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Abstract
The search for hidden targets is a fundamental problem in many areas of science,
engineering, and other fields. Studies of search processes often adopt a probabilistic
framework, in which a searcher randomly explores a spatial domain for a randomly
located target. There has been significant interest and controversy regarding optimal
search strategies, especially for superdiffusive processes. Theoptimal search strategy is
typically defined as the strategy that minimizes the time it takes a given single searcher
to find a target, which is called a first hitting time (FHT). However, many systems
involve multiple searchers, and the important timescale is the time it takes the fastest
searcher tofind a target,which is called an extremeFHT. In this paper,we study extreme
FHTs for any stochastic process that is a random time change of Brownian motion by
a Lévy subordinator. This class of stochastic processes includes superdiffusive Lévy
flights in any space dimension, which are processes described by a Fokker–Planck
equation with a fractional Laplacian. We find the short-time distribution of a single
FHT for anyLévy subordinateBrownianmotion and use this to find the full distribution
and moments of extreme FHTs as the number of searchers grows. We illustrate these
rigorous results in several examples and numerical simulations.
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1 Introduction

What is the best way to search for a target whose location is a priori unknown?
This basic search problem arises at various spatial and temporal scales in many areas
of science, engineering, and other fields (Bénichou et al. 2011). Examples include
rescuers searching for castaways (Frost and Stone 2001), military forces searching for
enemy targets (Morse andKendall 1956), animals searching for food, shelter, or amate
(Reynolds 2018; Bénichou et al. 2011; Viswanathan et al. 2008), proteins searching
for DNA binding sites (Lomholt et al. 2005), and computers searching a database (Kao
et al. 1996).

Empirical and theoretical studies of search processes often adopt a probabilistic
framework, in which the searcher randomly explores a spatial domain for a randomly
located target (Shlesinger 2006; Bénichou et al. 2011; Viswanathan et al. 2008). The
random movement of the searcher is often classified as diffusive, subdiffusive, or
superdiffusive, depending, respectively, on whether the square of its displacement
scales linearly, sublinearly, or superlinearly in time. While subdiffusive and superdif-
fusive motion are termed “anomalous” diffusion, they have been observed in many
physical and biological systems (Metzler and Klafter 2004).

Mathematical models of random search often assume that searchers explore space
via a continuous-time random walk. In this framework, a searcher waits at its current
location for a random time chosen from some waiting time probability density w(t),
and then moves to a new location by jumping a random distance chosen from some
jump length probability density l(y). The searcher repeats these two steps indefinitely
or until it reaches the target. This process can be diffusive, subdiffusive, or superdif-
fusive, depending on the tails of the waiting time density w(t) and the jump length
density l(y). In particular, if themeanwaiting time is finite and the jump length density
has the following slow power law decay,

l(y) ∝ y−1−α as y → ∞ for some α ∈ (0, 2), (1)

then the process is superdiffusive and is often called a Lévy flight (Metzler and Klafter
2004; Dubkov et al. 2008). In a certain scaling limit, the probability density p(x, t)
for the position of a Lévy flight in R

d satisfies the space fractional Fokker–Planck
equation (Meerschaert and Sikorskii 2019).

∂t p = −K (−�)α/2 p, x ∈ R
d , t > 0, (2)

where (−�)α/2 denotes the fractional Laplacian (Lischke et al. 2020) and K > 0 is the
generalized diffusion coefficient. Similar models of superdiffusive search involving
long relocation events with distances chosen from a power law density akin to (1) are
Lévy walks (Zaburdaev et al. 2015) and truncated Lévy flights (Viswanathan et al.
2008).

Many have argued that superdiffusion is amore efficient searchmethod compared to
normal diffusion, since superdiffusive processes spend less time in previously explored
regions of space (Shlesinger and Klafter 1986; Viswanathan et al. 1996, 1999). Signa-
tures of superdiffusion have been found in movement data for many different animal
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species (Reynolds 2018), including albatrosses (Viswanathan et al. 1996), spider mon-
keys (Ramos-Fernández et al. 2004; Boyer et al. 2006), jackals (Atkinson et al. 2002),
sharks (Sims et al. 2006),microorganisms (Bartumeus et al. 2003), and alsowithin bio-
logical cells (Reverey et al. 2015). In addition, superdiffusive searchmethods involving
Lévy flights are employed in computational algorithms such as simulated annealing
(Pavlyukevich 2007). However, there has been controversy regarding the empirical
evidence of superdiffusion in animal foraging, as some have questioned the accuracy
of the statistical methods used in some of these studies (Edwards et al. 2007).

Furthermore, the theoretical optimality of superdiffusive search models has also
been controversial. Indeed, the seminal work of Viswanathan et al. (1999) in 1999
claimed that the search time of a single searcher is minimized if the searcher employs
an inverse square Lévy walk [corresponding to α = 1 in (1)]. This result forms the
core of the very influential Lévy flight foraging hypothesis, which states that biological
organisms must have evolved to perform such Lévy walks because of their optimality
(Viswanathan et al. 2008). However, a recent analysis proved that this founding result
of the Lévy flight foraging hypothesis is incorrect (Levernier et al. 2020; Buldyrev
et al. 2021; Levernier et al. 2021).

Search time is often quantified in terms of a so-called first hitting time (FHT), which
is the first time the searcher reaches the target. If X = {X(t)}t≥0 denotes the position
of the searcher as a function of time t ≥ 0, then the FHT is

τ := inf{t > 0 : X(t) ∈ U }, (3)

where U denotes the position of the target(s) (or the region of space in which the
searcher can detect the target). There have been many studies of FHTs of Lévy flights,
using both computational and analytical approaches (Eliazar and Klafter 2004; Koren
et al. 2007a, b; Gao et al. 2014; Palyulin et al. 2019; Wardak 2020). An interesting
aspect of these studies is the discrepancy between first hitting events (the searcher
reaches or hits the target) and first passage events (the searcher moves beyond the
target). While these two notions are equivalent for standard diffusion processes, paths
of Lévy flights are discontinuous and thus may jump across a target without actually
hitting it, which is called a “leapover” (Koren et al. 2007a, b; Palyulin et al. 2019;
Wardak 2020).

Studies of optimal search strategies generally ask what search method minimizes
the FHTof a single searcher (Shlesinger 2006; Bénichou et al. 2011;Viswanathan et al.
2008). However, many systems involve multiple searchers, and the relevant timescale
is the time it takes the fastest searcher to find the target. Indeed, this can be the case
for many of the traditional search scenarios referenced above, such as the search for
missing persons and castaways, military searches for enemy targets, and computer
search processes. In the context of biology, cellular events are often triggered when
the first of many searchers finds a target (Schuss et al. 2019), and cooperative foraging
involves multiple animals working together to find a target (Schoener 1971; Traniello
1977; Hölldobler and Wilson 1990; Wenzel and Pickering 1991; Jarvis et al. 1998;
Torney et al. 2009, 2011; Feinerman et al. 2012). If τ1, . . . , τN are the respective FHTs
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Fig. 1 Lévy flights are subordinate Brownian motions. Left: The thin gray trajectory is the path of a
Brownian motion B(s), and the thick black trajectory is the path of a Lévy flight X(t) = B(S(t)) obtained
as a random time change of B(s) according to the (α/2)-stable subordinator S(t). Right: The path of the
(α/2)-stable subordinator S(t). We take α = 1.5 in this plot

of N parallel searchers, then the fastest searcher finds the target at time

TN := min{τ1, . . . , τN }, (4)

which is often called an extreme FHT, fastest FHT (Lawley and Madrid 2020), or
parallel FHT (Ro and Kim 2017; Clementi et al. 2020). Hence, in these scenarios, the
relevant question is not what search strategy minimizes the single searcher FHT τ in
(3), but rather what search strategy minimizes the extreme FHT TN in (4).

In this paper, we investigate the extreme FHTs of a general class of stochastic
processes which includes superdiffusive Lévy flights in R

d for any d ≥ 1. The class
of stochastic processes is called Lévy subordinate Brownian motions, as the processes
are obtained by random time changes of Brownian motion. We find the short-time
distribution of a single FHT τ and then use this to find the full distribution andmoments
of the extreme FHT TN as the number of searchers N grows.

To summarize our results, let B = {B(s)}s≥0 be a d-dimensional Brownian motion
with unit diffusivity, and let S = {S(t)}t≥0 be an independent subordinator, which
means that S is a one-dimensional, nondecreasing Lévy process with S(0) = 0.
Define the path of a single searcher X = {X(t)}t≥0 by

X(t) := B(S(t)) + X(0) ∈ R
d , t ≥ 0, (5)

where X(0) is some initial position independent of B and S. That is, X is a random
time change of Brownianmotion (see Fig. 1 for the special case that X is a Lévy flight).
Assuming that X(0) cannot lie in the target U , we prove that the FHT in (3) has the
universal short-time distribution,

P(τ ≤ t) ∼ P(X(t) ∈ U ) ∼ ρt as t → 0+, (6)
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where ρ ∈ (0,∞) is the rate,

ρ :=
∫ ∞

0
P(B(s) + X(0) ∈ U ) ν(ds), (7)

and ν(ds) is the Lévymeasure of S. Throughout this paper, “ f ∼ g” means f /g → 1.
If we set X(0) = 0, then the Gaussianity of B(s) means the integrand in (7) is

P(B(s) + X(0) ∈ U ) = 1

(4πs)d/2

∫
U
exp

(−‖x‖2
4s

)
dx .

We prove (6) for any nondeterministic subordinator S and any target set U ⊂ R
d that

is nonempty and is the closure of its interior.
Furthermore, if τ1, . . . , τN are independent and identically distributed (iid) realiza-

tions of the FHT τ , then we prove that (ρN )TN converges in distribution to a unit rate
exponential random variable as N grows, which means

P

(
TN >

z

ρN

)
→ e−z as N → ∞ for each z ≥ 0. (8)

Hence, TN is approximately exponentially distributed with rate ρN . Furthermore, if
E[TN ] < ∞ for some N ≥ 1, then we obtain all the moments of TN for large N . In
particular, we prove that

E[TN ] ∼ √
Variance[TN ] ∼ 1

ρN
as N → ∞. (9)

We also extend (8) and (9) to the kth fastest FHT for any 1 ≤ k � N . In the case
that X is a superdiffusive Lévy flight whose probability density satisfies the fractional
Fokker–Planck equation in (2), the Lévy measure ν used in the rate ρ in (7) is

ν(ds) = K
α/2

	(1 − α/2)

1

s1+α/2 ds, s > 0. (10)

We emphasize that our results hold for any nondeterministic subordinator S (meaning
we exclude only the trivial case that S(t) is a deterministic function bt for some b ≥ 0).
In particular, the Lévy measure ν of the subordinator S need not have the slow power
law decay in (10) which gives rise to long jumps of X in (5). Examples of other
subordinators commonly used in modeling are given in Sect. 4.3.

Before outlining the rest of the paper,we comment onhowour results on subordinate
Brownian motions relate to extreme statistics and large deviation theory for standard
diffusion processes (i.e., processes satisfying a standard drift-diffusion Itô stochastic
differential equation). First, the 1/N decay in (9) is much faster than the well-known
1/ ln N decay for diffusion processes (Weiss et al. 1983). Indeed, the extreme FHT
for diffusion processes has the following rather slow decay in mean as the number of
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Fig. 2 Fastest FHTs of Brownian motions versus Lévy flights. Starting from x0 (green ball), the thick blue
path illustrates a Brownian motion that is the first to hit the target (red regions) out of many iid Brownian
motions. Such fastest Brownian motions tend to follow the shortest path to the target. The thick black path
illustrates the fastest Lévy flight out of many iid Lévy flights, which does not take the shortest path to the
target. This fastest Lévy flight is obtained as a random time change of a typical Brownian motion (thin gray
path) that wanders around and moves in and out of targets. This illustration of the fastest Lévy flight is
characteristic of any subordinate Brownian motion (Color figure online)

searchers N grows (Lawley 2020),

E[T diff
N ] ∼ L2

4D ln N
as N → ∞, (11)

where L > 0 is a certain geodesic distance from the possible searcher starting locations
to the target and D > 0 is the characteristic diffusivity. Further contrasting (9) and
(11), a salient feature of extreme FHTs of diffusion processes is that they only depend
on the shortest path to the target since the fastest searchers follow this geodesic path
(Lawley 2020). In particular, extreme FHTs of diffusion are unaffected by changes
to the problem outside of this path, such as altering the size of the target, the size of
the domain, or even the space dimension d ≥ 1. In contrast, it is evident from the
formula for the rate ρ in (7) that the extreme FHTs of subordinate Brownian motion
depend on all these global properties of the problem, which reflects the fact that the
fastest subordinate Brownian searchers do not take a direct path to the closest part of
the target. These results are illustrated in Fig. 2 for the case of a Lévy flight (though
the illustration is characteristic of any subordinate Brownian motion).

These differences stem from the difference between our result in (6) for subordinate
Brownian motion and Varadhan’s formula for diffusion processes (Varadhan 1967).
Varadhan’s formula is a celebrated result in large deviation theory which implies that
if Xdiff = {Xdiff(t)}t≥0 is a diffusion process, then

lim
t→0+ t lnP(Xdiff(t) ∈ U ) = −L2/(4D) < 0, (12)

where L and D are as in (11). The result in (6) can thus be interpreted as a type of
Varadhan’s formula for subordinate Brownian motion.
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The rest of the paper is organized as follows. In Sect. 2, we review some definitions
and results from probability theory. In Sect. 3, we present our general mathematical
results. In Sect. 4, we illustrate our results in several examples and compare the theory
to numerical simulations. We conclude by discussing relations to prior work. Proofs
are presented in the appendix.

2 Preliminaries

We begin by reviewing properties of subordinators, subordinate Brownian motions,
Lévy flights, fractional Laplacians, and related concepts.

2.1 Subordinators

ALévy process is a continuous-time stochastic process that has iid increments and sat-
isfies certain technical conditions (Bertoin 1996). A subordinator is a one-dimensional,
nondecreasing Lévy process S = {S(t)}t≥0 with S(0) = 0. The distribution of S is
determined by its Laplace exponent 
(β), which satisfies

E
[
e−βS(t)] = e−t
(β), for all t ≥ 0 and β ≥ 0,


(β) = bβ +
∫ ∞

0
(1 − e−βs) ν(ds), for all β ≥ 0, (13)

where b ≥ 0 is the drift and ν is the Lévy measure. In particular, ν satisfies

ν((−∞, 0]) = 0 and
∫ ∞

0
min{1, s} ν(ds) < ∞.

A Lévy measure ν(ds) can be interpreted as the rate that S increases by s for s > 0.
A subordinator S is called an (α/2)-stable subordinator for α ∈ (0, 2) if it satisfies

the following self-similarity or scaling property,

t−2/αS(t) =d S(1) for all t > 0, (14)

where =d denotes equality in distribution. In this case, S is a pure jump process (i.e.,
zero drift b = 0) with Laplace exponent 
(β) = Kβα/2 and Lévy measure given in
(10) for some K > 0. Examples of other subordinators are given in Sect. 4.3.

2.2 Subordinate BrownianMotion

For any dimension d ≥ 1, let B = {B(s)}s≥0 be a d-dimensional Brownian motion
with mean-squared displacement

E
[‖B(s)‖2] = 2ds for all s ≥ 0. (15)
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It is well-known that B satisfies the diffusive scaling property,

s−1/2B(s) =d B(1) for all s > 0. (16)

If S is an independent subordinator with Laplace exponent 
, then the Lévy process
X = {X(t)}t≥0 defined by

X(t) := B(S(t)) + X(0), t ≥ 0, (17)

is called a subordinate Brownian motion (Kim et al. 2012). That is, X is a random
time change of Brownianmotion.We assume that the possibly random initial condition
X(0) ∈ R

d is independent of B and S. The Lévy exponent of X is 
(|ξ |2), meaning

E
[
eiξ ·(X(t)−X(0))] = e−t
(|ξ |2), ξ ∈ R

d , t ≥ 0.

We note that X is not a subordinator and is thus described by its Lévy exponent rather
than a Laplace exponent. Subordinate Brownian motions are said to be isotropic since
their Lévy exponent depends only on |ξ |2. The infinitesimal generator of X can be
written as −
(−�), where � is the Laplacian in R

d (Kim et al. 2012). It follows
immediately from (15)–(17) that the mean-squared displacement of X is

E
[‖X(t) − X(0)‖2] = 2dE[S(t)] for all t ≥ 0.

2.3 Lévy Flights

If S is an (α/2)-stable subordinator with α ∈ (0, 2) as in (10), then we call the
corresponding subordinate Brownian motion X = {X(t)}t≥0 in (17) a Lévy flight
(Dubkov et al. 2008). It follows immediately from (14)–(16) that a Lévy flight X
satisfies the superdiffusive scaling property,

t−1/αX(t) =d X(1) for all t > 0. (18)

Lévy flights arise as a scaling limit of a random walk with heavy-tailed, power law
jumps (Metzler and Klafter 2004). The probability density function for the position
of the Lévy flight satisfies the space fractional Fokker–Planck equation in (2) (Meer-
schaert and Sikorskii 2019).

2.4 First Hitting Times (FHTs)

Let τ > 0 denote the FHT of the subordinate Brownian motion X in (17) to some
target set U ⊂ R

d ,

τ := inf{t > 0 : X(t) ∈ U }, (19)
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and let σ > 0 denote the FHT of the Brownian motion B to U ,

σ := inf{s > 0 : B(s) ∈ U }. (20)

We are not interested in the behavior of X after time τ , and thus it is enough to consider
the so-called stopped subordinate Brownian motion,

X(min{τ, t}) = B(S(min{τ, t})). (21)

In (21), we first subordinate Brownian motion and then stop the process when it hits
the target. Reversing the order of these two operations gives the so-called subordinate
stopped Brownian motion,

X̃(t) := B(min{σ, S(t)}) t ≥ 0. (22)

The FHT of (22) to U is,

τ̃ := inf{t > 0 : X̃(t) ∈ U } = inf{t > 0 : S(t) > σ }. (23)

While we are primarily interested in τ in (19) rather than τ̃ in (23), the fact that τ̃ ≤ τ

almost surely plays an important role in studying τ .

3 General Analysis

In this section, we present our general analysis and results on subordinate Brownian
motions. We begin with two propositions.

3.1 Two Useful Propositions

The first proposition computes the generator of a subordinator in a case that is useful
for our analysis.

Proposition 1 Assume F : [0,∞) → [0, 1] is Lipschitz continuous and satisfies

F(0) = 0 and F ′(0) := lim
s→0+

F(s)

s
∈ [0,∞). (24)

If S = {S(t)}t≥0 is a subordinator with drift b ≥ 0 and Lévy measure ν, then

lim
t→0+

E[F(S(t))]
t

= ρ := bF ′(0) +
∫ ∞

0
F(s) ν(ds) < ∞. (25)

Proposition 1 is useful for finding the short-time distribution of functionals of
subordinated processes. The next proposition shows how the short-time distribution
of a single FHT yields the asymptotic behavior of extreme FHTs.
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Before stating the proposition, we recall a few definitions. A random variable T
has an exponential distribution with rate λ > 0 if P(T ≤ t) = 1 − e−λt for t ≥ 0. If
{Ti }ki=1 are k ≥ 1 iid exponential random variables with rate λ > 0, then their sum
has an Erlang distribution with rate λ > 0 and shape k ∈ {1, 2, 3, . . . }, which means

P

( k∑
i=1

Ti ≤ t
)

= 1 − 	(k, λt)

	(k)
, t ≥ 0,

where 	(a, z) := ∫ ∞
z ua−1e−u du is the upper incomplete gamma function. A

sequence of random variables {ZN }N≥1 converges in distribution to Z as N → ∞ if

P(ZN ≤ z) → P(Z ≤ z) as N → ∞,

for all points z ∈ R such that F(z) := P(Z ≤ z) is continuous. If {ZN }N≥1 converges
in distribution to an Erlang random variable with rate λ and shape k, then we write
ZN →d Erlang(λ, k), and if k = 1, then we write ZN →d Exponential(λ).

Proposition 2 Let {τn}n≥1 be an iid sequence of random variables with

P(τn ≤ t) ∼ ρt as t → 0+, (26)

for some rate ρ > 0. Let Tk,N be the kth-order statistic,

Tk,N := min
{{τ1, . . . , τN }\ ∪k−1

j=1 {Tj,N }}, k ∈ {1, . . . , N }, (27)

where T1,N := min{τ1, . . . , τN }. The following rescaling of Tk,N converges in distri-
bution to an Erlang random variable with unit rate and shape k,

(ρN )Tk,N →d Erlang(1, k) as N → ∞.

If we assume further that E[T1,N ] < ∞ for some N ≥ 1, then

E[(Tk,N )m] ∼ 	(k + m)

	(k)

1

(ρN )m
for each moment m ∈ (0,∞) as N → ∞.

Proposition 2 is a special case of Theorems 5 and 6 in Madrid and Lawley (2020)
which were proven for the case P(τ ≤ t) ∼ ρtq as t → 0 for some ρ > 0 and q > 0.

3.2 Subordinated Processes

Before considering subordinate Brownian motion, we first analyze subordinate pro-
cesses when the “parent” process is not necessarily Brownian. Let S = {S(t)}t≥0 be a
subordinator with drift b ≥ 0 and Lévy measure ν as in Sect. 2.1. Let Y = {Y (s)}s≥0
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be a stochastic process independent of S. Define the FHT to a set U in the state space
of Y ,

σ := inf{s > 0 : Y (s) ∈ U }.

Define the two subordinations of the “parent” process Y ,

X(t) := Y (S(t)), X̃(t) := Y (min{σ, S(t)}), t ≥ 0.

Define the FHTs of X and X̃ to U ,

τ := inf{t > 0 : X(t) ∈ U }, τ̃ := inf{t > 0 : X̃(t) ∈ U } = inf{t > 0 : S(t) > σ }.

Since Y and S are independent, conditioning on the value of S(t) gives

P(̃τ ≤ t) = P(σ ≤ S(t)) = E[F̃(S(t))], t ≥ 0,

where F̃(s) := P(σ ≤ s). Therefore, if F̃(s) is merely Lipschitz and satisfies (24),
then Proposition 1 yields the short-time behavior of the distribution of τ̃ ,

lim
t→0+

P(̃τ ≤ t)

t
= ρ̃ := bF̃ ′(0) +

∫ ∞

0
F̃(s) ν(ds) < ∞. (28)

Furthermore, if ρ̃ > 0 and T̃k,N is the kth fastest FHT of N iid realizations of τ̃ [see
(27)], then Proposition 2 yields the large N distribution of T̃k,N in terms of an Erlang
random variable. Furthermore, if E[T̃1,N ] < ∞ for some N ≥ 1, then Proposition 2
also yields the large N behavior of the mth moment of T̃k,N .

Next, notice that we have the following bounds on the distribution of the FHT τ ,

P(X(t) ∈ U ) ≤ P(τ ≤ t) ≤ P(̃τ ≤ t) for all t ≥ 0, (29)

since τ̃ ≤ τ almost surely and X(t) ∈ U implies τ ≤ t . Since Y and S are independent,
we again condition on the value of S(t) to obtain

P(X(t) ∈ U ) = E[F(S(t))], t ≥ 0,

where F(s) := P(Y (s) ∈ U ). Therefore, if F(s) is Lipschitz and satisfies (24), then
Proposition 1 yields

lim
t→0+

P(X(t) ∈ U )

t
= ρ := bF ′(0) +

∫ ∞

0
F(s) ν(ds) < ∞. (30)

Therefore, the bounds in (29) and the limits in (28) and (30) yield the following bounds
on the short-time behavior of the distribution of τ ,

ρt + o(t) ≤ P(τ ≤ t) ≤ ρ̃t + o(t) as t → 0+,
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where f (t) = o(t) means f (t)/t → 0. If Tk,N is the kth fastest FHT of N iid
realizations of τ [see (27)], ρρ̃ > 0, and E[T1,N ] < ∞ for some N ≥ 1, then it
follows from Proposition 2 that we can bound the decay of the mth moment of Tk,N
as N → ∞,

	(k + m)

	(k)

1

(ρ̃N )m
+ o(N−m) ≤ E[(Tk,N )m] ≤ 	(k + m)

	(k)

1

(ρN )m
+ o(N−m).

Summarizing, if X is defined by subordinating some process Y , then Proposi-
tion 1 yields information about the short-time distribution of X and FHTs of X . Then,
Proposition 2 translates this short-time distribution of a single FHT into the behavior
of extreme FHTs. Importantly, these conclusions require only mild assumptions on the
parent process Y . In the next subsection, we consider the case that the parent process
is a Brownian motion.

3.3 Subordinate BrownianMotion

Let S = {S(t)}t≥0 be a subordinator as in Sect. 2.1 and assume that S has nontrivial
Lévy measure,

ν((0,∞)) > 0, (31)

to exclude the trivial case in which S is the deterministic function S(t) = bt for all
t ≥ 0. Let B = {B(s)}s≥0 be an independent, d-dimensional Brownian motion for
any d ≥ 1 as in (15). Define X = {X(t)}t≥0 as the random time change of B,

X(t) := B(S(t)) + X(0), t ≥ 0, (32)

where X(0) ∈ R
d is a possibly random initial position independent of S and B.

Let τ be the FHT of X to some target setU ⊂ R
d [see (19)]. AssumeU is nonempty

and is the closure of its interior, which precludes trivial cases such as the target having
zero Lebesgue measure. Assume that the distribution of X(0) is a probability measure
with compact support U0 ⊂ R

d that does not intersect the target,

U0 ∩U = ∅. (33)

Note that U0 and U are both closed sets, and thus (33) ensures that U0 and U are
separated by a strictly positive distance. As two examples, the initial distribution
could be a Dirac mass at a point X(0) = x0 = U0 ∈ R

d if x0 /∈ U or it could be
uniform on a set U0 satisfying (33).

Theorem 3 Under the assumptions of Sect. 3.3, we have that

P(τ ≤ t) ∼ P(X(t) ∈ U ) ∼ ρt as t → 0+, (34)

where ρ :=
∫ ∞

0
P(B(s) + X(0) ∈ U ) ν(ds) ∈ (0,∞). (35)

123



Journal of Nonlinear Science            (2023) 33:53 Page 13 of 27    53 

Furthermore, if TN := min{τ1, . . . , τN }, where {τn}n≥1 is an iid sequence of realiza-
tions of τ , then

(ρN )TN →d Exponential(1) as N → ∞. (36)

More generally, if Tk,N is the kth fastest FHT in (27), then

(ρN )Tk,N →d Erlang(1, k) as N → ∞. (37)

If E[TN ] < ∞ for some N ≥ 1, then

E[(Tk,N )m] ∼ 	(k + m)

	(k)

1

(ρN )m
for each moment m ∈ (0,∞) as N → ∞. (38)

Before applying Theorem 3 to some examples in Sect. 4, we make several com-
ments. First, the asymptotic equality P(τ ≤ t) ∼ P(X(t) ∈ U ) in (34) means that
paths which hit the target before a short time t are much more likely to stay in the
target than to leave before t . While this is intuitive, it does not hold for Brownian
motion, except on a logarithmic scale (the assumption in (31) means that X cannot
be a Brownian motion). Second, (36) means that TN is approximately exponentially
distributed with rate ρN if N is large, and similarly Tk,N is approximately Erlang
distributed with rate ρN and shape k. Third, the asymptotics in (34) and (38) differ
markedly from the case of diffusion. Further, the exponential distribution in (36) dif-
fers from the typically Gumbel distributed extreme FHTs of diffusion (Lawley 2020).
See the Introduction section for more on how Theorem 3 differs from the diffusion
case. Finally, while (34) gives the short-time distributions, these are equivalent to the
“small noise” distributions in the case of a Lévy flight. Indeed, if X is a Lévy flight
with generalized diffusion coefficient K , then (34) implies

P(X(t) ∈ U ) ∼ Kt
∫ ∞

0
P(B(s) + X(0) ∈ U )

α/2

	(1 − α
2 )

1

s1+ α
2
ds as K → 0 + .

4 Examples and Numerical Simulation

We now apply Theorem 3 for various choices of the space dimension d ≥ 1, the target
U , and the subordinator S.

4.1 Half-Line

Consider a one-dimensional Lévy flight X inR that starts at X(0) = 0 with α ∈ (0, 2).
That is, X is defined as in (32) and S is an (α/2)-stable subordinator defined inSect. 2.1.
Suppose the target is U = (−∞,−L] for some L > 0. Theorem 3 implies that τ has
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Fig. 3 Comparison of Theorem 3 and empirical results obtained from stochastic simulations for Lévy
flights in the one-dimensional geometry in Sect. 4.1. Top left: Empirical probability density of (ρN )TN
for α = 1.5. Top right: Kolmogorov–Smirnov distance in (39) between the empirical probability density of
(ρN )TN and a unit rate exponential for different choices of α. Bottom: Absolute errors for the mean and
standard deviation in (40) for α = 1.5 (bottom left) and α = 1 (bottom right). In all four plots, we take
K = L = 1

the short-time distribution in (34) with rate

ρ = K
∫ ∞

0
P(B(s) ∈ U )

α/2

	(1 − α/2)

1

s1+α/2 ds = 	(α) sin(απ/2)

π

K

Lα
∈ (0,∞),

since P(B(s) ∈ U ) = P(B(s) ≤ −L) = 1
2 [1 + erf(−L/

√
4 s)] for s > 0. This result

for this example was derived formally in Palyulin et al. (2019). Theorem 3 further
implies the convergence in distribution in (36)–(37). In addition, the Sparre-Anderson
theorem (Koren et al. 2007a) implies that P(τ > t) = O(t−1/2) as t → ∞ which
implies

E[TN ] =
∫ ∞

0
P(TN > t) dt =

∫ ∞

0
(P(τ > t))N dt < ∞ if N ≥ 3.

Hence, Theorem 3 impliesE[(TN )m] ∼ 	(m+1)(ρN )−m as N → ∞ for anym > 0.
These conclusions of Theorem 3 about the asymptotic behavior of TN as N → ∞

are illustrated in Fig. 3 using stochastic simulations. (Simulation details are given in
Sect. 4.6.) In the top left panel, we plot the empirical probability density of (ρN )TN
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obtained from stochastic simulationswithα = 1.5.As implied byTheorem3, (ρN )TN
converges in distribution to a unit rate exponential random variable. In the top right
panel, we plot the maximum difference between the empirical distribution of (ρN )TN
and a unit rate exponential random variable,

sup
z≥0

∣∣P((ρN )TN > z) − exp(−z)
∣∣, (39)

as a function of N for different choices of α. The difference (39) is the Kolmogorov–
Smirnov distance. This plot shows that the convergence of (ρN )TN to an exponential
random variable is faster for small α. In the bottom two plots, we plot the absolute
errors between the simulations and the theory for the mean and standard deviation,

∣∣E[TN ] − (ρN )−1
∣∣, ∣∣√Variance[TN ] − (ρN )−1

∣∣, (40)

as functions of N for α = 1.5 (bottom left panel) and α = 1 (bottom right panel). As
implied by Theorem 3, these errors decay faster than N−1 as N grows.

4.2 Escape from a d-Dimensional Sphere

Consider a Lévy flight X in R
d with d ≥ 1 starting at X(0) = 0 ∈ R

d with α ∈ (0, 2).
Suppose the target is

U = {x ∈ R
d : ‖x‖ ≥ L}, (41)

so that τ is the escape time from a d-dimensional sphere of radius L > 0 centered at
the origin. Theorem 3 implies that (34) holds with

ρ = ρ(L) = K
∫ ∞

0
P(‖B(s)‖ ≥ L)

α/2

	(1 − α/2)

1

s1+α/2 ds = 2α	( d+α
2 )

	( d2 )	(1 − α
2 )

K

Lα
,

(42)

since P(‖B(s)‖ ≥ L) = 	( d2 , L2

4s )/	( d2 ) for s > 0. Theorem 3 further implies the
convergence in distribution in (36)–(37). Furthermore,

E[TN ] ≤ E[τ ] =
[
ρ	

(
1 − α

2

)
	

(
1 + α

2

)]−1
< ∞ for any N ≥ 1,

where the formula for E[τ ] is due to Getoor (1961). Therefore, Theorem 3 implies
that E[(TN )m] ∼ 	(m + 1)(ρN )−m as N → ∞ for any moment m ∈ (0,∞).

These results are illustrated in Fig. 4 for dimension d = 3. In the top left panel, we
plot the empirical probability density of (ρN )TN obtained from stochastic simulations
with α = 1.5, which shows that (ρN )TN converges in distribution to a unit rate
exponential random variable. The top right panel plots the Kolmogorov–Smirnov
distance in (39) as a function of N for different choices of α. The bottom two plots
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Fig. 4 Comparison of Theorem 3 and empirical results obtained from stochastic simulations for the Lévy
flight escape problem in Sect. 4.2 with d = 3. Top left: Empirical probability density of (ρN )TN for
α = 1.5. Top right: Kolmogorov–Smirnov distance in (39) between the empirical probability density of
(ρN )TN and a unit rate exponential for different choices of α. Bottom: Absolute errors for the mean and
standard deviation in (40) for α = 1.5 (bottom left) and α = 1 (bottom right). In all four plots, we take
K = L = 1

show the absolute errors for the mean and standard deviation in (40) for α = 1.5
(bottom left panel) and α = 1 (bottom right panel). As implied by Theorem 3, these
errors decay faster than N−1 as N grows.

We emphasize that the large N decay of the moments of TN for Lévy flights is
much faster than for normal diffusion. To illustrate, let τ diff be the FHT of a pure
diffusion process {Xdiff(t)}t≥0 to the target, τ diff := inf{t > 0 : ‖Xdiff(t)‖ ≥ L}. The
mean FHT is E[τ diff] = L2

2dD (Getoor 1961), where D is the diffusivity of Xdiff. If
T diff
N := min{τ diff1 , . . . , τ diffN } is the fastest FHT out of N iid realizations of τ diff, then

(Weiss et al. 1983; Lawley 2020)

E[T diff
N ] ∼ L2

4D ln N
as N → ∞.

Now, it is straightforward to choose the diffusion coefficient of Xdiff so that E[τ ] =
E[τ diff]. Hence, for these parameters, the mean FHT for a single Lévy flight and a
single diffusion process are identical, but the mean fastest FHT for many Lévy flights
is much faster than for many diffusion processes.
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4.3 Tempered Stable Subordinator and Gamma Subordinator

The slow power law decay of the Lévy measure ν of the stable subordinator S means
that a Lévy flight X often takes large jumps. Thismay be undesirable in somemodeling
situations, and thus it is common to “temper” the stable subordinator by multiplying
its Lévy measure by a decaying exponential in order to suppress these large jumps.
Specifically, the so-called tempered stable subordinator is defined by zero drift and
the following Laplace exponent and Lévy measure,


(β) = K ((β + μ)α/2 − μα/2),
ν(ds)

ds
= K

α/2

	(1 − α/2)

e−μs

s1+α/2 , s > 0,

(43)

for α ∈ (0, 2), K > 0, and μ > 0. Taking α → 0 in the exponent in the Lévy
measure of the tempered stable subordinator yields another subordinator commonly
used inmodeling called the gamma subordinator,which has zero drift and the following
Laplace exponent and Lévy measure for some rate C > 0,


(β) = C log
(β + μ

μ

)
,

ν(ds)

ds
= C

e−μs

s
, s > 0. (44)

Suppose S = {S(t)}t≥0 is the gamma subordinator defined by (44) and let X(t) :=
B(S(t)) where B = {B(s)}s≥0 is a three-dimensional Brownian motion. Letting the
target be as in (41), Theorem 3 implies that (34) holds with

ρ = C
∫ ∞

0
P(‖B(s)‖ ≥ L)

e−μs

s
ds = 2C

(
e−L

√
μ +

∫ ∞

L
√

μ

e−z

z
dz

)
.

Theorem3 further implies the convergence in distribution in (36)–(37) and themoment
behavior in (38) (it is straightforward to check thatE[TN ] ≤ E[τ ] < ∞). These results
are illustrated in Fig. 5 using stochastic simulations (see Sect. 4.6). In the left panel, we
illustrate the convergence in distribution in (36) by plotting the Kolmogorov–Smirnov
distance in (39) as a function of N . The moment convergence in (38) is illustrated in
the right panel of Fig. 5, where we plot the absolute errors for the mean and standard
deviation [see (40)] as functions of N .

4.4 Annular Target inR
d

As in Sect. 4.2, consider a Lévy flight X in R
d with X(0) = 0 ∈ R

d . However, now
suppose that the target is the annular region,

U = {x ∈ R
d : 0 < L− ≤ ‖x‖ ≤ L+}, where 0 < L− < L+.
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Fig. 5 Comparison of Theorem 3 and empirical results obtained from stochastic simulations for the problem
in Sect. 4.3 of a Brownian motion subordinated by a gamma subordinator. Left: Kolmogorov–Smirnov
distance in (39) between the empirical probability density of (ρN )TN and a unit rate exponential for
different choices of α. Right: Absolute errors for the mean and standard deviation in (40). In both plots, we
take μ = C = L = 1

Hence, (34) holds with ρ = ρ(L+) − ρ(L−) > 0, where ρ(L±) is defined in (42)
since

P(B(s) ∈ U ) = P(‖B(s)‖ ≥ L−) − P(‖B(s)‖ ≥ L+).

This example illustrates some features not seen in the examples above. First, the
FHT τ toU is not the same as the first passage time, τfpt := inf{t > 0 : ‖X(t)‖ ≥ L−}.
This is because, in contrast to normal diffusion, X is a jump process, and therefore
it may “leapover” the annulus U so that τfpt < τ . Second, the FHT is infinite with
positive probability in dimensions d ≥ 3. That is, there exists q(d) > 0 so that

P(τ = ∞) = q(d) > 0 in dimension d ≥ 3. (45)

To see why (45) holds, note that X may leap over U with positive probability. After
leaping overU , the process starts at some radius larger than L+ and may never return
to a radius less than L+, as a result of the strong Markov property and the fact that
Brownian motion is transient if d ≥ 3. Third, (45) implies that P(TN = ∞) =
(q(d))N > 0 if d ≥ 3. Therefore, the mean fastest FPT is infinite if d ≥ 3,

E[TN ] = ∞ for every N ≥ 1 if d ≥ 3.

Hence, Theorem 3 ensures that the convergence in distribution in (36)–(37) holds, but
the moment asymptotics in (38) do not hold.

4.5 Poisson Distributed Targets inR
dR
d

R
d

Consider again a Lévy flight X in R
d . Studies of the efficiency of a superdiffusive

search often consider Poisson distributed targets (Levernier et al. 2020). To illustrate,
suppose {xi }i∈N is a d-dimensional Poisson spatial point process with constant density
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λ > 0. Fix a realization of {xi }i∈N and suppose that the target is obtained by making
each point xi ∈ R

d into a ball of radius l > 0,

U := {x ∈ R
d : ‖x − xi‖ ≤ l for some i ∈ N}.

Prior work often considers the case of sparse targets, which means that λldVd � 1,
where Vd := πd/2/	(1 + d/2) > 0 is the d-dimensional volume of a unit sphere.

If the support of the initial distributionof X(0)does not intersect the target [see (33)],
then Theorem 3 applies. To approximate the rate ρ in (34), we use that P(B(s) ∈ U )

vanishes exponentially as s → 0+ and P(B(s) ∈ U ) → λldVd ∈ (0, 1) as s → ∞,
since λldVd is the fraction of space occupied by targets. The characteristic distance
between neighboring xi and x j is L := (λVd)−1/d � l and so the characteristic
timescale when B reaches the target is L2 (B has unit diffusivity). Hence, if we
approximate P(B(s) ∈ U ) by 0 for s < L2 and by λldVd for s > L2, then we obtain

ρ ≈ K
∫ ∞

L2
λldVd

α/2

	(1 − α
2 )

1

s1+α/2 ds = V 1+α/d
d

	(1 − α
2 )

Kldλ1+α/d . (46)

If we define X via X(t) := B(S(t)) where S is the tempered stable subordinator in
(43) with μ > 0, then the analysis above holds and the approximation in (46) is

ρ ≈ K
∫ ∞

L2
λldVd

α/2

	(1 − α
2 )

e−μs

s1+α/2 ds = KldVdαλμα/2	(−α
2 , (Vdλ)−2/dμ)

2	(1 − α
2 )

.

4.6 Stochastic Simulation Algorithm

We now give the stochastic simulation algorithm used to generate FHTs of Lévy
flights. Given a discrete time step �t > 0, we generate a statistically exact path of
the (α/2)-stable subordinator S = {S(t)}t≥0 on the discrete time grid {tk}k∈N with
tk = k�t via

S(tk+1) = S(tk) + (�t)2/α�k, k ≥ 0, (47)

where S(t0) = S(0) = 0 and {�k}k∈N is an iid sequence of realizations of

� = sin(γ (V + π/2)

(cos(V ))1/γ

(
cos(V − γ (V + π/2))

E

) 1−γ
γ

, with γ := α/2 ∈ (0, 1),

(48)

where V is uniformly distributed on (−π/2, π/2) and E is an independent exponential
random variable with E[E] = 1. This algorithm to generate paths of S (namely, (47)–
(48)) follows section 4.1 in (Carnaffan and Kawai 2017). This allows us to generate
a statistically exact path of the Brownian motion {B(s)}s≥0 on the (random) discrete
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time grid {S(tk)}k∈N via

B(S(tk+1)) = B(S(tk)) +
√
2(K�t)2/α�kξk, k ≥ 0,

where {ξk}k∈Z is an iid sequence of standard d-dimensional Gaussian vectors. Finally,
we obtain a statistically exact path of the Lévy process X = {X(t)}t≥0 on the discrete
time grid {tk}k∈N via X(tk) = B(S(tk)) for k ≥ 0. The FHT τ to U ⊂ R

d is then
approximated by k := min{k�t ≥ 0 : X(tk) ∈ U }.

Paths of the gamma subordinated Brownian motion in Sect. 4.3 are simulated using
the same method, except that {�k}k∈N is an iid sequence of realizations of gamma
random variables with shape C�t > 0 and rate μ > 0. The data in Figs. 3, 4 and 5
are computed from 105 independent trials with �t = 10−5.

5 Discussion

Most studies of search processes measure the speed of search in terms of the FHT of a
single searcher. In this paper, we considered the scenario in which there are N � 1 iid
searchers and studied the FHT of the fastest searcher to find the target. Our analysis
involved finding the short-time distribution of the FHT of a single searcher and using
this to find the distribution andmoments of the FHT for the fastest searcher. Our results
apply to searchers whose paths follow a subordinate Brownian motion, which is any
process obtained by composing a Brownian motion with a Lévy subordinator. We
were primarily interested in the case that the searchers move by Lévy flights, which
is a prototypical model for a superdiffusive search (Dubkov et al. 2008).

Previous analysis of extreme FHTs has focused on diffusion, which began with the
work of Weiss et al. (1983). The 1/N decay of mean extreme FHTs for subordinate
Brownian motion contrasts sharply with the well-known 1/ ln N decay of extreme
FHTs for diffusion [compare (9) and (11)]. See the Introduction section for more on
how extreme statistics and large deviation theory for subordinate Brownian motion
compare to diffusion. Our results also contrast with results on extreme FHTs of subdif-
fusive processes modeled by a time fractional Fokker–Planck equation (Lawley 2020).
For searchers exploring a discrete space, an interesting recent study analyzed extreme
FHTs for Lévy walks on the two-dimensional integer lattice (Clementi et al. 2020),
which was motivated by the Lévy flight foraging hypothesis described in the Introduc-
tion section above. Other works investigating extreme FHTs on discrete state networks
include (Weng et al. 2017; Feinerman et al. 2012) in discrete time and (Lawley 2020)
in continuous time.

Biological search processes are often modeled by superdiffusive Lévy walks
(Reynolds 2018), which are similar to Lévy flights but move with a finite velocity
(Shlesinger and Klafter 1986). In particular, Lévy walks follow ballistic flights of uni-
formly distributed random directions and constant speed, and the lengths of the flights
are chosen from a probability densitywith the slow power law decay in (1). Lévywalks
are thus similar to run-and-tumble processes, except run-and-tumble models typically
assume the distance of each ballistic flight (i.e., a “run”) is chosen from an exponen-
tial distribution. The choice of an exponential distribution makes a run-and-tumble a
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piecewise deterministic Markov process. While Lévy walks are not Markovian, they
are nonetheless piecewise deterministic in the sense that the motion is deterministic
(constant velocity in a fixed direction) between turns. Extreme FHTs of piecewise
deterministic processes were analyzed in Lawley (2019), and it would be interesting
to apply that theory to Lévy walks.

Data Availability The datasets generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.

Appendix

In this appendix, we prove the results in the main text.

Lemma 4 Assume S = {S(t)}t≥0 is a compound Poisson process plus a drift, meaning
its Laplace exponent is in (13) with b ≥ 0 and

∫ ∞
0 ν(dz) ∈ (0,∞). If F : [0,∞) →

[0, 1] is continuous and satisfies (24), then (25) holds.

Proof of Lemma 4 By assumption, we have that S(t) = bt + ∑M(t)
m=1 Zm , where M =

{M(t)}t≥0 is a Poisson process with rate λ = ∫ ∞
0 ν(dz) ∈ (0,∞) and {Zm}m≥1 are iid

nonnegative random variables independent of M . In this case, the probability measure
of Zm is ν(dz)/λ. Decomposing the mean based on the value of M(t) yields

E[F(S(t))] = E[F(S(t))1M(t)=0] + E[F(S(t))1M(t)=1] + E[F(S(t))1M(t)≥2],

where 1A denotes the indicator function on an event A. SinceM(t) is a Poisson random
variable with mean λt and F is bounded, we have that E[F(S(t))1M(t)≥2] = o(t) as
t → 0+. Furthermore, since M and Z1 are independent, we have that

E[F(S(t))1M(t)=1] = P(M(t) = 1)E[F(bt + Z1)] = λte−λt
E[F(bt + Z1)],

E[F(S(t))1M(t)=0] = P(M(t) = 0)E[F(bt)] = e−λt F(bt).

Since F is bounded, F is continuous, and
∫ ∞
0 ν(ds) < ∞, we complete the proof by

applying the Lebesgue dominated convergence to conclude

E[F(bt + Z1)] = 1

λ

∫ ∞

0
F(bt + s) ν(ds) → 1

λ

∫ ∞

0
F(s) ν(ds) as t → 0 + .

��
Proof of Proposition 1 The boundedness of F and (24) ensure that the integral in (25)
is finite. Let ε = 2− j > 0 for some j ∈ {0, 1, 2, . . . } and define

S[ε,∞)(t) := bt +
∫∫

z∈[ε,∞), t ′∈[0,t]
zN(dt ′, dz),

S(0,ε)(t) :=
∫∫

z∈(0,ε), t ′∈[0,t]
zN(dt ′, dz),

(49)
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where N is a Poisson point process on the first quadrant with intensity measure
dt ′ ν(dz). The process S can then be written as S(t) = S[ε,∞)(t) + S(0,ε)(t). Since F
is Lipschitz, there exists a constant κ > 0 so that

E[F(S[ε,∞)(t))] − κE[S(0,ε)(t))] ≤ E[F(S(t))]
≤ E[F(S[ε,∞)(t))] + κE[S(0,ε)(t))] for all t > 0.

(50)

Since S[ε,∞) is a compound Poisson process plus a drift, Lemma 4 implies that

lim
t→0+ t−1

E[F(S[ε,∞)(t))] = ρε := bF ′(0) +
∫ ∞

ε

F(s) ν(ds) < ∞. (51)

To handle the terms in (50) involving S(0,ε)(t), recall that ε = 2− j and observe that
a dyadic partitioning of the interval (0, ε) yields

S(0,ε)(t) :=
∫∫

z∈(0,ε), t ′∈[0,t]
zN(dt ′, dz) ≤

∞∑
k= j

2−kN([0, t] × [2−k−1, 2−k]).

Since N is a Poisson point process, we have that

2−k
E

[
N([0, t] × [2−k−1, 2−k])] = 2t

∫ 2−k

2−k−1
2−k−1 ν(dz) ≤ 2t

∫ 2−k

2−k−1
z ν(dz).

Therefore,

E[S(0,ε)(t)] ≤ 2t
∫ ε

0
z ν(dz). (52)

Combining (50) with (51) and (52) yields

ρε − 2κ
∫ ε

0
z ν(dz) ≤ lim inf

t→0+
E[F(S(t))]

t
≤ lim sup

t→0+
E[F(S(t))]

t

≤ ρε + 2κ
∫ ε

0
z ν(dz).

Since these bounds converge to ρ as ε → 0+, the proof is complete. ��
Lemma 5 Let H : [0,∞) → [0, 1] be nondecreasing and satisfy (24). Then,
lim supt→0+ E[H(S(t))]/t < ∞.

Proof of Lemma 5 Using the definitions in (49), we have that

H(S(t)) = H(S[ε,∞)(t) + S(0,ε)(t)) ≤ H(2S[ε,∞)(t)) + H(2S(0,ε)(t)).

Since 2S[ε,∞)(t) is a compound Poisson process plus a drift, Lemma 4 ensures that
limt→0+ E[H(2S[ε,∞)(t))]/t < ∞. Since H satisfies (24), there exists an s0 ∈ (0, 1]
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and a θ ≥ 1 so that H(s) ≤ θs for all s ∈ (0, s0]. Therefore, H(s) ≤ θs/s0 for all
s ≥ 0. The proof is complete since (52) implies

E[H(2S(0,ε)(t))] ≤ 2θ

s0
E[S(0,ε)(t)] ≤ 4θ t

s0

∫ ε

0
z ν(dz).

��
Proof of Theorem 3 Define F(s) := P(B(s) + X(0) ∈ U ) ∈ [0, 1] for s ≥ 0. Using
the independence of B and X(0), we have

F(s) = 1

(4πs)d/2

∫∫
U×U0

exp
(−‖x − x0‖2

4s

)
μ0(dx0) dx, if s > 0, (53)

where μ0 is the probability measure of X(0) with support U0 ⊂ R
d . Using standard

results for interchanging differentiation with integration (for example, see Theo-
rem A.5.3 in Durrett (2019)), F(s) is infinitely differentiable and each derivative
is bounded. Furthermore, (33) ensures that F(0) = F ′(0) = 0, and thus Proposition 1
implies

lim
t→0+

P(X(t) ∈ U )

t
= lim

t→0+
E[F(s)]

t
= ρ :=

∫ ∞

0
P(B(s) + X(0) ∈ U ) ν(ds).

(54)

In the first equality in (54), we have used the independence of B, S, and X(0). Note
that ρ ∈ (0,∞). Indeed, Proposition 1 implies ρ < ∞. Further, ρ > 0 by (i) the
assumption in (31), (ii) the fact that B(s) ∈ R

d is a Gaussian random variable with
variance proportional to s > 0, and (iii) U has strictly positive Lebesgue measure
(since U is nonempty and the closure of its interior).

To complete the proof, we therefore need to show that

lim
t→0+ t−1

P(τ ≤ t) = lim
t→0+ t−1

P(X(t) ∈ U ). (55)

For t > 0, define the enlarged target U δ(t) := {x ∈ R
d : inf y∈U ‖x − y‖ ≤ δ(t)},

where we set δ(t) := t1/4 > 0 in order to satisfy

lim
t→0+ δ(t) = 0 and lim

t→0+ δ(t)t−1/2 = ∞. (56)

Decomposing the event τ ≤ t based on the position of X(t) yields

P(τ ≤ t) = P(X(t) ∈ U ) + P(τ ≤ t, X(t) ∈ U δ(t)\U ) + P(τ ≤ t, X(t) /∈ U δ(t)).

Therefore, showing (55) amounts to showing that

lim
t→0+ t−1

P(τ ≤ t, X(t) ∈ U δ(t)\U ) = 0 = lim
t→0+ t−1

P(τ ≤ t, X(t) /∈ U δ(t)). (57)
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We first prove the first equality in (57). Since X(t) = B(S(t))+ X(0) and B, X(0),
and S are independent, integrating over the possible values of S(t) yields

P(τ ≤ t, X(t) ∈ U δ(t)\U ) ≤ P(X(t) ∈ U δ(t)\U ) = E[F0(S(t); t)],

where F0(s; t) := P(B(s) + X(0) ∈ U δ(t)\U ). By the assumption in (33), we may
take t0 sufficiently small so that U δ(t0) ∩ U0 = ∅. Therefore, if t ∈ (0, t0], then
F0(s; t) satisfies the assumptions of Proposition 1 [by the same argument used for
F(s) in (53)]. Therefore, Proposition 1 implies that we may take t sufficiently small
so that,

t−1
P(τ ≤ t, X(t) ∈ U δ(t)\U ) ≤ 2

∫ ∞

0
P(B(s) + X(0) ∈ U δ(t0)\U ) ν(ds) < ∞.

Now, it is immediate that P(B(s)+ X(0) ∈ U δ(t0)\U ) → 0 as t0 → 0 for each s ≥ 0.
Hence, the Lebesgue dominated convergence theorem implies

lim
t0→0+

∫ ∞

0
P(B(s) + X(0) ∈ U δ(t0)\U ) ν(ds) = 0,

and thus the first equality in (57) holds. Turning to the second equality in (57), condi-
tioning that τ ≤ t implies

P(τ ≤ t, X(t) /∈ U δ(t)) = P(X(t) /∈ U δ(t) | τ ≤ t)P(τ ≤ t),

and the fact that τ̃ ≤ τ almost surely and Lemma 5 imply

lim sup
t→0+

t−1
P(τ ≤ t) ≤ lim sup

t→0+
t−1

P(̃τ ≤ t) < ∞,

since P(̃τ ≤ t) = E[H(S(t)] where H(s) := P(σ ≤ s) is nondecreasing. Next, it
follows from the strong Markov property (Bertoin 1996) that

P(X(t) /∈ U δ(t) | τ ≤ t) ≤ sup
r∈(0,t]

P0(‖X(r)‖ ≥ δ(t)),

where P0 denotes the probability measure conditioned that X(0) = 0. Again using
that B and S are independent, we have that

P0(‖X(r)‖ ≥ δ(t)) = E[F1(S(r); t)] ≤ E[F1(S(t); t)], if r ∈ [0, t], (58)

since F1(s; t) := P(‖B(s)‖ ≥ δ(t)) is an increasing function of s and S is almost
surely nondecreasing. Define

δ1(t) := (1 + b)t > 0, (59)
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and observe that (58) implies that for r ∈ (0, t],

P0(‖X(r)‖ ≥ δ(t)) ≤ E[F1(S(t); t)1S(t)<δ1(t)] + E[F1(S(t); t)1S(t)≥δ1(t)].

Since S(t)/t converges in probability to b ≥ 0 as t → 0+ (Bertoin 1996), we have
that

E[F1(S(t); t)1S(t)≥δ1(t)] ≤ P(S(t) ≥ δ1(t)) = P(S(t) ≥ (1 + b)t) → 0 as t → 0 + .

Next, since F1(s; t) is an increasing function of s, we have that

E[F1(S(t); t)1S(t)<δ1(t)] ≤ F1(δ1(t); t) = P(‖B(δ1(t))‖ ≥ δ(t)).

The Brownian scaling in (16) and the choices of δ(t) in (56) and δ1(t) in (59) imply

P(‖B(δ1(t))‖ ≥ δ(t)) = P(‖B(1)‖ ≥ δ(t)(δ1(t))
−1/2) → 0 as t → 0 + .

Hence, the second equality in (57) holds and the proof is complete. ��
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