

To illustrate boundary homogenization of a patchy surface
[see Fig. 1(a)], let c(x, y, z, t) denote the concentration of diffusing
particles at time t, where x ≥ 0 is the distance from the surface and(y, z) ∈ R2 is the location in the plane parallel to the surface. The
concentration evolves according to the diffusion equation,

@

@t
c = Dtr� @2

@x2
+ @2

@y2
+ @2

@z2
�c,

where Dtr > 0 denotes the translational diffusivity of the particle.
Trapping at the patchy surface is described by mixed boundary
conditions,

c = 0, x = 0, (y, z) in a surface patch,
@

@x
c = 0, x = 0, (y, z) not in a surface patch.

(1)
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FIG. 1. Schematic diagram of a diffusive particle trapping at a surface. (a) A perfectly reactive particle (red sphere) that is trapped by small patches on the surface (blue
disks). (b) A patchy particle that is trapped when small patches on the particle (red disks) contact a perfectly reactive surface (blue wall). (c) A patchy particle that is trapped
when small patches on the particle (red disks) contact small patches on the surface (blue disks).

Boundary homogenization replaces (1) by the following partially
absorbing (also called partially reactive, Robin, or third type)
boundary condition involving the effective trapping rate κ1 > 0:

Dtr
@

@x
c = κ1c, x = 0.

In the case that the patches are roughly evenly distributed with
common radius r1 > 0 and occupy a small fraction

f1 ∶= N1πr21
4πR2 � 1 (2)

of the surface, the trapping rate is (see Refs. 1, 11, 13, and 14 or
Appendix A) given by

κ1 ∶= 4Dtr

πr1
f1. (3)

In (2), N1 > 0 is the average number of patches in an area of size
4πR2 for some length scale R > 0 [i.e., N1�(4πR2) is the density
of patches]. Since the seminal derivation of the leading order result
in (3), a large literature has been devoted to obtaining higher
order corrections, which account for details, such as patch shape,
patch arrangement and clustering, surface curvature, and patch
diffusivity.11–21

Other systems involve so-called patchy particles in which
trapping occurs via localized patches on the particles.22–26 To
illustrate boundary homogenization of a patchy particle [see
Fig. 1(b)], consider a concentration c(x, θ,φ, t) of diffusing spherical
particles at time t, where x ≥ 0 is the distance from the surface
and (θ,φ) ∈ [0,π] × [0, 2π) describes the particle orientation in
spherical coordinates. The concentration evolves according to the
diffusion equation,

@

@t
c = Dtr

@2

@x2
c +Drot�(sin θ)−2 @2

@φ2 + (tan θ)−1 @

@θ
+ @2

@θ2
�c,

where Dtr > 0 and Drot > 0 denote the respective translational and
rotational diffusivities. If trapping only requires that a patch on the

particle contacts the surface (i.e., the surface is fully reactive), then
the following mixed boundary conditions are imposed:

c = 0, x = 0, (θ,φ) in a particle patch,
@

@x
c = 0, x = 0, (θ,φ) not in a particle patch.

(4)

If each particle is a sphere of radius R > 0 containingN2 � 1 roughly
evenly distributed patches of common radius r2 � R occupying a
small fraction

f2 ∶= N2πr22
4πR2 � 1 (5)

of the particle’s boundary, then (4) can be approximated by25

Dtr
@

@x
c = κ2c, x = 0,

where the trapping rate is

κ2 ∶= β
4Dtr

πr2
f2, (6)

where

β ∶=
����R2Drot

Dtr
> 0

compares the rotational diffusivity to the translational diffusivity.
We note that if the diffusion of the particle satisfies the
Stokes–Einstein relation, then β =�3�4 ≈ 0.87.

In this paper, we combine the two aforementioned scenarios
and consider patchy surfaces trapping patchy particles [see Fig. 1(c)].
In particular, we suppose that the patchy particles are trapped by the
patchy surface only when particle patches contact surface patches.
We usematched asymptotic analysis to derive the following trapping
rate:

κ ∶= χ
�

f1 f2κ1κ2, (7)
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where

χ = χ(βr1�r2) > 0

is a dimensionless function of the ratio βr1�r2. In particu-
lar, χ depends on the electrostatic capacitance of a certain
four-dimensional object called a duocylinder27 embedded in
five-dimensional space. While we do not have an exact formula for
χ, we employ a kinetic Monte Carlo algorithm to rapidly compute χ
to very high accuracy.

In addition, we use the theory of Brownian local time28 to
derive the following heuristic trapping rate:

κ0 ∶= f1κ2 + f2κ1. (8)

Using the particular forms in (2), (3), (5), and (6), the heuristic
formula in (8) is equivalent to

κ0 = χ0
�

f1 f2κ1κ2,

where

χ0 = ��βr1�r2 + 1�
βr1�r2 ��π.

We find that the heuristic trapping rate κ0 is a remarkably accurate
approximation to the asymptotic trapping rate κ in (7). Indeed, the
accuracy depends on the value of βr1�r2, but the relative error is
never more than 16%,

�κ − κ0
κ
� ≤ 0.16.

Finally, we develop a kineticMonte Carlo algorithm to simulate
the full stochastic system. This algorithm partitions the stochastic
path of the particle into simpler steps involving radially symmetric
geometries, which are amenable to analytical and numerical
solution. Comparing these simulation results to the theory confirms
the accuracy of boundary homogenization using the trapping
rate in (7).

The rest of this paper is organized as follows. In Sec. II, we
formulate the mathematical model precisely in terms of a stochas-
tic process and an associated partial differential equation (PDE) in
five spatial dimensions. In Sec. III, we apply matched asymptotic
analysis to this PDE to derive the trapping rate (7) in the limit of
small patches. Since this trapping rate involves the capacitance of
a four-dimensional duocylinder, we employ a kinetic Monte Carlo
method to rapidly compute this capacitance in Sec. IV. In Sec. V,
we derive the heuristic trapping rate in (8). In Sec. VI, we com-
pare the results of our analysis to stochastic simulations of the full
problem. We conclude by discussing related work and highlighting
future directions.

II. MATHEMATICAL MODEL
A. Stochastic formulation

Consider a spherical particle with radius R > 0 diffusing in a
slab of finite or infinite width 0 < L + 2R ≤∞. Suppose that the
left wall of the slab contains infinitely many reactive patches with
average density N1�(4πR2) > 0 and the particle contains N2 ≥ 1

reactive patches on its surface. Suppose that the patches on the wall
are disks of radius r1 > 0 and the patches on the particle are spherical
caps with polar angle r2�R > 0.

At time t ≥ 0, let X(t) ∈ [0,L] denote the distance between
the particle and the left wall and let (Y(t),Z(t)) ∈ R2 denote the
position of the center of the particle in the plane parallel to the left
wall. Let (Θ(t),Φ(t)) ∈ [0,π] × [0, 2π) describe the orientation of
the particle in spherical coordinates. The state of the system at time
t ≥ 0 is thus fully described by the five coordinates,

(X(t),Y(t),Z(t),Θ(t),Φ(t)) ∈ �,

where � denotes the closure of

� ∶= (0,L) ×R2 × [0,π] × [0, 2π).
Suppose that the particle diffuses with translational diffusivity

Dtr > 0, which means that the coordinates (X(t),Y(t),Z(t)) satisfy
the following stochastic differential equations (SDEs):

dX =√2Dtr dWX , X(0) = x ≥ 0,
dY =√2Dtr dWY , Y(0) = y ∈ R,
dZ =√2Dtr dWZ , Z(0) = z ∈ R,

where WX , WY , and WZ are independent, standard Brownian
motions. The particle reflects from the left wall of the slab and also
from the right wall if L <∞. Suppose that the particle has rota-
tional diffusivity Drot > 0, which means its orientation (Θ(t),Φ(t))
satisfies the following SDEs:

dΘ = Drot

tan Θ(t) dt +√2Drot dWΘ, Θ(0) = θ ∈ (0,π),
dΦ =

√
2Drot

sin Θ(t) dWΦ, Φ(0) = φ ∈ [0, 2π),
whereWΘ andWΦ are independent, standard Brownian motions.

We are interested in the first time that one of the patches on the
particle contacts one of the patches on the left wall, which we refer
to as the reaction time or trapping time τ. To describe the patches on
the left wall, let γ1(y0, z0, r) denote the disk of radius r > 0 centered
at (y0, z0) ∈ R2,

γ1(y0, z0, r) ∶= {(y, z) : (y − y0)2 + (z − z0)2 < r2}.
If {(ym, zm)}∞m=1 denote the centers of the infinitely many patches
on the left wall, then the set of all patches on the left wall is

Γ1 ∶= ∪∞m=1γ1(ym, zm, r1).
To describe the patches on the particle, let γ2(θ0,φ0, a) denote the
spherical cap with polar angle a > 0 centered at (θ0,φ0),

γ2(θ0,φ0, a) ∶= {(θ,φ) : (θ − θ0)2 + sin2(θ0)(φ − φ0)2 < a2}.
If {(θn,φn)}Nn=1 denote the centers of the N2 ≥ 1 patches on the
particle, then the set of all patches on the particle is

Γ2 ∶= ∪N2
n=1γ2(θn,φn, r2�R).
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The reaction time is then given by

τ ∶= inf{t > 0 : X(t) = 0, (Y(t),Z(t)) ∈ Γ1, (Θ(t),Φ(t)) ∈ Γ2}. (9)
In words, the reaction time τ in (9) is the first time that the follow-
ing three events occur simultaneously: (i) the particle is touching
the wall (X = 0), (ii) the particle’s planar coordinates are in a patch
on the wall ((Y ,Z) ∈ Γ1), and (iii) the particle’s angular orientation
coordinates are in a patch on the particle ((Θ,Φ) ∈ Γ2).
B. Survival probability

The probability distribution of the reaction time τ in (9) is
described by the survival probability conditioned on the initial state
of the system,

S(x, y, z, θ,φ, t) ∶= P(τ > t�(X(0),Y(0),Z(0),Θ(0),Φ(0))
= (x, y, z, θ,φ)). (10)

The survival probability satisfies the backward Fokker–Planck
(backward Kolmogorov) equation,29

@

@t
S = LS, (x, y, z, θ,φ) ∈ �, (11)

where L = Ltr + Lrot and Ltr is the Laplacian acting on (x, y, z),
Ltr = Dtr� @2

@x2
+ @2

@y2
+ @2

@z2
�,

and Lrot is the Laplace–Beltrami operator acting on (θ,φ),
Lrot = Drot�(sin(θ))−2 @2

@φ2 + (tan(θ))−1 @

@θ
+ @2

@θ2
�.

The survival probability satisfies a unit initial condition,

S = 1, t = 0, (12)

and either a reflecting condition at x = L if L <∞,

@

@x
S = 0 if x = L <∞, (13)

or a unit far-field condition if L =∞,

lim
x→∞ S = 1 if L =∞. (14)

Condition (13) encapsulates the assumption that the particle reflects
from the right wall if L <∞. Condition (14) means that a particle
cannot react before any fixed time t > 0 if it started infinitely far
from the left wall. The survival probability satisfies mixed boundary
conditions at x = 0,

S = 0, x = 0, ((y, z), (θ,φ)) ∈ Γ1 × Γ2,
@

@x
S = 0, x = 0, ((y, z), (θ,φ)) ∉ Γ1 × Γ2. (15)

Boundary condition (15) reflects the assumption that the reaction
only occurs if a patch on the particle contacts a patch on the left
wall.

III. MATCHED ASYMPTOTIC ANALYSIS
We now derive the effective trapping rate κ, assuming that the

patches (i) are roughly evenly distributed and (ii) occupy a small
surface area fraction of the wall ( f1 � 1) and the particle ( f2 � 1)
(these two assumption imply that the patches are well-separated
on each surface in the sense that the patch radius is much smaller
than the typical distance between patches). Specifically, we derive
the appropriate κ such that the solution S(x, y, z, θ,φ, t) to the five-
dimensional PDE in (11)–(15) is well approximated by the solution
S(x, t) to the following one-dimensional diffusion equation:

@

@t
S = Dtr

@2

@x2
S, x ∈ (0,L), (16)

where S satisfies (12)–(14) and the following Robin boundary
condition at x = 0:

Dtr
@

@x
S = κS, x = 0. (17)

Recall that the radius of the patches on the wall is r1 > 0 and the
patches on the particle are spherical caps with polar angle r2�R > 0.
Assume that

r1 = εa1R, r2 = εa2R, (18)

where 0 < ε� 1 and a1 > 0, a2 > 0 are order one constants, which
allow the patches on the wall to differ in size from the patches on
the particle (without loss of generality, we can take either a1 = 1 or
a2 = 1, but we keep both parameters for pedagogical reasons). To
derive the trapping rate κ, we apply matched asymptotic analysis19,25
to the five-dimensional PDE in (11)–(15) in the limit ε→ 0. In
Appendix A, we use this same asymptotic approach to derive (3).

A. Outer expansion
Fix any time t > 0. As ε→ 0, the surfaces of the particle and the

left wall become perfectly reflecting, and thus,

lim
ε→0

S = 1. (19)

We expect that S has a boundary layer in a neighborhood of each
possible intersection of patches, so we introduce the outer expansion

S ∼ 1 + ε3S1 + ⋅ ⋅ ⋅ , (20)

which is valid away from the patches. The leading order correc-
tion of ε3 in (20) can be derived by considering the case of zero
rotational diffusion. In this case, reaction can only occur if a patch
on the particle is initially oriented toward the wall, which has
probability f1 = O(ε2) (assuming an initial uniform distribution of
particle orientation). Given that a patch on the particle is oriented
toward the wall (and with zero rotational diffusion), the problem is
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equivalent to a perfectly reactive particle and a patchy surface, which
has a leading order correction ofO(ε) (see Appendix A). Combining
these observations yields the leading order correction of O(ε3) in
(20). We comment that the expansion in (20) assumes that t is a
fixed time independent of ε [in particular, (20) is not valid if we take
t →∞ for fixed ε].

Plugging outer expansion (20) into (11) shows that S1 must
satisfy

@

@t
S1 = LS1, (x, y, z, θ,φ) ∈ �,

@

@x
S1 = 0, x = 0, (y, z, θ,φ) ∉ ∪∞m=1(ym, zm) × ∪N2

n=1(θn,φn).
(21)

Observe that from the perspective of the outer solution, the patches
have shrunk to points.

B. Inner expansion
We now determine the behavior of S1 as the nth trap on the

particle approaches themth trap on the left wall,

(x, y, z, θ,φ)→ (0, ym, zm, θn,φn).
Toward this end, we introduce the following stretched coordinates
for fixedm ∈ {1, 2, . . .} and n ∈ {1, . . . ,N2}:

� = ε−1 x�R, ν = ε−1(y − ym)�R, η = ε−1(z − zm)�R,
s = ε−1(θ − θn)�β, p = ε−1 sin(θn)(φ − φn)�β,

where

β ∶=�R2Drot�Dtr > 0

compares the rotational diffusivity to the translational diffusivity.
We then define the inner solution w as a function of the stretched
coordinates,

w(�, ν,η, s, p, t)
∶= S�εR�, ym + εRν, zm + εRη, θn + εβs,φn + εβ

sin θn
p, t�. (22)

Using (11), the inner solution w satisfies

@

@t
w = Lw

= ε−2R−2Dtr(@�� + @νν + @ηη)w + ε−2Drot�sin (θn)−2β−2@pp
+ β−2@ss�w +O(ε−1)

= ε−2R−2Dtr(@�� + @νν + @ηη + @ss + @pp)w +O(ε−1) (23)

since β is defined so that Drotβ−2 = R−2Dtr. Therefore, plugging the
inner expansion

w = w0 +O(ε)

into (23) implies that w0 is harmonic,

(@�� + @νν + @ηη + @ss + @pp)w0 = 0, � > 0. (24)

Using (15), w0 satisfies the following mixed boundary conditions at
� = 0:

w0 = 0, � = 0, ν2 + η2 < b21, s
2 + p2 < b22,

@�w0 = 0, � = 0, otherwise,
(25)

where b1 = a1 and b2 = a2�β.
C. Matching

It follows from electrostatics30 that w0 has the far-field behav-
ior,

w0 ∼ α�1 − c
ρ3
� as ρ ∶=��2 + ν2 + η2 + s2 + p2 →∞, (26)

where α is a constant determined by matching with the outer
solution and

c ∶= c0(a1, a2�β) > 0

is a dimensionless constant depending on a1 and a2�β. In particular,
c0(b1, b2) is the electrostatic capacitance of a so-called duocylinder27
embedded in R5,

D ∶= �(0, ν,η, s, p) ∈ R5 : ν2 + η2 < b21, s
2 + p2 < b22�. (27)

We postpone the discussion of computing c0(a1, a2�β) until Sec. IV
and proceed in terms of c = c0(a1, a2�β).

The matching condition is that the near-field behavior of
the outer expansion as (x, y, z, θ,φ)→ (0, ym, zm, θn,φn) must agree
with the far-field behavior of the inner expansion as ρ→∞. That is,

1 + ε3S1 ∼ w0 as (x, y, z, θ,φ)→ (0, ym, zm, θn,φn), ρ→∞.

Using (22) and (26), it follows that α = 1 and that S1 has the following
singular behavior as (x, y, z, θ,φ)→ (0, ym, zm, θn,φn):

−c
�� xR�2 + � y−ymR �2 + � z−zmR �2 + � θ−θnβ �2 + sin2(θn)� φ−φn

β �2�
3
2
. (28)

Writing the singular behavior (28) in the distributional form for each
n ∈ {1, . . . ,N2} and m ∈ {1, 2, . . .}, the boundary condition in (21)
at x = 0 becomes

@

@x
S1 = K

∞�
m=1

N2�
n=1 δ(y − ym)δ(z − zm)

δ(θ − θn)
sin(θn) δ(φ − φn), (29)

whereK = 4π2cRβ2. The derivation of the distributional form in (29)
of the singular behavior in (28) is given in Appendix B.
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D. Effective trapping rate κ
We have assumed that the patches on the wall have average

density N1�(4πR2), which means that

lim
l→∞

1
(2l)2�[−l,l]2

∞�
m=1 δ(y − ym)δ(z − zm) dy dz = N1

4πR2 (30)

for some N1 ∈ (0,∞). The integral in (30) is simply the number of
patches in the square [−l, l]2, and thus, N1 is the average number of
patches on the wall in an area equal to the surface area of the particle
(note that N1 need not be an integer).

Define

S(x, t) ∶= lim
l→∞

1
4π(2l)2��l

S(x, y, z, θ,φ, t) dΣ,
where

�l ∶= [−l, l]2 × [0,π] × [0, 2π), dΣ ∶= sin θ dθ dφ dy dz.

Furthermore, define the ratio

κ ∶= Dtr
@
@x S(0, t)
S(0, t) (31)

so that it is a tautology that S satisfies

Dtr
@

@x
S = κS, x = 0.

We now derive the effective trapping rate by determining the
behavior of (31) as ε→ 0.

The denominator in (31) approaches unity as ε→ 0 due to (19).
To determine the behavior of the numerator in (31), we interchange
the derivative with the limit and integrals, recall the outer expansion
in (20), and apply the boundary condition in (29),

κ ∼ Dtr lim
l→∞

1
4π(2l)2��l

@

@x
S(0, y, z, θ,φ, t) dΣ

∼ ε3N1N2
Dtr

R
β2

c
4

as ε→ 0. (32)

Now, a simple scaling argument shows that

c0(b1, b2) = α3c0(b1�α, b2�α) for all α > 0. (33)

Therefore, recalling c = c0(a1, a2�β), we may rewrite (A11) as

κ ∼ ε3N1N2
Dtr

R
�
β
(a1a2)3�2

4
c0
�
�
�

r1β
r2

,
�

r2
r1β
�
� as ε→ 0. (34)

To express (34) in a more intuitive form, note first that the
fractions of the wall and particle covered by patches are

f i ∶= Niε2a2i
4

= Nir2i
R2 , i ∈ {1, 2}. (35)

Furthermore, if (i) κ1 denotes the trapping rate in the case that the
wall is patchy and the particle is perfectly reactive and (ii) κ2 denotes
the trapping rate in the case that the particle is patchy and the wall is
perfectly reactive,

κ1 ∶= 4Dtr

πr1
f1, κ2 ∶= β

4Dtr

πr2
f2, (36)

then (34) becomes

κ ∼ κ ∶= χ
�

f1 f2κ1κ2 as ε→ 0, (37)

where χ is the following function of r1β�r2:
χ = χ(r1β�r2) = πc0(�r1β�r2, 1��r1β�r2). (38)

IV. KINETIC MONTE CARLO CALCULATION
OF CAPACITANCE c0

The homogenized trapping rate κ in (37) involves the factor
χ in (38), which depends on the electrostatic capacitance c0 of the
four-dimensional duocylinderD in (27) embedded inR5. We calcu-
late this capacitance by modifying the kinetic Monte Carlo method
developed in Ref. 26 to calculate the capacitance of a different
four-dimensional region embedded in R5. This previous method
adapted a method devised by Bernoff et al.12 for related trapping
problems in R3. These kinetic Monte Carlo methods modify the
1956 “walk-on-spheres” method by Muller.31

A. Summary of computational method
We now summarize this calculation of c0. The details are given

in Appendix C. The leading order inner solution w0 satisfying (24)
and (25) can be written in terms of a certain “splitting probability,”
which is the probability that a Brownian particle diffusing in five-
dimensional space eventually reaches the duocylinder D in (27).
Since the capacitance c0 is determined by the far-field behavior of
w0 [see (26)], we calculate c0 from this splitting probability.

We estimate this splitting probability by simulating the diffu-
sive paths of M � 1 independent Brownian particles and counting
the fraction that reaches D before reaching some large distance
ρ∞ ∈ (0,∞) from D. Simulating these stochastic paths can be done
very efficiently by using a kinetic Monte Carlo algorithm. The only
error in this calculation of the capacitance c0 is due to (i) the finite
number of trials M and (ii) the finite outer radius ρ∞. Due to the
computational efficiency of the kinetic Monte Carlo algorithm, M
and ρ∞ can both be taken very large, which ensures that the error in
calculating c0 is very small.

We now present the results of calculating c0. It is immediate
that the capacitance is symmetric,

c0(b1, b2) = c0(b2, b1) for all b1 > 0, b2 > 0, (39)

and thus, by the scaling in (33), it is enough to compute

c0(1, b), b ∈ (0, 1]. (40)
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FIG. 2. Capacitance in (40) of duocylinderD in (27) with radii b1 = 1 and b2 = b∈ (0, 1]. The black solid curve is the result of the kinetic Monte Carlo simulations
described in Sec. IV, and the red dashed curve is the heuristic estimate in (44).
The black circles are the heuristic estimate in (45), which is merely the heuristic
estimate in (44) scaled so that it agrees with the Monte Carlo simulations when
b = 1.

In Fig. 2, we plot the capacitance in (40) as a function of b ∈ (0, 1].
The black solid curve in Fig. 2 is from the kinetic Monte Carlo
algorithm described above with outer radius ρ∞ = 105 and M = 107
trials. As mentioned above, the only sources of error in this compu-
tation are the finite outer radius and the finite number of trials. As
detailed in Ref. 26, the relative error stemming from the finite outer
radius vanishes like ρ−3∞ as ρ∞ →∞. Hence, setting ρ∞ = 105 means
that relative error in calculating the capacitance from the finite outer
radius is on the order of 10−15.

Using the confidence intervals from Ref. 26, we find that for
each choice of b, the kinetic Monte Carlo estimate of the capaci-
tance in Fig. 2 has a relative error of less than 1.1% with probability
0.95. For choices of b ≥ 0.5, the relative error is less than 0.13% with
probability 0.95.

V. HEURISTICS
We now give a heuristic derivation of the effective trapping

rate using the theory of Brownian local time.28 We then show that
the resulting heuristic trapping rate, denoted as κ0, differs from the
asymptotic trapping rate, κ in (37), by at most 16% in the small patch
limit (ε→ 0).
A. Heuristic combined trapping rate

If we only homogenize the plane and use the trapping rate κ1 in
(3), then the survival probability S1 = S1(x, θ,φ, t) satisfies

@

@t
S1 = �Dtr

@2

@x2
+ Lrot�S1,

Dtr
@

@x
S1 =
�������
κ1S1, x = 0, (θ,φ) ∈ Γ2,
0, x = 0, (θ,φ) ∉ Γ2

and (12)–(14). In this case, S1 has the following probabilistic
representation:28

S1(x, θ,φ, t) = P(τ1 > t � X(0) = x,Θ(0) = θ,Φ(0) = φ),
where

τ1 ∶= inf{t > 0 : `X,Θ,Φ(t) > E1},
where `X,Θ,Φ(t) is the following local time:

`X,Θ,Φ(t) ∶= lim
η→0

1
η�

t

0
1�X(s)�<η1(Θ(s),Φ(s))∈∪n(θn ,φn) ds,

where 1A denotes the indicator function on an event A (i.e., 1A = 1
if A occurs and 1A = 0 otherwise) and E1 is an independent
exponential random variable with rate κ1.

Alternatively, if we only homogenize the particle and use the
trapping rate κ2 in (6), then the survival probability S2 = S2(x, y, z, t)
satisfies

@

@t
S2 = LtrS2,

Dtr
@

@x
S2 =
�������
κ2S2, x = 0, (y, z) ∈ Γ1,
0, x = 0, (y, z) ∉ Γ1

and (12)–(14). In this case, S2 has the following probabilistic
representation:

S2(x, y, z, t) = P(τ2 > t � X(0) = x,Y(0) = y,Z(0) = z),
where

τ2 ∶= inf{t > 0 : `X,Y ,Z(t) > E2},
where `X,Y ,Z(t) is the following local time:

`X,Y ,Z(t) ∶= lim
η→0

1
η�

t

0
1�X(s)�<η1(Y(s),Z(s))∈∪m(ym ,zm) ds,

and E2 is an independent exponential random variable with rate κ2.
To homogenize both the plane and the particle, we consider the

following reaction time:

τ0 ∶= min{τ1, τ2}
= inf{t > 0 : `X,Θ,Φ(t) > E1 or `X,Y ,Z(t) > E2}.

The survival probability of τ0 depends on the initial angular position(Θ(0),Φ(0)) and the initial planar position (Y(0),Z(0)) (since τ0
depends on `X,Θ,Φ and `X,Y ,Z). However, averaging over the initial
angular position (Θ(0),Φ(0)) yields

�`X,Θ,Φ(t)�Θ(0),Φ(0) = f2`(t), (41)
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where `(t) is the local time of X at x = 0,

`(t) = lim
η→0

1
η�

t

0
1�X(s)�<η ds.

Similarly, averaging over the initial planar position (Y(0),Z(0))
yields

�`X,Y ,Z(t)�Y(0),Z(0) = f1`(t). (42)

Therefore, we consider a reaction time τ0, which is identical to τ0 in
(9) except that we replace `X,Θ,Φ and `X,Y ,Z by their averaged versions
in (41) and (42),

τ0 = inf{t > 0 : f2`(t) > E1 or f1`(t) > E2}
= inf{t > 0 : `(t) > min{E1� f2,E2� f1}}.

Now, it follows from basic properties of exponential random
variables that E1� f2 is exponentially distributed with rate f2κ1
(since E1 is exponentially distributed with rate κ1). Similarly, E2� f1
is exponentially distributed with rate f1κ2 (since E2 is exponen-
tially distributed with rate κ2). Furthermore, the minimum of two
exponential random variables with rates f1κ2 and f2κ1 is expo-
nentially distributed with rate f1κ2 + f2κ1. Therefore, τ0 is equal in
distribution to

τ0 = dist inf{t > 0 : `(t) > E0},
where E0 is exponentially distributed with rate

κ0 ∶= f1κ2 + f2κ1. (43)

Therefore, the survival probability of τ0,

S0(x, t) ∶= P(τ0 > t � X(0) = x),
satisfies (12)–(14), (16) with trapping rate κ0 in (43) at x = 0,

Dtr
@

@x
S0 = κ0S0, x = 0.

B. Comparing heuristic κ0 and asymptotic κ
We now compare the heuristic trapping rate κ0 in (43) with the

asymptotic trapping rate κ in (37). Using (35) and (36), we can write
κ0 in the following form:

κ0 = f1κ2 + f2κ1 = χ0
�

f1 f2κ1κ2

if we define

χ0 = χ0(βr1�r2) =�βr1�r2 + 1��βr1�r2.
Furthermore, we have that κ0 ≈ κ if the following formula approxi-
mates the capacitance of the duocylinder:

c0(b1, b2) ≈ c(b1, b2) ∶= b1b2(b1 + b2)
π

. (44)

Since c satisfies scaling (33) and the symmetry in (39), the
approximation in (44) is equivalent to the approximation c0(1, b)≈ c(1, b) = b(1 + b)�π.

In Fig. 2, the black solid curve is c0(1, b) computed from kinetic
Monte Carlo simulations (see Sec. IV) and the red dashed curve
is c(1, b) = b(1 + b)�π. Clearly, c0 ≠ c, but the approximation is
reasonably accurate. Indeed, the relative error �c0 − c��c0 is at most
16%, and thus, the relative error between κ0 and κ is at most 16%,

�κ − κ0
κ
� ≤ 0.16.

We can obtain an alternative approximation by simply mul-
tiplying c(1, b) by a constant ζ so that the resulting approxima-
tion agrees with c0(1, b) at b = 1. Specifically, the black circles in
Fig. 2 are

ζc(1, b), where ζ = c0(1, 1)�c(1, b) ≈ 1.19. (45)

The approximation in (45) is more accurate than c(1, b) for
b ∈ (0.1, 1].
VI. KINETIC MONTE CARLO SIMULATIONS
OF THE FULL STOCHASTIC SYSTEM

To validate the boundary homogenization theory, we now
develop a kinetic Monte Carlo algorithm for simulating a diffusing,
patchy particle (sphere) interacting with a patchy surface (plane).
The algorithm adapts a kinetic Monte Carlo algorithm developed
by Bernoff et al.12 for simulating a diffusing, fully-reactive, spherical
particle interacting with a patchy plane.

Our algorithm requires simulating both translational and
rotational diffusion of the spherical particle. For these simulations,
the patches on the plane are placed on a periodic grid. The algorithm
consists of two stages.

● Stage I: Project from the bulk to the plane. The sphere starts
away from the plane, where it is free to diffuse. The sphere is
propagated to the location where it first touches the plane.
Both this location and the time it takes for the sphere to
diffuse to the plane are drawn from exact probability dis-
tributions. If the sphere and plane touch such that a patch
on the sphere is touching a patch on the plane, the elapsed
time of the simulation is recorded and the simulation ends.
Otherwise, the algorithm proceeds to stage II.● Stage II: Project from the plane to the bulk. The goal of this
stage is to propagate the sphere from the plane into the bulk
the maximum distance it can be propagated without the
possibility of a reaction occurring during the propagation.
Stage II is split into two cases:

– Case A: Reflect from the plane. If at the end of stage I,
the location where the sphere touches the plane is
not within a patch on the plane, then the shortest
distance dA to the set of patches on the plane is
calculated. The sphere is then propagated into the
bulk to a hemisphere of radius dA. The time for the
sphere to diffuse is drawn from an exact probability
distribution and recorded, and the algorithm returns
to stage I.

– Case B: Reflect only from the sphere. If at the end
of stage I, the location where the sphere touches the
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plane is within a patch on the plane but the sphere
is not oriented such that a patch on the sphere is
touching a patch on the plane, then the arc length
dB on the sphere from the location of contact to
the nearest patch on the sphere is calculated. The
spherical orientation angles are then propagated to
a distance of dB, and the time for it to do so is drawn
from an exact probability distribution. The sphere
location is propagated into the bulk according to an
exact distribution for diffusion during that time. The
algorithm then returns to stage I.

The numerical implementation of these two stages of the
algorithm is described in Appendix D.

A. Numerically optimized the trapping rate
We now calculate a numerically optimized trapping rate25 κopt

from the stochastic realizations of the reaction times obtained from
the algorithm described above. Specifically, given M � 1 stochas-
tic realizations of the reaction time, we order them t1 < t2 < ⋅ ⋅ ⋅ < tM
and define the empirical survival probability,

Semp(tj) = 1 − j − 1
2

M
, j = 1, . . . ,M,

which counts the fraction of particles arriving after time tj.12
We then choose κopt so that the solution S to the homogenized,
one-dimensional problem in (16) and (17) approximates the
empirical survival probability Semp.

More precisely, for any trapping rate κ, the solution S to (12),
(14), (16), and (17) is

S(x0, t; κ) = 1 − erfc� x0√
4Dtrt

� + e
−x20
4Dtr t erfcx�2κt + x0√

4Dtrt
�, (46)

where erfc(u) denotes the complementary error function and
erfcx(u) = exp(u2)erfc(u) denotes the scaled complementary error
function. For any trapping rate κ, we use the Kolmogorov–Smirnov
distance to calculate the error in distribution between S and Semp,

E(κ) = max
j=1,...,N�S(x0, tj; κ) − Semp(tj)�. (47)

The numerically optimized κopt is then the value of the trapping rate,
which minimizes E.

B. Results for ε→ 0
We generate M = 106 stochastic realizations of the reac-

tion times using the stochastic simulation algorithm described
above for each of the following parameter combinations: r1 = r2= ε ∈ {0.05, 0.10, . . . , 0.20}, N2 ∈ {11, 55, 99}, N1 = 4π, and Dtr= Drot = 1. Recalling (35), the absorbing fractions thus range from
f1 ≈ 0.008 to f1 ≈ 0.126 and f2 ≈ 0.007 to f2 = 0.99. In the top panel
of Fig. 3, we plot the numerically optimized κopt values and the
theoretical κ values as a function of ε for the three values of N2.
The theoretical values of κ are calculated from (35)–(37) using the

FIG. 3. Comparing the theoretical trapping rate values to the numerically optimized
trapping rates. See the text for details.

numerically-calculated value of c0 from Sec. IV. In the bottom panel
of Fig. 3, we plot the relative error,

�κopt − κ�
κopt

,

as a function of ε for the three values ofN2. This plot shows excellent
agreement between theoretical and numerically optimized trapping
rate values.

In the top panel of Fig. 4, we plot the Kolmogorov–Smirnov
distance E(κ) in (47) (error in distribution) for these theoretical κ
values as a function of ε for the three values of N2. This plot shows
that the error in distribution is quite small for all these parameter
values, which validates the boundary homogenization theory. To
illustrate this excellent agreement, in the bottom panel of Fig. 4,
we plot the empirical survival probabilities Semp and the theoretical
survival probabilities S(x0, t; κ) in (46) using the theoretical κ values
for ε = 0.05 and the three values of N2.
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FIG. 4. Comparing the reaction time distribution from simulation to the boundary
homogenization theory. See the text for details.

C. Results for fixed ε and varying absorbing
fractions f1, f2

Our homogenization theory was in the limit ε→ 0, and thus,
assumed that the fraction of the surface covered in patches, f1, and
the fraction of the particle covered in patches, f2, are both small,

f1 � 1, f2 � 1. (48)

However, the kinetic Monte Carlo algorithm for simulating the
full stochastic system allows us to investigate the accuracy of the
homogenization theory away from regime (48).

In Fig. 5, we fix r1 = r2 = ε = 0.1 and let N1,N2 each take the
values {11, 55, 99, 199, 299, 399} so that [recalling (35)] f1, f2 each
range from 2.75% up to 99.75% (we take Dtr = Drot = 1). In the top
panel of Fig. 5, the curves are the theoretical κ computed from
(35)–(37) and the circles are the numerically optimized values κopt.

FIG. 5. Comparing the reaction time distribution from simulation to boundary
homogenization theory away from the f1 � 1, f2 � 1 regime. See the text for
details.

As expected, κ and κopt agree in regime (48), but the values of κ and
κopt deviate away from this parameter regime. In the bottom panel
of Fig. 5, we plot the Kolmogorov–Smirnov distance E(κ) in (47)
(error in distribution) for the theoretical κ values.

Interestingly, the bottom panel of Fig. 5 shows that the accuracy
of the homogenization theory as measured by the error in distribu-
tion (as opposed to the difference between κ and κopt) is fairly high
even away from regime (48). The error in distribution is largest in
the regimes

f1 ≈ 1, f2 � 1 (49)

and

f1 � 1, f2 ≈ 1. (50)

However, regimes (49) and (50) merely reduce to previously stud-
ied problems in homogenization. Indeed, the trapping rate for (49)
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reduces to the trapping rate for a patchy particle and a uniformly
reactive surface [κ2 in (6)]. Similarly, the trapping rate for (50)
reduces to the trapping rate for a patchy surface and a uniformly
reactive particle [κ1 in (3)].

Summarizing, although our theory assumes that f1 and f2
are both small (and simulations confirm its high accuracy in
this regime), the theory is fairly accurate even in the inter-
mediate regimes of (i) f1 � 1 and f2 �� 1, f2 � 1, (ii) f2 � 1
and f1 �� 1, f1 � 1, and (iii) f1 �� 1, f1 � 1 and f2 �� 1, f2 � 1.
Furthermore, the regimes of (49) and (50) reduce to previously
studied problems.

VII. DISCUSSION
In this paper, we studied the trapping of a diffusive particle by

a surface, assuming that trapping requires reactive patches on the
particle to contact reactive patches on the surface. We formulated
a stochastic model of this trapping time and described its probabil-
ity distribution via a PDE in five spatial dimensions. Assuming that
the surface area fractions covered by patches are small, we applied
the method of matched asymptotic analysis to this PDE to derive the
effective trapping rate κ. This trapping rate κ depends on the electro-
static capacitance of a four-dimensional duocylinder embedded in
five dimensions, and we employed a kinetic Monte Carlo simulation
algorithm to rapidly and accurately compute this capacitance. Using
the theory of Brownian local time,28 we derived a simple heuristic
trapping rate κ0 and showed that it is always within 16% of κ in
the small patch limit. We further developed a kinetic Monte Carlo
algorithm to simulate the full, five-dimensional stochastic model
of the trapping time, which verified the accuracy of the effective
trapping rate κ.

This work is related to a long line of previous studies. Boundary
homogenization has been used to study the reaction kinetics for
patchy particles18–21,25 and patchy surfaces,11,12,15,16,20,32,33 where the
patchy object (particle or surface) interacts with a uniformly reac-
tive particle or surface. Related work on interactions of two patchy
spherical particles includes Refs. 24, 34, and 35. In Ref. 34, Monte
Carlo simulations were used to study the impacts of translational
and rotational diffusion on interactions of two or more patchy
particles. A computational approach to association and dissociation
of patchy particles was developed in Ref. 24. The authors of
Ref. 35 used lattice and lattice-adjacent models to study the
interactions of pairs of patchy particles. We are not aware of prior
work on the interactions between a patchy particle and a patchy
surface. Mathematically, our use of the method of matched asymp-
totic analysis follows a similar method used in Refs. 19 and
26 and also in Refs. 21, 25, 36–42. This approach is related to
the strong localized perturbation analysis initially developed in
Refs. 43 and 44.

Naturally, our model and mathematical analysis made a
number of simplifying assumptions. For one, we assumed that the
patchy surface (left wall) is flat (see Fig. 1). If the surface had some
curvature, then our results require that the characteristic radius of
curvature of the surface, Rc > 0, is much greater than the radius of
the particle. That is, we require

Rc�R� 1 (51)

so that the surface is flat at the length scale of the particle. In addi-
tion, as in the analysis of a patchy particle and a uniformly reactive
surface in Ref. 25, applying our results to a curved patchy surface
requires that the particle “forgets” its orientation over timescales in
which the wall curvature affects the particle. Since (i) the particle
orientation relaxes to the uniform distribution at rate Drot and (ii)
the surface curvature becomes relevant on the timescale R2

c�Dtr, we
thus require

DrotR2
c�Dtr = β2R2

c�R2 � 1. (52)

Requirements (51) and (52) are equivalent for the typical case that
the particle’s rotational diffusivity and translational diffusivity are
comparable (i.e., β�� 1 and β�� 1).

We also assumed that the absorbing fractions were both small
(i.e., f1 � 1, f2 � 1). Although simulations showed that the theory
can be fairly accurate away from this parameter regime (see
Sec. VI C), an interesting avenue for future work is to devise more
accurate approximations when one or both of the absorbing frac-
tions are not small. One possible approach is to interpolate between
our results for the regime f1 � 1, f2 � 1 and the prior results for the
regimes f1 ≈ 1, f2 � 1 and f1 � 1, f2 ≈ 1.
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APPENDIX A: DERIVATION OF κ1 IN (3) FOR A PATCHY
SURFACE AND A PERFECTLY REACTIVE PARTICLE

We now derive the trapping rate κ1 in (3) for a patchy surface
and a perfectly reactive particle. The formula in (3) can be obtained
via several different approaches,1,11,13,14 but we give here a simplified
version of the approach used in Sec. III above.
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The scenario of a patchy surface and a perfectly reactive parti-
cle fits into the framework of Sec. II by assuming that the particle is
completely covered in patches, i.e., f2 = 1. The survival probability
in (10) then satisfies (11)–(15) with Γ2 = [0,π] × [0, 2π). That is, the
angular orientation of the particle (θ,φ) is irrelevant, and the dif-
fusion equation in (11) is only in time t and Cartesian coordinates(x, y, z).

Similar to Sec. III, we fix any time t > 0 and introduce an outer
expansion, which is valid away from the patches,

S ∼ 1 + εS1 + ⋅ ⋅ ⋅ . (A1)

Note that the ε term in (A1) replaces the ε3 term for the full patchy
sphere and patchy particle problem in (20). Plugging (A1) into (11)
and using that Γ2 = [0,π] × [0, 2π) show that S1 satisfies

@

@t
S1 = LS1, (x, y, z) ∈ [0,∞) ×R2,

@

@x
S1 = 0, x = 0, (y, z) ∉ ∪∞m=1(ym, zm). (A2)

To determine the behavior of S1 near the mth trap on the
left wall (0, ym, zm), we introduce stretched coordinates for fixed
m ∈ {1, 2, . . .},

� = ε−1 x�R, ν = ε−1(y − ym)�R, η = ε−1(z − zm)�R.
We then define the inner solution w as

w(�, ν,η, t) ∶= S(εR�, ym + εRν, zm + εRη, t). (A3)

Using (11), the inner solution w satisfies

@

@t
w = ε−2R−2Dtr(@�� + @νν + @ηη)w +O(ε−1). (A4)

Therefore, plugging the inner expansion w = w0 +O(ε) into (A4)
implies that w0 is harmonic,

(@�� + @νν + @ηη)w0 = 0, � > 0. (A5)

Using (15), w0 satisfies the following boundary conditions:

w0 = 0, � = 0, ν2 + η2 < a21,

@�w0 = 0, � = 0, otherwise.
(A6)

The PDE in (A5) and (A6) is the so-called electrified disk prob-
lem, and the solution is known analytically.45 For our purposes, we
only need the far-field behavior of w0, which is

w0 ∼ α�1 − a1(2�π)
ρ

� as ρ ∶=��2 + ν2 + η2 →∞, (A7)

where α is determined by matching with the outer solution. The
matching condition is that the near-field behavior of the outer
expansion as (x, y, z)→ (0, ym, zm) must agree with the far-field
behavior of the inner expansion as ρ→∞. That is,

1 + εS1 ∼ w0 as (x, y, z)→ (0, ym, zm), ρ→∞.

Using (A3) and (A7), it follows that α = 1 and

S1 ∼ −a1(2�π)�� xR�2 + � y−ymR �2 + � z−zmR �2
as (x, y, z)→ (0, ym, zm).

(A8)

Writing the singular behavior (A8) in the distributional form for
eachm ∈ {1, 2, . . .}, the boundary condition in (A2) becomes

@

@x
S1 = 4a1R

∞�
m=1 δ(y − ym)δ(z − zm), x = 0. (A9)

Define

S(x, t) ∶= lim
l→∞

1
(2l)2�[−l,l]2S(x, y, z, t) dy dz

and

κ ∶= Dtr
@
@x S(0, t)
S(0, t) (A10)

so that it is a tautology that S satisfies Dtr
@
@x S = κS at x = 0. We now

derive the effective trapping rate by determining the behavior of
(A10) as ε→ 0.

The denominator in (A10) approaches unity as ε→ 0 due to
(19). To determine the behavior of the numerator in (A10), we inter-
change the derivative with the limit and integral, recall the outer
expansion in (A1), and apply (A9),

κ ∼ Dtr lim
l→∞

1
(2l)2�[−l,l]2

@

@x
S(0, y, z, t) dy dz

∼ εN1
Dtr

R
a1
π

as ε→ 0. (A11)

Using (2) and (18) yields (3).

APPENDIX B: DERIVATION OF DISTRIBUTIONAL
FORM IN (29)

To derive the distributional form in (29) of the singular
behavior in (28), suppose that a function f satisfies

@

@t
f = L f , (x, y, z, θ,φ) ∈ �
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and the following boundary condition at x = 0:

@

@x
f = K

∞�
m=1

N�
n=1 δ(y − ym)δ(z − zm)

δ(θ − θn)
sin(θn) δ(φ − φn).

To obtain the singular behavior of f as (x, y, z, θ,φ)→ (0, ym,
zm, θn,φn), define the inner solution analogous to (22),

g(�, ν,η, s, p, t)
∶= f �εR�, ym + εRν, zm + εRη, θn + εβs,φn + εβ

sin θn
p, t�,

and introduce the inner expansion g ∼ ε−3g0 + ⋅ ⋅ ⋅. By the same
argument that yielded (24) and (25), we have that g0 is harmonic,

(@�� + @νν + @ηη + @ss + @pp)g0 = 0, � > 0, (B1)

and g0 satisfies the following boundary condition at � = 0:

@�g0 = ε4R4π2cRβ2δ(εRν)δ(εRη) δ(εβs)
sin(θn)δ�

εβp
sin(θn)�

= 4π2cδ(ν)δ(η)δ(s)δ(p), (B2)

where we have used the identity δ(αx) = δ(x)��α�. Ignoring arbitrary
additive constants, the solution to (B1) and (B2) is26

g0 = −c(�2 + ν2 + η2 + s2 + p2)−3�2.
Matching the far-field behavior of g with the near-field behavior of
f shows that f indeed has the singular behavior in (28).

APPENDIX C: SIMULATION ALGORITHM
FOR THE ELECTROSTATIC CAPACITANCE c0

We now detail the method used in Sec. IV to calculate the
electrostatic capacitance c0. The method relies on a probabilistic
representation of the solution w0 of (24) and (25). Let Z(t) ∈ R5 be
a standard five-dimensional Brownian motion. Define the first time
that this process reaches the duocylinderD in (27),

τ′ ∶= inf{t > 0 : Z(t) ∈D}.
The leading order inner solution w0 satisfying (24) and (25) can be
written as

w0(�, ν,η, s, p) = 1 − q(�, ν,η, s, p),
where q is the probability that Z eventually reaches D, conditioned
on the initial position of Z,

q(�, ν,η, s, p) = P(τ′ <∞ � Z(0) = (�, ν,η, s, p)).
The function qmust be harmonic for � ≠ 0 and satisfy the boundary
conditions at � = 0,

q = 1, � = 0, (ν,η, s, p) ∈D,
@�q = 0, � = 0, (ν,η, s, p) ∉D.

Let q(ρ) denote the average of q over the surface of the five-
dimensional ball of radius ρ =��2 + ν2 + η2 + s2 + p2 > 0 centered
at the origin. If � = 0 and ρ > 0 is such that

ρ > ρ0 ∶=�(b1)2 + (b2)2,
then @�q = 0. Hence, integrating the harmonic PDE for q over the
surface of the 5D ball of radius ρ > ρ0 yields the following ordinary
differential equation for q(ρ):

((4�ρ)@ρ + @ρρ)q = 0, ρ > ρ0.

Solving this equation and using the far-field behavior of w0 in (26)
yield

q(ρ) = c0�ρ3, ρ > ρ0. (C1)

Equation (C1) implies that we can calculate c0 by calculating
the probability q(ρ) that the five-dimensional Brownian motion Z
eventually reaches the duocylinder D defined in (27), conditioned
that Z is initially uniformly distributed on a ball of radius ρ > ρ0.
We can estimate q(ρ) by simulating M � 1 realizations of Z and
calculating the proportion of these M trials, which reach D before
reaching some large outer radius ρ∞ � ρ0.

An efficient way to simulate these instances is via a kinetic
Monte Carlo method. The kinetic Monte Carlo method breaks the
simulation process into two stages of simpler diffusion processes
that can be exactly simulated and then alternates between these two
stages until reaching a break point. The only error in this method
results from the finite outer radius ρ∞ <∞ and the finite number
of trials M <∞, both of which can be taken very large due to the
computational efficiency of the method.

Simulations are initialized by placing the “particle” Z on the
five-dimensional sphere of radius ρ centered at the origin according
to a uniform distribution. The method then utilizes the following
two stages developed by Bernoff et al.12 for a similar problem inR3.

● Stage I: Project from bulk to plane: The particle is projected to
the � = 0 plane following the exact distribution given below.
If the particle lands withinD, then this event is recorded and
the trial ends. If not, the algorithm proceeds to stage II.● Stage II: Project from plane to bulk: A distance d > 0 is
calculated, which is less than or equal to the distance from
the current particle location to D. The particle is then
projected to a uniformly distributed point on the 5D sphere
of radius d. If the particle reaches a distance larger than ρ∞,
then this event is recorded and the trial ends. Otherwise, the
algorithms returns to stage I.

The distribution in stage I is calculated by first sampling the
random time that it takes the particle to reach � = 0, which is12

t∗ = 1
4
� z
erfc−1(U)�

2

,

whereU is uniformly distributed on [0, 1]. Then, given Z at position(�, ν,η, s, p) ∈ R5 at the beginning of stage I, the position at the end
of stage I is

(0, ν,η, s, p) +�2t∗(0, ξ1, ξ2, ξ3, ξ4) ∈ R5,
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where ξ1, ξ2, ξ3, ξ4 are independent standard normal random
variables.

The goal of stage II is to propagate the particle as far as possible
while ensuring that the particle cannot reachDduring this propaga-
tion. Let (0, ν,η, s, p) be the position of the particle at the beginning
of stage II. Then, given that the algorithm is in stage II, we have that
Z ∉D and, therefore,

d1 =�ν2 + η2 − b1 > 0 and/or d2 =�s2 + p2 − b2 > 0,

where b1 and b2�β are the two radii of the duocylinder in (27). If
we define the distance d ∶= max{d1,d2}, then the five-dimensional
sphere of radius d centered at (0, ν,η, s, p) ∉D cannot intersect D.
Therefore, stage II places the particle uniformly on the surface of
this 5D sphere.

APPENDIX D: SIMULATION ALGORITHM
FOR THE FULL STOCHASTIC SYSTEM

We now describe the numerical implementation of the kinetic
Monte Carlo algorithm of Sec. VI used to simulate the full stochastic
system.

The left wall has reactive patches of radius r1 > 0 with density
N1�(4π) placed on a square lattice such that the centers are

(yi, zj) = �4πiN1
, 4πj
N1
�, i, j ∈ Z.

Simulations are initialized by placing the unit spherical particle such
that the nearest point of the particle to the left wall is (x0, y0, z0) at
t = 0, where we fix starting distance from the left wall x0 and choose(y0, z0) from a uniform distribution on [− 2π

N1
, 2πN1

]2. The sphere has
N2 (with N2 odd) reactive spherical caps of polar angle r2 > 0 with
centers (θk,φk) on a Fibonacci lattice,20

θk = arccos� 2k
N2
− 1�, φk = 4πk

1 +√5
, k = 1, . . . ,N2.

The particle is given initial orientation (θ0,ϕ0) sampled from a
uniform distribution on the unit sphere using

θ0 = arccos(2ξ1 − 1), φ0 = 2πξ2,

where (ξ1, ξ2) is uniformly distributed on [0, 1]2.
1. Stage I: Project from the bulk to the plane

This stage follows the algorithm of Bernoff et al.12 for the trans-
lational diffusion of the sphere plus rotational diffusion. Given a

particle located at (x0, y0, z0) at time t = 0, we sample the transit time
to the particle’s first contact with the left wall by sampling a uniform
random number ξ ∈ [0, 1] and calculating

t1 = 1
4Dtr
� x0
erfc−1(ξ)�

2

.

This time is added to the cumulative elapsed time of the simulation.
The spatial location of the particle at the arrival time t1 is (0, y1, z1),
where y1 and z1 are independently drawn from normal distributions
with respective means y0 and z0 and variances 2Dtrt1.

We also sample (θ1,φ1), the orientation of the sphere following
the propagation of the sphere to the wall, given time t1. The authors
of Ref. 46 gave series solutions f (θ, t) to the equation for rotational
diffusion of a point in angular coordinates (θ,φ) on a sphere of
radius 1, given that the point is initially at the pole of the sphere,

@

@t
f = Drot� f , f (θ, 0) = δ(θ).

We numerically integrate the solution f (θ, t) from Ref. 46, which
yields the following cumulative distribution function:

F(θ, t) = 2π� θ

0
f (θ′, t) sin θ′ dθ′. (D1)

From this, we can sample the change θd in θ, given t1. Due to rota-
tional symmetry, we sample the change φd in φ from a uniform
distribution on [0, 2π). We then update the orientation of the sphere
to (θ1,φ1), given initial orientation (θ0,φ0) by rotating (θd,φd),
implemented using rotation operators by interpreting (θ0,φ0) as a
point on the Bloch sphere.47

At this point, the algorithm checks to see if a patch on the
sphere is touching a patch on the plane. That is, the algorithm checks
if the position coordinates (y1, z1) are within a patch on the plane
and if the orientation coordinates (θ1,φ1) are within a patch on
the sphere. To do so, the signed distances dA and dB to the nearest
patches on both the plane and the sphere, respectively, are calcu-
lated. The signed distance dA to the nearest patch on the plane is
given by

dA =
�
�y1 mod 4π

N1
�2 + �z1 mod 4π

N1
�2 − r1.

The signed distance dB is the signed arc length between the point
of contact of the sphere and the plane to the nearest patch on the
sphere. This is calculated by taking the arc length48 ai to the center of
the ith patch and subtracting the patch radius r2 from the minimum
arc length min ai,

ai = tan−1
�(sin θ i sin(�φi))2 + (sin θ1 cos θ i − cos θ1 sin θ j cos(�φi))2

cos θ1 cos θi + sin θ1 sin θi cos(�φi)
for �φi ∶= φi − φ1,

dB = min{ai} − r2.
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If dA < 0 and dB < 0, then the trial is complete and the final elapsed
time is recorded. If dA > 0, the algorithm proceeds to case A of
stage II. If dA < 0 and dB > 0, the algorithm proceeds to case B of
stage II.

2. Stage II, case A: Reflect from the plane
Given that the particle is located at (0, y1, z1) at some time

t > 0 at the start of stage II, we propagate the particle to the hemi-
sphere of radius dA centered at (0, y1, z1), which ensures that the
end condition could not have been met. We sample a time t2 from
the well-known distribution for a three-dimensional diffusion pro-
cess to exit a sphere of radius dA (see, for example, Ref. 12). The time
t2 is added to the cumulative elapsed time.

The particle is placed at (x2, y2, z2), sampled uniformly on the
hemisphere of radius dA centered at (0, y1, z1) by symmetry of Brow-
nian motion. The orientation of the particle is updated as it was in
stage I, where we sample from the distribution F(θ, t2) in (D1), given
t2 for the change θd in θ, and sample the change φd in φ from a
uniform distribution on [0, 2π) and update (θ1,φ1) with rotational
change (θd,φd) to obtain new orientation (θ2,φ2).

At this point, the algorithm returns to stage I, updating the
position and orientation labels (x2, y2, z2) and (θ2,φ2) to (x0, y0, z0)
and (θ0,φ0).
3. Stage II, case B: Reflect only from the sphere

In the case that the particle touches the plane such that it is
touching a patch on the plane at the end of stage I, we sample the
time it takes (θ1,φ1) to rotate a distance of dB (the distance to the
nearest patch on the particle).

To do so, we consider the survival probability SdB(θ, t) for
rotating a distance of dB by time t, given that the initial spheri-
cal coordinates are (0,φ1) at t = 0. By rotational symmetry, we can
ignore φ1. This survival probability satisfies the spherical diffusion
equation,

@

@t
SdB = (tan θ)−1 @

@θ
SdB + @2

@θ2
SdB , t > 0, θ ∈ (0,dB),

SdB = 1, t = 0,
@

@θ
SdB = 0, θ = 0,

SdB = 0, θ = dB.

We numerically solve this over a mesh of values of dB, 0 < θ < dB,
and t using the MATLAB pdepe function.49 To sample an arrival
time to the spherical cap of radius dB, we sample a uniform random
number ξ ∈ [0, 1] and numerically solve

SdB(0, s) = ξ

for s and then compute the exit time t2 = s�Drot. The time t2 is added
to the elapsed time, and the angular position is updated from (θ1,φ1)
with rotational change (dB,φd), where φd is sampled from a uni-
form distribution on [0, 2π), to obtain new orientation (θ2,φ2), as
described in stage I. The updated location (x2, y2, z2) of the particle
after time t2 is sampled by generating three standard normal random
numbers (ξ1, ξ2, ξ3) and computing

x2 =√2Dtrt2ξ1,

y2 = y1 +√2Dtrt2ξ2,

z2 = z1 +√2Dtrt2ξ3.

The algorithm then returns to stage I, updating the position and
orientation labels (x2, y2, z2) and (θ2,φ2) to (x0, y0, z0) and (θ0,φ0).

REFERENCES
1H. C. Berg and E. M. Purcell, “Physics of chemoreception,” Biophys. J. 20(2),
193–219 (1977).
2A. Saxena, B. P. Tripathi, M. Kumar, and V. K. Shahi, “Membrane-based tech-
niques for the separation and purification of proteins: An overview,” Adv. Colloid
Interface Sci. 145(1-2), 1–22 (2009).
3R.W. Baker and B. T. Low, “Gas separation membrane materials: A perspective,”
Macromolecules 47(20), 6999–7013 (2014).
4F. Keil, “Diffusion and reaction in porous networks,” Catal. Today 53(2),
245–258 (1999).
5B. R. Scharifker, “Diffusion to ensembles of microelectrodes,” J. Electroanal.
Chem. Interfacial Electrochem. 240(1-2), 61–76 (1988).
6H. T. Brown and F. Escombe, “Static diffusion of gases and liquids in relation to
the assimilation of carbon and translocation in plants,” Philos. Trans. R. Soc., B
193(185-193), 223–291 (1900).
7A. Wolf, W. R. Anderegg, and S. W. Pacala, “Optimal stomatal behavior with
competition for water and risk of hydraulic impairment,” Proc. Natl. Acad. Sci.
U. S. A. 113(46), E7222–E7230 (2016).
8F. Piazza and S. D. Traytak, “Diffusion-influenced reactions in a hollow nano-
reactor with a circular hole,” Phys. Chem. Chem. Phys. 17(16), 10417–10425
(2015).
9F. Piazza, “The physics of boundary conditions in reaction-diffusion problems,”
J. Chem. Phys. 157, 234110 (2022).
10G. Handy and S. D. Lawley, “Revising Berg-Purcell for finite receptor kinetics,”
Biophys. J. 120(11), 2237–2248 (2021).
11A. M. Berezhkovskii, Y. A. Makhnovskii, M. I. Monine, V. Y. Zitserman, and
S. Y. Shvartsman, “Boundary homogenization for trapping by patchy surfaces,”
J. Chem. Phys. 121(22), 11390–11394 (2004).
12A. J. Bernoff, A. E. Lindsay, and D. D. Schmidt, “Boundary homogenization and
capture time distributions of semipermeable membranes with periodic patterns of
reactive sites,” Multiscale Model. Simul. 16(3), 1411–1447 (2018).
13D. Shoup and A. Szabo, “Role of diffusion in ligand binding to macromolecules
and cell-bound receptors,” Biophys. J. 40(1), 33–39 (1982).
14R. Zwanzig, “Diffusion-controlled ligand binding to spheres partially covered by
receptors: An effective medium treatment,” Proc. Natl. Acad. Sci. U. S. A. 87(15),
5856–5857 (1990).
15A. M. Berezhkovskii, M. I. Monine, C. B. Muratov, and S. Y. Shvartsman,
“Homogenization of boundary conditions for surfaces with regular arrays of
traps,” J. Chem. Phys. 124(3), 036103 (2006).
16C. B. Muratov and S. Y. Shvartsman, “Boundary homogenization for periodic
arrays of absorbers,” Multiscale Model. Simul. 7(1), 44–61 (2008).
17A. F. Cheviakov, A. S. Reimer, and M. J. Ward, “Mathematical modeling and
numerical computation of narrow escape problems,” Phys. Rev. E 85(2), 021131
(2012).
18L. Dagdug, M. V. Vázquez, A. M. Berezhkovskii, and V. Y. Zitserman,
“Boundary homogenization for a sphere with an absorbing cap of arbitrary size,”
J. Chem. Phys. 145(21), 214101 (2016).
19A. E. Lindsay, A. J. Bernoff, and M. J. Ward, “First passage statistics for the cap-
ture of a Brownian particle by a structured spherical target with multiple surface
traps,” Multiscale Model. Simul. 15(1), 74–109 (2017).
20A. J. Bernoff and A. E. Lindsay, “Numerical approximation of diffusive capture
rates by planar and spherical surfaces with absorbing pores,” SIAM J. Appl. Math.
78(1), 266–290 (2018).

J. Chem. Phys. 158, 094104 (2023); doi: 10.1063/5.0135048 158, 094104-15

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1016/s0006-3495(77)85544-6
https://doi.org/10.1016/j.cis.2008.07.004
https://doi.org/10.1016/j.cis.2008.07.004
https://doi.org/10.1021/ma501488s
https://doi.org/10.1016/s0920-5861(99)00119-4
https://doi.org/10.1016/0022-0728(88)80313-9
https://doi.org/10.1016/0022-0728(88)80313-9
https://doi.org/10.1098/rspl.1900.0009
https://doi.org/10.1073/pnas.1615144113
https://doi.org/10.1073/pnas.1615144113
https://doi.org/10.1039/c4cp05605a
https://doi.org/10.1063/5.0128276
https://doi.org/10.1016/j.bpj.2021.03.021
https://doi.org/10.1063/1.1814351
https://doi.org/10.1137/17m1162512
https://doi.org/10.1016/s0006-3495(82)84455-x
https://doi.org/10.1073/pnas.87.15.5856
https://doi.org/10.1063/1.2161196
https://doi.org/10.1137/070692832
https://doi.org/10.1103/PhysRevE.85.021131
https://doi.org/10.1063/1.4968598
https://doi.org/10.1137/16m1077659
https://doi.org/10.1137/17m1124802


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

21S. D. Lawley and C. E. Miles, “How receptor surface diffusion and cell rotation
increase association rates,” SIAM J. Appl. Math. 79(3), 1124–1146 (2019).
22K. Šolc and W. H. Stockmayer, “Kinetics of diffusion-controlled reaction
between chemically asymmetric molecules. I. General theory,” J. Chem. Phys.
54(7), 2981–2988 (1971).
23K. Šolc and W. Stockmayer, “Kinetics of diffusion-controlled reaction between
chemically asymmetric molecules. II. Approximate steady-state solution,” Int. J.
Chem. Kinet. 5(5), 733–752 (1973).
24H. C. R. Klein and U. S. Schwarz, “Studying protein assembly with reversible
brownian dynamics of patchy particles,” J. Chem. Phys. 140(18), 184112 (2014).
25S. D. Lawley, “Boundary homogenization for trapping patchy particles,” Phys.
Rev. E 100(3), 032601 (2019).
26C. E. Plunkett and S. D. Lawley, “Bimolecular binding rates for pairs of spherical
molecules with small binding sites,” SIAM J. Multiscale Model. Simul. 19, 148
(2021).
27C. McMullen, The Visual Guide to Extra Dimensions: Visualizing the Fourth
Dimension, Higher-Dimensional Polytopes, and Curved Hypersurfaces (Custom
Books, Lexington, 2008).
28D. S. Grebenkov, “Paradigm shift in diffusion-mediated surface phenomena,”
Phys. Rev. Lett. 125(7), 078102 (2020).
29G. A. Pavliotis, Stochastic Processes and Applications (Springer, 2016).
30J. D. Jackson, Classical Electrodynamics, 2nd ed.(Wiley, New York, 1975).
31M. E. Muller, “Some continuous Monte Carlo methods for the Dirichlet
problem,” Ann. Math. Stat. 27(3), 569–589 (1956).
32A. G. Belyaev, G. A. Chechkin, and R. R. Gadyl’shin, “Effective membrane
permeability: Estimates and low concentration asymptotics,” SIAM J. Appl. Math.
60(1), 84–108 (1999).
33M. Bruna, S. J. Chapman, and G. Z. Ramon, “The effective flux through a thin-
film composite membrane,” Europhys. Lett. 110(4), 40005 (2015).
34A. C. Newton, J. Groenewold, W. K. Kegel, and P. G. Bolhuis, “Rotational diffu-
sion affects the dynamical self-assembly pathways of patchy particles,” Proc. Natl.
Acad. Sci. U. S. A. 112(50), 15308–15313 (2014).
35C. J. Roberts and M. A. Blanco, “Role of anisotropic interactions for proteins
and patchy nanoparticles,” J. Phys. Chem. B 118(44), 12599–12611 (2014).

36P. C. Bressloff and S. D. Lawley, “Escape from subcellular domains with
randomly switching boundaries,” Multiscale Model. Simul. 13(4), 1420–1445
(2015).
37P. C. Bressloff and S. D. Lawley, “Stochastically gated diffusion-limited reactions
for a small target in a bounded domain,” Phys. Rev. E 92(6), 062117 (2015).
38A. F. Cheviakov and M. J. Ward, “Optimizing the principal eigenvalue of
the Laplacian in a sphere with interior traps,” Math. Comput. Modell. 53(7-8),
1394–1409 (2011).
39A. F. Cheviakov, M. J. Ward, and R. Straube, “An asymptotic analysis of
the mean first passage time for narrow escape problems: Part II: The sphere,”
Multiscale Model. Simul. 8(3), 836–870 (2010).
40D. Coombs, R. Straube, and M. Ward, “Diffusion on a sphere with localized
traps: Mean first passage time, eigenvalue asymptotics, and Fekete points,” SIAM
J. Appl. Math. 70(1), 302–332 (2009).
41S. D. Lawley and C. E. Miles, “Diffusive search for diffusing targets with
fluctuating diffusivity and gating,” J. Nonlinear Sci. 29(6), 2955–2985 (2019).
42S. D. Lawley and V. Shankar, “Asymptotic and numerical analysis of a stochastic
PDE model of volume transmission,” Multiscale Model. Simul. 18(2), 887–915
(2020).
43M. J. Ward, W. D. Heshaw, and J. B. Keller, “Summing logarithmic expan-
sions for singularly perturbed eigenvalue problems,” SIAM J. Appl. Math. 53(3),
799–828 (1993).
44M. J. Ward and J. B. Keller, “Strong localized perturbations of eigenvalue
problems,” SIAM J. Appl. Math. 53(3), 770–798 (1993).
45I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory (North-
Holland Publishing Company, 1966).
46V. Tulovsky and L. Papiez, “Formula for the fundamental solution of the heat
equation on the sphere,” Appl. Math. Lett. 14(7), 881–884 (2001).
47M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-
mation, 10th anniversary ed. (Cambridge University Press, Cambridge, UK,
2010).
48T. Vincenty, “Direct and inverse solutions of geodesics on the ellipsoid with
application of nested equations,” Surv. Rev. 23(176), 88–93 (1975).
49The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.10.0.1739362
(R2021a) Update 5, 2021.

J. Chem. Phys. 158, 094104 (2023); doi: 10.1063/5.0135048 158, 094104-16

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1137/18m1217188
https://doi.org/10.1063/1.1675283
https://doi.org/10.1002/kin.550050503
https://doi.org/10.1002/kin.550050503
https://doi.org/10.1063/1.4873708
https://doi.org/10.1103/PhysRevE.100.032601
https://doi.org/10.1103/PhysRevE.100.032601
https://doi.org/10.1137/20m1321991
https://doi.org/10.1103/PhysRevLett.125.078102
https://doi.org/10.1214/aoms/1177728169
https://doi.org/10.1137/s0036139996312880
https://doi.org/10.1209/0295-5075/110/40005
https://doi.org/10.1073/pnas.1513210112
https://doi.org/10.1073/pnas.1513210112
https://doi.org/10.1021/jp507886r
https://doi.org/10.1137/15m1019258
https://doi.org/10.1103/PhysRevE.92.062117
https://doi.org/10.1016/j.mcm.2010.02.025
https://doi.org/10.1137/100782620
https://doi.org/10.1137/080733280
https://doi.org/10.1137/080733280
https://doi.org/10.1007/s00332-019-09564-1
https://doi.org/10.1137/18m1230773
https://doi.org/10.1137/0153039
https://doi.org/10.1137/0153038
https://doi.org/10.1016/s0893-9659(01)00059-3
https://doi.org/10.1179/sre.1975.23.176.88

