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Abstract—Federated learning (FL) enables collaborative model training without centralizing data. However, the traditional FL
framework is cloud-based and suffers from high communication latency. On the other hand, the edge-based FL framework that relies
on an edge server co-located with mobile base station for model aggregation has low communication latency but suffers from degraded
model accuracy due to the limited coverage of edge server. In light of high-accuracy but high-latency cloud-based FL and low-latency

but low-accuracy edge-based FL, this paper proposes a new FL framework based on cooperative mobile edge networking called
cooperative federated edge learning (CFEL) to enable both high-accuracy and low-latency distributed intelligence at mobile edge
networks. Considering the unique two-tier network architecture of CFEL, a novel federated optimization method dubbed cooperative
edge-based federated averaging (CE-FedAvg) is further developed, wherein each edge server both coordinates collaborative model
training among the devices within its own coverage and cooperates with other edge servers to learn a shared global model through
decentralized consensus. Experimental results based on benchmark datasets show that CFEL can largely speed up the convergence
speed and reduce the training time to achieve a target model accuracy compared with prior FL frameworks.

Index Terms—Federated learning, mobile edge networks, decentralized optimization, training latency, scalability.

1 INTRODUCTION

The proliferation of edge devices such as smartphones
and Internet-of-things (IoT) devices, each equipped with
rich sensing, computation, and storage resources, leads to
tremendous data being generated on a daily basis at the
network edge. At the same time, artificial intelligence (AI)
and machine learning (ML) are advancing rapidly and en-
able efficient knowledge extraction from large volumes of
data. The convergence of 5G networks and AI/ML leads to
many emerging applications with significant economic and
societal impacts such as autonomous driving [1], augmented
reality [2], real-time video analytics [3], mobile healthcare
[4], and smart manufacturing [5]. A salient feature of these
emerging domains is the large and continuously streaming
data that these applications generate, which must be pro-
cessed efficiently enough to support real-time learning and
decision making based on these data.

The standard ML paradigm requires centralizing the
data at the cloud, which involves large amounts of dis-
tributed data transferred from the network edge to the cloud
with high communication cost and privacy risk. An alter-
native paradigm is Federated Learning (FL), which enables
edge devices to collaboratively learn a shared prediction
model under the orchestration of the cloud while keeping all
the personal data that may contain private information on
device [6]. Compared with the traditional centralized ML,
FL is capable of reducing communication cost, improving
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latency, and enhancing data privacy while obtaining an
accurate shared learning model for on-device inference, and
therefore has received significant attention recently [7].

Despite of its great potential, FL faces a major bottle-
neck in communication efficiency. Specifically, in the current
cloud-based FL framework, edge devices need to repeatedly
download the global model from the remote cloud and
upload local model updates of large data size (e.g., million
of parameters for modern DNN models) to the cloud for
many times in order to learn an accurate shared model.
Although communication compression techniques such as
quantization and sparsification [8], [9], [10] have been de-
veloped to improve the communication efficiency of FL, due
to the long-distance and limited-bandwidth transmissions
between an edge device and the remote cloud, the model
training in cloud-based FL is inevitably slow and fails to
meet the latency requirements of delay-sensitive intelligent
applications.

As more computing and storage resources are being
deployed at the mobile network edge in 5G-and-beyond net-
works, the edge-based FL framework, where an edge server
co-located with mobile base station serves as the aggregator
to coordinate FL among its proximate edge devices, is gain-
ing popularity [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20]. Although this framework can speed up model training
by mitigating the cloud bottleneck and saving long-distance
data transmission, an edge server can only access a limited
number of edge devices and their collected data. As the ML
model performance highly depends on the data volume,
edge-based FL cannot meet the accuracy requirements of
Al-powered applications that could be safety-critical such
as autonomous driving and mobile healthcare. To address
the limited coverage issue of edge-based FL framework,
hierarchical FL framework [21] that relies on the cloud to
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coordinate multiple edge servers has been proposed, but
it still suffers from high communication latency with the
cloud.

In light of the high-accuracy but high-latency cloud-
based FL and low-latency but low-accuracy edge-based FL,
this paper proposes a new FL framework called coopera-
tive federated edge learning (CFEL) to achieve both high-
accuracy and low-latency over wireless edge networks. The
key idea of CFEL is to leverage a network of cooperative
edge servers located at the wireless edge, rather than relying
on a central cloud server or multiple independent edge
servers, to facilitate FL among large numbers of edge de-
vices distributed over a wide area. By eliminating the costly
communication with the cloud, CFEL can achieve lower
model training latency than cloud-based FL, and by tapping
into more data from a larger set of edge devices, CFEL can
obtain higher model accuracy than edge-based FL. More-
over, due to the distributed system nature of CFEL, there
does not exist a single bottleneck, making the framework
more scalable than previous frameworks. Although promis-
ing, CFEL contains multiple cooperative aggregators rather
than a single aggregator as assumed in prior FL frameworks,
making the classic federated averaging (FedAvg) algorithm
[6] not directly applicable. To address that, we further de-
sign an efficient federated optimization method for CFEL
dubbed cooperative edge-based federated averaging (CE-
FedAvg), wherein each edge server first obtains an edge
model from the set of edge devices associated to it using
FedAvg and then cooperates with other edge servers to learn
a shared global model through decentralized consensus.

In summary, the main contributions of this paper are as
follows:

o We propose CFEL, a novel FL framework at mobile
edge networks, to achieve both high-accuracy and
low-latency model training based on cooperative
mobile edge networking. CFEL is more scalable than
prior FL frameworks by exploiting multiple aggrega-
tors and eliminating a single point of failure.

e Considering the unique network architecture of
CFEL, we design a new federated optimization
method named CE-FedAvg that can learn a shared
global model efficiently over the collective dataset
of all edge devices under the orchestration of a
distributed network of cooperative edge servers.

e We prove the convergence of CE-FedAvg theoreti-
cally and derive its convergence rates under general
assumptions about the loss function, data distribu-
tion, and network topology. The obtained conver-
gence guarantees are tighter than those in literature
and provide new insights about the algorithm de-
sign.

e We conduct extensive experiments based on common
FL benchmark datasets and demonstrate that CFEL
can learn an accurate model within a shorter time
than other FL frameworks at mobile edge networks.

2 RELATED WORKS

FL at mobile edge networks suffers from high training
latency due to limited communication bandwidth. To ad-
dress this issue, various communication-efficient distributed

2

TABLE 1: Comparison of algorithms in multi-server FL
setting.

fault local

non-IID non-convex . .
tolerance aggregation benefit

Algorithm

Hier-FAvg [21]
Hier-FAvg [22]
P-FedAvg [23]
MLL-SGD [24]
SE-FEEL [25]
Ours

CAXANRS
CRAXAS
CRNAX X
WXAXAX

learning algorithms have been proposed to improve the
communication efficiency of FL. Specifically, McMahan et
al. [6] proposed FedAvg to reduce the number of commu-
nication rounds by running multiple steps of SGD update
on devices before aggregating their updates at the server to
compute the new model. Various communication compres-
sion techniques such as sparsification [10] and quantization
[26] were also designed to reduce the size of messages
transmitted between the server and devices in each commu-
nication round of FL. Considering the resource constraints
of mobile edge networks, learning and resource allocation
were jointly optimized in [11], [14], [15], [17], [19], [20] to
minimize the training latency of FedAvg at mobile edge
networks. All of the aforementioned studies assume a single
server that aggregates model updates from all devices in
each communication round. However, since the coverage
of a single edge server is inherently limited, the proposed
solutions cannot scale to a large number of devices.

A few recent studies [21], [22], [23], [24], [25] have
considered multiple edge servers for FL at mobile edge
networks, each responsible for aggregating model updates
from a subset of devices. In particular, hierarchical FL. and
the associated hierarchical federated averaging (Hier-FAvg)
optimization algorithm were developed in [21], [22] that
relies on a central entity (e.g., the cloud) to coordinate
multiple edge servers in a star topology. As the central entity
can become the bottleneck and suffer from a single point
of failure, the fault-tolerance and scalability of hierarchical
FL is still a concern. Alternatively, decentralized coordi-
nation among edge servers without relying on a central
entity like the setting of CFEL has been considered in [23],
[24], [25]. Castiglia et al. [24] proposed Multi-Level Local
SGD (MLL-SGD) in a two-tier communication network with
heterogeneous workers, but it only considers the IID data
distribution. Zhong et al. [23] proposed a similar algorithm
called P-FedAvg, but it only consider the convex model,
and the global and local model aggregations operate at
the same frequency. The concurrent work [25] is mostly
related to ours, but as elaborated later, our convergence
result is much tighter than theirs and gives new insights
on why frequent local model aggregation helps and which
system design works better. A detailed comparison between
our algorithm and prior algorithms under the same system
setting is summarized in Table 1.

3 SYSTEM MODEL AND PROBLEM FORMULATION

Consider a CFEL system depicted in Fig. 1. Assume a set
of m clusters in the system. Each cluster ¢ € [m] contains
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Fig. 1: CFEL: Cooperative Federated Edge Learning.

a single edge server co-located with the base station and
a set of devices S; with n; = |S;|. Devices in S; only
communicate with the server in the same cluster using
the device-edge links. Define the set of all devices in the
system as S = U2, S;, and the total number of devices
n = |S|. The edge servers communicate with each other
over the edge backhaul. The communication pattern of edge
backhual is represented as an undirected and connected
graph G = {V, E'}, where V denotes the set of of all edge
servers, and each edge in the graph (¢, j) € E denotes the
link between edge servers ¢ and j. Let N; = {j : (¢,7) € E}
be the set of neighbors of server ¢ in the graph G. A list
of main notations used in the paper is summarized in

Table 2. Furthermore, let || - ||, || - [[r and || - ||op denote the
¢ vector norm, Frobenius norm and matrix operator norm,
respectively.

The goal of FL is to find a global model x € R? that
solves the following optimization problem:

1 n
min F(x) = — Fi(x), @
i P00 = 3 DA
where Fj(x) = E..p, [{r(x;2)] is the local objective func-
tion of device k, and D;, is the data distribution of device
k. Here ¢}, is the loss function defined by the learning task,
and z represents a data sample from distribution Dj,.

To solve (1) while satisfying the communication con-
straints of CFEL, we decompose the problem into multiple
subproblems, each for a cluster. The local objective function
of the i-th cluster is defined as

1
min f;(x) = — Y Fu(x), @)
! keS;

which represents the average loss over all devices in cluster
1. Then the global objective function (1) can be rewritten as:

m

m)in F(x) = Z %fz(x) 3)
i=1

In CFEL, devices in the systems collaboratively solve the
above optimization problem under the coordination of the
edge servers in their clusters without sharing the raw data.

4 LEARNING ALGORITHM DESIGN FOR CFEL

Since the CFEL system in Fig. 1 contains multiple clusters
without a central aggregator, the classic FedAvg algorithm

TABLE 2: Summary of main notations.

Notation Definition
1,7 Index for cluster
kK Index for device
l Index for global round
r Index for edge round
s Index for local iteration
t Index for global iteration
n Total number of devices
m Total number of edge servers/clusters
fm] {12,...,m)
S; Set of devices in cluster 7
S Set of all devices
n; Number of devices in cluster ¢
g Communication graph for edge backhaul
yl(lr) Edge model of cluster ¢
Dy Data distribution of device k
Fy (") Local objective function of device k
fi() Local objective function of cluster ¢
Xz<,kr),s Local model of device k&
gk Stochastic gradient of device k
n Local learning rate
T Intra-cluster aggregation period
qT Inter-cluster aggregation period
N; Set of neighbors of edge server ¢
H Mixing matrix
T Number of gossip steps per round
¢ Second largest eigenvalue of H
o2 Bounded variance
€2 Inter-cluster divergence
€2 Intra-cluster divergence of cluster 4
Tk Cluster index of device k

is not directly applicable. In this section, we propose a new
federated optimization method called Cooperative Edge-based
Federated Averaging (CE-FedAvg) to efficiently solve (3).

4.1 Algorithm Description

Algorithm 1 describes our proposed CE-FedAvg algorithm
for CFEL. The overall training process of CE-FedAvg is
divided into multiple global rounds wherein each cluster
first performs ¢ edge rounds of intra-cluster collaboration
independently and then communicates with other clusters
for inter-cluster collaboration.

At the beginning of the r-th edge round in the [-th global
round (i.e., (r,1)-th round), the edge server in each cluster 4
first broadcasts its current edge model y(fr), to the associated
devices S; under its coverage in the system. Then, devices
in each cluster initialize their local models to be the received
edge model and run 7 iterations of SGD to update their
local models in parallel. Let xl(]i,)_s denote the local model of
device k at the s-th local iteration of (r, [)-th round. We have

the following update equations for each device k € S;:

k %
X0 = Y1 @)
xl(?s_i_l <—xl(7kr)’s—ngk(xl(i)js),Vs:O,...,T—1, (5)

where 7 is the local learning rate, and g (xl(ljn)g) is the
stochastic gradient computed over a mini-batch 0, sampled
from the local data distribution Dy. Next, their final updated
local models {Xl(i)’,r, Vk € S;} are sent to the edge server i
for intra-cluster model aggregation, and each edge server
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Algorithm 1 Proposed CE-FedAvg Algorithm.

1: Initialization: initial edge models y(()%, Vi € [m], edge
backhaul graph G, mixing matrix H € [0, 1]™*™, intra-
cluster aggregation period 7, inter-cluster aggregation
period g7, and number of gossip steps 7.

2: for each global round [ =0,...,p — 1 do

3:  for each cluster ¢ € [m] in parallel do

4 for each edge round r =0,...,¢ — 1 do

5: for each device k € S; in parallel do
o,y

7 fors=0,...,7—1do

8 Compute a stochastic gradient gj over a

mini-batch 65, sampled from Dy,
(k) (k) (k)

9: Xy rs+1 — Xirs N8k (Xl,r,s)
10: end for
11: end for ®)
i 1

12: yl7r+l — n; Ekesi Xl,T,T
13: er(lgl for o)

. i J
Wy Djeun; BEivig
15:  end for
16: end for

i € [m] updates its edge model yl(ZT) 41 by averaging the

received local models from all associated devices as follows:

; 1
yz(j2+1 A > Xl(lj")r Q)
" keS;
Then, the same procedure repeats in the next edge round
T+ 1.

After ¢ edge rounds, the edge servers communicate with
each other over the edge backhaul for inter-cluster model
aggregation by averaging their models with neighboring
servers in 7 times using gossip protocol as follows:

vitiot Y. HILyl 7)
FE{iJUN;

Here N; = {j : (j,i) € E} denotes the neighbors of server
i in the graph G, and H € [0,1]™*™ denotes the mixing
matrix with each element H; ; being the weight assigned by
server i to server j. Note that H;; > 0 only if servers i and
j are directly connected in the edge backhaul. Finally, the
algorithm goes to the next global round [ 4 1 until p global
rounds in total.

Notably, CE-Fed Avg inherits the privacy benefits of clas-
sic FL schemes by keeping the original data on device and
sharing only model parameters. Furthermore, CE-FedAvg is
compatible with existing privacy-preserving techniques in
FL such as secure aggregation [27], [28], differential privacy
[29], [30], [31], and shuffling [32] since only the sum rather
than individual values is needed for the intra-cluster and
inter-cluster model aggregations.

4.2 Runtime Analysis of CE-FedAvg

We now present a runtime analysis of CE-FedAvg. Here,
the communication time of downloading models from the
edge server by each device is ignored because the down-
load bandwidth is usually much larger than upload band-
width for the device-to-edge communication in practice [7].

4

Similarly, the computation time for model aggregation at
edge servers is ignored because the involved computation
workload is rather small compared to the computation
capabilities of edge servers.

In each global round of CE-FedAvg, the total delay
consists of the computation time for performing g7 steps
of SGD update, the communication time for performing ¢
rounds of intra-cluster model aggregation, and the com-
munication time for performing one round of inter-cluster
model aggregation consisting of 7 steps of gossip averaging.
Therefore, the total runtime of CE-FedAvg after p global
rounds can be estimated as

qrC W

beQe

qW
bd2e

; ®)

where C is the computation workload of performing one
step of SGD update, c;, is the processing capability of device
k, W is the model size, bz is the uplink bandwidth from
device to edge server, and be. is the bandwidth between
two connecting edge servers in the backhaul.

4.3 Prior Algorithms as Special Cases

When the topology of edge backhaul G is fully connected
and the edge models from all servers are averaged in each
global aggregation round, CE-FedAvg essentially reduces
to Hier-FAvg [22] with the same model update rule. Also,
when there exists only one cluster, and all devices send their
local models to a single edge server for model aggregation
after 7 local iterations (ie., m = 1). CE-FedAvg reduces
to FedAvg [6]. Moreover, when each cluster only contains
one edge device, and each device communicates with its
neighboring device after ¢7 iterations (i.e., n = m), CE-
FedAvg reduces to decentralized local SGD [33]. Therefore,
the existing algorithms can be viewed as special cases of
CE-FedAvg. However, due to the generality of CE-FedAvg,
its convergence analysis presents significant new challenges.
As one of the main contributions in this paper, the conver-
gence analysis of CE-FedAvg will be elaborated in the next
section.

5 CONVERGENCE ANALYSIS OF CE-FEDAVG

In this section, we first describe the convergence results
of CE-FedAvg with respect to the gradient norm of the
objective function F'(-) and compare CE-FedAvg with prior
learning algorithms. Then we analyze the impact of vari-
ous learning parameters on the convergence rates of CE-
FedAvg.

5.1 Assumptions

Before stating our results, we make the following assump-
tions to facilitate our convergence analysis.

Assumption 1 (Smoothness). Each local objective function Fy, :
R? — R is L-smooth forallk € S , i.e.,

|VFy(x) — VEL(X)|| < L||x —x'||, Vx,x" € R%

Assumption 2 (Unbiased Gradient and Bounded Variance).
The local mini-batch stochastic gradient is an unbiased estimator
of the local gradient: Eg, [gr(x)] = VFy(x) and has bounded
variance: By, [|lgr(x) — VEL(x)||?] < 02, ¥x € R% k € S.
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Assumption 3 (Lower Bounded). There exists a constant Fing
such that
F(x) > Fiyp, Vx € R,

Assumption 4 (Mixing Matrix). The graph G := (V,E)
is strongly connected and the mixing matrix H € [0,1]™>™
defined on it satisfies the following:
1) If (i,7) € E, then H; ; > 0; otherwise, H; ; = 0.
2) H is doubly stochastic, i.e., HT = H.
3) The magnitudes of all eigenvalues except the largest one are
strictly less than 1, ie., ¢ = max{| 2(H)|, |\,(H)|} <
M(H)=1

Assumption 5 (Bounded Intra-Cluster Divergence). For each
cluster i € V, there exists a constant €; > 0 such that Vx € R?,

1
— Y IVEi(x) = VE&)|? < €.
v keS;

If the local objective functions of edge devices are identical to each
other within a cluster, then we have 622 =0.

Assumption 6 (Bounded Inter-Cluster Divergence). There
exists a constant € > 0 such that Vx € RY,

m

T

Y VA - VEE)|? < .

iz "
If the local objective functions of clusters are identical to each
other, then we have €2 = 0.

Assumptions 1, 2, and 3 are standard in the analysis
of SGD [34]. Assumption 4 follows the decentralized op-
timization literature [35] and ensures that the gossip step
converges to the average of all the vectors shared between
the nodes in the graph G. Here, smaller ¢ indicates better
connectivity between edge servers. For example, for com-
plete graphs and bipartite graphs, ( = 0 and ¢ = 1, respec-
tively. Assumptions 5 and 6 capture the dissimilarities of
local objectives within a single and across different clusters
due to data heterogeneity, respectively.

Note that most prior work in literature [25], [33], [36]
uses the following global divergence assumption to capture
the data heterogeneity:

Assumption 7 (Bounded Global Divergence). There exists a
constant € > 0 such that Vx € RY,
1 n
- Y IVE(x) = VE)|]” < €.
k=1

To see the relationship between Assumptions 5-6 and
Assumption 7, we can split the global divergence into the
intra-cluster and inter-cluster divergences as follows:

=Y IVE) = VEGIP = Y- [ Vfilx) - VEG)|?
k=1 i=1
3 LS VA - VR ©)
iz T keS;

As discussed later in Section 5.5, by decomposing the global
divergence bound into two components, our assumptions
enable a tighter convergence analysis for CE-FedAvg to
capture the benefit of local aggregation in accelerating con-
vergence.

5.2 Update Rule for CE-FedAvg Algorithm

Since edge servers are essentially stateless in CE-FedAvg,
we focus on how device models evolve in the convergence
analysis. We define ¢t = lg7 + r7 + s, where | € [0,p — 1],
r € [0,g — 1] and s € [0,7 — 1], as the global iteration
index, and T' = pgr as the total number of global train-
ing iterations in Algorithm 1. Then we can rewritten the
local model xl(ljn)q as xgk). Without loss of generality, we
denote the range of device indices for cluster i € [m] as
[ZjSFl n; + 1, ngi n]} with ng = 0.

The system behavior of CE-FedAvg can be summarized
by the following update rule for device models:

Xt+1 = (Xt - UGt)Wt,

(10)
where X, =[xV ... x{")

c ]Rdxn/ Gt —
g1 (x), ... ga(x™)] € R", and W, € R"™ " is a time-
varying operator capturing the three stages in CE-FedAvg;:
SGD update, intra-cluster model aggregation, and inter-
cluster model aggregation. Specifically, W, is defined as

follows:

BTdiag(c)H™B, (t+ 1) modgr =0
W, — BTdiag(c)B, (t+1)modT=0 1)
and (¢ + 1) mod g7 # 0
L.xn, otherwise,

where B € {0,1}"*™ is a binary matrix with each element
B, . denoting if device k belongs to cluster ¢ (i.e.,, B;; = 1)
or not (le, B, = 0), ¢ = [1/nq,...,1/n,] € R™, and
diag(c) € R™*™ is a diagonal matrix with the elements
of vector ¢ on the main diagonal. Specifically, for the stage
of SGD update (i.e., (t + 1) mod 7 # 0), Wy is the identity
matrix because there is no communication between edge de-
vices after SGD update; for the stage of intra-cluster model
aggregation (i.e., (t+1) mod 7 = 0 and (¢+1) mod g7 # 0),
BTdiag(c)B captures the model averaging within each clus-
ter independently after SGD update; and for the stage of
inter-cluster model aggregation (i.e., (¢ + 1) mod g7 = 0),
BTdiag(c)H™B captures the model aggregation within each
cluster followed by 7 steps of gossip averaging across
clusters.

To facilitate the convergence analysis, we first introduce
the quantities of interests. Multiplying 1, /n on both sides
in (10), we get
1,

n
where W, disappears due to the fact that 1,,/n is a right
eigenvector of BTdiag(c)H™B and BTdiag(c)B with eigen-
value of 1. Then define the average model as

1, 1,
Xt+1 = Xt? — nGt;a (12)

1,
u; = Xti. (13)
n
After rearranging, one can obtain
Upp1 = Uy — g > e (x¢"). (14)
k=1

Note that the averaged local model u, is updated via per-
forming the perturbed SGD contributed by all devices. In
the following, we will focus on the convergence of the aver-
aged model u;, which is a common practice in distributed
optimization literature [37].
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5.3 Convergence Results

We now provide the main theoretical results of the paper
in Theorem 1 and Corollary 1. We only provide the proof
sketch here and include the detailed proofs in the appen-
dices. Define the following constants:

¢ 1 2
> Oy =
1_(271’ 2 1_CQ7T+1_C7T+

Cﬂ'
(1—=¢m)*’
(15)

0 =

and n x n matrix A = 1,17 /n. For the sake of presentation,
we use V to denote BTdiag(c)B in the following.

Lemma 1 (Convergence Decomposition). Under Assump-
tions 1, 2, and 3, if the learning rate n < %, the iterates of
Algorithm 1 satisfy:

T-1

2
l Z E||VF( ut)||2 2(F(x1) — Finr) + nLo
= nT n
fully sync SGD
L2 — T-1
ZEHXt V- A+ Y EIX (- A -
t=0

residual error

Proof: The proof is provided in Appendix D in the
supplementary text. O
Lemma 1 aims to provide the composition of the total
convergence error bound. The residual error provides hints
on how to derive the convergence properties of CE-Fed Avg.
Specifically, the first term | X;(V —A)||2 represents the inter-
cluster error between the global average model XA and the
edge server models X;V. The second term ||X,(I — A)]|2
represents the intra-cluster error between the device models
X, I and the edge server models X; V. Next, we will provide
the upper bounds for these two terms.

Lemma 2 (Bounded inter-cluster error). Under Assumptions
1, 2, 4 and 6, the iterates of Algorithm 1 satisfy:

T—1 2 m—1 2
1 2n° Qg7 + " —qT)0
ZEHXt (V- A)”F = 37222
= 1 —4n?2L2¢%7m2Q

2 T-1

+f2mx dm)

Proof: The proof is provided in Appendix E in the
supplementary text. |
Lemma 2 shows that the inter-cluster error contains the
intra-cluster error. Next, we will bound the intra-cluster
error.

292
1-— 4772L2q27'292

Lemma 3 (Bounded intra-cluster error). Under Assumptions
1, 2, 4, 5, the iterates of Algorithm 1 satisfy:

1 T-1 (n m

ym2ra? 22y o
YRV < | S
t=0

— 220272 1 - 22072

Proof: The proof is provided in Appendix F in the
supplementary text. U
Lemma 3 gives the upper bound of intra-cluster error.
Combining Lemmas 1, 2 and 3 and choosing a proper learn-
ing rate, we can derive the following convergence bound:

6

Theorem 1 (Convergence of CE-FedAvg). Let Assump-
tions 1-6 hold, and let 01, (2o, L, 0, €, €; be as defined therein. If
the learning rate satisfies
1 1
16

2L’ 2\/2(22Lq7'} (16)
then for any T > 0, the iterates of Algorithm 1 for CE-FedAvg
satisfy

n < min{—

T-1
1 F — Fin Lo?
— E E||VE( U—t)H2 2(F(x1) £) n nLo
= nT n

1
qr)o? + 160> L? > 12 Qé?
" n
1
> e
i—1

Proof: Substituting the results in Lemmas 2 and 3 into
Lemma 1, we have:

+ 8772L2(qur + m-

n

L8 T 2202 4 1602202 17)
n

T-1
1 2(F(x1) — Fi Lo?
7ZEHVF ut)||2 ( ( 1) f) +77
nT n
4172L2( Lom)o?  8n2L2¢%r2 0,2

1—4n?2L2¢%272Q), 1 —4n?2L2¢%72Q5
N 4’ L2¢*T%Q), ) 2(2=1)? L2702
1 —4n2L2¢%72Q), 1-— 2772LQ7'2
272 2
477 L Zz 1 n ] . (18)
1—2n2L272

o1 1
When 7 < min{ 57—, m}, we have:
1

<2 19
1— 42022720, = (19)
an?L2q%12Q, 1
< <2. 20
1—4n2L2¢%7m2Q — 1—2n2L%72 — (20)
Putting (19) and (20) into (18), we arrive at the conclusion.
O

Further, by setting the learning rate to be = 1,/7%, we
can obtain the following corollary:

Corollary 1. For CE-FedAvg, under Assumptions 1-6, if the
learning rate is n = +./% when T > 4r’nmax{1,2Q2¢%},
then

1T1 qr + 7

q27_2 + 7_2

ZEIIVF ()| < O(—=) + O( )+ O(

T T

\/T

Corollary 1 provides some notable insights. First, the last
two terms show the trade-off between communication cost
and convergence. While smaller communication periods ¢
and 7 speed up the convergence and reduce the convergence
error, they also increase the overall communication cost.
Second, the error increases w.r.t. the magnitude of ¢*72
Thus, the convergence rate of O(1/v/T) can be guaranteed
by ensuring the total iteration number satisfies 1" > g

5.4 Comparison of Iteration Complexity

In the following, we consider the extreme cases of CE-
FedAvg and show that our analysis recovers the results of
prior algorithms that can be treated as special cases of CE-
FedAvg.
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e Comparison to Hier-FAvg. When the topology of
edge backhaul is fully connected, the value of ( be-
comes 0, and the model update rule of CE-FedAvg is
essentially the same as that of Hier-FAvg. Therefore,
our convergence result in Theorem 1 reduce to those
of Hier-FAvg in [22]. Meanwhile, Theorem 1 shows
that the fully connected network topology gives the
fastest convergence speed in terms of iteration com-
plexity among all the connected topologies because
it has the smallest values of 21 and 5.

e Comparison to FedAvg. When m = 1 and ¢ = 1,
all devices communicate with a single edge server
after 7 local iterations and ¢ = 0. In this case, the
proposed CE-FedAvg algorithm reduces to FedAvg,
and the iteration complexity of CE-FedAvg reduces
to O( =) + O("U ) + O(n?710?) + O(n?7%€?). This
C01nC1des with the complexity of FedAvg given in
[36].

e Comparison to Decentralized Local SGD. When
n =m and 7 = 1, each edge server only coordinates
one device and communicates with neighboring
servers after g iterations and ¢; = 0. The proposed
CE-FedAvg algorithm reduces to decentralized local
SGD, and the iteration complex1ty of CE-FedAvg
reduces to O( )+ O("U )+ O0(n?qo?) + O(n*q?€?).
This coincides w1th the complexity of decentralized
local SGD given in [33].

5.5 Discussions

In the following, we compare our main results with prior
work and analyze the impacts of cluster-level data distri-
bution and cluster size on algorithmic convergence in CE-
FedAvg.

Remark 1 (Comparison with SE-FEEL). We compare our
convergence result with that of a concurrent work SE-
FEEL [25] that analyzes CE-FedAvg only under the global
divergence assumption 7. Specifically, [25] provides a con-
vergence rate of

1 no?

O(ﬁ) + O<T) +O(n?

2q27_2€2)

gra®) +0(n
According to the above result, ¢ and 7 have the same effect
on the convergence bound, which cannot show any benefit
of intra-cluster model aggregation. In comparison, our work
shows a much tighter convergence rate of

n1T)+O( )+0(n?1(q+1)0?)+0(n? q262+2

We can observe that both intra-cluster aggregation period
7 and inter-cluster aggregation period ¢t affect the con-
vergence bound. In particular, given a fixed inter-cluster
aggregation period g7, more frequent intra-cluster aggrega-
tion (i.e., a smaller 7) leads to faster convergence and lower
convergence error. This clearly shows the benefit of intra-
cluster model aggregation in CE-FedAvg.

o(

Remark 2 (Effect of cluster size). We analyze the impact of
cluster size on the convergence of CE-Fed Avg under a fixed

7
number of devices n. For the IID setting (i.e., €2 = € =
0, Vi), the terms containing m in (17) is

4n?L20%1(29 — 1
mLro*r(2¢ 1) 1)

n
As 4n?L20%1(2q — 1)/n is always positive, a smaller value
of m leads to a lower convergence error bound. For the non-
IID setting, cluster size m can also affect the inter-cluster
and intra-cluster divergences (i.e., Assumptions 5 and 6).
For simplicity, assume all clusters have the same number of
devices, ie., n; = n/m,Vi € [m]. We have the following
lemma:

Lemma 4. Under equal cluster sizes, the inter-cluster divergence
in Assumption 6 can be written as:

o DIV -
TSI Y VR -

i=1 keV;

F(x)|? =

— L Y VR (22
k=1
Proof: The proof is provided in Appendix G in the
supplementary text. O
Suppose we combine any p > 1 existing clusters (assume
the cluster index ¢ = 1, ..., p without loss of generality) into
a new cluster. According to the Cauchy-Schwarz inequality,

we have
2 2

i Y VE(x)| > > VE(x)

1
- _ p ;
i=1||keV; keUl_, V.

Therefore, by Lemma 4, given the same set of devices and
random grouping, it is easy to see that in the RHS of (22), the
first term decreases as m decreases while the second term
remains the same. Therefore, the inter-cluster divergence de-
creases as m decreases, corresponding to faster convergence
in CE-FedAvg.

Remark 3 (Effect of cluster-level data distribution). We
investigate the impact of cluster-level data distribution (IID
and non-IID) on the convergence of CE-FedAvg. According
to (9) which shows that the global divergence can be decom-
posed into the inter-cluster and intra-cluster divergences,
we can obtain the following:

(23)

m N
~ (3
&=+ g —e?.
—n
i=1

Therefore, given certain data distributions on devices (i.e.,
the global divergence é2 is fixed), decreasing the inter-
cluster divergence €2 will increase the intra-cluster diver-
gence Y ", n;e? /n. According to (17) of Theorem 1, since
167)2L2q272§22 > 8772L27'2, this will lead to a lower total
convergence bound. In particular, when the cluster-level
data distribution is IID (i.e., €2 = 0), the convergence bound
in Theorem 1 is the smallest, and CE-FedAvg converges at
the fastest speed.

(24)

6 EXPERIMENTS
6.1 Experimental Setup

We consider a CFEL system with 64 devices and 8 edge
servers. Each edge server is connected with 8 devices, and
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edge servers are interconnected in edge backhaul with a ring
topology. In the experiments, we consider the image classi-
fication task on two common FL datasets: FEMNIST [38]
and CIFAR-10 [39]. The FEMNIST dataset is the federated
splitting version of EMNIST dataset which includes 3,550
users. We randomly sample 64 users to simulate the non-
IID data distribution for experimentation. Each user’s local
data is divided into 90% and 10% for training and testing,
respectively. The common testing dataset is composed of the
testing data from all devices. The model trained on FEM-
NIST is a CNN with two 3 x 3 convolutional layers (each
with 32 channels and ReLu activation followed with 2 x 2
max pooling), a full connected layer with 1024 units and
ReLu activation, and a final softmax output layer (6,603,710
total parameters) [40]. The CIFAR-10 dataset contains 50,000
training images and 10,000 testing images. To simulate the
non-IID data distribution, by default, the 50,000 training
images are partitioned across devices following the Dirichlet
distribution [41] with concentration parameter of 0.5. We
train a modified VGG-11 (9,750,922 total parameters) on
CIFAR-10. The original 10,000 testing images are used as the
common testing dataset. For each dataset, the common test-
ing set is used to evaluate the generalization performances
of the trained models.

For CE-FedAvg, we set the mixing matrix H following
Assumption 4 and the number of gossip steps in each global
aggregation round m = 10 by default. To demonstrate
the effectiveness of CE-FedAvg, we compare it with three
baselines: FedAvg [6], Hier-FAvg [21] and Local-Edge. For
fair comparison, the baseline algorithms are adapted as
follows:

e FedAvg: In every global round, each device performs
g iterations of SGD update and uploads its updated
model to the cloud for global aggregation. This corre-
sponds to the traditional cloud-based FL framework.

e Hier-FAvg: In every global round, each device first
alternatively performs 7 iterations of SGD update
and uploads its updated model to the associated
edge server for local aggregation for ¢—1 times. Next,
each device performs 7 iterations of SGD update and
uploads its updated model to the cloud for global
aggregation. This corresponds to the hierarchical FL
framework.

e Local-Edge: In every global round, each device alter-
natively performs 7 iterations of SGD update and
uploads its updated model to the associated edge
server for local aggregation for ¢ times without col-
laboration between edge servers. This corresponds to
the edge-based FL framework.

For all experiments, we use mini-batch SGD with
momentum of 0.9 to train the localmodel with batch
size of 50. The learning rate of each algorithm is
tuned from {0.01,0.05,0.1} for CIAFR-10 and from
{0.1,0.06,0.03,0.01} for FEMNIST using grid search. Fol-
lowing the implementation in [42], instead of doing T local
training steps per device, we perform 7 epochs of training
over each device’s dataset. Moreover, to account for varying
numbers of gradient steps per device, we weight the average
of device models by each device’s local sample size. We
run each experiment with 5 random seeds and report the

—e— FedAvg

0.0 0.5 1.0 15 2.0
Time (x10%s)

(b) FEMNIST

(c) CIFAR-10

(d) CIFAR-10

Fig. 2: Convergence rate and runtime comparisons of CE-
FedAvg and the baseline algorithms when 7 = 2 and ¢ = 8
for FEMNIST and CIFAR-10 datasets. (a) and (c) show how
the accuracy changes over global round; (b) and (d) show
how the accuracy changes over runtime.

average. All algorithms are implemented using Pytorch on
an Ubuntu server with 4 NVIDIA RTX 8000 GPUs.

We estimate the total training time as the sum of comput-
ing time and communication time. We use thop' to measure
the computation workload in terms of the number of float-
ing point operations (FLOPs). The number of FLOPs needed
for each training sample per iteration is 920.67 MFLOPs
for VGG-11 on CIFAR-10 and 13.30 MFLOPs for CNN on
FEMNIST, respectively. The edge devices are assumed to
be iPhone X whose processing capacity is 691.2 GFLOPS.
Following [25], we assume the edge servers are connected
in a ring topology via high-speed links with bandwidth of
50 Mbps unless otherwise specified. The devices and edge
servers are connected via wireless links whose bandwidth
is 10 Mbps per device, and the bandwidth between each
device and the cloud is set to be 1 Mbps [43].

6.2 Experimental Results

We first compare the convergence speed and runtime of CE-
FedAvg and the baseline algorithms while fixing 7 = 2
and ¢ = 8. For CE-FedAvg and Local-Edge, we measure
the average test accuracy of edge models in each global
round, and for FedAvg and Hier-FAvg, we measure the
test accuracy of cloud model in each global round. Fig. 2
shows the convergence process. From the figure, we can
observe that in terms of global round number, Hier-FAvg
generally converges faster than CE-FedAvg by aggregating
all local models centrally in the global model aggregation
stage. Both Hier-FAvg and CE-FedAvg converge faster than
FedAvg by using local model aggregation before global
model aggregation. Furthermore, Local-Edge converges to
a much lower model accuracy because a smaller amount of

1. https:/ /pypi.org/project/thop/
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Fig. 3: Convergence rate and runtime comparisons of CE-
FedAvg for CIFAR-10 and FEMNIST datasets under differ-
ent 7 when g7 = 16.
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Fig. 4: Testing accuracy vs. round number of CE-Fed Avg un-
der different cluster number m for CIFAR-10 and FEMNIST
datasets when fixing n = 64, 7 = 2, and ¢ = 8.

data is used to train each edge model. On the other hand,
in terms of runtime, CE-FedAvg can achieve a better time-
to-accuracy than all baseline algorithms by leveraging a
distributed network of cooperative edge servers to perform
fast local and global model aggregations. Specifically, On
FEMNIST the runtime of CE-FedAvg necessary to achieve
a target test accuracy of 80% is 62.5% and 58.3% less than
that of FedAvg and Hier-FedAvg, respectively. On CIFAR-
10, the runtime of CE-FedAvg necessary to achieve a target
test accuracy of 80% is 50.0% and 41.8% less than that of
FedAvg and Hier-FedAvg, respectively.

Next, we vary 7 from {2, 4, 8} while fixing g7 = 16 and
compare the performances of CE-FedAvg on FEMNIST and
CIFAR-10 in Fig. 3. From the figure, we can observe that
CE-FedAvg can converge faster in terms of global round
number as 7 decreases. This demonstrates the benefit of
frequent local model aggregation in improving the conver-
gence speed, matching the theoretical analysis in Remark 1.
However, in terms of runtime, a smaller 7 incurs longer
communication delay for local model aggregation in each
global round, which could lead to inferior performance
on time-to-accuracy. For instance, to achieve a target test

Testing Accuracy
@
3

—o— C=2
C=5

—+— C=8

—¥— Cluster-ID

Round Number
Fig. 5: Testing accuracy vs. round number for CE-FedAvg
on CIFAR-10 dataset under different cluster-level data dis-
tributions when fixing n = 64, 7 = 2, and ¢ = 8. Here C
denotes the number of label classes each cluster has.
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Fig. 6: Testing accuracy vs. round number for CE-FedAvg on
CIFAR-10 dataset under different edge backhaul topologies
when fixingn =64, 7=1,¢g=1,and 7 = 1.

accuracy of 80% on FEMNIST, the time needed for 7 = 2
is 24.6% and 24.2% more than that of 7 = 4 and 7 = 8. To
achieve a target test accuracy of 80% on CIFAR-10, the time
needed for 7 = 2 is 4% and 24% more than that of 7 = 4
and 7 = 8.

Then, we investigate how the cluster number m affects
the performance of CE-FedAvg. We select m = {4,8,16}
while fixing the total number of devices n = 64, correspond-
ing to {16,8,4} randomly assigned devices per cluster.
Fig. 4 depicts the testing accuracy vs. round number. As
can be observed from the figure, decreasing m leads to
better convergence because more devices cooperate with
each other during each edge round, and the divergence of
their models is smaller. This is consistent with the analysis
in Remark 2.

After that, we study the impact of cluster-level data dis-
tribution on the performance of CE-FedAvg. In CFEL, there
are two levels of non-IID data distribution: device-level and
cluster-level, corresponding to the intra-cluster and inter-
cluster divergence properties. Note that even though the
data distribution of device exhibits heterogeneity, the data
distribution of cluster can be homogeneous. Specifically,
we consider the following two cases on cluster-level data
distribution for CIFAR-10 dataset:

o Cluster 1ID: The 50,000 training images are first
evenly partitioned in an IID fashion across m = 8
clusters with each cluster having 6250 images. Then,
within each cluster, we sort the 6250 images by label,
evenly divide them into 16 shards, and then assign
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each of 8 devices 2 shards such that devices will
only have images of two labels. The data distribution
among clusters is IID in this case.

o Cluster Non-IID: We first sort the 50,000 training im-
ages by label, evenly divide them into C' x 8 shards,
and then assign C' shards to each of the 8 clusters
such that each cluster roughly has images of C' labels.
We set C' = {2, 5,8} in the experiment. Then, within
each cluster, we sort the assigned images by label,
evenly divide them into 16 shards, and then assign
each of 8 clusters 2 shards such that devices will
only have images of two labels. The data distribution
among clusters is non-1ID in this case.

We compare the performances of CE-FedAvg under the
above cases in Fig. 5. The result shows that CE-FedAvg
converges much faster under the Cluster IID than Cluster
Non-IID case. Therefore, if the grouping strategy of devices
can be controlled in practice, it makes sense to group devices
to follow the IID fashion across clusters to accelerate the
convergence and reduce runtime of CE-FedAvg. Further-
more, as C increases, the inter-cluster divergence increases
while the global divergence is fixed, the convergence speed
of CE-FedAvg will decrease correspondingly, matching our
theoretical analysis in Remark 3.

Finally, we evaluate the convergence of CE-FedAvg un-
der varying edge backhaul topologies in Fig. 6. We generate
random network topologies by Erd&s-Rényi model with
edge probability p = {0.2,0.4,0.6}. As observed in the
figure, a more connected network topology (i.e., a larger
value of p and smaller value of ) generally accelerates
the convergence and leads to a higher model accuracy
achieved after 1500 communication rounds in CE-FedAvg,.
This matches our theoretical results in Theorem 1.

7 CONCLUSION

In this paper, we proposed CFEL, a novel FL framework
that integrates a distributed network of cooperative edge
servers for fast model aggregation and achieves scalable
and low-latency model learning at mobile edge networks.
Specifically, a new federated optimization algorithm called
CE-FedAvg was developed under the proposed CFEL, and
its convergence properties were analyzed under the general
non-convex and non-IID setting. Experiments demonstrated
that compared with other FL frameworks, CFEL can largely
reduce the training time to achieve a target model accuracy.
For future work, we will investigate computational hetero-
geneity and rigorous privacy protection in CFEL.
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