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Abstract
Biological events are often initiated when a random “searcher” finds a “target,” which
is called a first passage time (FPT). In some biological systems involving multiple
searchers, an important timescale is the time it takes the slowest searcher(s) to find a
target. For example, of the hundreds of thousands of primordial follicles in a woman’s
ovarian reserve, it is the slowest to leave that trigger the onset of menopause. Such
slowest FPTs may also contribute to the reliability of cell signaling pathways and
influence the ability of a cell to locate an external stimulus. In this paper,weuse extreme
value theory and asymptotic analysis to obtain rigorous approximations to the full
probability distribution and moments of slowest FPTs. Though the results are proven
in the limit of many searchers, numerical simulations reveal that the approximations
are accurate for any number of searchers in typical scenarios of interest. We apply
these general mathematical results to models of ovarian aging and menopause timing,
which reveals the role of slowest FPTs for understanding redundancy in biological
systems. We also apply the theory to several popular models of stochastic search,
including search by diffusive, subdiffusive, and mortal searchers.
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1 Introduction

Timescales in many biological systems have been studied using first passage times
(FPTs) (Chou and D’Orsogna 2014; Polizzi et al. 2016). Generically, a FPT is the first
time a random “searcher” finds a “target.” Depending on the application, the searcher
could be, for example, an ion, protein, cell, or predatory animal, and the target could
be a receptor, ligand, cell, or prey. Many mathematical and numerical methods have
been developed in order to estimate such FPTs (Redner 2001; Benichou et al. 2010;
Cheviakov et al. 2010; Opplestrup et al. 2006; Kaye and Greengard 2020). In the past
several decades, FPT analysis has focused almost exclusively on the distribution and
statistics of a single given searcher.

There has recently been a surge of interest in the fastest FPT, which is the time
it takes the fastest searcher to find a target out of multiple searchers (Meerson and
Redner 2015; Godec and Metzler 2016; Hartich and Godec 2018, 2019; Basnayake
et al. 2019b; Schuss et al. 2019; Lawley and Madrid 2020; Lawley 2020a, d). To
describe more precisely, suppose there are N ≥ 1 searchers and let τ1, . . . , τN denote
their respective FPTs to some target. The fastest FPT is then

T1,N := min{τ1, . . . , τN }. (1)

If N is large, then the fastest FPT is much faster than a typical single FPT,

T1,N � τ, if N � 1, (2)

and previous work has studied the decay of T1,N in this many searcher limit. We
note that fastest FPTs are often called extreme FPTs, since T1,N in (1) is an example
of an extreme statistic (Coles et al. 2001; Falk et al. 2010; De Haan and Ferreira
2007). The theory of extreme statistics has been used for many decades in fields such
as engineering, earth sciences, and finance (Coles et al. 2001; Novak 2011), but the
theory has only started to be applied in biology.

Much of the interest in fastest FPTs stems from attempts to understand biological
“redundancy” (Meerson and Redner 2015). A prototypical example of such redun-
dancy occurs in human reproduction, in which roughly N = 108 sperm cells search
for an oocyte despite the fact that only one sperm cell initiates fertilization (Eisen-
bach and Giojalas 2006) (human fertilization also involves many other complicated
mechanisms (Fitzpatrick et al. 2020)). Other important examples come from (i) gene
regulation, in which only the fastest few of the N ∈ [102, 104] transcription fac-
tors determine cellular response (Harbison et al. 2004), and (ii) intracellular calcium
dynamics, in which the fastest two of the N = 103 released calcium ions to arrive at a
Ryanodyne receptor trigger further calcium release (Basnayake et al. 2019a). In these
systems, why are there N � 1 searchers when only a few searchers determine the
biological response? Since the fastest FPT is much faster than a typical single FPT (as
in (2)), it has been argued that the apparently redundant or “extra” searchers in these
systems are not a waste, but rather function to accelerate the search process (Schuss
et al. 2019; Coombs 2019; Redner and Meerson 2019; Sokolov 2019; Rusakov and
Savtchenko 2019; Martyushev 2019; Tamm 2019; Basnayake and Holcman 2019).
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Rather than the fastest FPT, an important timescale in some biological systems is
the time it takes the slowest searcher(s) to find a target, which we call a slowest FPT.
A slowest FPT can define the termination of a process or perhaps the exhaustion of a
supply. More precisely, let us generalize (1) and define the order statistics,

T1,N ≤ T2,N ≤ · · · ≤ TN−1,N ≤ TN ,N ,

where Tj,N denotes the j th fastest FPT,

Tj,N := min
{{τ1, . . . , τN }\ ∪ j−1

i=1 {Ti,N }}, j ∈ {1, . . . , N }. (3)

In this notation, a key quantity in some systems is the (k + 1)st slowest FPT,

TN−k,N , for N � k + 1 ≥ 1.

For example, the onset of menopause is triggered by a slowest FPT.When a woman
is born, she has around N ≈ 5 × 105 primordial ovarian follicles (PFs) in her ovar-
ian reserve (Wallace and Kelsey 2010). During her lifetime, this number decays as
individual PFs in this dormant reserve enter a growth stage (given that no new PFs
are formed after birth). Menopause occurs when the number of PFs in the reserve
drops to around k ≈ 103, which is around age 50 years for most women (Faddy et al.
1992). Hence, if {τn}Nn=1 denote the times that each of the PFs leaves the reserve, then
menopause occurs at time TN−k,N , where

N ≈ 5 × 105 � k ≈ 103. (4)

Put another way, the timing of menopause is determined by the slowest k/N ≈ 0.2%
of PFs to leave the reserve.

Furthermore, this ovarian system is notable for its apparent redundancy. Indeed, of
the hundreds of thousands of PFs present at birth, most are destined to die some time
after entering the growth stage, and only about one PF survives to ovulate permenstrual
cycle (Faddy et al. 1992; Faddy and Gosden 1996). Over 40 years of menstrual cycles,
only approximately 40 × 12 ≈ 500 PFs are relevant to possible reproduction across
the lifetime. Even considering the larger number of follicles that engage in ovarian
endocrine function and participate in the signaling required for continued menstrual
cyclicity (and then die), why have N ≈ 5×105 PFs when only much smaller fractions
are absolutely needed?What explains this disparity of up to three orders ofmagnitude?
The situation is exacerbated by the fact that at around 5 months of gestation, a female
has closer to 5 × 106 PFs in her reserve (Wallace and Kelsey 2010). To begin to
address this seeming redundancy in the ovarian system, a mathematical understanding
of slowest FPTs is required.

Slowest FPTs also play a role in cell signaling pathways. A prototypical model
involves signaling molecules (i.e. searchers) diffusing from a source and then binding
to some receptor (i.e. the target) (Liu et al. 2018). The very interesting recent study by
Ma et al. (2020) found that such cell signaling mechanisms are strongly affected by
signal inactivation, in which the diffusing searchers can be inactivated before finding
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the target (such searchers are often called “mortal” or “evanescent” Abad et al. 2010,
2012, 2013; Yuste et al. 2013; Meerson 2015; Grebenkov and Rupprecht 2017). In
particular, Ma et al. (2020) showed that inactivation “sharpens” signals by reducing
variability in the FPTs of a continuum of many searchers arriving at the target. For a
signal conveyed by a finite number of searchers, signal sharpness or “spread” could
be understood in terms of the difference between the latest and earliest searchers to
arrive at the target. That is, the spread of a signal relayed by the arrival of discrete
searchers could be defined as

�N := TN ,N − T1,N . (5)

How does this notion of signal spread depend on inactivation? How does �N depend
on cellular geometry and the many other parameters in the problem? Answering these
questions requires understanding slowest FPTs TN ,N and how they relate to fastest
FPTs T1,N .

Understanding slowest FPTs also promises insight into single-cell source location
detection. Many types of cells display a remarkable ability to pinpoint the location
of an external stimulus. Examples include eukaryotic gradient-directed cell migration
(chemotaxis) (Levchenko and Iglesias 2002), directional growth (chemotropism) in
growing neurons (Goodhill 2016), and yeast (Ismael et al. 2016). In these systems,
cells infer the spatial location of an external source through the noisy arrivals of diffus-
ing molecules (searchers) to membrane receptors (targets). Dating back to the seminal
work of Berg and Purcell (1977), there is a long history of mathematical modeling of
such systems (Zwanzig 1990; Zwanzig and Szabo 1991; Bernoff et al. 2018; Lindsay
et al. 2017; Berezhkovskii et al. 2004, 2006; Dagdug et al. 2016; Eun 2017; Muratov
and Shvartsman 2008; Lawley and Miles 2019; Eun 2020; Handy and Lawley 2021).
A recent work investigated the theoretical limits of what a cell could infer about the
source location from the number of arrivals at different membrane receptors (Lawley
et al. 2020). Intuitively, membrane receptors which receive many molecules are likely
nearer the source than receptors which receive only a few molecules. However, this
prior study considered only the total number of arrivals at each receptor, rather than
the temporal data of when the molecules arrive at each receptor. We conjecture that
including the arrival time data would significantly improve the estimates of the source
location, and might thereby improve the rather inaccurate estimates found in Law-
ley et al. (2020) for sources located more than a few cell radii away. Indeed, recent
work shows that early arrivals are much more likely to hit receptors near the source
compared to later arrivals (Linn and Lawley 2021). However, quantifying how arrival
time data helps pinpoint the source location again requires understanding slowest
FPTs.

We also note that slowest FPTs have recently been studied in the chemical physics
literature in the very interesting work by Grebenkov and Kumar (2022). These authors
study slowest FPTs as a special case of so-called impatient particles problem, which
involves particles which bind reversibly to a target. To our knowledge, the only prior
studyof slowest FPTs is the recentwork byGrebenkov andKumar (2022). SeeSect. 4.3
for a description of how the present paper yields (i) an exact and mathematically
rigorous result that explains a result by Grebenkov and Kumar (2022) which was
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obtained therein by numerical fitting and (ii) higher order corrections to an estimate
by Grebenkov and Kumar (2022).

In this paper,we use extremevalue theory and asymptotic analysis to obtain rigorous
approximations to the full probability distribution of TN−k,N in the many searcher
limit, N � k + 1 ≥ 1. We further prove asymptotic expansions of all the moments
of TN−k,N in this limit. Though the results are proven in the limit of many searchers,
numerical simulations reveal that the approximations are accurate for any number of
searchers in typical scenarios of interest. This contrasts existing estimates of fastest
FPTs, which require very large values of N to be accurate.

In line with previous work on fastest FPTs, we assume that the single FPTs
τ1, . . . , τN are independent and identically distributed (iid). Our results are given
in terms of the large-time distribution of a single FPT τ . Depending on this large-
time distribution, our results involve rescaling TN−k,N according to a diverging power
function, logarithm, harmonic number, or Lambert W function of the searcher number
N . We emphasize that these general mathematical results apply to the largest val-
ues TN−k,N , . . . , TN ,N of any sequence of iid nonnegative random variables {τn}n≥1
whose large-time distribution decays either (a) exponentially (possibly with a power
law pre-factor) or (b) according to a power law.

We apply these general mathematical results to models of ovarian aging and
menopause timing, which reveals the role of slowest FPTs for understanding redun-
dancy in biological systems.We also apply themathematical results to several common
models of stochastic search in biology. We consider diffusive searchers, subdiffusive
searchers, and searcherswhichmove on a discrete network.We also consider searchers
which can be inactivated before finding the target (i.e. mortal searchers). We find that
even small inactivation rates can drastically sharpen the signal by decreasing the signal
spread, �N , in (5).

The rest of the paper is organized as follows. In Sect. 2, we present the general
mathematical results. In Sect. 3, we apply the results to a model of ovarian aging
and menopause timing. In Sect. 4, we apply the results to various search models
and compare the asymptotic theory to numerical simulations. In Sect. 5, we consider
mortal searchers. Sections4 and 5 reveal several generic features of slowest FPTs,
which offers insight into single-cell source location detection and cellular signaling.
In Sect. 6, we discuss further applications of the theory and describe how slowest FPTs
can be nearly deterministic. We collect the mathematical proofs and some technical
details in an “Appendix”.

2 Mathematical analysis

In this section, we present general mathematical results on slowest FPTs. The proofs
are given in Sect. A.1 in the “Appendix”. The results are formulated in terms of
the large-time asymptotic behavior of the so-called survival probability of a single
searcher, which we denote by

S(t) := P(τ > t).
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As in the Introduction, {τn}n≥1 is an iid sequence of realizations of a nonnegative
random variable τ > 0. The order statistics,

T1,N ≤ T2,N ≤ · · · ≤ TN ,N ,

are defined in (3). Though we consider slowest FPTs in Sects. 3–5, we emphasize that
the results of the present section are general results which apply to any iid sequence
of nonnegative random variables {τn}n≥1 whose survival probabilities decay at large
time either (a) exponentially (possibly with a power law pre-factor) or (b) according
to a power law.

Since {τn}n≥1 are iid, the distribution of TN−k,N for k ∈ {0, 1, . . . , N − 1} is

P(TN−k,N ≤ t) =
k∑

i=0

(
N

i

)
(1 − S(t))N−i (S(t))i

= 1 − P(TN−k,N > t)

= 1 −
N−k−1∑

i=0

(
N

i

)
(S(t))N−i (1 − S(t))i . (6)

Though this expression gives the exact distribution of TN−k,N , it requires knowing the
survival probability S(t) for all t ≥ 0 (i.e. it requires knowledge of the full distribution
of τ ). In this section, we focus on obtaining approximations to the distribution and
moments of TN−k,N in the limit N → ∞ with k ≥ 0 fixed, assuming only knowledge
of the large-time decay of the survival probability S(t).

Throughout this paper,

“ f ∼ g” denotes f /g → 1,

“ f = o(g)” denotes f /g → 0,

“ f = O(g)” denotes lim sup | f |/g < ∞.

Recall that a sequence of random variables {XN }N≥1 is said to converge in distribution
to a random variable X as N → ∞ if

P(XN ≤ x) → P(X ≤ x) as N → ∞ (7)

for all points x ∈ R such that the function F(x) := P(X ≤ x) is continuous. If (7)
holds, then we write

XN →d X as N → ∞.

We consider the case that S(t) decays exponentially at large-time (possibly with a
power law pre-factor) in Sects. 2.1 and 2.2 and consider a power law decay of S(t) in
Sect. 2.3.
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2.1 Exponential decay

The first theorem yields the limiting distribution of the slowest FPT assuming that
the survival probability decays exponentially at large time. The proof uses classical
extreme value theory and properties of the Lambert W function (Corless et al. 1996;
Zarfaty et al. 2021).

Theorem 1 Assume

S(t) ∼ A(λt)−pe−λt as t → ∞,

for some A > 0, λ > 0, and p ∈ R. Then for any fixed integer k ≥ 0, we have

λTN−k,N − bN →d Yk as N → ∞, (8)

where Yk has distribution

P(Yk ≤ y) = �(k + 1, e−y)

k! , y ∈ R,

where �(a, z) := ∫ ∞
z ua−1e−u du denotes the upper incomplete gamma function, and

{bN }N≥1 is any sequence satisfying

lim
N→∞(bN − b′

N ) = 0, (9)

where

b′
N :=

⎧
⎪⎨

⎪⎩

ln(AN ) if p = 0,

pW0(
1
p (AN )1/p) if p > 0,

pW−1(
1
p (AN )1/p) if p < 0,

(10)

where W0(z) denotes the principal branch of the Lambert W function and W−1(z)
denotes the lower branch (Corless et al. 1996).

One choice of the sequence {bN }N≥1 in Theorem 1 is bN = b′
N in (10). Another

choice which satisfies (9) is

bN = ln(AN ) − p ln
∣∣∣ ln

∣∣ 1
p
(AN )1/p

∣∣
∣∣∣ − p ln

∣∣p
∣∣, p ∈ R, (11)

where the two terms involving p in (11) are interpreted as zero if p = 0. The fact
that Theorem 1 holds with {bN }N≥1 in (11) follows from the following logarithmic
expansions of the Lambert W function (Corless et al. 1996),

W0(z) = ln z − ln ln z + o(1), as z → ∞,

W−1(z) = ln(−z) − ln(− ln(−z)) + o(1), as z → 0 − .
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Roughly speaking, the convergence in distribution in (8) in Theorem 1 means

P(TN−k,N ≤ t) ≈ P(Yk ≤ λt + bN ) = �(k + 1, ebN e−λt )

k! , if N � k + 1 ≥ 1.

In the case that k = 0, the limiting distribution is Gumbel, P(Y0 ≤ y) = exp(−e−y),
and so

P(TN ,N ≤ t) ≈ P(Y0 ≤ λt + bN ) = exp(−ebN e−λt ), if N � 1.

We further note that Yk in Theorem 1 can be written in terms of a sum of iid
exponential random variables. In particular, it is straightforward to check that

Yk =d − ln(E1 + · · · + Ek+1),

where =d denotes equality in distribution and E1, . . . , Ek+1 are iid exponential
random variables with unit rate (i.e. E[E j ] = 1).

The next theorem yields asymptotic expansions for the moments of the slowest
FPTs by proving the moment convergence,

E[(λTN−k,N − bN )m] → E[Ym
k ] as N → ∞, (12)

for any moment m ∈ {1, 2, . . . } and fixed k ≥ 0. In light of the convergence in
distribution in Theorem 1, it is natural to expect that (12) holds. However, (12) is not a
corollary of Theorem 1, since convergence in distribution does not imply convergence
of moments. Furthermore, we note that Pickands (1968) proved that the convergence
in distribution in Theorem 1 implies that (12) holds for k = 0 (i.e. for the slowest
FPT TN ,N ). However, to our knowledge there is no previous result that shows that
the convergence in distribution in Theorem 1 implies that (12) holds for any fixed
k ≥ 1. Indeed, we show in Sect. 2.3 below that moment convergence for TN ,N is not
equivalent to moment convergence of TN−k,N . We prove Theorem 2 by showing that
the sequence of random variables, {(λTN−k,N − bN )2m}N≥1, is uniformly integrable.

Theorem 2 Assume

S(t) ∼ A(λt)−pe−λt as t → ∞, (13)

for some A > 0, λ > 0, and p ∈ R. Then for each moment m ∈ {1, 2, . . . } and any
fixed k ≥ 0, we have that

E
[
(λTN−k,N − bN )m

] → E[Ym
k ] as N → ∞, (14)

where Yk and bN are as in Theorem 1. In particular, the mean satisfies

E[TN−k,N ] = λ−1(bN + E[Yk] + o(1)
) = λ−1(bN + γ − Hk + o(1)

)

= λ−1( ln N − p ln ln N + ln A + γ − Hk + o(1)
)
, as N → ∞,
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where bN is given by (10), γ ≈ 0.5772 is the Euler-Mascheroni constant, and Hk =∑k
r=1 r

−1 is the k-th harmonic number. Further, the variance satisfies

Variance(TN−k,N ) = λ−2(ψ ′(k + 1) + o(1)
)
, as N → ∞,

where ψ ′(k + 1) = ∑∞
r=0(r + k + 1)−2 is the first order polygamma function.

Note that Theorem 2 implies that the coefficient of variation of TN−k,N vanishes
as N → ∞,

√
Variance(TN−k,N )

E[TN−k,N ] ∼
√

ψ ′(k + 1)

ln N
as N → ∞. (15)

Theorem 1 approximates the distribution of the (k + 1)st slowest FPT. The next
result, which is a corollary of Theorem 1, generalizes Theorem 1 to approximate the
joint distribution of the k + 1 slowest FPTs.

Corollary 1 Assume

S(t) ∼ A(λt)−pe−λt as t → ∞,

for some A > 0, λ > 0, and p ∈ R. For each fixed k ≥ 0, we have the following
convergence in distribution for the joint random variables,

(
λTN−k,N − bN , λTN−k+1,N − bN , . . . , λTN ,N − bN

)
→d Y as N → ∞, (16)

where bN is as in Theorem 1 and Y ∈ R
k+1 is the random vector,

Y =
(

− ln(E1 + · · · + Ek+1),− ln(E1 + · · · + Ek), . . . ,− ln(E1)
)

∈ R
k+1,

where E1, . . . , Ek+1 are iid unit rate exponential random variables.

2.2 Accelerating convergence

Theorem 2 above gives the first few terms in the asymptotic expansion of the mth
moment of TN−k,N for N � k+1 ≥ 1 assuming only that S(t) decays exponentially.
In many examples of interest (see Sect. 4), S(t) is a sum of exponentials,

S(t) = Ae−λt +
∑

n

Bne
−βn t ,

where 0 < λ < β1 < β2 < · · · . For this case, the following result gives higher order
asymptotic expansions of the mth moment of TN−k,N for N � k + 1 ≥ 1. The proof
relies on Renyi’s representation of exponential order statistics (Rényi 1953) and some
detailed asymptotic estimates.

123



   90 Page 10 of 53 S. D. Lawley, J. Johnson

Theorem 3 Assume

S(t) − Ae−λt = O(e−βt ) as t → ∞, (17)

where A > 0 and β > λ > 0. Then for any moment m ∈ (0,∞) and any fixed k ≥ 0,
we have

E[(TN−k,N − λ−1 ln A)m]

= 1

λm

(
E

[( N−k∑

i=1

Ei

i + k

)m]
+ O

(
N−(β/λ−1)(ln N )m−1)

)
as N → ∞,

where E1, E2, . . . , EN−k are iid unit rate exponential random variables. In particular,

E[TN−k,N ] = 1

λ

(
HN − Hk + ln A + O(N−(β/λ−1))

)
as N → ∞,

where Hn = ∑n
r=1 r

−1 is the n-th harmonic number. Further, as N → ∞,

Variance(TN−k,N ) = 1

λ2

( N−k∑

i=1

1

(i + k)2
+ O(N−(β/λ−1) ln N )

)
,

= 1

λ2

(
ψ ′(k + 1) − ψ ′(N + 1) + O(N−(β/λ−1) ln N )

)
,

where ψ ′(k + 1) = ∑∞
r=0(r + k + 1)−2 is the first order polygamma function.

Theorem 3 gives better estimates of the moments of TN−k,N than Theorem 2 in the
case that (17) holds rather thanmerely that (13) holdswith p = 0. Therefore, assuming
(17), Theorem 3 suggests that we choose the sequence {bN }N≥1 in Theorem 1 to be

bN = HN − γ + ln A

= ln N + ln A + 1

2N
−

∞∑

j=1

B2 j

2 j N 2 j ,
(18)

where HN = ∑N
r=1 r

−1 is the N -th harmonic number, γ ≈ 0.5772 is the Euler-
Mascheroni constant, and Bj are the Bernoulli numbers. The second equality in (18)
follows from expanding HN . It follows immediately from (9) that the convergence in
distribution in Theorem 1 holds with the choice in (18) assuming (17). Furthermore,
Theorem 3 implies that this convergence in distribution occurs with a faster rate, in
the sense that our bound on the mean of the difference λTN−k,N − bN − Yk vanishes
at a faster rate as N → ∞ with bN in (18) rather than (11).
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2.3 Power law decay

We now present analogs of the results in Sect. 2.1 for the case that the survival
probability of a single FPT τ vanishes according to a power law.

Theorem 4 Assume

S(t) ∼ (λt)−p as t → ∞, (19)

for some λ > 0 and p > 0. For any fixed integer k ≥ 0, we have that

λTN−k,N

N 1/p →d Zk as N → ∞,

where Zk has probability distribution,

P(Zk ≤ z) = �(k + 1, z−p)

k! , if z > 0,

and P(Zk ≤ z) = 0 if z ≤ 0, where �(a, x) := ∫ ∞
x ua−1e−u du denotes the upper

incomplete gamma function.
Furthermore, for each fixed k ≥ 0, we have the following convergence in

distribution for the joint random variables,

(
λTN−k,N

N 1/p ,
λTN−k+1,N

N 1/p , . . . ,
λTN ,N

N 1/p

)
→d Z ∈ R

k+1 as N → ∞, (20)

where Z ∈ R
k+1 is the random vector,

Z =
(
(E1 + · · · + Ek+1)

−1/p, (E1 + · · · + Ek)
−1/p, . . . , (E1)

−1/p
)

∈ R
k+1,

where E1, . . . , Ek+1 are iid unit rate exponential random variables.

Roughly speaking, Theorem 4 implies

P(TN−k,N ≤ t) ≈ P(Zk ≤ N−1/pλt) = �(k + 1, N (λt)−p)

k! , if N � k + 1 ≥ 1.

In the case that k = 0, the limiting distribution is Frechet with shape p > 0, P(Z0 ≤
z) = exp(−z−p), and so

P(TN ,N ≤ t) ≈ P(Z0 ≤ N−1/pλt) = exp(−N (λt)−p), if N � 1.

We further note that, as is evident from the statement of Theorem 4,

Zk =d (E1 + · · · + Ek+1)
−1/p, k ≥ 0,
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where E1, . . . , Ek+1 are iid unit rate exponential random variables.
The next theorem approximates the moments of TN−k,N assuming S(t) decays

according to the power law in (19). For such a power law decay, it follows immediately
from (6) that

E[(TN−k,N )m] = ∞ if m ≥ (k + 1)p.

Hence, the next theorem assumes 0 < m < (k + 1)p. As described in Sect. 2.1,
moment convergence does not in general follow from convergence in distribu-
tion. We prove Theorem 5 by showing that the sequence of random variables,
{(λTN−k,N N−1/p)r }N≥1 is uniformly integrable for any even integer r ≥ 2. The
proof is quite different from the proof of Theorem 2, where the difference stems from
the fact that E[(TN ,N )m] = ∞ and E[(TN−k,N )m] < ∞ if p ≤ m < (k + 1)p.

Theorem 5 Assume

S(t) ∼ (λt)−p as t → ∞,

for some λ > 0 and p > 0. Then for any fixed k ≥ 0 and moment m such that

0 < m < (k + 1)p,

we have that

E[(TN−k,N )m] ∼ λ−mNm/p �(k + 1 − m/p)

�(k + 1)
, as N → ∞.

A counterintuitive implication of Theorem 5 is that

E[TN−k,N ] < E[τ ] = ∞ if p ≤ 1 < (k + 1)p ≤ Np. (21)

This means that, for example, if p = 1, then the FPT of any given searcher has infinite
mean (i.e. E[τ ] = ∞), but the FPT of the second slowest searcher out of N searchers
has a finite mean (i.e. E[TN−1,N ] < ∞) for any N ≥ 2. The result (21) is especially
counterintuitive if N � 1. To check (21) in a simple special case, observe that (6)
implies that for k = p = 1,

E[TN−1,N ] =
∫ ∞

0
P(TN−1,N > t) dt =

N−2∑

i=0

(
N

i

)∫ ∞

0
(S(t))N−i (1 − S(t))i dt,

and the slowest decaying integrand in the sum decays like t−2 as t → ∞, and thus all
the terms in the sum are finite. We discuss (21) in Sect. 4.5 in the context of diffusing
searchers in an unbounded spatial domain.
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3 Menopause timing

We now apply the general mathematical results of Sect. 2 to a model of ovarian aging
and menopause timing. As described in the Introduction, a woman is born with around
N ≈ 5 × 105 PFs in her ovarian reserve (Wallace and Kelsey 2010). The number of
PFs in her reserve then decays over the next 40–60 years of her life. Menopause occurs
when her reserve drops to around k ≈ 103 PFs, which is around age 50 years for most
women. Hence, letting {τn}Nn=1 denote the times that each of the N PFs leave the
reserve, menopause occurs at time

TN−k,N for N � k = 103. (22)

We can apply the results of Sect. 2.1 to any model of ovarian aging if the model
assumes

{τn}Nn=1 are iid, (23)

and

S(t) := P(τn > t) ∼ Ae−λt as t → ∞. (24)

Models of PF dynamics which assume (23)–(24) have a long history. Perhaps the
earliest models that assume (23)–(24) are those of Faddy, Jones, and Edwards (1976)
and Faddy, Gosden, and Edwards (1983), which were models of PF dynamics in
mice. Faddy and Gosden (1995) proposed and analyzed a stochastic model of PF
dynamics in women which assumed (23)–(24), where the parameters A > 0 and
λ > 0 in (24) were chosen by fitting to PF data. PF decay in a woman’s ovarian
reserve as been compared to radioactive decay, which satisfies (23)–(24). Specifically,
the review by Hirshfield (1991) discussed the possibility that PF growth activation is
a “randomized stochastic event, similar to radioactive decay,” and the book by Finch
and Kirkwood (2000) discussed “pure chance” PF growth activation and discussed
the similarity of the decay of PFs in the reserve to radioactive decay. More recently,
experimental results obtained by one of our groups revealed that the integrated stress
response (ISR) pathway influences the probability that an individual PF leaves the
reserve (Llerena Cari et al. 2021). Since ISR activity fluctuates over time in a single
PF and varies broadly between PFs (Hagen-Lillevik et al. 2022), the ISR activity in
individual PFs was recently modeled by independent random walks, where a single
PF leaves the reserve when its ISR activity crosses a given threshold (Johnson et al.
2022).

Following the ovarian aging model in Johnson et al. (2022), if X(t) denotes the
ISR activity of a given PF at time t ≥ 0, then X evolves according to the stochastic
differential equation (SDE),

dX = −V dt + √
2D dW , X(0) = x, (25)

123



   90 Page 14 of 53 S. D. Lawley, J. Johnson

where W = {W (t)}t≥0 is a standard Brownian motion. In (25), V > 0 is a drift
parameterwhich describes the tendencyof the ISRactivity X to decrease over time, and
D > 0 is a diffusivity parameter which describes the size of the stochastic fluctuations.
The PF leaves the reserve when X crosses at threshold either at X = 0 or X = L .
Hence, the ovarian reserve exit times {τn}Nn=1 in this model are iid realizations of the
FPT,

τ := inf{t > 0 : X(t) /∈ (0, L)}. (26)

By solving the associated backward Kolmogorov equation, the survival probability
of a single FPT τ in (26) can be shown to have the following form (see equation (19)
in the Appendix in Johnson et al. 2022),

S(t) := P(τ > t) = Ae−λt +
∑

k≥2

Ake
−λk t . (27)

In (27), A > 0, Ak ∈ R for k ≥ 2, and

0 < λ < λ2 < λ3 < · · · (28)

depend on the parameters in (25)–(26). In particular, the constants in the leading order
term in (27) are

λ = Dπ2

L2 + V 2

4D
, A = 4

√
2πD2

√
L
(
1 − e

−LV
2D

)

4π2D2 + L2V 2 e
V
2D x

√
2

L
sin

(πx

L

)
. (29)

Owing to the ordering in (28), the survival probability in (27) decays exponentially
at large time,

S(t) − Ae−λt = O(e−λ2t ) as t → ∞,

where 0 < λ < λ2 and A > 0 are in (28)–(29). Therefore, we can apply Theo-
rems 1, 2, and 3 to approximate the probability distribution and moments of the time
of menopause for a given woman, TN−k,N in (22). We note that one can immediately
generalize this calculation to the case of stochastic initial conditions. In particular, if
the initial distribution of each searcher has measure μ, then one merely replaces A in
(29) by

∫ L
0 A dμ(x).

In Fig. 1 , we show the convergence in distribution implied by Theorem 1. In the
left panel of Fig. 1, we plot the distribution of the rescaled and shifted slowest FPT,

P(λTN−k,N − bN ≤ y), (30)

for k = 103 and bN = ln(AN ), as the number of PFs increases up to a physiological
value of (Wallace and Kelsey 2010)

N = Nphys := 3.2 × 105. (31)
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Fig. 1 Convergence in distribution implied by Theorem 1 for a model of ovarian aging. See the text for
details

The solid black curve in the left panel of Fig. 1 is

P(Yk ≤ y) = �(k + 1, e−y)

k! , (32)

as in Theorem 1. The convergence of (30) to (32) as N increases is evident in this
plot. In this plot, we take the following parameter values,

D/x2 = 0.004 year−1, V /x = 0.051 year−1, x/L = 1/2, (33)

which were obtained in Johnson et al. (2022) by fitting (27) to histological data of PF
decay (Wallace and Kelsey 2010). See Sect. A.2.1 in the “Appendix” for details on
the numerical method used to obtain the cumulative distribution function in (30).

In the right panel of Fig. 1, we compare the distribution of the time to menopause,
TN−k,N , for the physiologically relevant PF number, N = Nphys. This plot also shows
the distribution of the theoretical approximation,

λ−1(Yk + bN ),

where Yk is in (32) (as in Theorem 1), bN = ln(AN ), and λ and A are in (29). This
figure shows that the theoretical approximation to the time of menopause is accurate to
about 2 or 3months. Indeed, themeanofTN−k,N computed fromstochastic simulations
is

E[TN−k,N ] = 51.07 years,

which is within 3 months of the mean of E[TN−k,N ] estimated from ignoring the o(1)
terms in Theorem 2,

E[TN−k,N ] ≈ λ−1(ln N + ln A + γ − Hk) = 51.27 years. (34)

We now comment on how this analysis offers potential explanations for some
perplexing aspects of ovarian biology. First, these results demonstrate the utility of the
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very large and seemingly redundant number of PFs. As described in the Introduction,
the number N of PFs is a few orders of magnitude greater than the number that
will be ovulated or the number engaged in ovarian endocrine function and menstrual
signaling. What explains this so-called “wasteful” oversupply (Faddy and Gosden
1995; Themmen 2005; Hartshorne et al. 2009; Inserra et al. 2014; Albamonte et al.
2019)? These results show that the very large number N of PFs ensures that there
will be a supply of PFs available for ovulation for several decades of a woman’s life.
Indeed, for the parameters in (33), one can compute that a typical PF spends less than
20 years in the reserve,E[τ ] ≈ 19 years. Despite the relatively short time that a typical
PF spends in the reserve, the large number N of PFs ensures that the ovarian reserve
lasts around 50 years. In fact, the slow logarithmic growth of E[TN−k,N ] as a function
of N means that the number of PFs N must be on the order of hundreds of thousands
to extend the lifetime of the reserve much beyond the time E[τ ] ≈ 19 years.

Second, despite the enormous variability in the PF starting supply N across a popu-
lation, the menopause age distribution is quite narrow across a population. Indeed, in a
dataset of only 14 girls at birth, the largest N was over 500% greater than the smallest
N (namely, N = 106 versus N = 1.5× 105) (Wallace and Kelsey 2010). In contrast,
the menopause age varies by at most around 50% between healthy women (age 40 to
60 years) (Weinstein et al. 2003). This discrepancy can be understood immediately
from (34), since this equation predicts that menopause age depends logarithmically on
N . Indeed, taking N = 1.5×105 versus N = 106 in (34) yields respective menopause
ages of 47 and 58 years.

Third, a unilateral oophorectomy (removal of a single ovary) tends to yield only a
slightly earlier menopause age. Numerical estimates vary (Yasui et al. 2012; Bjelland
et al. 2014; Rosendahl et al. 2017), but a unilateral oophorectomy is associated with
an earlier menopause age of at most a couple of years. As noted by Bjelland et al.
(2014), since removing an ovary cuts the PF count in half, it is counterintuitive that
the menopause age “penalty” for a unilateral oophorectomy is so small. Furthermore,
this penalty is at most only very weakly correlated with the woman’s age at the time
of unilateral oophorectomy (see Figure 3 in Rosendahl et al. (2017)). Both of these
observations are consistentwith the analysis above. Indeed, (34) predicts that removing
half of the PFs at birth causes a menopause age penalty of only ln(2)/λ ≈ 4.0 years,
and the iid assumption in (23) implies that this penalty is independent of when the
ovary is removed (assumingmerely that there are at least k = 103 PFs in the remaining
ovary at the time of oophorectomy). We note that including population heterogeneity
in the parameters in (25) as in Johnson et al. (2022) (see equation (10) therein) would
imply that the menopause age penalty estimate of ln(2)/λ ≈ 4.0 years would vary by
a fraction of a year between women.

In addition, the analysis abovepredicts an interesting consequenceof themenopause
threshold k ≈ 103 � 1. In particular, although the model assumes each PF leaves
the reserve at an independent random time, the resulting menopause age is nearly
deterministic (for a given woman with a fixed N ). Indeed, Theorem 2 implies that the
menopause age standard deviation is

√
Variance(TN ,N−k) ≈ λ−1

√
ψ ′(k + 1), (35)
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and taking k = 103 in (35) yields a standard deviation of only 2.2 months. In con-
trast, taking k = 0 in (35) (i.e. menopause occurs when the PF supply is completely
exhausted) increases the standard deviation to over 7 years.

Naturally, the analysis above makes a number of simplifying assumptions. For
instance, though the iid assumption in (23) is common in models of ovarian aging
(Faddy et al. 1976, 1983; Faddy and Gosden 1995), neighboring PFs in the ovary
may be correlated due to physiological processes that fluctuate over time regionally
within the ovary (Llerena Cari et al. 2021). Further, mechanistic knowledge has been
accumulating on the ovarian reserve establishment and PF activation (Grosbois et al.
2020), and these details are not directly accounted for in the simple iid assumption in
(23). In addition, though it is common to assume a link between the initial PF supply
and the menopause age (Faddy and Gosden 1996; Wallace and Kelsey 2010), some
data in mice has cast doubt on this link (Bristol-Gould et al. 2006). It is likely also
that the rate of loss of PFs can be modified by known or unidentified exposures in
individuals, but modeling those individual cases will need to be informed by those
specific circumstances of exposure type and time. An additional limitation is that
the analysis above does not distinguish between (i) PFs which exit the reserve due to
growth activation and (ii) PFs which exit the reserve due to atresia. This is in contrast
to some prior models which track follicles through multiple stages of development
with distinct growth and death rates which are piecewise constant in time (Faddy
et al. 1976, 1983; Faddy and Gosden 1995). Determining the relative contribution of
activation versus atresia is critical to jointly predict the numbers of primordial and
growing follicles and thus remains an important area for research.

4 Stochastic search

In this section, we use the general mathematical results of Sect. 2 to investigate sev-
eral prototypical models of stochastic search and compare the asymptotic theory to
numerical simulations. The details of the numerical simulation methods are given in
Sect. A.2 in the “Appendix”.

4.1 Diffusive escape from an interval

Let {X(t)}t≥0 be a one-dimensional, pure diffusion process with diffusivity D > 0.
Let τ be the FPT for the diffusion to escape the interval (−L, L),

τ := inf{t > 0 : X(t) /∈ (−L, L)}.

Assume that the searcher starts at X(0) = x0 ∈ [0, L). Let {τn}Nn=1 be an iid sequence
of N realizations of τ , representing the FPTs of N iid searchers.

A standard eigenfunction analysis of the associated backwardKolmogorov equation
yields that the survival probability, S(t) := P(τ > t), decays exponentially at large
time (see Sect. A.2.2 in the “Appendix”),
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Fig. 2 Convergence in distribution and moments for diffusive escape from an interval. The left panel plots
the distribution of the rescaled slowest FPT,λTN ,N −bN , with bN in (18) for N = 1, 2, 10,which converges
rapidly to the distribution of Y0 defined in Theorem 1. The right panel plots the relative errors in (38)–(39)
for computing the mean and standard deviation of TN ,N via Theorem 3

S(t) − Ae−λt = O(e−βt ) as t → ∞,

where β = 4λ and

λ = π2

4

D

L2 , A = 4

π
sin(π(x0 + L)/(2L)). (36)

Theorems 1, 2, and 3 thus yield the distribution and moments of the (k + 1)st slowest
FPT, TN−k,N if N � k + 1 ≥ 1. In particular, Theorem 3 implies that the mean FPT
of the slowest searcher satisfies

E[TN ,N ] = 1

λ

(
HN + ln A + O(N−3)

)
, as N → ∞. (37)

We note that it is immediate to generalize this calculation to the case of stochastic
initial conditions. In particular, if the initial distribution of each searcher has measure
μ, then one merely replaces A in (36) by (see Sect. A.2.2 in the “Appendix” for more
details)

∫ L

−L

4

π
sin(π(x0 + L)/(2L)) dμ(x0).

InFig. 2,we illustrate the conclusions ofTheorems1, 2, and3 for this example. In the
left panel of Fig. 2, we plot the distribution of λTN ,N −bN where bN = HN −γ + ln A
(see (18)) for N = 1, 2, 10. This plot shows that λTN ,N −bN converges in distribution
very rapidly to the random variable Y0 defined in Theorem 1 as N increases. In the
right panel, we plot the relative error for the approximations in Theorems 2 and 3 for
the mean and standard deviation of TN ,N . That is, we plot the following relative errors
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for Theorem 2 (black curves),

∣∣∣∣
E[TN ,N ] − λ−1(ln(AN ) + γ )

E[TN ,N ]
∣∣∣∣,

∣∣∣∣

√
Var(TN ,N ) − λ−1(π2/6)

√
Var(TN ,N )

∣∣∣∣ (38)

and the following relative errors for Theorem 3 (orange and green curves),

∣∣∣∣
E[TN ,N ] − λ−1(HN + ln A)

E[TN ,N ]
∣∣∣∣,

∣∣∣∣

√
Var(TN ,N ) − λ−1(π2/6 − ψ ′(N + 1))

√
Var(TN ,N )

∣∣∣∣. (39)

As expected, the error for the approximations in Theorem 3 vanish very quickly. In
Fig. 2, the distribution and statistics of TN ,N are computed from the survival probability
of τ , which can be obtained via a standard eigenfunction calculation (see Sect. A.2.2
in the “Appendix” for details). In Fig. 2, we take L = 1/2, x0 = 0, and D = 1.

The rapid convergence of the approximations in Theorem 3 to the slowest FPT
TN ,N contrasts with the very slow convergence of approximations to the fastest FPT
T1,N . Indeed, the relative error for approximating the mean slowest FPT E[TN ,N ]
using Theorem 3 is less than 1% for N = 1, whereas a comparable relative error
for approximating the mean fastest FPT E[T1,N ] for this one-dimensional diffusion
problem is around N = 106 (Lawley 2020a).

Continuing the comparison of slowest and fastest FPTs, if we take only the leading
order term in (37) (using the expansion in (18)), then the mean slowest FPT has the
following simple form,

E[TN ,N ] ∼ 1

λ
ln N = 4

π2

L2

D
ln N , as N → ∞. (40)

Considering only a given single searcher, we have that

E[τn] = E[τ ] = 1

2

L2

D
(1 − x20/L

2). (41)

The fastest searcher satisfies (Lawley 2020d)

E[T1,N ] ∼ 1

4

L2

D
(1 − x0/L)2

1

ln N
as N → ∞. (42)

There are a few things to notice about the order statistics in (40)–(42). First, the leading
order mean slowest FPT in (40) is independent of the starting location x0 ∈ [0, L).
In contrast, the prefactors in the mean FPT of a single searcher in (41) and the mean
fastest FPT in (42) depend on x0.

Furthermore, as long as x0/L �≈ 1, there is relatively little difference between (40),
(41), and (42), due to the slow growth of ln N as N increases. That is, for values of
N which are of interest in typical applications, mean FPTs for the slowest searcher
in (40), the single searcher in (41), and the fastest searcher in (42) are quite similar.
Concretely, even if N = 105 � 1, E[TN ,N ] is only about an order of magnitude
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slower than E[τ ], and E[τ ] is only about an order of magnitude slower than E[T1,N ].
Finally, we also point out that there is a form of symmetry in how the slowest FPT
and fastest FPT relate to a single FPT, in that (40)–(42) imply

E[τ ]
E[TN ,N ] ≈ 1

ln N
≈ E[T1,N ]

E[τ ] if N � 1, (43)

where the approximate equalities in (43)merely ignore order one constants. In Sect. 4.2
below,we see that (43) can break down, andwe can instead have thatE[τ ]/E[TN ,N ] �
E[T1,N ]/E[τ ] if N � 1.

4.2 Rare diffusive escape (small target or deep well)

In a variety of scenarios of biophysical interest, the FPT for a diffusive searcher to
find a target in a bounded spatial domain satisfies

S(t) ∼ Ae−λt as t → ∞, (44)

where

A ≈ 1 and 0 < λ � D/L2, (45)

where D > 0 is the diffusivity of the searcher and L > 0 is the shortest distance
a searcher must travel to reach the target (which assumes that searchers cannot start
arbitrarily close to the target). Equations (44)–(45) mean that the time it takes most
searchers to find the target is much longer than the diffusion timescale L2/D. For
example, it is well known that (44)–(45) hold (i) for small targets (which is the so-
called narrow escape or narrow capture problem (Lindsay et al. 2017)), (ii) for partially
reactive targets which are small and/or have low reactivity (Lawley andMadrid 2019),
and (iii) if the searcher must escape a deep potential well before reaching the target
(Williams 1982).

The point of this section is to show what our results imply about slowest FPTs
in the case that (44)–(45) hold. Equations (44)–(45) imply that a single FPT τ is
approximately exponentially distributed with rate λ > 0, and thus

E[τ ] ≈ λ−1 � L2/D. (46)

Furthermore, it was shown in Madrid and Lawley (2020) that the fastest FPT satisfies

E[T1,N ] ≈
{

(λN )−1 ≈ E[τ ]/N if N ln N � (λL2/D)−1,

(L2/D)(4 ln N )−1 if N/ ln N � (λL2/D)−1.
(47)

In words, (46) states that the mean FPT of a single searcher, E[τ ], is much slower than
the diffusion timescale of L2/D. Further, (47) states that the mean FPT of the fastest
searcher, E[T1,N ], decays like E[τ ]/N for small to moderately large N , and E[T1,N ]
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Fig. 3 Slowest, fastest, and typical FPTs for a narrow capture problem. A typical single FPT (E[τ ], orange
solid curve) is much slower than the diffusion timescale L2/D, and the slowest FPT (E[TN ,N ], green square
markers) is only mildly slower than E[τ ]. In contrast, the fastest FPT (E[T1,N ], purple circle markers) is
much faster than E[τ ] and the diffusion timescale L2/D. The green solid curve shows the leading order
slowest FPT estimate from Theorem 2. The dotted and solid purple curves show the estimates in (47). See
the text for details (color figure online)

finally decays like (L2/D)(4 ln N )−1 for very large N (the behavior in (47) is shown
in Fig. 3).

Now, Theorem 2 implies that the mean FPT of the slowest searcher, E[TN ,N ],
satisfies E[TN ,N ] ∼ λ−1 ln N as N → ∞, and thus (46)–(47) imply

E[τ ]
E[TN ,N ] ≈ 1

ln N
� E[T1,N ]

E[τ ] if N � 1. (48)

To summarize, in the case that a typical single searcher finds the target much more
slowly than the diffusion timescale, we have that (a) the fastest searcher out of N � 1
searchers finds the target much faster than a single searcher, and in contrast, (b) the
slowest searcher out of N � 1 searchers is by comparison only slightly slower than
a single searcher.

We illustrate this point in Fig. 3. In this figure,we plotmean slowest andmean fastest
FPTs for searchers with a small target. More specifically, we consider searchers which
move by pure diffusionwith diffusivity D > 0 in a three-dimensional spherical domain
of radius L > 0. Searchers start at the boundary of the sphere, which is reflecting, and
diffuse until they hit the target, which is a small sphere in the center of the domain
with radius a = L/103. It is evident from Fig. 3 that (48) holds in that the fastest FPT
is much faster than a single FPT and the slowest FPT is comparatively only slightly
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slower than a single FPT. Indeed, for Fig. 3 we have that

E[τ ]
E[TN ,N ] = 7 × 10−2 ≈ 1

ln N
� E[T1,N ]

E[τ ] = 1.2 × 10−4 if N = 106.

Finally, reiterating a point made in Sect. 4.1, Fig. 3 illustrates that the approxi-
mation to E[TN ,N ] from Theorem 3 is much more accurate than the extreme value
approximation to E[T1,N ] for finite N . In particular, in Fig. 3 notice that the values of
E[TN ,N ] (green square markers) are nearly indistinguishable from the approximation
λ−1HN (solid green curve) from Theorem 3 (using that ln A ≈ 0 by (45)) for all
N ≥ 1, whereas the values of E[T1,N ] (purple circle markers) are relatively far from
the leading order extreme value theory approximation L2/(4D ln N ) (solid purple
curve).

To summarize, the following picture emerges if the typical search time is much
slower than the diffusion timescale (i.e. if (44)–(45) hold). Slowest searchers are
only slightly slower than typical searchers, whereas fastest searchers are much faster
than typical searchers. Further, the searcher starting position does not strongly impact
slowest and typical FPTs, whereas fastest FPTs depend critically on searcher starting
positions.

4.3 Partially absorbing target (example due to Grebenkov and Kumar (2022))

A very interesting recent work in the chemical physics literature considered slowest
FPTs of diffusing searchers in a bounded domain (Grebenkov and Kumar 2022). By
analyzing an eigenfunction expansion of the associated survival probability of a single
searcher of the form,

S(t) = Ae−λt + O(e−βt ), as t → ∞,

where 0 < λ < β, these authors derived the following approximation for the mean
slowest FPT,

E[TN ,N ] ≈ 1

λ

(
ln N + ln A − ln ln

[ 1
1−ξ

])
, if N � 1, (49)

where ξ was an unknown constant near ξ ≈ 0.5. These authors found that ξ ≈ 0.428
yielded the best fit of (49) to numerical simulations.

By Theorem 2 above, we see that − ln ln[ 1
1−ξ

] in (49) should be replaced by
the Euler-Mascheroni constant γ ≈ 0.5772. Indeed, setting ξ = 0.428 yields
− ln ln[ 1

1−ξ
] = 0.5823 ≈ γ . Furthermore, Theorem 3 above yields corrections to

the expansion in (49) up to order N−(λ/β−1).
In Fig. 4, we consider the specific example studied inGrebenkov andKumar (2022),

in which each searcher diffuses in a three-dimensional sphere centered on an interior
spherical target that is partially absorbing (as in Figure 4 in Grebenkov and Kumar
2022, the domain has radius 10, the searchers start at radius 5, and the diffusion
coefficient, target radius, and target reactivity are all unity). This figure illustrates
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Fig. 4 Comparison of Theorems 2 and 3 to a problem studied by Grebenkov and Kumar (2022). See the
text for details

the very high accuracy of the approximation E[TN ,N ] ≈ λ−1(HN + ln A) given by
Theorem 3 (solid purple curve), in which the relative error is less than 10−3 for N = 1
and dips to nearly 10−14 by N = 8. The details for this example are given in Sect. A.2.4
in the “Appendix”.

4.4 Randomwalk on discrete network

We now briefly describe how to apply our results to a random walk on a discrete
network. Let {X(t)}t≥0 be an irreducible, continuous-time Markov chain on a finite
state space I (i.e. the network)with infinitesimal generatormatrix Q ∈ R

|I |×|I | (Norris
1998). Recall that this means that the entry in row i and column j of Q denotes the
rate that X jumps from state i to j if i �= j and the diagonal entries of Q are chosen
so that Q has zero row sums. Let Itarget ⊂ I denote some set of “target” states, and
define the FPT to Itarget,

τ := inf{t > 0 : X(t) ∈ Itarget}.

Let ρ = {ρi }i∈I = {P(X(0) = i)}i∈I ∈ R
|I |×1 denote the initial distribution of X

and assume that ρi = P(X(0) = i) = 0 for all i ∈ Itarget, which merely means that X
cannot start in the target set. The survival probability is then given by

S(t) := P(τ > t) = ρ�eQt1, (50)

where ρ = {ρi }i∈I\Itarget ∈ R
|I\Itarget|×1, is the vector obtained by discarding the

elements of ρ corresponding to states in Itarget (and ρ� ∈ R
1×|I\Itarget| denotes the

transpose of ρ), Q = {Qi, j }i, j∈I\Itarget ∈ R
|I\Itarget|×|I\Itarget| denotes the matrix

obtained by discarding all the rows and columns corresponding to states in Itarget,
and 1 ∈ R

|I\Itarget|×1 is the column vector of all ones.
The form of the survival probability in (50) implies that it must decay at large

time according to S(t) ∼ A(λt)r e−λt as t → ∞, where A > 0, r ∈ {0, 1, 2, . . . },
and λ > 0 depend on ρ and eQt . Hence, the slowest FPTs satisfy the assumptions
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Fig. 5 Left: Convergence in distribution for the half-line problem in Sect. 4.5. Right: Convergence in
distribution for the subdiffusion problem in Sect. 4.6. See the text for details

Theorems 1–2, where the scalings bN involve either logarithms (if r = 0) or the lower
branch of the Lambert W function (if r ≥ 1). Hence, Theorems 1–2 (and Theorem 3
if r = 0) yield the full distribution and all the moments of TN−k,N if N � k + 1 ≥ 1.

4.5 Diffusion on half-line

We now consider an example in which the survival probability of a single FPT has
power law decay rather than exponential decay. Let {X(t)}t≥0 be a one-dimensional,
pure diffusion process with diffusivity D > 0. Let τ be the FPT to reach the origin,

τ := inf{t > 0 : X(t) = 0}, (51)

and assume that the searcher starts at X(0) = x > 0. The important distinction
between this example and the diffusion examples above is that the domain in this
example is unbounded.

The survival probability is (Carslaw and Jaeger 1959)

S(t) := P(τ > t) = erf(x/
√
4Dt), (52)

where erf(z) = 2√
π

∫ z
0 e−u2 du denotes the error function. Taking t → ∞ in (52)

yields

S(t) ∼ (λt)−p as t → ∞, (53)

where

λ = πD

x2
, p = 1

2
. (54)

In the left panel of Fig. 5 , we plot the convergence in distribution implied by
Theorem 4. We again see that the convergence rate is rapid for this slowest FPT. In
this plot, we take D = x = 1.
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Since p = 1/2, notice that Theorem 5 and (21) implies that

E[TN−k,N ] < E[TN ,N ] = E[τ ] = ∞, for any 2 < k + 1 ≤ N .

That is, the third slowest searcher out of N ≥ 3 searchers has a finitemean FPT, despite
the fact that any given searcher has an infinite mean FPT. This result is counterintuitive
in the case of many searchers, since it means that the third slowest out of N � 1
searchers is actually faster than a typical searcher, in the sense that E[TN−2,N ] < ∞
and E[τ ] = ∞.

Generalizing this example, suppose each diffusing searcher experiences a constant
drift toward the origin. That is, the position of a searcher evolves according to the
SDE,

dX = −V dt + √
2D dW , X(0) = x > 0, (55)

where W is a standard Brownian motion and the drift V > 0 pushes the searcher
“down” toward the origin. We show in Sect. A.2.5 in the “Appendix” that the survival
probability for (51) is

S(t) = 1

2

[
1 + erf

( x − V t√
4Dt

)
− e

V x
D erfc

( x + V t√
4Dt

)]
, t > 0. (56)

Expanding (56) as t → ∞ yields

S(t) ∼ A(λt)−pe−λt as t → ∞, (57)

where

λ = V 2

4D
, A = V x

4D
√

π
eV x/(2D), p = 3

2
.

Hence, the drift causes the survival probability to decay exponentially rather than
according to the power law in (53). Further, Theorem 1 and the power law prefactor in
(57) imply that the distributions and moments of the slowest FPTs for this example are
described in terms of the Lambert W function. We postpone numerical illustrations
of this example until Sect. 5 below, where we show that the presence of the drift in
(55) is exactly equivalent to considering purely diffusive searchers (i.e. with no drift)
that are conditioned to find the target before an exponentially distributed inactivation
time.

4.6 Subdiffusive search

Subdiffusive stochastic motion has been observed in a variety of diverse physical
scenarios and is especially prevalent in cell biology (Oliveira et al. 2019; Klafter and
Sokolov 2005;Barkai et al. 2012; Sokolov 2012).While diffusion ismarked by amean-
squared displacement that grows linearly in time, anomalous subdiffusion is defined by
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a mean squared displacement that grows like tα as time t increases, where α ∈ (0, 1)
is the subdiffusive exponent. One very common way to model subdiffusion is via a
fractional Fokker-Planck equation (Metzler et al. 1999) (which can be derived from
the continuous-time random walk model with power law waiting times Metzler and
Klafter 2000), which is equivalent to constructing a subdiffusive process {X(t)}t≥0
via a random time change of a diffusive process {Y (s)}s≥0 (Lawley 2020c). More
specifically, if {Y (s)}s≥0 is a diffusion process satisfying an Itô stochastic differential
equation, then the subdiffusive process is defined via

X(t) := Y (S(t)), t ≥ 0, (58)

where {S(t)}t≥0 is an inverse α-stable subordinator that is independent of Y .
Therefore, if τ and σ denote the respective FPTs of X and Y to some target, then

S(t) := P(τ > t) = E[Sσ (S(t))], (59)

where Sσ (s) := P(σ > s) denotes the survival probability of the diffusive FPT σ .
Using that the probability density that S(t) = s is given by

d

ds
P(S(t) ≤ s) = t

αs1+1/α lα
( t

s1/α

)
, (60)

where lα(z) is defined via its Laplace transform,

∫ ∞

0
e−r zlα(z) dz = e−rα

, α ∈ (0, 1), r ≥ 0, (61)

the representation (59) yields

S(t) =
∫ ∞

0
P(σ > s)

t

αs1+1/α lα
( t

s1/α

)
ds. (62)

The following proposition is a general result that yields the large time behavior of
any function S(t) satisfying (62) assuming that σ > 0 has finite mean. The proof is
given in Sect. A.2.6 in the “Appendix”.

Proposition 1 Let σ > 0 be any nonnegative random variable with finite mean. If S(t)
is given by (62) where lα is defined via (61), then

S(t) ∼ E[σ ]
�(1 − α)

t−α as t → ∞. (63)

Applying Proposition 1 to the case of subdiffusion described above, we obtain the
large-time behavior of the survival probability of a subdiffusive FPT (we note the
large-time decay in (63) was derived formally in Condamin et al. 2007 and Lua and
Grosberg 2005 under stronger assumptions). Combining this result with Theorem 4
yields the probability distribution for the slowest subdiffusive FPTs. Specifically, if
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{τn}n≥1 denote iid subdiffusive FPTs whose survival probabilities satisfy (63), then
Theorem 4 implies that

λTN−k,N

N 1/p →d Zk as N → ∞, (64)

where

p = α, λ =
(�(1 − α)

E[σ ]
)1/α

, P(Zk ≤ z) = �(k + 1, z−α)

k! , if z > 0.

As expected, this shows that slowest subdiffusive FPTs are much slower than slowest
diffusive FPTs. This intuitive result contrasts the results of (Lawley 2020b), wherein
it was proven that the fastest subdiffusive searchers are faster than the fastest dif-
fusive searchers. We also note that Theorem 5 implies E[TN ,N ] = E[τ ] = ∞ and
E[TN−k,N ] < ∞ if 1 < (k + 1)α ≤ Nα.

The convergence in distribution in (64) is illustrated in the right panel of Fig. 5.
For this plot, X is in (58) where Y is a one-dimensional pure diffusion process with
diffusivity D > 0 starting at the origin, and the diffusive FPT σ is the first time
that Y escapes the interval (−L, L). We take D = 1, L = 1/2, and α = 3/4 for
the subdiffusive process X . Details on the numerical methods for this example are in
Sect. A.2.6 in the “Appendix”.

5 Mortal searchers and signal sharpness

We now consider so-called “mortal” searchers, which may “die” (degrade, be inac-
tivated, etc.) before finding the target. Such search processes are sometimes called
“evanescent” and have been studied extensively (Abad et al. 2010, 2012, 2013; Yuste
et al. 2013; Meerson 2015; Grebenkov and Rupprecht 2017; Ma et al. 2020; Lawley
2021).

5.1 Large-time survival probability asymptotics

Mathematically, the FPT τmortal of such a mortal searcher can be written as

τmortal :=
{

τ if τ ≤ σ,

+∞ if τ > σ,

where τ is the FPT of an immortal searcher (i.e. a searcher with no inactivation) and
σ > 0 denotes the inactivation time. Following typical assumptions, we assume that
σ is independent of τ and is exponentially distributed with mean E[σ ] = 1/r .
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Let τ denote the FPT of a mortal searcher that is conditioned to find the target
before inactivation. That is, τ has survival probability,

S(t) := P(τ > t) := P(τ > t | τ ≤ σ) = P(t < τ ≤ σ)

P(τ ≤ σ)
. (65)

Such inactivation has the effect of filtering out searchers which take a long time to find
the target. The following simple result computes the large-time decay of S(t) based on
the large-time decay of S(t) (the proof is collected in Sect. A.2.7 in the “Appendix”).

Proposition 2 Assume S(t) := P(τ > t) is in (65), where σ is independent of τ and
exponentially distributed with mean E[σ ] = 1/r and S(t) := P(τ > t). If

S(t) − Ae−λt = O(e−βt ) as t → ∞,

where 0 < λ < β and A > 0, then

S(t) − Ae−λt = O(e−(β+r)t ) as t → ∞,

where

λ = λ + r , A = Aλ/(λ + r)
∫ ∞
0 (1 − S(s))re−rs ds

.

If S(t) ∼ (λt)−p as t → ∞, where λ > 0 and p > 0, then

S(t) ∼ A(λt)−pe−λt as t → ∞, (66)

where

λ = r , p = p + 1, A = p(r/λ)p
∫ ∞
0 (1 − S(s))re−rs ds

.

Combining Proposition 2 with Theorems 1–2 yields the distribution and moments
of the slowest FPT for mortal searchers that find the target before inactivation.

5.2 Half-line

Consider the example inSect. 4.5 of pure diffusion on the positive real line starting from
X(0) = x > 0 and a target at the origin. The survival probability for a single immortal
searcher has the power law decay in (53)–(54). Using the unconditioned survival
probability in (52), Proposition 2 implies that the conditioned survival probability
S(t) in (65) decays exponentially according to (66) with

A = 1√
4π

e
√

r x2/D
√
r x2/D, λ = r , p = 3

2
.
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Fig. 6 Convergence in distribution and moments for mortal searchers conditioned to find the target before
inactivation. The left panel plots the convergence in distribution in (67). The right panel plots the relative
errors in (38)–(39) for computing the mean and standard deviation of TN ,N via Theorem 2. See Sect. 5.2
for details

Hence, Theorems 1–2 yield the distribution and moments of the slowest FPTs in terms
of the Lambert W function. In particular, if TN−k,N is as in (3) but with τ replaced by
τ , then Theorem 1 implies

λTN−k,N − pW0
(
(AN )1/p/p

) →d Yk as N → ∞. (67)

Further, Theorem 2 yield the three-term asymptotic expansion for the mean,

E[TN−k,N ] = (1/λ)
(
ln N − p ln ln N + ln A + γ − Hk + o(1)

)
, as N → ∞.

(68)

To illustrate these results numerically, we first note that a direct calculation using
(52) and (65) shows that for this example,

S(t) = 1

2

[
1 + erf

( x − t
√
4Dr√

4Dt

)
− e

x
√
4Dr
D erfc

( x + t
√
4Dr√

4Dt

)]
. (69)

Notice that (69) is exactly equivalent to (56) if the drift in (56) is given by

V = √
4Dr > 0. (70)

In Fig. 6, we investigate the distribution and moments of TN−k,N for this example.
Due to the equivalence of (69) and (56) if (70) holds, Fig. 6 also applies to the example
with drift in Sect. 4.5. In the left panel of Fig. 6, we plot the distribution of λTN ,N −bN .
While the convergence in distribution to Y0 is evident, the rate of convergence is
markedly slower than in the examples considered above. This slow convergence is
also seen in the right panel of Fig. 6, where we plot the relative errors for the three-
term estimate of the mean of TN ,N in (68) (solid orange curve) and the estimate of the
standard deviation given by Theorem 2 (dashed green curve). We also plot the relative
error for the mean if we only used the leading order logarithmic term in (68) (dot
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dashed black curve), which is much larger than using the full three-term estimate in
(68). Hence, this more detailed three-term estimate in (68) is necessary for an accurate
estimate of the mean, with the iterated logarithmic term making a strong contribution.
In this plot, we take D = x = r = 1.

5.3 Signal sharpness

The relevance of mortal searchers to cell signaling was recently highlighted in the very
interesting study by Ma et al. (2020), wherein the authors showed that inactivation
“sharpens” signals by reducing variability in FPTs. Ma et al. (2020) were particularly
interested in a signal transmitted by diffusing proteins (the searchers) which move
from the cell membrane to the nucleus (the target). For a signal conveyed by a finite
number of searchers, signal “sharpness” could be understood as inversely related to
the signal “spread,” defined as the difference between the latest and earliest searchers
to arrive at the target. That is, a notion of signal spread is

�N := TN ,N − T1,N > 0, (71)

where TN ,N and T1,N are the respective slowest and fastest searchers to arrive at
the target. We now use the results above to investigate how inactivation (i.e. mortal
searchers) affects the signal spread �N .

A typical model of cell signaling, such as the model in Ma et al. (2020), involves
diffusive searchers in a bounded domain with reflecting boundaries. In such a model,
the survival probability of an immortal searcher can be written as a sum of decaying
exponentials,

S(t) = Ae−λt +
∑

n≥1

Bne
−βn t ,

where 0 < λ < β1 < · · · . Suppose that searchers are inactivated at rate r > 0, and
consider�N in (71) for searchers which reach the target before inactivation. Applying
Proposition 2 and Theorem 3 to TN ,N and the results of Lawley (2020d) to T1,N yields
the following large N behavior of the mean of �N ,

E[�N ] = 1

λ + r

(
ln N + ln A + γ

)
− L2

4D

1

ln N
+ o(1/ ln N ) as N → ∞, (72)

where L > 0 is the shortest distance from the searcher starting location to the target
and D > 0 is the searcher diffusivity,

In this model, the three important timescales are

L2/D, 1/λ, 1/r .

As in Sect. 4.2, it is often the case that

L2/D � 1/λ, (73)
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Fig. 7 Signal spread �N in (72)
for mortal searchers. See the text
for details

which means that an immortal searcher tends to wander around the domain before
finding the target. That is, L2/D describes the FPT of searchers which move along
the shortest path to the target, which is often much faster than 1/λ.

In Fig. 7, we plot the expression for E[�N ] in (72) ignoring the o(1/ ln N ) term.
In this plot, we take λL2/D ∈ {10−1, 10−2, 10−3} � 1 and consider the inactivation
rate r ranging from r = 0 (i.e. immortal searchers) to r = D/L2. We take N = 103

and ln A = 0 for simplicity. Notice that there is a drastic decrease in �N once r
is larger than λ. That is, if r � λ, then �N is much less than the value of �N for
immortal searchers, even if r � D/L2. This means that inactivation strongly sharpens
the signal as long as the inactivation rate is sufficiently large that it filters out searchers
which wander around the entire domain, without requiring the inactivation rate to be
so large that the only searchers which find the target are those that move along the
shortest path to the target.

6 Discussion

In this paper, we obtained rigorous approximations to the distribution and moments of
slowest FPTs. The mathematical results relied on extreme value theory and detailed
asymptotic estimates. We emphasize that these general results apply to the largest
values of any sequence of iid nonnegative random variables whose large-time dis-
tribution decays either (a) exponentially (possibly with a power law pre-factor) or
(b) according to a power law. We applied these general results to FPTs of stochastic
searchers. We mostly considered searchers move by pure diffusion, though our results
apply to FPTs of much more general search processes, including diffusion with space-
dependent drift and noise coefficients, subdiffusive motion, continuous-time Markov
chains, non-Markovian random walks (Levernier et al. 2022), and search processes
with stochastic initial positions.

The general results were proven in the limit of many searchers, but numerical
simulations demonstrated their high accuracy for any number of searchers in some
typical scenarios of interest. This contrasts with existing estimates of fastest FPTs,
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which generally require a very large number of searchers to be accurate. This study
was motivated by diverse biological systems, including ovarian aging, cell signaling,
and single-cell source location detection.

As described in the Introduction, the seemingly redundant excesses in various bio-
logical systemshavebeenunderstood as ameans to accelerate searchprocesses (Schuss
et al. 2019). The oversupply of male gametes (i.e. sperm cells) in human fertilization
constitutes a prototypical example (Meerson and Redner 2015). In particular, prior
works have argued that the excess of searchers in some systems serves to accelerate
the fastest FPT. The analysis in this paper suggests that the excess female gametes
(i.e. PFs) present at birth ensure a supply available for ovulation for several decades
of life. In particular, we have argued that the excess of searchers in this system serves
to prolong the slowest FPT. It would be interesting to investigate how this principle
might operate in other biological systems, wherein many redundant copies ensure that
the supply lasts much longer than the typical lifespan of any single copy.

In the case of our random walk model of the human ovary, the three orders of
magnitude oversupply around the time of birth can be seen to all but ensure that
the supply of follicles exceeds 40 years. Because human egg quality is known to
decline late in a woman’s 30’s across the population (te Velde et al. 1998; Broekmans
et al. 2009), ovarian function will thus almost always function for longer than the
supply of high quality eggs capable of conception. In addition, because the functioning
ovary is well-known to support key health and well-being measures in women that
tend to decline at the time of menopause (Hashimoto et al. 2002; Hadji 2008; Cobin
and Goodman 2017), slowest FPTs can also be seen to dictate the timing that these
important life changes take place.

We conclude by discussing how slowest FPTs can be nearly deterministic. Indeed,
Theorem 2 implies that the coefficient of variation of TN−k,N vanishes as N → ∞
(see (15)). For themodel of ovarian aging in Sect. 3, Theorem 2 implies that for a given
woman with PF starting supply N ∈ [105, 106], the standard deviation for her age at
menopause is less than two months. That is, even though each PF leaves the reserve
at a random time, the time of PF exhaustion is quite predictable from the PF starting
supply. This predictable behavior is a consequence of the large number of searchers,
but we emphasize that the mechanism is quite different from the classical law of large
numbers. The law of large numbers relies on averaging many stochastic realizations,
whereas the nearly deterministic behavior of slowest FPTs stems from rare events.
Indeed, as often noted in large deviation theory (Den Hollander 2000), rare events are
predictable in that they occur in the least unlikely of all the unlikely ways.
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A Appendix

A.1 Proofs of theorems

In this section, we collect the proofs of the theorems in Sect. 2. Before proving
Theorem 1, we first state and prove a simple lemma.

Lemma 1 Suppose {sN }N≥1 and {s′
N }N≥1 are sequences of real numbers satisfying

sN ∼ s′
N as N → ∞, (74)

(1 − s′
N )N → z ∈ (0,∞) as N → ∞, (75)

for some z ∈ (0,∞). Then

(1 − sN )N → z ∈ (0,∞) as N → ∞. (76)

Proof of Lemma 1 Since the logarithm and exponential functions are continuous, (75)
is equivalent to

lim
N→∞ N ln(1 − s′

N ) = ln z. (77)

Since (77) implies that s′
N → 0 as N → ∞, applying L’Hôpital’s rule yields ln(1 −

s′
N ) ∼ −s′

N as N → ∞. Therefore, (77) is equivalent to

lim
N→∞ Ns′

N = − ln z. (78)

By (74), we have that (78) holds with s′
N replaced by sN . But, by the same argument

that yielded (78) from (75), we have that (76) holds. ��
Proof of Theorem 1 We first take bN = b′

N in (10). Fix y ∈ R. Let S0(t) :=
A(λt)−pe−λt . Since bN → ∞ as N → ∞, we have that

S0(λ
−1(y + bN )) = A(y + bN )−pe−bN e−y ∼ Ab−p

N e−bN e−y as N → ∞. (79)

Furthermore, the definition of bN ensures that Ab−p
N e−bN = N−1, and therefore (79)

implies

S0(λ
−1(y + bN )) ∼ N−1e−y as N → ∞.

Since limN→∞(1 − N−1e−y)N = exp(−e−y), Lemma 1 yields

lim
N→∞(1 − S0(λ

−1(y + bN )))N = exp(−e−y), for all y ∈ R. (80)
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By assumption, S(t) ∼ S0(t) as t → ∞, and therefore S(λ−1(y + bN )) ∼
S0(λ−1(y + bN )) as N → ∞ since bN → ∞ as N → ∞. Hence, (80) and Lemma 1
imply

lim
N→∞(1 − S(λ−1(y + bN )))N = exp(−e−y), for all y ∈ R. (81)

Therefore, since TN ,N = max{τ1, . . . , τN } and {τn}n≥1 are iid, we have

P(λTN ,N − bN ≤ y) = P(TN ,N ≤ λ−1(y + bN )) = (
P(τ1 ≤ λ−1(y + bN ))

)N

= (1 − S(λ−1(y + bN )))N .

(82)

Taking N → ∞ in (82) and using (81) yields that λTN ,N − bN →d Yk , which
completes the proof for the case k = 0. Having established the case k = 0, the case
of a general fixed integer k ≥ 1 follows directly from Theorem 3.4 in (Coles et al.
2001). The fact that bN can be replaced by any sequence satisfying (9) was shown in
Gnedenko (1943) (see Peng and Nadarajah, 2012 for a more recent reference). ��
Proof of Theorem 2 Since Theorem 1 establishes that λTN−k,N − bN converges in
distribution to Yk as N → ∞, the continuous mapping theorem (see, for example,
Theorem2.7 inBillingsley, 2013) implies that (λTN−k,N −bN )m converges in distribu-
tion to (Yk)m as N → ∞. To concludeE[(λTN−k,N −bN )m] → E[(Yk)m] as N → ∞,
it is enough to show that the sequence of random variables {(λTN−k,N − bN )m}N≥1
is uniformly integrable (see, for example, Theorem 3.5 in Billingsley, 2013). To show
this uniform integrability, it is enough (see, for example, equation (3.18) in Billingsley,
2013) to show that

sup
N≥1

E

[(
λTN−k,N − bN

)r]
< ∞,

where r = 2m ≥ 2 is an even integer.
Now,

E[(λTN−k,N − bN )r ] = E[(λTN−k,N − bN )r+] + E[(bN − λTN−k,N )r+], (83)

where (·)+ denotes the positive part (i.e. (x)+ = x if x > 0 and (x)+ = 0 otherwise).
For the case k = 0, Theorem 2.1 in (Pickands 1968) implies

lim
N→∞E[((λTN ,N − bN )+)r ] =

∫ ∞

0
xme−x−e−x

dx < ∞.

Since TN−k,N ≤ TN ,N for any k ∈ {0, 1, . . . , N − 1}, we thus have that

sup
N≥1

E[((λTN−k,N − bN )+)r ] ≤ sup
N≥1

E[((λTN ,N − bN )+)r ] < ∞.
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Since E[Z ] = ∫ ∞
0 P(Z > z) dz for any nonnegative random variable, the second

term in the righthand side of (83) can be written as

E[((bN − λTN−k,N )+)r ] =
∫ (bN )r

0
P

(
TN−k,N <

bN − s1/r

λ

)
ds,

since τ > 0 almost surely. Now,

P(TN−k,N < t) = P(TN ,N < t) +
k∑

j=1

P(TN− j,N < t ≤ TN− j+1,N )

=
k∑

j=0

(
N

j

)
[G(t)]N− j [1 − G(t)] j ,

where G(t) = P(τ < t). Therefore,

E[((bN − λTN−k,N )+)r ]

=
k∑

j=0

(
N

j

) ∫ (bN )r

0

[
G

(bN − s1/r

λ

)]N− j[
1 − G

(bN − s1/r

λ

)] j
ds

=:
k∑

j=0

(
N

j

)
I j , (84)

where I j is the integral in the j th term in (84). Since
(N
j

) = O(N j ) as N → ∞, it
remains to show that

I j = O(N− j ) as N → ∞. (85)

To show (85) for j = 0, observe that

∫ (bN )r

0

[
G

(bN − s1/r

λ

)]N
ds =

∫ (bN )r

0
P

(
TN ,N <

bN − s1/r

λ

)
ds

=
∫ (bN )r

0
P
(
bN − λTN ,N > s1/r ) ds

=
∫ (bN )r

0
P
(
((bN − λTN ,N )+)r > s) ds

= E[((bN − λTN ,N )+)r ].

Now, Theorem 2.1 in (Pickands 1968) implies

lim
N→∞E[((bN − λTN ,N )+)r ] =

∫ 0

−∞
(−x)me−x−e−x

dx < ∞,
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and thus (85) holds for j = 0.
Fix j ∈ {1, . . . , k} and let δ > 0. Splitting I j into the lower integral from s = 0

to s = (bN − 1/δ)r and the upper integral from s = (bN − 1/δ)r to s = (bN )r and
estimating the upper integral, we have

∫ (bN )r

(bN−1/δ)r

[
G

(bN − s1/r

λ

)]N− j[
1 − G

(bN − s1/r

λ

)] j
ds

≤
[
G

(1/δ
λ

)]N− j
∫ (bN )r

(bN−1/δ)r

[
1 − G

(bN − s1/r

λ

)] j
ds

≤
[
G

(1/δ
λ

)]N− j
(bN )r = o(N− j ), as N → ∞,

since the first factor vanishes exponentially fast as N → ∞. We have used that G is
nondecreasing and G(

1/δ
λ

) < 1 since

1 − G(t) ∼ Ae−λt as t → ∞. (86)

By (86), we can take 0 < δ � 1 sufficiently small so that

A

2
(λt)−pe−λt ≤ 1 − G(t) ≤ 2A(λt)−pe−λt , if t ≥ 1

δλ
,

Moving to the lower part of I j , we have that

I :=
∫ (bN−1/δ)r

0

[
G

(bN − s1/r

λ

)]N− j[
1 − G

(bN − s1/r

λ

)] j
ds

≤
∫ (bN−1/δ)r

0

[
1 − A

2
(bN − s1/r )−pe−(bN−s1/r )

]N− j[
2A(bN − s1/r )−pe−(bN−s1/r )

] j
ds.

To analyze this integral, we change variables according to

u = (bN − s1/r )−pe−(bN−s1/r ),

du = u

r
s1/r−1

[
1 + p/(bN − s1/r )

]
ds.

(87)

We first consider the case p = 0, in which the change of variables in (87) yields
s = (bN − ln(u−1))r , and thus

I ≤ r
∫ δ′

1/(AN )

[
1 − A

2
u
]N[

2A
] j
u j−1(bN − ln(u−1)

)r−1 ln(u−1)

1 + ln(u−1)
du,
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where we have defined 0 < δ′ := δ pe−1/δ � 1. Since ln(u−1) → ∞ as u → 0+, we
may take 0 < δ � 1 sufficiently small so that

0 <
ln(u−1)

1 + ln(u−1)
≤ 2, for all u ∈ [1/(AN ), δ′],

and thus it remains to show that

∫ δ′

1/(AN )

[
1 − A

2
u
]N

u j−1(bN − ln(u−1)
)r−1 du = O(N− j ) as N → ∞.

Changing variables according to z = ANu and using bN = ln(AN ) yields

I ′′ = (AN )− j
∫ ANδ′

1

[
1 − z

2N

]N
z j−1(ln z)r−1 du.

It is straightforward to check that

(1 − y/N )N ≤ e−y for all y ∈ [0, N ). (88)

To obtain (88), notice that f (y) := (1−y/N )N satisfies f (0) = 1 and f ′(y) ≤ − f (y)
and apply Gronwall’s inequality. Therefore, (88) implies

I ′′ ≤ (AN )− j
∫ ∞

1
e−z/2z j−1(ln z)r−1 du

≤ (AN )− j
∫ ∞

1
e−z z j+r−2 du ≤ (AN )− j ( j + r)!.

Next, suppose p > 0. In this case, (87) implies s = (bN − pW (p−1u−1/p))r and
thus

I ≤ r
∫ δ′

1/(AN )

[
1 − A

2
u
]N [

2A
] j
u j−1(bN − pW (p−1u−1/p)

)r−1 W (p−1u−1/p)

1 + W (p−1u−1/p)
du,

where we have used that

Ab−p
N e−bN = N−1. (89)

Since W (p−1u−1/p) → ∞ as u → 0+, taking δ sufficiently small ensures that

0 <
W (p−1u−1/p)

1 + W (p−1u−1/p)
≤ 2, for all u ∈ [1/(AN ), δ′].
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It thus remains to estimate

I ′ :=
∫ δ′

1/(AN )

[
1 − A

2
u
]N

u j−1(bN − pW (p−1u−1/p)
)r−1 du.

Expanding the Lambert W function and using the definition of bN yields

pW (p−1u−1/p) = ln(u−1) − p ln ln p−1u−1/p − p ln p + g0(u),

bN = ln(AN ) − p ln ln p−1(AN )1/p − p ln p + g1(N ),
(90)

where

lim
u→0+ g0(u) = lim

N→∞ g1(N ) = 0. (91)

Now, it is straightforward to check that

0 ≤ ln b − ln a ≤ b − a, if b ≥ a ≥ 1. (92)

To obtain (92), note that if f (b) = ln b−ln a and g(b) = b−a, then f (a) = g(a) = 0
and f ′(b) = 1/b ≤ g′(b) = 1 if b ≥ a ≥ 1. Therefore,

ln ln p−1(AN )1/p − ln ln p−1u−1/p ≤ ln p−1(AN )1/p − ln p−1u−1/p, (93)

if u ∈ [1/(AN ), δ′] and δ is sufficiently small and N is sufficiently large so that
ln p−1(AN )1/p ≥ ln p−1u−1/p ≥ 1. Hence, using (90), (91), and (93) yields

I ′ ≤ (1 + p)r−1
∫ δ′

1/(AN )

[
1 − A

2
u
]N

u j−1
{
ln(AN ) − ln(u−1) + 1

}r−1
du.

The remaining calculation then proceeds as in the case p = 0 above. The case p < 0
is similar to the case p > 0 and is omitted. ��
Proof of Corollary 1 By Theorem 1, we have that λTN ,N − bN →d Y0 as N → ∞.
Thus, S(t) := P(τ > t) is in the so-called domain of attraction (De Haan and Ferreira
2007) of the extreme value distribution G0(x) = exp(−e−x ) (i.e. (81) holds). The
desired conclusion of Corollary 1 then follows from a direct application of Theorem
2.1.1 in De Haan and Ferreira (2007).

Proof of Theorem 3 Since we can always rescale time, we set λ = 1 without loss of
generality. Note that

S(t + ln A) = Ae−t−ln A + h(t + ln A) = e−t + g(t), (94)

where we have defined h(t) := S(t) − Ae−t and g(t) := h(t + ln A). By assumption,
h(t) = O(e−βt ) as t → ∞, and thus

g(t) = O(e−βt ) as t → ∞. (95)
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Now,

E[(TN−k,N − ln A)m] = E[(TN−k,N − ln A)m1TN−k,N≥ln A]
+ E[(TN−k,N − ln A)m1TN−k,N<ln A], (96)

where 1E denotes the indicator function on an event A (i.e. 1E = 1 is E happens and
1E = 0 otherwise). Now,

∣∣E[(TN−k,N − ln A)m1TN−k,N<ln A]∣∣ ≤ (2 ln A)mP(TN−k,N < ln A).

The assumption in (17) implies S(ln A) > 0, and thus (6) implies P(TN−k,N < ln A)

vanishes exponentially fast as N → ∞. We thus turn our attention to the first term in
(96).

For any nonnegative random variable Z ≥ 0, we have that

E[Z ] =
∫ ∞

0
P(Z > z) dz. (97)

Hence,

E[(TN−k,N − ln A)m1TN−k,N≥ln A]
=

∫ ∞

0

[
1 − P(TN−k,N ≤ z1/m + ln A)

]
dz

=
∫ ∞

0

[
1 −

k∑

i=0

(
N

i

)
(1 − S(z1/m + ln A))N−i (S(z1/m + ln A))i

]
dz

=
∫ ∞

0

[
1 −

k∑

i=0

(
N

i

)(
1 − e−t − g(t)

)N−i (
e−t + g(t)

)i]
mtm−1 dt,

where we have used (6) and (94) and changed variables t = z1/m .
Now, if τ ′

1, . . . , τ
′
N are iid unit rate exponential random variables and T ′

N−k,N is as
in (3) with τ ′

n replacing τn , then Renyi’s representation (Rényi 1953) implies

E[(T ′
N−k,N )m] =

∫ ∞

0

[
1 −

k∑

i=0

(
N

i

)(
1 − e−t)N−i

e−i t
]
mtm−1 dt

= E

[( N−k∑

i=1

Ei

i + k

)m]
,
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where E1, . . . , EN−k are iid unit rate exponential random variables. Hence,

E[(TN−k,N − ln A)m1TN−k,N≥ln A] − E

[( N−k∑

i=1

Ei
i + k

)m]

=
k∑

i=0

(
N

i

) ∫ ∞
0

[(
1 − e−t )N−i e−i t − (

1 − e−t − g(t)
)N−i (e−t − g(t)

)i ]mtm−1 dt

=
k∑

i=0

(
N

i

) ∫ ∞
0

(
1 − e−t )N−i e−i t

[
1 −

( 1 − e−t − g(t)

1 − e−t

)N−i( e−t − g(t)

e−t

)i ]
mtm−1 dt

=
k∑

i=0

(
N

i

) ∫ ∞
0

(
1 − e−t )N−i e−i t

[
1 − e(N−i)[ln(1−e−t−g(t))−ln(1−e−t )](1 − et g(t)

)i ]mtm−1 dt .

Taylor expanding and using (95) yields that for sufficiently large t > 0,

−2|g(t)| ≤ ln(1 − e−t − g(t)) − ln(1 − e−t ) ≤ 2|g(t)|.

Hence, we may take δ > 0 sufficiently small so that for any i ∈ {0, 1, . . . , k},

∫ ∞
1/δ

(1 − e−t )N−i (e−t )i
[
1 − e2(N−i)|g(t)|(1 − et g(t))i

]
mtm−1 dt

≤
∫ ∞
1/δ

(1 − e−t )N−i (e−t )i
[
1 − e(N−i)[ln(1−e−t−g(t))−ln(1−e−t )](1 − et g(t))i

]
mtm−1 dt

≤
∫ ∞
1/δ

(1 − e−t )N−i (e−t )i
[
1 − e−2(N−i)|g(t)|(1 − et g(t))i

]
mtm−1 dt .

Furthermore, by (95), we may take δ > 0 sufficiently small so that there exists C > 0
so that

∫ ∞
1/δ

(1 − e−t )N−i (e−t )i
[
1 − e2(N−i)Ce−βt

(1 + Ce−(β−1)t )i
]
mtm−1 dt

≤
∫ ∞
1/δ

(1 − e−t )N−i (e−t )i
[
1 − e(N−i)[ln(1−e−t−g(t))−ln(1−e−t )](1 − et g(t))i

]
mtm−1 dt

≤
∫ ∞
1/δ

(1 − e−t )N−i (e−t )i
[
1 − e−2(N−i)Ce−βt

(1 − Ce−(β−1)t )i
]
mtm−1 dt .

The result follows from Lemma 2 below. ��
Lemma 2 If δ > 0, C > 0, i ∈ {0, 1, 2, . . . }, m > 0, and β > 1, then

∫ ∞

1/δ
(1 − e−t )N−i (e−t )i

[
1 − e±2(N−i)Ce−βt

(1 ± Ce−(β−1)t )i
]
tm−1 dt

= O(N−(β−1+i)(ln N )m−1) as N → ∞.
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Proof of Lemma 2 Since

−2x ≤ ln(1 − x) ≤ −x if x ∈ [0, 1/2],

we have that for sufficiently large t > 0,

−2e−t ≤ ln(1 − e−t ) ≤ −e−t .

Therefore, we may take δ > 0 sufficiently small so that

∫ ∞

1/δ
e−2(N−i)e−t

(e−t )i
[
1 − e−2(N−i)Ce−βt

(1 − Ce−(β−1)t )i
]
tm−1 dt

≤
∫ ∞

1/δ
e(N−i) ln(1−e−t )(e−t )i

[
1 − e−2(N−i)Ce−βt

(1 − Ce−(β−1)t )i
]
tm−1 dt

≤
∫ ∞

1/δ
e−(N−i)e−t

(e−t )i
[
1 − e−2(N−i)Ce−βt

(1 − Ce−(β−1)t )i
]
tm−1 dt,

and

∫ ∞

1/δ
e−(N−i)e−t

(e−t )i
[
1 − e2(N−i)Ce−βt

(1 + Ce−(β−1)t )i
]
tm−1 dt

≤
∫ ∞

1/δ
e(N−i) ln(1−e−t )(e−t )i

[
1 − e2(N−i)Ce−βt

(1 + Ce−(β−1)t )i
]
tm−1 dt

≤
∫ ∞

1/δ
e−2(N−i)e−t

(e−t )i
[
1 − e2(N−i)Ce−βt

(1 + Ce−(β−1)t )i
]
tm−1 dt .

For B > 0, changing variables u = e−t yields

∫ ∞

1/δ
e−B(N−i)e−t

(e−t )i
[
1 − e±2(N−i)Ce−βt

(1 ± Ce−(β−1)t )i
]
tm−1 dt

=
∫ δ′

0
e−B(N−i)uui−1(ln(1/u))m−1

[
1 − e±2(N−i)Cuβ

(1 ± Cuβ−1)i
]
du, (98)

where δ′ = e−1/δ . Expanding e±2(N−i)Cuβ
about u = 0 and applying the binomial

theorem to (1 ± Cuβ−1)iyields that (98) is the following sum of two integrals,

∫ δ′

0
e−B(N−i)uui−1(ln(u−1))m−1

i∑

j=1

(
i

j

)
(±Cuβ−1) j du (99)

+
∫ δ′

0
e−BN ′uui−1(ln(u−1))m−1

( ∑

l≥1

(±2N ′Cuβ)l

l!
)( i∑

j=0

(
i

j

)
(±Cuβ−1) j

)
du,

(100)
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where N ′ = N − i .
To determine the large N behavior of the integral in (99), let f0(u) denote its

integrand and notice that

f0(u) ∼ i(±C)ui−1+β−1(ln(u−1))m−1 as u → 0 + . (101)

We thus apply Theorem 5 in (Bleistein 1977), which generalizes Watson’s lemma to
functions with logarithmic singularities of the form (101), to obtain that the integral
in (99), call it I0, satisfies

I0 = O(N−(β+i−1)(ln N )m−1) as N → ∞.

To determine the large N behavior of the integral in (100), note that

∫ δ′

0

∑

l≥1

∣∣∣∣e
−BN ′uui−1(ln(1/u))m−1 (±2N ′Cuβ)l

l!
( i∑

j=0

(
i

j

)
(±Cuβ−1) j

)∣∣∣∣ du

=
∫ δ′

0

∑

l≥1

e−BN ′uui−1(ln(1/u))m−1 (2N ′Cuβ)l

l!
( i∑

j=0

(
i

j

)
(±Cuβ−1) j

)
du

=
∫ δ′

0
e−BN ′uui−1(ln(1/u))m−1

(
e2N

′Cuβ − 1
)( i∑

j=0

(
i

j

)
(±Cuβ−1) j

)
du < ∞

assuming δ′ = e−1/δ > 0 is sufficiently small so that

i∑

j=0

(
i

j

)
(±Cuβ−1) j > 0 for all u ∈ [0, δ′].

Therefore, the Fubini-Tonelli theorem implies that

∫ e−δ

0
e−BN ′uui−1(ln(1/u))m−1

∑

l≥1

(±2N ′Cuβ)l

l!
( i∑

j=0

(
i

j

)
(±Cuβ−1) j

)
du

=
∑

l≥1

Il

where

Il :=
∫ e−δ

0
e−BN ′uui−1(ln(1/u))m−1 (±2N ′Cuβ)l

l!
( i∑

j=0

(
i

j

)
(±Cuβ−1) j

)
du.
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To determine the behavior of Il as N → ∞, let fl(u) denote the integrand of Il and
note that it has the following singular behavior,

f (u) ∼ ui−1+βl(ln(1/u))m−1 (±2N ′C)l

l! as u → 0 + . (102)

We thus apply Theorem 5 in (Bleistein 1977), which generalizes Watson’s lemma to
functions with logarithmic singularities of the form (102), to obtain

Il = O(N−((β−1)l+i)(ln N )m−1) as N → ∞,

which completes the proof. ��
Proof of Theorem 4 Let S0(t) := (λt)−p and fix y ∈ R. Hence,

lim
N→∞(1 − S0(λ

−1N 1/p y))N = lim
N→∞(1 − y−p/N )N = exp(−y−p). (103)

By assumption, S(t) ∼ S0(t) as t → ∞, and therefore S(λ−1(N 1/p y)) ∼
S0(λ−1(N 1/p y)) as N → ∞. Hence, (103) and Lemma 1 imply

lim
N→∞(1 − S(λ−1N 1/p y))N = exp(−y−p), for all y ∈ R. (104)

Therefore, since TN ,N = max{τ1, . . . , τN } and {τn}n≥1 are iid, we have

P(λN−1/pTN ,N ≤ y) = (
P(τ1 ≤ λ−1N 1/p y)

)N = (1 − S(λ−1N 1/p y))N .

(105)

Taking N → ∞ in (105) and using (104) yields that λN−1/pTN ,N →d Y0, which
completes the proof for the case k = 0. Having established the case k = 0, the case of
a general fixed integer k ≥ 1 and the convergence in distribution for the joint random
variables in (20) follows from Theorem 2.1.1 in De Haan and Ferreira (2007).

Proof of Theorem 5 Since Theorem 4 establishes that λTN−k,N/N 1/p converges in
distribution to Zk as N → ∞, the continuous mapping theorem (see, for example,
Theorem 2.7 in Billingsley, 2013) implies that (λTN−k,N/N 1/p)m converges in dis-
tribution to (Zk)

m as N → ∞. To conclude E[(λTN−k,N/N 1/p)m] → E[(Zk)
m] as

N → ∞, it is enough to show that the random variables {(λTN−k,N/N 1/p)m}N≥1 are
uniformly integrable (see, for example, Theorem 3.5 in Billingsley, 2013). To show
this uniform integrability, it is enough (see, for example, equation (3.18) in Billingsley,
2013) to show that

sup
N≥1

E

[(
λTN−k,N/N 1/p)r

]
< ∞, (106)

where r is an even integer satisfying r > m > 0.
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Since S(t) ∼ (λt)−p as t → ∞, there exists t0 ≥ 1/λ such that

S(t) ≤ 2(λt)−p < 1 for all t ≥ t0 ≥ 1/λ.

Suppose {τ+
n }n≥1 is an iid sequence of realizations of a random variable with survival

probability

S+(t) =
{
1 if t < t0,

(2λt)−p if t ≥ t0.

Defining T+
N−k,N as in (3) but with τn replaced by τ+

n , it is immediate that

E[(TN−k,N )r ] ≤ E[(T+
N−k,N )r ]. (107)

Using (97) and (6), we then have

E[(T+
N−k,N )r ] =

∫ ∞

0
P(T+

N−k,N > s1/r ) ds

=
N−k−1∑

i=0

(
N

i

) ∫ ∞

0
(S+(s1/r ))N−i (1 − S+(s1/r ))i ds.

For the i = 0 term, we have that

∫ ∞

0
(S+(s1/r ))N ds = (t0)

r +
∫ ∞

(t0)r
(2λs1/r )−Np ds = (t0)

r
(r2−Np(λt0)−Np

Np − r
+ 1

)
.

For i ∈ {1, . . . , N − k − 1}, we have
∫ ∞

0
(S+(s1/r ))N−i (1 − S+(s1/r ))i ds

=
∫ ∞

(t0)r
(2λs1/r )−p(N−i)(1 − (2λs1/r )−p)i ds

= (2λ)−r
∫ ∞

(2λt0)r
(z1/r )−p(N−i)(1 − (z1/r )−p)i dz

≤ (2λ)−r
∫ ∞

1
(z1/r )−p(N−i)(1 − (z1/r )−p)i dz,

where we have used that λt0 ≥ 1. Changing variables u = z−r/p yields

∫ ∞

1
(z1/r )−p(N−i)(1 − (z1/r )−p)i dz = r

p

∫ 1

0
u−1−r/p+N−i (1 − u)i du

= r

p

�(N − i − r/p)�(i + 1)

�(N − r/p + 1)
,
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where we have used the identity,

∫ 1

0
ux−1(1 − u)y−1 du = �(x)�(y)

�(x + y)
.

Now, using the identity �(z + 1) = z�(z), one can check that

N−k−1∑

i=0

�(N − i − r/p)

�(N − i + 1)
= p

r

(�(k + 1 − r/p)

�(k + 1)
− �(N + 1 − r/p)

�(N + 1)

)
.

Therefore,

N−k−1∑

i=0

(
N

i

)
r

p

�(N − i − r/p)�(i + 1)

�(N − r/p + 1)
=

(N
k

)
�(N − k + 1)�(k − r

p + 1)

�(N − r
p + 1)

− 1.

Taking N → ∞ yields

lim
N→∞ N−r/p

(
(N
k

)
�(N − k + 1)�(k − r

p + 1)

�(N − r
p + 1)

− 1
)

= �(k + 1 − r/p)

�(k + 1)
< ∞.

Combining this calculation with (107) yields

0 ≤ lim sup
N→∞

N−r/p
E[(TN−k,N )r ] ≤ lim sup

N→∞
N−r/p

E[(T+
N−k,N )r ] < ∞,

and thus (106) holds. ��

A.2 Numerical methods and auxiliary proofs

We now give more details on the numerical methods used in Sects. 3–6.

A.2.1 Numerical methods for Sect. 3

The cumulative distribution function in (30) was obtained by M = 103 stochastic
realizations of TN−k,N using the survival probability of τ in (27). In particular, M ×
N independent realizations of τ were sampled, which then yielded M independent
realizations of TN−k,N . Each realization of τ was obtained by numerically inverting
S(τ ) = U , where U is a uniformly distributed random value on [0, 1] and S(t) is
computed from the first 100 terms in the series in (27).

123



   90 Page 46 of 53 S. D. Lawley, J. Johnson

A.2.2 Numerical methods for Sect. 4.1

For the example in Sect. 4.1, we compute the statistics and distribution of TN ,N using
the first 100 terms in the following series representation for S(t),

S(t) =
∞∑

k=1

Ake
−λk t ,

λk = Dk2π2/(2L)2, Ak = 4

kπ
sin(kπ(x0 + L)/(2L)). (108)

The series in (108) is obtained by finding the solution s(x, t) to the backward
Kolmogorov equation (Pavliotis 2014)

∂t s = D∂xx s, x ∈ (0, 2L),

with s = 0 if x ∈ {0, 2L} and s = 1 if t = 0 and setting S(t) = s(x0 + L, t).
Generalizing the case that each searcher starts at x0 ∈ (−L, L), if we instead assume
that each searcher starts according to some stochastic initial position with probability
measure μ, then we merely set

S(t) =
∫ L

−L
s(x0 + L, t) dμ(x0),

whichmerely amounts to replacing Ak in (108) by
∫ L
−L Ak dμ(x0). The first and second

moments of TN ,N were computed via the following integrals using the trapezoidal rule,

E[TN ,N ] =
∫ ∞

0
(1 − (1 − S(t))N ) dt, (109)

E[(TN ,N )2] =
∫ ∞

0
2t(1 − (1 − S(t))N ) dt, (110)

To compute (109)–(110), we use 107 uniformly spaced time points from time t = 0
to time t = 10.

A.2.3 Numerical methods for Sect. 4.2

For the example in Sect. 4.2, we find the solution s(r , t) to the backward Kolmogorov
equation (Pavliotis 2014)

∂t s = D(∂rr s + (2/r)∂r s), r ∈ (a, L),

with s = 0 if r = a, ∂r s = 0 if r = L , and s = 1 if t = 0 and setting S(t) = s(L, t).
We find s(r , t) numerically usingpdepe inMatlab (MATLAB2017)with 105 equally
uniform spatial grid points between r = a and r = L and 104 logarithmically spaced
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time points between t = 10−16 and t = 104/3. We then calculate E[TN ,N ] via (109)
using the trapezoidal rule on these time points.

A.2.4 Details for Sect. 4.3

For the example in Fig. 4 in Sect. 4.3, we calculateE[TN ,N ] via computing the integral
in (109) with the trapezoidal rule, where S(t) is computed by taking the first 103 terms
in the series representation given in equation (B11) in (Grebenkov and Kumar 2022).
To compute (109), we use 106 uniformly spaced time points from time t = 0 to time
t = 103

A.2.5 Details for Sect. 4.5

For the numerics in Sect. 4.5, we use the exact formula for S(t) in (52). The for-
mula for S(t) = s(x, t) in (56) is obtained by checking that it satisfies the backward
Kolmogorov equation (Pavliotis 2014)

∂t s = D∂xx s − V ∂x s, x > 0,

and s = 0 if x = 0 and s = 1 if t = 0.

A.2.6 Auxiliary proofs for Sect. 4.6

For the example in Sect. 4.6, we have that Sσ (t) is given by (108) and thus (59) implies

S(t) = E[Sσ (S(t))] =
∞∑

k=1

AkE[e−λkS(t)] =
∞∑

k=1

Ak Eα(−λk t
α),

where Eα is the Mittag-Leffler function,

Eα(z) :=
∞∑

n=0

zn

�(1 + αn)
,

and we have used that

E[e−λt ] = Eα(−λtα), if t > 0, λ > 0. (111)

The distributions in the right panel of Fig. 5 use the first 100 terms of the series (111).
To obtain (111), recall the probability density function of S(t) in (60), integrate by
parts, and use the series representation for the exponential function,
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E[e−λt ] =
∫ ∞

0
e−λs t

αs1+1/α lα
( t

s1/α

)
ds =

∫ ∞

0
e−λtαz−α

lα(z) dz

=
∫ ∞

0

∞∑

n=0

(−λtαz−α)n

�(n + 1)
lα(z) dz

=
∞∑

n=0

(−λtα)n

�(n + 1)

∫ ∞

0
z−αnlα(z) dz

= Eα(−λtα),

where the final equality uses the following formula for moments of a one-sided Levy
stable distribution (Penson and Górska 2010),

∫ ∞

0
zμlα(z) = �(−μ/α)

α�(−μ)
, −∞ < μ < α.

Proof of Proposition 1 Let ε > 0. It is well-known that lα(z) has the following
asymptotic behavior (Barkai 2001),

lα(z) ∼ α

�(1 − α)
z−1−α as z → ∞.

Hence, there exists a δ > 0 so that

(1 − ε)
α

�(1 − α)
z−1−α ≤ lα(z) ≤ (1 + ε)

α

�(1 − α)
z−1−α, if z > 1/δ. (112)

If we split the integral in (62) into two integrals,

S(t) =
∫ (δt)α

0
P(σ > s)

t

αs1+1/α lα
( t

s1/α

)
ds +

∫ ∞
(δt)α

P(σ > s)
t

αs1+1/α lα
( t

s1/α

)
ds,

=: I1 + I2,

then (112) implies that we can bound the first integral, I1, as follows,

(1 − ε)t−α

�(1 − α)

∫ (δt)α

0
P(σ > s) ds ≤ I1 ≤ (1 + ε)t−α

�(1 − α)

∫ (δt)α

0
P(σ > s) ds.

Hence,

1 − ε ≤ lim inf
t→∞

I1
t−α

�(1−α)

∫ (δt)α

0 P(σ > s) ds

≤ lim sup
t→∞

I1
t−α

�(1−α)

∫ (δt)α

0 P(σ > s) ds
≤ 1 + ε.
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Since ε > 0 is arbitrary and since we assumed E[τ ] = ∫ ∞
0 P(σ > s) ds < ∞, we

obtain

I1 ∼ E[σ ]
�(1 − α)

t−α as t → ∞.

It remains to show that the second integral, I2, vanishes faster than t−α as t →
∞. Since P(σ > s) is a nonincreasing function of s ≥ 0, and t

αs1+1/α lα( t
s1/α

) is a
probability density function, we have that

I2 ≤ P
(
σ > (δt)α

) ∫ ∞

(δt)α

t

αs1+1/α lα
( t

s1/α

)
ds ≤ P

(
σ > (δt)α

)
. (113)

Since we assumed E[τ ] = ∫ ∞
0 P(σ > s) ds < ∞, it follows that P(σ > s) must

vanish faster than s−1 as s → ∞. Hence, (113) completes the proof. ��

A.2.7 Auxiliary proof for Sect. 5

Proof of Proposition 2 Integrating over the possible values of σ gives

P(τ ≤ σ) =
∫ ∞

0
(1 − S(s))re−rs ds,

P(t < τ ≤ σ) = S(t)e−r t −
∫ ∞

t
S(s)re−rs ds. (114)

The results follow from the definition of conditional probability in (65) and applying
Laplace’s method to the integral in (114). ��
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